Object Detection and Segmentation Using Deeplabv3 Deep Neural Network for a Portable X-Ray Source Model

The primary purpose of this research is to implement Deeplabv3 architecture’s deep neural network in detecting and segmenting portable X-ray source model parts such as body, handle, and aperture in the same color scheme scenario. Similarly, the aperture is smaller with lower resolution making deep c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of advanced computational intelligence and intelligent informatics Ročník 26; číslo 5; s. 842 - 850
Hlavní autori: Rogelio, Jayson P., Dadios, Elmer P., Vicerra, Ryan Ray P., Bandala, Argel A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Tokyo Fuji Technology Press Co. Ltd 01.09.2022
Predmet:
ISSN:1343-0130, 1883-8014
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The primary purpose of this research is to implement Deeplabv3 architecture’s deep neural network in detecting and segmenting portable X-ray source model parts such as body, handle, and aperture in the same color scheme scenario. Similarly, the aperture is smaller with lower resolution making deep convolutional neural networks more difficult to segment. As the input feature map diminishes as the net progresses, information about the aperture or the object on a smaller scale may be lost. It recommends using Deeplabv3 architecture to overcome this issue, as it is successful for semantic segmentation. Based on the experiment conducted, the average precision of the body, handle, and aperture of the portable X-ray source model are 91.75%, 20.41%, and 6.25%, respectively. Moreover, it indicates that detecting the “body” part has the highest average precision. In contrast, the detection of the “aperture” part has the lowest average precision. Likewise, the study found that using Deeplabv3 deep neural network architecture, detection, and segmentation of the portable X-ray source model was successful but needed improvement to increase the overall mean AP of 39.47%.
AbstractList The primary purpose of this research is to implement Deeplabv3 architecture’s deep neural network in detecting and segmenting portable X-ray source model parts such as body, handle, and aperture in the same color scheme scenario. Similarly, the aperture is smaller with lower resolution making deep convolutional neural networks more difficult to segment. As the input feature map diminishes as the net progresses, information about the aperture or the object on a smaller scale may be lost. It recommends using Deeplabv3 architecture to overcome this issue, as it is successful for semantic segmentation. Based on the experiment conducted, the average precision of the body, handle, and aperture of the portable X-ray source model are 91.75%, 20.41%, and 6.25%, respectively. Moreover, it indicates that detecting the “body” part has the highest average precision. In contrast, the detection of the “aperture” part has the lowest average precision. Likewise, the study found that using Deeplabv3 deep neural network architecture, detection, and segmentation of the portable X-ray source model was successful but needed improvement to increase the overall mean AP of 39.47%.
Author Bandala, Argel A.
Dadios, Elmer P.
Vicerra, Ryan Ray P.
Rogelio, Jayson P.
Author_xml – sequence: 1
  givenname: Jayson P.
  surname: Rogelio
  fullname: Rogelio, Jayson P.
– sequence: 2
  givenname: Elmer P.
  surname: Dadios
  fullname: Dadios, Elmer P.
– sequence: 3
  givenname: Ryan Ray P.
  surname: Vicerra
  fullname: Vicerra, Ryan Ray P.
– sequence: 4
  givenname: Argel A.
  surname: Bandala
  fullname: Bandala, Argel A.
BookMark eNp9UMlOwzAUtFCRKKU_wMkS5xSvqXNEZZUKRZRK3CzHcSqHNA6OC-rfYxJOHDjNvKeZt8wpGDWuMQCcYzQjKEv5ZaW0tTYWhMxaJBg5AmMsBE0EwmwUOWU0QZiiEzDtugqhyEmKGB6D7SqvjA7w2oQI1jVQNQVcm-3ONEH1jU1nm20UmLZW-SftGXwye6_qCOHL-XdYOg8VfHY-qLw28C15UQe4dnuvDXx0hanPwHGp6s5Mf3ECNrc3r4v7ZLm6e1hcLRPNMQ4JIxpxzSlPNdME6yxDCpemUGQ-V0xwjpHGKs9MqjJBdBrf4EUUU8MKlJWCTsDFMLf17mNvuiCreEUTV0oyx5zFyZxHlRhU2ruu86aU2g7fBq9sLTGSfbJySFb-JCv7ZKOV_LG23u6UP_xn-gZYGn82
CitedBy_id crossref_primary_10_1016_j_measurement_2024_116227
crossref_primary_10_4108_eetpht_10_5577
crossref_primary_10_7717_peerj_cs_1451
crossref_primary_10_20965_jaciii_2023_p0467
crossref_primary_10_20965_jaciii_2023_p0576
crossref_primary_10_20965_jrm_2025_p0579
crossref_primary_10_3233_JIFS_233292
Cites_doi 10.1109/ICCV.2015.203
10.1016/j.cosrev.2020.100310
10.20965/jaciii.2020.p0944
10.1109/ICACCI.2018.8554430
10.1109/ACCESS.2017.2787738
10.1186/s13638-020-01826-x
10.1109/CVPR.2016.492
10.1515/ecce-2017-0005
10.1109/TNNLS.2018.2805098
10.11591/ijai.v11.i2.pp699-708
10.20965/jaciii.2021.p0003
10.1109/IGARSS.2019.8900113
10.1109/CVPR.2014.119
10.20965/jaciii.2020.p0953
10.1016/j.neucom.2020.09.045
10.1109/ICCV.2015.162
10.1109/URAI.2017.7992787
10.23919/CCC50068.2020.9189302
10.11591/ijai.v10.i4.pp1079-1090
10.3390/s20113298
10.1109/ATSIP.2016.7523073
10.11591/ijece.v10i1.pp538-548
10.3390/robotics9030063
10.1109/ICESC51422.2021.9532863
10.1007/978-981-15-7078-0_3
10.20965/jaciii.2018.p0683
10.26555/ijain.v8i1.819
10.20965/jrm.2021.p1385
10.1088/1742-6596/2161/1/012016
10.5772/6223
10.1109/HNICEM51456.2020.9400014
10.1109/TIP.2016.2624198
10.1109/TPAMI.2017.2699184
10.1109/AVSS.2018.8639378
10.20965/jrm.2021.p1303
10.1109/CVPR.2005.433
10.1007/s11263-009-0275-4
10.1109/ICCV.2015.191
10.1109/CCDC.2018.8408138
10.1007/s10462-018-9641-3
10.1109/TSP.2018.8441178
10.11591/ijai.v10.i3.pp576-583
10.20965/jrm.2021.p0686
10.1109/CVPR.2016.348
10.1016/j.jare.2021.03.015
10.11591/ijai.v11.i2.pp582-592
10.1109/TMECH.2018.2794377
10.1109/ICEIEC51955.2021.9463822
10.1109/ICIP40778.2020.9190963
10.1016/j.imavis.2020.103910
ContentType Journal Article
Copyright Copyright © 2022 Fuji Technology Press Ltd.
Copyright_xml – notice: Copyright © 2022 Fuji Technology Press Ltd.
CorporateAuthor Department of Manufacturing Engineering and Management, De La Salle University 2401 Taft Avenue, Malate, Manila 1004, Philippines
Department of Electronics and Computer Engineering, De La Salle University 2401 Taft Avenue, Malate, Manila 1004, Philippines
Department of Science and Technology, Metals Industry Research and Development Center General Santos Ave., Bicutan, Taguig 1631, Philippines
CorporateAuthor_xml – name: Department of Electronics and Computer Engineering, De La Salle University 2401 Taft Avenue, Malate, Manila 1004, Philippines
– name: Department of Science and Technology, Metals Industry Research and Development Center General Santos Ave., Bicutan, Taguig 1631, Philippines
– name: Department of Manufacturing Engineering and Management, De La Salle University 2401 Taft Avenue, Malate, Manila 1004, Philippines
DBID AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.20965/jaciii.2022.p0842
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1883-8014
EndPage 850
ExternalDocumentID 10_20965_jaciii_2022_p0842
GroupedDBID AAYXX
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
ISHAI
JSI
JSP
K7-
P2P
PHGZM
PHGZT
PQGLB
RJT
RZJ
TUS
7SC
7SP
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c511t-42c05c5356c4c21c990a1feda277a485510c1ab9e6a982c63265d56c3e4d09f83
IEDL.DBID P5Z
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000889120800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1343-0130
IngestDate Sun Nov 09 06:07:32 EST 2025
Tue Nov 18 22:38:07 EST 2025
Sat Nov 29 06:43:34 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-42c05c5356c4c21c990a1feda277a485510c1ab9e6a982c63265d56c3e4d09f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.20965/jaciii.2022.p0842
PQID 2715435655
PQPubID 4911628
PageCount 9
ParticipantIDs proquest_journals_2715435655
crossref_citationtrail_10_20965_jaciii_2022_p0842
crossref_primary_10_20965_jaciii_2022_p0842
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of advanced computational intelligence and intelligent informatics
PublicationYear 2022
Publisher Fuji Technology Press Co. Ltd
Publisher_xml – name: Fuji Technology Press Co. Ltd
References key-10.20965/jaciii.2022.p0842-29
key-10.20965/jaciii.2022.p0842-28
key-10.20965/jaciii.2022.p0842-27
key-10.20965/jaciii.2022.p0842-26
key-10.20965/jaciii.2022.p0842-21
key-10.20965/jaciii.2022.p0842-20
key-10.20965/jaciii.2022.p0842-25
key-10.20965/jaciii.2022.p0842-24
key-10.20965/jaciii.2022.p0842-23
key-10.20965/jaciii.2022.p0842-22
key-10.20965/jaciii.2022.p0842-18
key-10.20965/jaciii.2022.p0842-17
key-10.20965/jaciii.2022.p0842-16
key-10.20965/jaciii.2022.p0842-15
key-10.20965/jaciii.2022.p0842-19
key-10.20965/jaciii.2022.p0842-1
key-10.20965/jaciii.2022.p0842-50
key-10.20965/jaciii.2022.p0842-3
key-10.20965/jaciii.2022.p0842-2
key-10.20965/jaciii.2022.p0842-5
key-10.20965/jaciii.2022.p0842-10
key-10.20965/jaciii.2022.p0842-54
key-10.20965/jaciii.2022.p0842-4
key-10.20965/jaciii.2022.p0842-53
key-10.20965/jaciii.2022.p0842-7
key-10.20965/jaciii.2022.p0842-52
key-10.20965/jaciii.2022.p0842-6
key-10.20965/jaciii.2022.p0842-51
key-10.20965/jaciii.2022.p0842-9
key-10.20965/jaciii.2022.p0842-14
key-10.20965/jaciii.2022.p0842-58
key-10.20965/jaciii.2022.p0842-8
key-10.20965/jaciii.2022.p0842-13
key-10.20965/jaciii.2022.p0842-57
key-10.20965/jaciii.2022.p0842-12
key-10.20965/jaciii.2022.p0842-56
key-10.20965/jaciii.2022.p0842-11
key-10.20965/jaciii.2022.p0842-55
key-10.20965/jaciii.2022.p0842-49
key-10.20965/jaciii.2022.p0842-48
key-10.20965/jaciii.2022.p0842-43
key-10.20965/jaciii.2022.p0842-42
key-10.20965/jaciii.2022.p0842-41
key-10.20965/jaciii.2022.p0842-40
key-10.20965/jaciii.2022.p0842-47
key-10.20965/jaciii.2022.p0842-46
key-10.20965/jaciii.2022.p0842-45
key-10.20965/jaciii.2022.p0842-44
key-10.20965/jaciii.2022.p0842-39
key-10.20965/jaciii.2022.p0842-38
key-10.20965/jaciii.2022.p0842-37
key-10.20965/jaciii.2022.p0842-32
key-10.20965/jaciii.2022.p0842-31
key-10.20965/jaciii.2022.p0842-30
key-10.20965/jaciii.2022.p0842-36
key-10.20965/jaciii.2022.p0842-35
key-10.20965/jaciii.2022.p0842-34
key-10.20965/jaciii.2022.p0842-33
References_xml – ident: key-10.20965/jaciii.2022.p0842-49
  doi: 10.1109/ICCV.2015.203
– ident: key-10.20965/jaciii.2022.p0842-55
– ident: key-10.20965/jaciii.2022.p0842-11
  doi: 10.1016/j.cosrev.2020.100310
– ident: key-10.20965/jaciii.2022.p0842-7
  doi: 10.20965/jaciii.2020.p0944
– ident: key-10.20965/jaciii.2022.p0842-26
  doi: 10.1109/ICACCI.2018.8554430
– ident: key-10.20965/jaciii.2022.p0842-30
  doi: 10.1109/ACCESS.2017.2787738
– ident: key-10.20965/jaciii.2022.p0842-4
  doi: 10.1186/s13638-020-01826-x
– ident: key-10.20965/jaciii.2022.p0842-52
  doi: 10.1109/CVPR.2016.492
– ident: key-10.20965/jaciii.2022.p0842-25
  doi: 10.1515/ecce-2017-0005
– ident: key-10.20965/jaciii.2022.p0842-43
  doi: 10.1109/TNNLS.2018.2805098
– ident: key-10.20965/jaciii.2022.p0842-40
  doi: 10.11591/ijai.v11.i2.pp699-708
– ident: key-10.20965/jaciii.2022.p0842-46
– ident: key-10.20965/jaciii.2022.p0842-13
  doi: 10.20965/jaciii.2021.p0003
– ident: key-10.20965/jaciii.2022.p0842-56
– ident: key-10.20965/jaciii.2022.p0842-41
  doi: 10.1109/IGARSS.2019.8900113
– ident: key-10.20965/jaciii.2022.p0842-9
  doi: 10.1109/CVPR.2014.119
– ident: key-10.20965/jaciii.2022.p0842-5
  doi: 10.20965/jaciii.2020.p0953
– ident: key-10.20965/jaciii.2022.p0842-17
  doi: 10.1016/j.neucom.2020.09.045
– ident: key-10.20965/jaciii.2022.p0842-35
– ident: key-10.20965/jaciii.2022.p0842-51
  doi: 10.1109/ICCV.2015.162
– ident: key-10.20965/jaciii.2022.p0842-24
  doi: 10.1109/URAI.2017.7992787
– ident: key-10.20965/jaciii.2022.p0842-27
  doi: 10.23919/CCC50068.2020.9189302
– ident: key-10.20965/jaciii.2022.p0842-37
  doi: 10.11591/ijai.v10.i4.pp1079-1090
– ident: key-10.20965/jaciii.2022.p0842-31
  doi: 10.3390/s20113298
– ident: key-10.20965/jaciii.2022.p0842-28
  doi: 10.1109/ATSIP.2016.7523073
– ident: key-10.20965/jaciii.2022.p0842-21
  doi: 10.11591/ijece.v10i1.pp538-548
– ident: key-10.20965/jaciii.2022.p0842-14
  doi: 10.3390/robotics9030063
– ident: key-10.20965/jaciii.2022.p0842-32
  doi: 10.1109/ICESC51422.2021.9532863
– ident: key-10.20965/jaciii.2022.p0842-45
  doi: 10.1007/978-981-15-7078-0_3
– ident: key-10.20965/jaciii.2022.p0842-2
– ident: key-10.20965/jaciii.2022.p0842-18
  doi: 10.20965/jaciii.2018.p0683
– ident: key-10.20965/jaciii.2022.p0842-1
  doi: 10.26555/ijain.v8i1.819
– ident: key-10.20965/jaciii.2022.p0842-53
– ident: key-10.20965/jaciii.2022.p0842-19
  doi: 10.20965/jrm.2021.p1385
– ident: key-10.20965/jaciii.2022.p0842-47
  doi: 10.1088/1742-6596/2161/1/012016
– ident: key-10.20965/jaciii.2022.p0842-38
  doi: 10.5772/6223
– ident: key-10.20965/jaciii.2022.p0842-3
  doi: 10.1109/HNICEM51456.2020.9400014
– ident: key-10.20965/jaciii.2022.p0842-42
  doi: 10.1109/TIP.2016.2624198
– ident: key-10.20965/jaciii.2022.p0842-54
  doi: 10.1109/TPAMI.2017.2699184
– ident: key-10.20965/jaciii.2022.p0842-39
  doi: 10.1109/AVSS.2018.8639378
– ident: key-10.20965/jaciii.2022.p0842-6
  doi: 10.20965/jrm.2021.p1303
– ident: key-10.20965/jaciii.2022.p0842-8
  doi: 10.1109/CVPR.2005.433
– ident: key-10.20965/jaciii.2022.p0842-12
– ident: key-10.20965/jaciii.2022.p0842-57
  doi: 10.1007/s11263-009-0275-4
– ident: key-10.20965/jaciii.2022.p0842-50
  doi: 10.1109/ICCV.2015.191
– ident: key-10.20965/jaciii.2022.p0842-34
  doi: 10.1109/CCDC.2018.8408138
– ident: key-10.20965/jaciii.2022.p0842-16
– ident: key-10.20965/jaciii.2022.p0842-58
  doi: 10.1007/s10462-018-9641-3
– ident: key-10.20965/jaciii.2022.p0842-33
  doi: 10.1109/TSP.2018.8441178
– ident: key-10.20965/jaciii.2022.p0842-15
  doi: 10.11591/ijai.v10.i3.pp576-583
– ident: key-10.20965/jaciii.2022.p0842-22
  doi: 10.20965/jrm.2021.p0686
– ident: key-10.20965/jaciii.2022.p0842-48
  doi: 10.1109/CVPR.2016.348
– ident: key-10.20965/jaciii.2022.p0842-23
  doi: 10.1016/j.jare.2021.03.015
– ident: key-10.20965/jaciii.2022.p0842-10
  doi: 10.11591/ijai.v11.i2.pp582-592
– ident: key-10.20965/jaciii.2022.p0842-20
  doi: 10.1109/TMECH.2018.2794377
– ident: key-10.20965/jaciii.2022.p0842-29
  doi: 10.1109/ICEIEC51955.2021.9463822
– ident: key-10.20965/jaciii.2022.p0842-36
  doi: 10.1109/ICIP40778.2020.9190963
– ident: key-10.20965/jaciii.2022.p0842-44
  doi: 10.1016/j.imavis.2020.103910
SSID ssj0001326041
ssib051641541
Score 2.2808514
Snippet The primary purpose of this research is to implement Deeplabv3 architecture’s deep neural network in detecting and segmenting portable X-ray source model parts...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 842
SubjectTerms Apertures
Artificial neural networks
Computer architecture
Feature maps
Neural networks
Object recognition
Portability
Semantic segmentation
X ray sources
Title Object Detection and Segmentation Using Deeplabv3 Deep Neural Network for a Portable X-Ray Source Model
URI https://www.proquest.com/docview/2715435655
Volume 26
WOSCitedRecordID wos000889120800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib051641541
  issn: 1343-0130
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: P5Z
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: K7-
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6efDit_g5cvAm0TZplvYkfiIoc2wqw0tJ0nQos85tDvzvfUlTh5ddvJRCk9DkvbyvvLwfQkeaKQVCjxGq3DFjoIhkSU5EZmIO7oAQ7t7a871oteJeL2n7gNvYp1VWMtEJ6uxD2xj5KRWg7BmYH_xs-EksapQ9XfUQGouobqskWOiGNn-p-ImDKwCdwlnMBWyVICp9sMimEbGgvEdDbQ2U0zepbUEHCmrtZBjEEf2rq_6Kaqd_blb_--draMVbnvi8ZJV1tGCKDbRaoTpgv8k3Uf9B2dgMvjITl6ZVYFlkuGv67_6aUoFdngE0MEPgoSlzb9iW-YDxW2VeOQZjGEvsElXVwOAe6chv3HVHBdgCsA220NPN9ePlLfFwDESDVTYhEdUB1xxmoiNNQw16TIa5ySQVQtoaM2GgQ6kS05RJTHUTFptn0JiZKAuSPGbbqFZ8FGYHYTBKs1AKYAoLN6N5kvMg56oZqoiZJpe7KKwWPtW-VrmFzBik4LM4YqUlsVJLrNQRaxcd__YZlpU65rY-qIiV-l07TmeU2pv_eR8t26HKXLMDVJuMvswhWtLTyet41ED1i-tWu9Nw_j087wRpOMb8AS3D5Qg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT-MwFH5ik-ACwya2GXxgTsiQ2HGdHEYIDSBQSwexqbdgO04FKqHQwog_xW_k2UlAXLhx4BYp9lNif2-z3wKwYbjWKPQ4ZdpfMwaaKp7kVGY2FugOSOnz1i5bst2OO53kZARe6lwYF1ZZy0QvqLM7487It5lEZc_R_BA7_Xvquka529W6hUYJi6Z9_o8u2-DP0R7u72_GDvbP_x7SqqsANWhcDGnETCCMQFImMiw0KI5VmNtMMSmVK5USBiZUOrENlcTMNNC-ERkO5jbKgiSPOdIdhfGIx9LxVVPSGr8CXQ_8yPD9jAfnBlHp80UubIkHZd4OczVXtm-UcQUkGKrRrX4QR-yjbvyoGry-O5j5biv1A6Yry5rslqwwCyO2mIOZumsFqYTYPHT_aXf2RPbs0IehFUQVGTmz3dsqDasgPo4CB9g-8sgT90_ElTFB-u0ybp6gsU8U8YG4umdJh56qZ3Lmr0KIazDXW4CLL_ndRRgr7gq7BASN7ixUEkHv2ukYkeQiyIVuhDritiHUMoT1RqemqsXuWoL0UvTJPDjSEhypA0fqwbEMm29z-mUlkk9Hr9XgSCupNEjfkbHy-et1mDw8P26lraN2cxWmHNkyrm4NxoYPj_YnTJin4fXg4ZdnAAJXX42jV4KkPMY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object+Detection+and+Segmentation+Using+Deeplabv3+Deep+Neural+Network+for+a+Portable+X-Ray+Source+Model&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Rogelio%2C+Jayson+P&rft.au=Dadios%2C+Elmer+P&rft.au=Vicerra+Ryan+Ray+P&rft.au=Bandala%2C+Argel+A&rft.date=2022-09-01&rft.pub=Fuji+Technology+Press+Co.+Ltd&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=26&rft.issue=5&rft.spage=842&rft.epage=850&rft_id=info:doi/10.20965%2Fjaciii.2022.p0842
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon