Networked Sensor-Based Adaptive Traffic Signal Control for Dynamic Flow Optimization

With the rapid advancement of modern society, the demand for efficient and convenient transportation has increased significantly, making traffic congestion a pressing challenge that must be addressed in the process of urban expansion. To effectively mitigate this issue, we propose an approach that l...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 25; číslo 11; s. 3501
Hlavní autori: Wang, Xinhai, Shao, Wenhua
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 01.06.2025
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With the rapid advancement of modern society, the demand for efficient and convenient transportation has increased significantly, making traffic congestion a pressing challenge that must be addressed in the process of urban expansion. To effectively mitigate this issue, we propose an approach that leverages sensor networks to monitor real-time traffic data across road networks, enabling the precise characterization of traffic flow dynamics. This method integrates the Webster algorithm with a proportional–integral–derivative (PID) controller, whose parameters are optimized using a genetic algorithm, thereby facilitating scientifically informed traffic signal timing strategies for enhanced traffic regulation. Geomagnetic sensors are deployed along the roads at a ratio of 1:50–1:60, and radar sensors are deployed on the roadsides of key sections. This can effectively detect changes in road traffic flow and provide early warnings for possible accidents. The integration of the Webster method with a genetically optimized PID controller enables adaptive traffic signal timing with minimal energy consumption, effectively reducing road occupancy rates and mitigating congestion-related risks. Compared to conventional fixed-time control schemes, the proposed approach improves traffic regulation efficiency by 17.3%. Furthermore, it surpasses traditional real-time adaptive control strategies by 3% while significantly lowering communication energy expenditure. Notably, during peak hours, the genetically optimized PID controller enhances traffic control effectiveness by 13% relative to its non-optimized counterpart. A framework is proposed to improve the efficiency of road operation under the condition of random traffic changes. The k-means method is used to mark key roads, and weights are assigned based on this to coordinate and regulate traffic conditions. These findings underscore our contribution to the field of intelligent transportation systems by presenting a novel, energy-efficient, and highly effective traffic management solution. The proposed method not only advances the scientific understanding of dynamic traffic control but also offers a robust technical foundation for alleviating urban traffic congestion and improving overall travel efficiency.
AbstractList With the rapid advancement of modern society, the demand for efficient and convenient transportation has increased significantly, making traffic congestion a pressing challenge that must be addressed in the process of urban expansion. To effectively mitigate this issue, we propose an approach that leverages sensor networks to monitor real-time traffic data across road networks, enabling the precise characterization of traffic flow dynamics. This method integrates the Webster algorithm with a proportional–integral–derivative (PID) controller, whose parameters are optimized using a genetic algorithm, thereby facilitating scientifically informed traffic signal timing strategies for enhanced traffic regulation. Geomagnetic sensors are deployed along the roads at a ratio of 1:50–1:60, and radar sensors are deployed on the roadsides of key sections. This can effectively detect changes in road traffic flow and provide early warnings for possible accidents. The integration of the Webster method with a genetically optimized PID controller enables adaptive traffic signal timing with minimal energy consumption, effectively reducing road occupancy rates and mitigating congestion-related risks. Compared to conventional fixed-time control schemes, the proposed approach improves traffic regulation efficiency by 17.3%. Furthermore, it surpasses traditional real-time adaptive control strategies by 3% while significantly lowering communication energy expenditure. Notably, during peak hours, the genetically optimized PID controller enhances traffic control effectiveness by 13% relative to its non-optimized counterpart. A framework is proposed to improve the efficiency of road operation under the condition of random traffic changes. The k-means method is used to mark key roads, and weights are assigned based on this to coordinate and regulate traffic conditions. These findings underscore our contribution to the field of intelligent transportation systems by presenting a novel, energy-efficient, and highly effective traffic management solution. The proposed method not only advances the scientific understanding of dynamic traffic control but also offers a robust technical foundation for alleviating urban traffic congestion and improving overall travel efficiency.
With the rapid advancement of modern society, the demand for efficient and convenient transportation has increased significantly, making traffic congestion a pressing challenge that must be addressed in the process of urban expansion. To effectively mitigate this issue, we propose an approach that leverages sensor networks to monitor real-time traffic data across road networks, enabling the precise characterization of traffic flow dynamics. This method integrates the Webster algorithm with a proportional-integral-derivative (PID) controller, whose parameters are optimized using a genetic algorithm, thereby facilitating scientifically informed traffic signal timing strategies for enhanced traffic regulation. Geomagnetic sensors are deployed along the roads at a ratio of 1:50-1:60, and radar sensors are deployed on the roadsides of key sections. This can effectively detect changes in road traffic flow and provide early warnings for possible accidents. The integration of the Webster method with a genetically optimized PID controller enables adaptive traffic signal timing with minimal energy consumption, effectively reducing road occupancy rates and mitigating congestion-related risks. Compared to conventional fixed-time control schemes, the proposed approach improves traffic regulation efficiency by 17.3%. Furthermore, it surpasses traditional real-time adaptive control strategies by 3% while significantly lowering communication energy expenditure. Notably, during peak hours, the genetically optimized PID controller enhances traffic control effectiveness by 13% relative to its non-optimized counterpart. A framework is proposed to improve the efficiency of road operation under the condition of random traffic changes. The k-means method is used to mark key roads, and weights are assigned based on this to coordinate and regulate traffic conditions. These findings underscore our contribution to the field of intelligent transportation systems by presenting a novel, energy-efficient, and highly effective traffic management solution. The proposed method not only advances the scientific understanding of dynamic traffic control but also offers a robust technical foundation for alleviating urban traffic congestion and improving overall travel efficiency.With the rapid advancement of modern society, the demand for efficient and convenient transportation has increased significantly, making traffic congestion a pressing challenge that must be addressed in the process of urban expansion. To effectively mitigate this issue, we propose an approach that leverages sensor networks to monitor real-time traffic data across road networks, enabling the precise characterization of traffic flow dynamics. This method integrates the Webster algorithm with a proportional-integral-derivative (PID) controller, whose parameters are optimized using a genetic algorithm, thereby facilitating scientifically informed traffic signal timing strategies for enhanced traffic regulation. Geomagnetic sensors are deployed along the roads at a ratio of 1:50-1:60, and radar sensors are deployed on the roadsides of key sections. This can effectively detect changes in road traffic flow and provide early warnings for possible accidents. The integration of the Webster method with a genetically optimized PID controller enables adaptive traffic signal timing with minimal energy consumption, effectively reducing road occupancy rates and mitigating congestion-related risks. Compared to conventional fixed-time control schemes, the proposed approach improves traffic regulation efficiency by 17.3%. Furthermore, it surpasses traditional real-time adaptive control strategies by 3% while significantly lowering communication energy expenditure. Notably, during peak hours, the genetically optimized PID controller enhances traffic control effectiveness by 13% relative to its non-optimized counterpart. A framework is proposed to improve the efficiency of road operation under the condition of random traffic changes. The k-means method is used to mark key roads, and weights are assigned based on this to coordinate and regulate traffic conditions. These findings underscore our contribution to the field of intelligent transportation systems by presenting a novel, energy-efficient, and highly effective traffic management solution. The proposed method not only advances the scientific understanding of dynamic traffic control but also offers a robust technical foundation for alleviating urban traffic congestion and improving overall travel efficiency.
Audience Academic
Author Wang, Xinhai
Shao, Wenhua
AuthorAffiliation School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; kelly@bupt.edu.cn
AuthorAffiliation_xml – name: School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; kelly@bupt.edu.cn
Author_xml – sequence: 1
  givenname: Xinhai
  surname: Wang
  fullname: Wang, Xinhai
– sequence: 2
  givenname: Wenhua
  surname: Shao
  fullname: Shao, Wenhua
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40969099$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNURD_gwB9AkbjAIa0_4tg-oWWhUKmihy5ny7HHi5fE3trZVuXX43bLqq2QD7ZnHr8z45nDai_EAFX1FqNjSiU6yYRhTBnCL6oD3JK2EYSgvUfn_eow5xVChFIqXlX7LZKdRFIeVIsfMN3E9BtsfQkhx9R81rlcZlavJ38N9SJp57ypL_0y6KGexzClONQupvrLbdBjcZ0O8aa-KPjo_-jJx_C6eun0kOHNw35U_Tz9uph_b84vvp3NZ-eNKflODTfQus7oXhLZM2wEbx0gw6EjFmuNJbjOMUHAIt5TbYlDzHIumICOGtnRo-psq2ujXql18qNOtypqr-4NMS2VTpM3AyjTMiQktlwCK0F7QXjXASDsuO46SorWp63WetOPYA2UOvXwRPSpJ_hfahmvFSaYCSpZUfjwoJDi1QbypEafDQyDDhA3WVHCCCGMSV7Q98_QVdyk8r93FOa85ZTTQh1vqaUuFfjgYglsyrJQvr2MgPPFPhMtaznfZvDucQ275P-1uwAft4BJMecEbodgpO5GSe1GqbAnz1jjp_v2liz88J8XfwEmZ8kF
CitedBy_id crossref_primary_10_3390_s25185760
Cites_doi 10.1109/TVT.2022.3160871
10.1016/S0019-9958(65)90241-X
10.1109/TITS.2022.3195221
10.1109/TITS.2024.3399066
10.1109/IMSCCS.2006.286
10.1109/JIOT.2024.3401829
10.1063/5.0193957
10.3390/math12132056
10.1016/B978-0-08-029365-3.50048-1
10.1109/ACCESS.2023.3278986
10.1016/j.engappai.2025.110440
10.1109/TITS.2024.3397077
10.1177/0361198105191700119
10.1177/0037549718777615
10.1109/IMCET.2018.8603041
10.1109/MCS.2006.1580151
10.1109/TMAG.2012.2220535
10.1109/JSEN.2018.2800009
10.1088/1755-1315/371/5/052034
10.3390/sym16020240
10.1109/NEMS.2009.5068589
10.1007/s44163-023-00087-z
10.1016/j.engappai.2017.10.013
10.1109/ACCESS.2021.3094270
10.1109/TSMC.1973.5408575
10.1007/978-3-319-14203-6_8
10.1287/trsc.31.1.5
10.1117/12.2684871
10.1007/978-3-031-48933-4_11
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25113501
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Publicly Available Content Database
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_c450891d79e54f6b82766ee01f7a6632
PMC12158395
A845477395
40969099
10_3390_s25113501
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PUEGO
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c511t-7ce4f6cab929b51c874fe0c7e62d1aa19ef6f582ed07b3ad2f05d77858e63c963
IEDL.DBID BENPR
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001508140600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:35:16 EST 2025
Tue Nov 04 02:01:59 EST 2025
Fri Sep 19 21:00:32 EDT 2025
Tue Oct 07 07:42:29 EDT 2025
Tue Nov 04 18:15:24 EST 2025
Tue Sep 23 02:21:37 EDT 2025
Sat Nov 29 07:08:10 EST 2025
Tue Nov 18 21:57:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords PID controller
adaptive control
sensor networks
traffic signal timing
traffic flow
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-7ce4f6cab929b51c874fe0c7e62d1aa19ef6f582ed07b3ad2f05d77858e63c963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3217747373?pq-origsite=%requestingapplication%
PMID 40969099
PQID 3217747373
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_c450891d79e54f6b82766ee01f7a6632
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12158395
proquest_miscellaneous_3252225597
proquest_journals_3217747373
gale_infotracacademiconefile_A845477395
pubmed_primary_40969099
crossref_primary_10_3390_s25113501
crossref_citationtrail_10_3390_s25113501
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lin (ref_17) 2024; 25
Nair (ref_35) 2024; 3059
Ali (ref_36) 2021; 9
ref_14
Yang (ref_7) 2024; 25
Zhu (ref_18) 2024; 11
ref_34
ref_11
ref_10
ref_32
ref_31
Zou (ref_45) 2019; 95
Zadeh (ref_28) 1973; SMC–3
Bai (ref_24) 2018; 18
Vopalensky (ref_22) 2013; 49
Yin (ref_38) 2019; 371
ref_39
ref_16
Balamutas (ref_26) 2023; 11
Wang (ref_5) 2025; 149
ref_37
Jin (ref_46) 2018; 68
Cheung (ref_9) 2005; 1917
Wang (ref_41) 2018; 31
Chabchoub (ref_19) 2021; 12
Azad (ref_40) 2023; 3
Zadeh (ref_27) 1965; 8
ref_25
Sen (ref_33) 1997; 31
Liu (ref_13) 2022; 71
Goel (ref_20) 2012; 40
ref_23
Shou (ref_15) 2012; 29
ref_21
Wu (ref_42) 2013; 10
ref_43
ref_1
Knospe (ref_44) 2006; 26
ref_2
Cano (ref_12) 2024; 252 Pt B
ref_29
Lin (ref_3) 2023; 24
ref_8
Gartner (ref_30) 1983; 906
ref_4
ref_6
References_xml – volume: 71
  start-page: 5960
  year: 2022
  ident: ref_13
  article-title: Intelligent Traffic Light Control by Exploring Strategies in an Optimised Space of Deep Q-Learning
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2022.3160871
– volume: 8
  start-page: 338
  year: 1965
  ident: ref_27
  article-title: Fuzzy sets
  publication-title: Inf. Control.
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 10
  start-page: 37
  year: 2013
  ident: ref_42
  article-title: Application and Theoretical Basis of PID Control
  publication-title: Control Eng. China
– volume: 24
  start-page: 8555
  year: 2023
  ident: ref_3
  article-title: Traffic Signal Optimization Based on Fuzzy Control and Differential Evolution Algorithm
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3195221
– volume: 25
  start-page: 14196
  year: 2024
  ident: ref_7
  article-title: Enhancing robustness of deep reinforcement learning based adaptive traffic signal controllers in mixed traffic environments through data fusion and multi-discrete actions
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2024.3399066
– ident: ref_10
  doi: 10.1109/IMSCCS.2006.286
– volume: 11
  start-page: 28496
  year: 2024
  ident: ref_18
  article-title: Adaptive Broad Deep Reinforcement Learning for Intelligent Traffic Light Control
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2024.3401829
– ident: ref_34
– ident: ref_11
– volume: 3059
  start-page: 030020
  year: 2024
  ident: ref_35
  article-title: Design of traffic signal at Puthuppally junction using webster method
  publication-title: AIP Conf. Proc.
  doi: 10.1063/5.0193957
– ident: ref_39
– ident: ref_6
  doi: 10.3390/math12132056
– ident: ref_14
– ident: ref_32
  doi: 10.1016/B978-0-08-029365-3.50048-1
– ident: ref_1
– ident: ref_21
– volume: 31
  start-page: 126
  year: 2018
  ident: ref_41
  article-title: Comparative Study and Evaluation of Incremental PID and Positional PID Algorithms
  publication-title: Ind. Control Comput.
– volume: 11
  start-page: 50984
  year: 2023
  ident: ref_26
  article-title: Passing vehicle road occupancy detection using the magnetic sensor array
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3278986
– volume: 149
  start-page: 110440
  year: 2025
  ident: ref_5
  article-title: An adaptive traffic signal control scheme with Proximal Policy Optimization based on deep reinforcement learning for a single intersection
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2025.110440
– volume: 25
  start-page: 15053
  year: 2024
  ident: ref_17
  article-title: Problem-Specific Knowledge Based Multi-Objective Meta-Heuristics Combined Q-Learning for Scheduling Urban Traffic Lights With Carbon Emissions
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2024.3397077
– ident: ref_8
– volume: 40
  start-page: 36
  year: 2012
  ident: ref_20
  article-title: Intelligent traffic light system to prioritized emergency purpose vehicles based on wireless sensor network
  publication-title: Int. J. Comput. Appl.
– ident: ref_31
– volume: 1917
  start-page: 173
  year: 2005
  ident: ref_9
  article-title: Traffic measurement and vehicle clas sification with a single magnetic sensor
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198105191700119
– volume: 252 Pt B
  start-page: 124178
  year: 2024
  ident: ref_12
  article-title: Improving traffic light systems using Deep Q-networks
  publication-title: Expert Syst. Appl.
– ident: ref_2
– volume: 95
  start-page: 271
  year: 2019
  ident: ref_45
  article-title: Self-organization models of urban traffic lights based on digital infochemicals
  publication-title: Simulation
  doi: 10.1177/0037549718777615
– ident: ref_16
  doi: 10.1109/IMCET.2018.8603041
– volume: 26
  start-page: 30
  year: 2006
  ident: ref_44
  article-title: PID control
  publication-title: IEEE Control. Syst. Mag.
  doi: 10.1109/MCS.2006.1580151
– volume: 49
  start-page: 136
  year: 2013
  ident: ref_22
  article-title: Temperature Drift of Offset and Sensitivity in Full-Bridge Magnetoresistive Sensors
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2012.2220535
– volume: 18
  start-page: 2713
  year: 2018
  ident: ref_24
  article-title: Research on an improved resonant cavity for overhauser geomagnetic sensor
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2800009
– volume: 371
  start-page: 052034
  year: 2019
  ident: ref_38
  article-title: InteQQArsection signal timing optimization based on Webster timing method
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/371/5/052034
– volume: 12
  start-page: 396
  year: 2021
  ident: ref_19
  article-title: Intelligent traffic light controller using fuzzy logic and image processing
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: ref_4
  doi: 10.3390/sym16020240
– ident: ref_23
  doi: 10.1109/NEMS.2009.5068589
– volume: 29
  start-page: 96
  year: 2012
  ident: ref_15
  article-title: Multi-Objective Dynamic Decision Model and Optimization Method for Signalized Intersections
  publication-title: J. Highw. Transp. Res. Dev.
– volume: 3
  start-page: 39
  year: 2023
  ident: ref_40
  article-title: Smart control of traffic lights based on traffic density in the multi-intersection network by using Q learning
  publication-title: Discov. Artif. Intell.
  doi: 10.1007/s44163-023-00087-z
– ident: ref_43
– volume: 68
  start-page: 236
  year: 2018
  ident: ref_46
  article-title: Hierarchical multi-agent control of traffic lights based on collective learning
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.10.013
– volume: 9
  start-page: 102985
  year: 2021
  ident: ref_36
  article-title: An adaptive method for traffic signal control based on fuzzy logic with webster and modified webster formula using SUMO traffic simulator
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3094270
– volume: 906
  start-page: 75
  year: 1983
  ident: ref_30
  article-title: OPAC: A demand responsive strategy for traffic signal control
  publication-title: Transp. Res. Rec.
– volume: SMC–3
  start-page: 28
  year: 1973
  ident: ref_28
  article-title: Outline of a New Approach to the Analysis of Complex Systems and Decision Processes
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1973.5408575
– ident: ref_29
  doi: 10.1007/978-3-319-14203-6_8
– volume: 31
  start-page: 5
  year: 1997
  ident: ref_33
  article-title: Controlled optimization of phases at an intersection
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.31.1.5
– ident: ref_25
  doi: 10.1117/12.2684871
– ident: ref_37
  doi: 10.1007/978-3-031-48933-4_11
SSID ssj0023338
Score 2.4567626
Snippet With the rapid advancement of modern society, the demand for efficient and convenient transportation has increased significantly, making traffic congestion a...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3501
SubjectTerms adaptive control
Algorithms
Control equipment
Controllers
Efficiency
Emergency communications systems
Energy consumption
Genetic algorithms
Methods
Motor vehicle fleets
Optimization
PID controller
Radar systems
sensor networks
Sensors
Traffic congestion
Traffic control
Traffic flow
traffic signal timing
Urban areas
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6higMcEG9CCzIICS5R8_Arx21hxQEtSC1Sb5ZfgZXabLW7hb_fmTgbbQQSF67JKLLHM5754vE3AO94EMHFwPNaaplzoXjeiDbkrcDsvNC2FG1Pmf9FLRb64qL5ttfqi2rCEj1wUtyx55hCNGVQTRS8lU5XSsoYi7JVFqNlv_sWqtmBqQFq1Yi8Eo9QjaD-eEOJNB2hTaJPT9L_51a8F4umdZJ7gWf-EB4MGSObpZE-gjuxewz393gEn8D5IhVzx8DOEJau1vkJBqfAZsFe03bGMCIRVQQ7W_6gb52m-nSGCSv7mFrSs_nl6jf7iuJXw83Mp_B9_un89HM-tEvIPc5umysfUUHeOsx4nCi9VryNhVdRVqG0tmxiK3EJqhgK5WobqrYQQSktdJS1R0d8BgfdqosvgDnuAtUcRicbrkPUha-oR4cUwtkqyAw-7NRo_MAlTi0tLg1iCtK4GTWewdtR9DoRaPxN6ITWYhQgzuv-AVqCGSzB_MsSMnhPK2nIM3Ew3g4XDHBKxHFlZprIy-hgMoOj3WKbwWU3pkZwhtiqVnUGb8bX6Gx0gmK7uLohGUH4GEFYBs-TbYxjRqAsG8y3M9ATq5lMavqmW_7sCb2J4QMTVfHyf6jhEO5V1KO4_1N0BAfb9U18BXf9r-1ys37du8ktbmwWow
  priority: 102
  providerName: Directory of Open Access Journals
Title Networked Sensor-Based Adaptive Traffic Signal Control for Dynamic Flow Optimization
URI https://www.ncbi.nlm.nih.gov/pubmed/40969099
https://www.proquest.com/docview/3217747373
https://www.proquest.com/docview/3252225597
https://pubmed.ncbi.nlm.nih.gov/PMC12158395
https://doaj.org/article/c450891d79e54f6b82766ee01f7a6632
Volume 25
WOSCitedRecordID wos001508140600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xXQ5w4L1sYKkCQoJLtHn5kRNql1YgsaViF6mcIsd2lkpL0m27cOO3M5O4oRWIC5cc7FFkZzyeb-zJNwAvU8NMYU0aJFzyIGUiDTJWmqBkiM5DqSJWNpT5H8RkImezbOoO3FYurXKzJzYbtak1nZEfJ4idEfomInmzuAqoahTdrroSGnuwT0xlcQ_2h6PJ9FMXciUYgbV8QgkG98crAtR0lbbjhRqy_j-35C2ftJsvueWAxnf_d-j34I6Dnv6gXSv34YatHsDtLULCh3A-abPCrfHPML6tl8EQvZzxB0YtaF_00bUR54R_Nr-gd520ie4-Il__bVvb3h9f1j_8jyj-zf3i-Qg-j0fnJ-8CV3ch0Ph51oHQNi25VgVCp4JFWoq0tKEWlscmUirKbMlRl7E1oSgSZeIyZEYIyaTliUaLPoBeVVf2EPwiLQwlL9qCZ6k0VoY6pmIfnLFCxYZ78Hqjh1w7UnKqjXGZY3BCKss7lXnwohNdtEwcfxMakjI7ASLPbhrq5UXubDHXKaLSLDIiswwnWshYcG5tGJVCIQCLPXhFSyEnE8fBaOX-VMApEVlWPpDEgkY3nB4cbTSeO9tf5b_V7cHzrhutlq5iVGXra5JhFGhjNOfB43ZxdWPGiJtnCNw9kDvLbmdSuz3V_GvDDE5UIYh42ZN_j-sp3IqpjHFzmHQEvfXy2j6Dm_r7er5a9mFPzETzlH1nT_3mqAKfpz9H2DZ9fzr98gtXmSyQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDgl44PePwICAQPASLXHsOHlAqN1WbVopE-ukvQXHdkalLSltx7R_ir-RuyQNrUC87YHX2Irs5PPdd_b5O4A33AiTWcO9MIojjwvJvUTkxssFsnM_VoHIK8n8gRwO4-Pj5GANfi7uwlBa5cImVobalJr2yDdD5M5IfUMZfpx896hqFJ2uLkpo1LDYt5cXGLLNPuxt4_99y1h_Z7S16zVVBTyN5GLuSW15HmmVITHIRKBjyXPra2kjZgKlgsTmEY6UWePLLFSG5b4wUsYitlGoEa_43muwzkPOWQfWezvDgy9tiBdixFfrF4Vh4m_OiMDT0d2K16uKA_zpApZ84Gp-5pLD69_53z7VXbjdUGu3W6-Fe7Bmi_twa0lw8QGMhnXWuzXuIcbv5dTroRc3bteoCdl9F103aWq4h-MTetdWncjvIrN3ty8LdYZN_dPywv2M3c-aK6wP4ehKpvUIOkVZ2CfgZjwzlJxpsyjhsbGxrxkVM4mEyBQzkQPvF_891Y3oOtX-OE0x-CKIpC1EHHjddp3USiN_69Qj8LQdSBy8elBOT9LG1qSaI-tOAiMTK3CiWcxkFFnrB7lUSDCZA-8IeimZMByMVs1NDJwSiYGl3ZhU3ugE14GNBcLSxrbN0t_wcuBV24xWiY6aVGHLc-ojaCMBo1UHHtdgbsfMMWpOMDBxIF6B-cqkVluK8bdK-ZykUJDRi6f_HtdLuLE7-jRIB3vD_Wdwk1HJ5mrjbAM68-m5fQ7X9Y_5eDZ90axfF75e9Tr4BRUJhXA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48H4YChgEgosVv_bhA0JJ04iqVYhoK_Vm1rvrEqm1Q5JS9a_x65ixHZMIxK0Hrt6VtWt_O_PN7uw3AG9iw0xmTexFXHIvZiL2EpYbL2fIzn2pApZXkvn7YjSSx8fJeAN-Lu_CUFrl0iZWhtqUmvbIuxFyZ6S-kYi6eZMWMR4MP06_e1RBik5al-U0aojs2csLDN_mH3YH-K_fhuFw53D7k9dUGPA0Eo2FJ7SNc65VhiQhY4GWIs6tr4XloQmUChKbcxx1aI0vskiZMPeZEUIyaXmkEbv43muwKdDrxx3Y7O-Mxl_acC_C6K_WMoqixO_OiczTMd6aB6wKBfzpDlb84Xqu5orzG975nz_bXbjdUG63V6-Re7Bhi_twa0WI8QEcjupseGvcA4zry5nXR-9u3J5RU_IHLrp00tpwDyYn9K7tOsHfRcbvDi4LdYZNw9Pywv2M3c-aq60P4ehKpvUIOkVZ2CfgZnFmKGnTZjyJpbHS1yEVOeGMZSo03IH3SwykuhFjp5ogpykGZQSXtIWLA6_brtNageRvnfoEpLYDiYZXD8rZSdrYoFTHyMaTwIjEMpxoJkPBubV-kAuFxDN04B3BMCXThoPRqrmhgVMikbC0J0n9jU52Hdhaoi1tbN48_Q01B161zWit6AhKFbY8pz6MNhgwinXgcQ3sdswxRtMJBiwOyDXIr01qvaWYfKsU0UkiBZk-e_rvcb2EGwj-dH93tPcMboZUybnaT9uCzmJ2bp_Ddf1jMZnPXjRL2YWvV70MfgE7L448
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Networked+Sensor-Based+Adaptive+Traffic+Signal+Control+for+Dynamic+Flow+Optimization&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Xinhai&rft.au=Shao%2C+Wenhua&rft.date=2025-06-01&rft.eissn=1424-8220&rft.volume=25&rft.issue=11&rft_id=info:doi/10.3390%2Fs25113501&rft_id=info%3Apmid%2F40969099&rft.externalDocID=40969099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon