BinBench: a benchmark for x64 portable operating system interface binary function representations
In this article we propose the first multi-task benchmark for evaluating the performances of machine learning models that work on low level assembly functions. While the use of multi-task benchmark is a standard in the natural language processing (NLP) field, such practice is unknown in the field of...
Saved in:
| Published in: | PeerJ. Computer science Vol. 9; p. e1286 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
PeerJ. Ltd
01.06.2023
PeerJ Inc |
| Subjects: | |
| ISSN: | 2376-5992, 2376-5992 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this article we propose the first multi-task benchmark for evaluating the performances of machine learning models that work on low level assembly functions. While the use of multi-task benchmark is a standard in the natural language processing (NLP) field, such practice is unknown in the field of assembly language processing. However, in the latest years there has been a strong push in the use of deep neural networks architectures borrowed from NLP to solve problems on assembly code. A first advantage of having a standard benchmark is the one of making different works comparable without effort of reproducing third part solutions. The second advantage is the one of being able to test the generality of a machine learning model on several tasks. For these reasons, we propose BinBench, a benchmark for binary function models. The benchmark includes various binary analysis tasks, as well as a dataset of binary functions on which tasks should be solved. The dataset is publicly available and it has been evaluated using baseline models. |
|---|---|
| AbstractList | In this article we propose the first multi-task benchmark for evaluating the performances of machine learning models that work on low level assembly functions. While the use of multi-task benchmark is a standard in the natural language processing (NLP) field, such practice is unknown in the field of assembly language processing. However, in the latest years there has been a strong push in the use of deep neural networks architectures borrowed from NLP to solve problems on assembly code. A first advantage of having a standard benchmark is the one of making different works comparable without effort of reproducing third part solutions. The second advantage is the one of being able to test the generality of a machine learning model on several tasks. For these reasons, we propose BinBench, a benchmark for binary function models. The benchmark includes various binary analysis tasks, as well as a dataset of binary functions on which tasks should be solved. The dataset is publicly available and it has been evaluated using baseline models. In this article we propose the first multi-task benchmark for evaluating the performances of machine learning models that work on low level assembly functions. While the use of multi-task benchmark is a standard in the natural language processing (NLP) field, such practice is unknown in the field of assembly language processing. However, in the latest years there has been a strong push in the use of deep neural networks architectures borrowed from NLP to solve problems on assembly code. A first advantage of having a standard benchmark is the one of making different works comparable without effort of reproducing third part solutions. The second advantage is the one of being able to test the generality of a machine learning model on several tasks. For these reasons, we propose BinBench, a benchmark for binary function models. The benchmark includes various binary analysis tasks, as well as a dataset of binary functions on which tasks should be solved. The dataset is publicly available and it has been evaluated using baseline models.In this article we propose the first multi-task benchmark for evaluating the performances of machine learning models that work on low level assembly functions. While the use of multi-task benchmark is a standard in the natural language processing (NLP) field, such practice is unknown in the field of assembly language processing. However, in the latest years there has been a strong push in the use of deep neural networks architectures borrowed from NLP to solve problems on assembly code. A first advantage of having a standard benchmark is the one of making different works comparable without effort of reproducing third part solutions. The second advantage is the one of being able to test the generality of a machine learning model on several tasks. For these reasons, we propose BinBench, a benchmark for binary function models. The benchmark includes various binary analysis tasks, as well as a dataset of binary functions on which tasks should be solved. The dataset is publicly available and it has been evaluated using baseline models. |
| ArticleNumber | e1286 |
| Audience | Academic |
| Author | Di Luna, Giuseppe Antonio Console, Francesca Querzoni, Leonardo D’Aquanno, Giuseppe |
| Author_xml | – sequence: 1 givenname: Francesca surname: Console fullname: Console, Francesca – sequence: 2 givenname: Giuseppe surname: D’Aquanno fullname: D’Aquanno, Giuseppe – sequence: 3 givenname: Giuseppe Antonio surname: Di Luna fullname: Di Luna, Giuseppe Antonio – sequence: 4 givenname: Leonardo surname: Querzoni fullname: Querzoni, Leonardo |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37346713$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkktr3DAUhU1JadI0y26LoJt24aketmR3U5LQx0Cg0MdaXMlXE6UeyZU8JfPvq8mkIQOVFrqSvnu4B87z6ijEgFX1ktGFUky9mxDTTW3zgvFOPqlOuFCybvueHz2qj6uznG8opaxlZfXPqmOhRCMVEycVXPhwgcFevydAzK5YQ_pFXEzkVjZkimkGMyKJEyaYfViRvM0zrokPMyYHFonxAdKWuE2ws4-BJJwSZgwz7K75RfXUwZjx7P48rX5--vjj8kt99fXz8vL8qrZlrLmWxVAHYlDcgOyYMtA4gxawtU3bIXO2Q8UpOmYAmVU9p7QfJBhDLQw9F6fVcq87RLjRU_LFyFZH8PruIaaVhjR7O6IGCb1TprcNyMYxAc2gmGmEgYG2jrVF68Nea9qYNQ62mEkwHoge_gR_rVfxj2aUd7RhrCi8uVdI8fcG86zXPlscRwgYN1nzjneqbRspCvp6j66gzOaDi0XS7nB9rlompOS8KdTiP1TZA669LbFwvrwfNLw9aCjMjLfzCjY56-X3b4fsq8d-H4z-y0kB6j1gU8w5oXtAGNW7KOq7KGqb9S6K4i9yLtKt |
| Cites_doi | 10.1007/978-3-030-01054-6 10.1145/3212695 10.48550/arXiv.2006.05477 10.1145/3428293 10.1145/3133956.3134018 10.1145/3460120.3484587 10.1109/MCI.2018.2840738 10.48550/arXiv.2107.13404 10.1155/2017/3273891 10.1007/978-3-319-41111-8 10.14722/bar.2019.23020 10.1016/j.diin.2015.01.011 10.14722/ndss.2018.23304 10.1007/978-1-4614-7138-7 10.48550/arXiv.1905.08325 10.48550/arXiv.2011.10749 10.48550/arXiv.2101.08116 10.1016/j.diin.2015.05.015 10.1145/2980983.2908126 10.1145/2594291.2594343 10.1145/2430553.2430558 10.48550/arXiv.1911.03429 10.1145/3446371 |
| ContentType | Journal Article |
| Copyright | 2023 Console et al. COPYRIGHT 2023 PeerJ. Ltd. 2023 Console et al. 2023 Console et al. |
| Copyright_xml | – notice: 2023 Console et al. – notice: COPYRIGHT 2023 PeerJ. Ltd. – notice: 2023 Console et al. 2023 Console et al. |
| DBID | AAYXX CITATION NPM ISR 7X8 5PM DOA |
| DOI | 10.7717/peerj-cs.1286 |
| DatabaseName | CrossRef PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2376-5992 |
| ExternalDocumentID | oai_doaj_org_article_a6a9f7b9c4a64f13a4d71b43bad05f15 PMC10280411 A751366224 37346713 10_7717_peerj_cs_1286 |
| Genre | Journal Article |
| GeographicLocations | New York |
| GeographicLocations_xml | – name: New York |
| GrantInformation_xml | – fundername: TIM S.p.A. through the PhD Scholarship – fundername: SERICS grantid: PE00000014 – fundername: European Union—Next Generation EU |
| GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RPM ARCSS H13 NPM 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c511t-67718a3d72ba6817ba4fbecae5c458e1fc8e720ef1bae1c792009d6abb0cad923 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001009615200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2376-5992 |
| IngestDate | Fri Oct 03 12:38:00 EDT 2025 Tue Nov 04 02:06:47 EST 2025 Thu Sep 04 15:38:04 EDT 2025 Tue Nov 11 10:25:40 EST 2025 Tue Nov 04 17:26:21 EST 2025 Thu Nov 13 16:34:06 EST 2025 Thu May 22 04:23:31 EDT 2025 Sat Nov 29 05:30:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Compiler provenance Binary functions Assembly language Neural networks Dataset Benchmark Binary functions representation Binary similarity |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 2023 Console et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c511t-67718a3d72ba6817ba4fbecae5c458e1fc8e720ef1bae1c792009d6abb0cad923 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/a6a9f7b9c4a64f13a4d71b43bad05f15 |
| PMID | 37346713 |
| PQID | 2828755463 |
| PQPubID | 23479 |
| PageCount | e1286 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a6a9f7b9c4a64f13a4d71b43bad05f15 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10280411 proquest_miscellaneous_2828755463 gale_infotracmisc_A751366224 gale_infotracacademiconefile_A751366224 gale_incontextgauss_ISR_A751366224 pubmed_primary_37346713 crossref_primary_10_7717_peerj_cs_1286 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Diego, USA |
| PublicationTitle | PeerJ. Computer science |
| PublicationTitleAlternate | PeerJ Comput Sci |
| PublicationYear | 2023 |
| Publisher | PeerJ. Ltd PeerJ Inc |
| Publisher_xml | – name: PeerJ. Ltd – name: PeerJ Inc |
| References | Hegde (10.7717/peerj-cs.1286/ref-23) 2020 Chen (10.7717/peerj-cs.1286/ref-7) 2019; 1 He (10.7717/peerj-cs.1286/ref-22) 2018 Radford (10.7717/peerj-cs.1286/ref-41) 2019; 1 Fu (10.7717/peerj-cs.1286/ref-19) 2019 Allamanis (10.7717/peerj-cs.1286/ref-1) 2018; 51 Bahdanau (10.7717/peerj-cs.1286/ref-4) 2015 Brown (10.7717/peerj-cs.1286/ref-5) 2020; 33 David (10.7717/peerj-cs.1286/ref-12) 2014 Xu (10.7717/peerj-cs.1286/ref-50) 2017 Herrera (10.7717/peerj-cs.1286/ref-24) 2016 Wang (10.7717/peerj-cs.1286/ref-49) 2018 Gao (10.7717/peerj-cs.1286/ref-20) 2021 Chua (10.7717/peerj-cs.1286/ref-8) 2017 Devlin (10.7717/peerj-cs.1286/ref-13) 2019 Escalada (10.7717/peerj-cs.1286/ref-17) 2017; 2017 Katz (10.7717/peerj-cs.1286/ref-27) 2018 Patrick-Evans (10.7717/peerj-cs.1286/ref-39) 2021 David (10.7717/peerj-cs.1286/ref-11) 2017 David (10.7717/peerj-cs.1286/ref-10) 2016; 51 David (10.7717/peerj-cs.1286/ref-9) 2020; 4 Ding (10.7717/peerj-cs.1286/ref-15) 2019 Lakhotia (10.7717/peerj-cs.1286/ref-31) 2013 Massarelli (10.7717/peerj-cs.1286/ref-35) 2019b Liu (10.7717/peerj-cs.1286/ref-33) 2018 Vaswani (10.7717/peerj-cs.1286/ref-48) 2017; 30 Khanuja (10.7717/peerj-cs.1286/ref-28) 2020 Mikolov (10.7717/peerj-cs.1286/ref-36) 2013 Rosenblum (10.7717/peerj-cs.1286/ref-46) 2011 Patrick-Evans (10.7717/peerj-cs.1286/ref-38) 2020 Young (10.7717/peerj-cs.1286/ref-51) 2018; 13 Haq (10.7717/peerj-cs.1286/ref-21) 2021; 54 Papineni (10.7717/peerj-cs.1286/ref-37) 2002 Zhang (10.7717/peerj-cs.1286/ref-52) 2015 Katz (10.7717/peerj-cs.1286/ref-26) 2019 Artuso (10.7717/peerj-cs.1286/ref-3) 2021 Li (10.7717/peerj-cs.1286/ref-32) 2021 Ribeiro (10.7717/peerj-cs.1286/ref-44) 2017 Caliskan (10.7717/peerj-cs.1286/ref-6) 2018 Kim (10.7717/peerj-cs.1286/ref-30) 2020 James (10.7717/peerj-cs.1286/ref-25) 2013; 112 DeYoung (10.7717/peerj-cs.1286/ref-14) 2019 Escalada (10.7717/peerj-cs.1286/ref-18) 2021 Petroni (10.7717/peerj-cs.1286/ref-40) 2021 Rosenblum (10.7717/peerj-cs.1286/ref-45) 2010 Dullien (10.7717/peerj-cs.1286/ref-16) 2005; 5 Khoo (10.7717/peerj-cs.1286/ref-29) 2013 Rajpurkar (10.7717/peerj-cs.1286/ref-43) 2016 Rahimian (10.7717/peerj-cs.1286/ref-42) 2015; 14 Saxena (10.7717/peerj-cs.1286/ref-47) 2008 Massarelli (10.7717/peerj-cs.1286/ref-34) 2019a Alrabaee (10.7717/peerj-cs.1286/ref-2) 2015; 12 |
| References_xml | – start-page: 3575 year: 2020 ident: 10.7717/peerj-cs.1286/ref-28 article-title: GLUECoS: an evaluation benchmark for code-switched NLP – start-page: 373 year: 2020 ident: 10.7717/peerj-cs.1286/ref-38 article-title: Probabilistic naming of functions in stripped binaries – start-page: 346 year: 2018 ident: 10.7717/peerj-cs.1286/ref-27 article-title: Using recurrent neural networks for decompilation – volume: 1 start-page: 9 issue: 8 year: 2019 ident: 10.7717/peerj-cs.1286/ref-41 article-title: Language models are unsupervised multitask learners publication-title: OpenAI Blog – start-page: 3703 volume-title: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8–14, 2019, Vancouver, BC, Canada year: 2019 ident: 10.7717/peerj-cs.1286/ref-19 article-title: Coda: an end-to-end neural program decompiler – volume: 30 volume-title: Advances in Neural Information Processing Systems year: 2017 ident: 10.7717/peerj-cs.1286/ref-48 article-title: Attention is all you need – start-page: 667 volume-title: α Diff: cross-version binary code similarity detection with DNN year: 2018 ident: 10.7717/peerj-cs.1286/ref-33 – start-page: 4171 volume-title: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2–7, 2019, Volume 1 (Long and Short Papers) year: 2019 ident: 10.7717/peerj-cs.1286/ref-13 article-title: BERT: pre-training of deep bidirectional transformers for language understanding – start-page: 21 year: 2010 ident: 10.7717/peerj-cs.1286/ref-45 article-title: Extracting compiler provenance from program binaries – start-page: 100 year: 2011 ident: 10.7717/peerj-cs.1286/ref-46 article-title: Recovering the toolchain provenance of binary code – start-page: 79 year: 2017 ident: 10.7717/peerj-cs.1286/ref-11 article-title: Similarity of binaries through re-optimization – start-page: 91 year: 2015 ident: 10.7717/peerj-cs.1286/ref-52 article-title: Control flow and code integrity for COTS binaries: an effective defense against real-world ROP attacks – volume: 1 start-page: 35 year: 2019 ident: 10.7717/peerj-cs.1286/ref-7 article-title: HIMALIA: recovering compiler optimization levels from binaries by deep learning publication-title: Proceedings of the 2018 Intelligent Systems Conference (IntelliSys) doi: 10.1007/978-3-030-01054-6 – volume: 51 start-page: 1 issue: 4 year: 2018 ident: 10.7717/peerj-cs.1286/ref-1 article-title: A survey of machine learning for big code and naturalness publication-title: ACM Computing Surveys doi: 10.1145/3212695 – year: 2020 ident: 10.7717/peerj-cs.1286/ref-23 article-title: Unsupervised paraphrase generation using pre-trained language models publication-title: CoRR doi: 10.48550/arXiv.2006.05477 – volume: 4 start-page: 1 issue: OOPSLA year: 2020 ident: 10.7717/peerj-cs.1286/ref-9 article-title: Neural reverse engineering of stripped binaries using augmented control flow graphs publication-title: Proceedings of the ACM on Programming Languages doi: 10.1145/3428293 – start-page: 329 year: 2013 ident: 10.7717/peerj-cs.1286/ref-29 article-title: Rendezvous: a search engine for binary code – start-page: 311 year: 2002 ident: 10.7717/peerj-cs.1286/ref-37 article-title: BLEU: a method for automatic evaluation of machine translation – year: 2017 ident: 10.7717/peerj-cs.1286/ref-50 article-title: Neural network-based graph embedding for cross-platform binary code similarity detection doi: 10.1145/3133956.3134018 – start-page: 607 year: 2021 ident: 10.7717/peerj-cs.1286/ref-20 article-title: A lightweight framework for function name reassignment based on large-scale stripped binaries – year: 2021 ident: 10.7717/peerj-cs.1286/ref-32 article-title: PalmTree: learning an assembly language model for instruction embedding doi: 10.1145/3460120.3484587 – volume: 13 start-page: 55 issue: 3 year: 2018 ident: 10.7717/peerj-cs.1286/ref-51 article-title: Recent trends in deep learning based natural language processing [review article] publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2018.2840738 – year: 2021 ident: 10.7717/peerj-cs.1286/ref-39 article-title: XFL: extreme function labeling publication-title: CoRR doi: 10.48550/arXiv.2107.13404 – volume: 2017 start-page: 1 issue: 6 year: 2017 ident: 10.7717/peerj-cs.1286/ref-17 article-title: An efficient platform for the automatic extraction of patterns in native code publication-title: Scientific Programming doi: 10.1155/2017/3273891 – start-page: 472 year: 2019 ident: 10.7717/peerj-cs.1286/ref-15 article-title: Asm2Vec: boosting static representation robustness for binary clone search against code obfuscation and compiler optimization – year: 2016 ident: 10.7717/peerj-cs.1286/ref-24 article-title: Multilabel classification doi: 10.1007/978-3-319-41111-8 – year: 2019a ident: 10.7717/peerj-cs.1286/ref-34 article-title: Investigating graph embedding neural networks with unsupervised features extraction for binary analysis doi: 10.14722/bar.2019.23020 – volume: 12 start-page: S61 issue: 1 year: 2015 ident: 10.7717/peerj-cs.1286/ref-2 article-title: SIGMA: a semantic integrated graph matching approach for identifying reused functions in binary code publication-title: Digital Investigation doi: 10.1016/j.diin.2015.01.011 – volume-title: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings year: 2015 ident: 10.7717/peerj-cs.1286/ref-4 article-title: Neural machine translation by jointly learning to align and translate – start-page: 2523 year: 2021 ident: 10.7717/peerj-cs.1286/ref-40 article-title: KILT: a benchmark for knowledge intensive language tasks – start-page: 385 year: 2017 ident: 10.7717/peerj-cs.1286/ref-44 article-title: Struc2vec: learning node representations from structural identity – start-page: 74 year: 2008 ident: 10.7717/peerj-cs.1286/ref-47 article-title: Efficient fine-grained binary instrumentation with applications to taint-tracking – year: 2018 ident: 10.7717/peerj-cs.1286/ref-6 article-title: When coding style survives compilation: de-anonymizing programmers from executable binaries doi: 10.14722/ndss.2018.23304 – start-page: 1667 year: 2018 ident: 10.7717/peerj-cs.1286/ref-22 article-title: Debin: predicting debug information in stripped binaries – start-page: 3111 year: 2013 ident: 10.7717/peerj-cs.1286/ref-36 article-title: Distributed representations of words and phrases and their compositionality – volume: 112 volume-title: An introduction to statistical learning year: 2013 ident: 10.7717/peerj-cs.1286/ref-25 doi: 10.1007/978-1-4614-7138-7 – year: 2019 ident: 10.7717/peerj-cs.1286/ref-26 article-title: Towards neural decompilation publication-title: CoRR doi: 10.48550/arXiv.1905.08325 – year: 2020 ident: 10.7717/peerj-cs.1286/ref-30 article-title: Revisiting binary code similarity analysis using interpretable feature engineering and lessons learned publication-title: ArXiv preprint doi: 10.48550/arXiv.2011.10749 – start-page: 99 year: 2017 ident: 10.7717/peerj-cs.1286/ref-8 article-title: Neural nets can learn function type signatures from binaries – start-page: 353 year: 2018 ident: 10.7717/peerj-cs.1286/ref-49 article-title: GLUE: a multi-task benchmark and analysis platform for natural language understanding – volume: 5 start-page: 1 year: 2005 ident: 10.7717/peerj-cs.1286/ref-16 article-title: Graph-based comparison of executable objects (English version) publication-title: SSTIC – start-page: 2383 year: 2016 ident: 10.7717/peerj-cs.1286/ref-43 article-title: SQuAD: 100,000+ questions for machine comprehension of text – volume: 33 start-page: 1877 volume-title: Advances in Neural Information Processing Systems year: 2020 ident: 10.7717/peerj-cs.1286/ref-5 article-title: Language models are few-shot learners – year: 2021 ident: 10.7717/peerj-cs.1286/ref-18 article-title: Improving type information inferred by decompilers with supervised machine learning publication-title: CoRR doi: 10.48550/arXiv.2101.08116 – volume: 14 start-page: S146 issue: Supplement 1 year: 2015 ident: 10.7717/peerj-cs.1286/ref-42 article-title: BinComp: a stratified approach to compiler provenance attribution publication-title: Digital Investigation doi: 10.1016/j.diin.2015.05.015 – volume: 51 start-page: 266 issue: 6 year: 2016 ident: 10.7717/peerj-cs.1286/ref-10 article-title: Statistical similarity of binaries publication-title: ACM SIGPLAN Notices doi: 10.1145/2980983.2908126 – start-page: 309 volume-title: Detection of Intrusions and Malware, and Vulnerability Assessment—16th International Conference, DIMVA 2019, Gothenburg, Sweden, June 19–20, 2019, Proceedings, volume 11543 of Lecture Notes in Computer Science year: 2019b ident: 10.7717/peerj-cs.1286/ref-35 article-title: SAFE: self-attentive function embeddings for binary similarity – year: 2014 ident: 10.7717/peerj-cs.1286/ref-12 article-title: Tracelet-based code search in executables doi: 10.1145/2594291.2594343 – year: 2013 ident: 10.7717/peerj-cs.1286/ref-31 article-title: Fast location of similar code fragments using semantic ‘juice’ doi: 10.1145/2430553.2430558 – year: 2019 ident: 10.7717/peerj-cs.1286/ref-14 article-title: ERASER: a benchmark to evaluate rationalized NLP models publication-title: CoRR doi: 10.48550/arXiv.1911.03429 – year: 2021 ident: 10.7717/peerj-cs.1286/ref-3 article-title: In nomine function: naming functions in stripped binaries with neural networks publication-title: ArXiv – volume: 54 start-page: 1 year: 2021 ident: 10.7717/peerj-cs.1286/ref-21 article-title: A survey of binary code similarity publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3446371 |
| SSID | ssj0001511119 |
| Score | 2.249177 |
| Snippet | In this article we propose the first multi-task benchmark for evaluating the performances of machine learning models that work on low level assembly functions.... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e1286 |
| SubjectTerms | Analysis Assembly language Benchmark Binary functions Binary functions representation Computational linguistics Data Mining and Machine Learning Dataset Language processing Machine learning Natural language interfaces Neural Networks Operating systems Security and Privacy |
| Title | BinBench: a benchmark for x64 portable operating system interface binary function representations |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37346713 https://www.proquest.com/docview/2828755463 https://pubmed.ncbi.nlm.nih.gov/PMC10280411 https://doaj.org/article/a6a9f7b9c4a64f13a4d71b43bad05f15 |
| Volume | 9 |
| WOSCitedRecordID | wos001009615200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: P5Z dateStart: 20150527 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: K7- dateStart: 20150527 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: BENPR dateStart: 20150527 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: PIMPY dateStart: 20150527 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVg4cCFb5bCsjIIwSlsHTt2wm2LumKFtqoWkAoXa-w4bPlIq6ZFnPjtzDjpqhEHLlysqGNV9Tw780adeWbsuddFUYrSJ5DLMlEO0x2AQialCqDzVDo3hHjZhJlM8tmsmO5c9UU1Ya08cOu4I9BQVMYVXoFWlZCgSiOckg7KYVbF9vJ0aIqdZKrtD6ZXQdGKahpMWY6WIay-Jr55JWLf9E4Qilr9f7-Rd0JSv1xyJ_6c3GY3O-LIj9sffIddCfVddmt7KQPvzug9BqN5PcLHi9ccuKOHH7D6xpGb8l9a8Ui33ffAF0uSU8bAxVsxZ07CEasKfOAu9uhyCnkEG4_Cl9smpbq5zz6ejD-8eZt09ygkHt2wTjQ6IAdZmtSh_4VxoCqEDkLmVZYHUfk8mHQYKuEgCG8K-sek1IA4eSiRAT5ge_WiDg8Z1wpUgSzBZ2mlfK5B4tegZ0pAYmWCGrAXW8faZSuXYTHNIARsRMD6xhICAzYit19OIpXr-AFibzvs7b-wH7BnBJolHYuaCmW-wKZp7On7c3tsMiG1RoIyYC-7SdUC4fPQ9R3ggkj6qjfzoDcTD5rvmZ9u94YlE1Wn1WGxaSylrYbK_eSA7bd75XJh0kiMRQIteW8X9Vbet9Tzi6jzTdxvqIR49D989ZjdSJGftVVuB2xvvdqEJ-y6_7meN6tDdtXM8kN2bTSeTM8P41nC8Z1JcDz7PcZxmn1G-_T0bPrpD5V-LCE |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BinBench%3A+a+benchmark+for+x64+portable+operating+system+interface+binary+function+representations&rft.jtitle=PeerJ.+Computer+science&rft.au=Console%2C+Francesca&rft.au=D%27Aquanno%2C+Giuseppe&rft.au=Di+Luna%2C+Giuseppe+Antonio&rft.au=Querzoni%2C+Leonardo&rft.date=2023-06-01&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=9&rft.spage=e1286&rft_id=info:doi/10.7717%2Fpeerj-cs.1286&rft.externalDocID=A751366224 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |