Object Detection and Segmentation Using Deeplabv3 Deep Neural Network for a Portable X-Ray Source Model
The primary purpose of this research is to implement Deeplabv3 architecture’s deep neural network in detecting and segmenting portable X-ray source model parts such as body, handle, and aperture in the same color scheme scenario. Similarly, the aperture is smaller with lower resolution making deep c...
Uložené v:
| Vydané v: | Journal of advanced computational intelligence and intelligent informatics Ročník 26; číslo 5; s. 842 - 850 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Tokyo
Fuji Technology Press Co. Ltd
01.09.2022
|
| Predmet: | |
| ISSN: | 1343-0130, 1883-8014 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The primary purpose of this research is to implement Deeplabv3 architecture’s deep neural network in detecting and segmenting portable X-ray source model parts such as body, handle, and aperture in the same color scheme scenario. Similarly, the aperture is smaller with lower resolution making deep convolutional neural networks more difficult to segment. As the input feature map diminishes as the net progresses, information about the aperture or the object on a smaller scale may be lost. It recommends using Deeplabv3 architecture to overcome this issue, as it is successful for semantic segmentation. Based on the experiment conducted, the average precision of the body, handle, and aperture of the portable X-ray source model are 91.75%, 20.41%, and 6.25%, respectively. Moreover, it indicates that detecting the “body” part has the highest average precision. In contrast, the detection of the “aperture” part has the lowest average precision. Likewise, the study found that using Deeplabv3 deep neural network architecture, detection, and segmentation of the portable X-ray source model was successful but needed improvement to increase the overall mean AP of 39.47%. |
|---|---|
| AbstractList | The primary purpose of this research is to implement Deeplabv3 architecture’s deep neural network in detecting and segmenting portable X-ray source model parts such as body, handle, and aperture in the same color scheme scenario. Similarly, the aperture is smaller with lower resolution making deep convolutional neural networks more difficult to segment. As the input feature map diminishes as the net progresses, information about the aperture or the object on a smaller scale may be lost. It recommends using Deeplabv3 architecture to overcome this issue, as it is successful for semantic segmentation. Based on the experiment conducted, the average precision of the body, handle, and aperture of the portable X-ray source model are 91.75%, 20.41%, and 6.25%, respectively. Moreover, it indicates that detecting the “body” part has the highest average precision. In contrast, the detection of the “aperture” part has the lowest average precision. Likewise, the study found that using Deeplabv3 deep neural network architecture, detection, and segmentation of the portable X-ray source model was successful but needed improvement to increase the overall mean AP of 39.47%. |
| Author | Bandala, Argel A. Dadios, Elmer P. Vicerra, Ryan Ray P. Rogelio, Jayson P. |
| Author_xml | – sequence: 1 givenname: Jayson P. surname: Rogelio fullname: Rogelio, Jayson P. – sequence: 2 givenname: Elmer P. surname: Dadios fullname: Dadios, Elmer P. – sequence: 3 givenname: Ryan Ray P. surname: Vicerra fullname: Vicerra, Ryan Ray P. – sequence: 4 givenname: Argel A. surname: Bandala fullname: Bandala, Argel A. |
| BookMark | eNp9UMlOwzAUtFCRKKU_wMkS5xSvqXNEZZUKRZRK3CzHcSqHNA6OC-rfYxJOHDjNvKeZt8wpGDWuMQCcYzQjKEv5ZaW0tTYWhMxaJBg5AmMsBE0EwmwUOWU0QZiiEzDtugqhyEmKGB6D7SqvjA7w2oQI1jVQNQVcm-3ONEH1jU1nm20UmLZW-SftGXwye6_qCOHL-XdYOg8VfHY-qLw28C15UQe4dnuvDXx0hanPwHGp6s5Mf3ECNrc3r4v7ZLm6e1hcLRPNMQ4JIxpxzSlPNdME6yxDCpemUGQ-V0xwjpHGKs9MqjJBdBrf4EUUU8MKlJWCTsDFMLf17mNvuiCreEUTV0oyx5zFyZxHlRhU2ruu86aU2g7fBq9sLTGSfbJySFb-JCv7ZKOV_LG23u6UP_xn-gZYGn82 |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2024_116227 crossref_primary_10_4108_eetpht_10_5577 crossref_primary_10_7717_peerj_cs_1451 crossref_primary_10_20965_jaciii_2023_p0467 crossref_primary_10_20965_jaciii_2023_p0576 crossref_primary_10_20965_jrm_2025_p0579 crossref_primary_10_3233_JIFS_233292 |
| Cites_doi | 10.1109/ICCV.2015.203 10.1016/j.cosrev.2020.100310 10.20965/jaciii.2020.p0944 10.1109/ICACCI.2018.8554430 10.1109/ACCESS.2017.2787738 10.1186/s13638-020-01826-x 10.1109/CVPR.2016.492 10.1515/ecce-2017-0005 10.1109/TNNLS.2018.2805098 10.11591/ijai.v11.i2.pp699-708 10.20965/jaciii.2021.p0003 10.1109/IGARSS.2019.8900113 10.1109/CVPR.2014.119 10.20965/jaciii.2020.p0953 10.1016/j.neucom.2020.09.045 10.1109/ICCV.2015.162 10.1109/URAI.2017.7992787 10.23919/CCC50068.2020.9189302 10.11591/ijai.v10.i4.pp1079-1090 10.3390/s20113298 10.1109/ATSIP.2016.7523073 10.11591/ijece.v10i1.pp538-548 10.3390/robotics9030063 10.1109/ICESC51422.2021.9532863 10.1007/978-981-15-7078-0_3 10.20965/jaciii.2018.p0683 10.26555/ijain.v8i1.819 10.20965/jrm.2021.p1385 10.1088/1742-6596/2161/1/012016 10.5772/6223 10.1109/HNICEM51456.2020.9400014 10.1109/TIP.2016.2624198 10.1109/TPAMI.2017.2699184 10.1109/AVSS.2018.8639378 10.20965/jrm.2021.p1303 10.1109/CVPR.2005.433 10.1007/s11263-009-0275-4 10.1109/ICCV.2015.191 10.1109/CCDC.2018.8408138 10.1007/s10462-018-9641-3 10.1109/TSP.2018.8441178 10.11591/ijai.v10.i3.pp576-583 10.20965/jrm.2021.p0686 10.1109/CVPR.2016.348 10.1016/j.jare.2021.03.015 10.11591/ijai.v11.i2.pp582-592 10.1109/TMECH.2018.2794377 10.1109/ICEIEC51955.2021.9463822 10.1109/ICIP40778.2020.9190963 10.1016/j.imavis.2020.103910 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Fuji Technology Press Ltd. |
| Copyright_xml | – notice: Copyright © 2022 Fuji Technology Press Ltd. |
| CorporateAuthor | Department of Manufacturing Engineering and Management, De La Salle University 2401 Taft Avenue, Malate, Manila 1004, Philippines Department of Electronics and Computer Engineering, De La Salle University 2401 Taft Avenue, Malate, Manila 1004, Philippines Department of Science and Technology, Metals Industry Research and Development Center General Santos Ave., Bicutan, Taguig 1631, Philippines |
| CorporateAuthor_xml | – name: Department of Electronics and Computer Engineering, De La Salle University 2401 Taft Avenue, Malate, Manila 1004, Philippines – name: Department of Science and Technology, Metals Industry Research and Development Center General Santos Ave., Bicutan, Taguig 1631, Philippines – name: Department of Manufacturing Engineering and Management, De La Salle University 2401 Taft Avenue, Malate, Manila 1004, Philippines |
| DBID | AAYXX CITATION 7SC 7SP 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.20965/jaciii.2022.p0842 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1883-8014 |
| EndPage | 850 |
| ExternalDocumentID | 10_20965_jaciii_2022_p0842 |
| GroupedDBID | AAYXX AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ ISHAI JSI JSP K7- P2P PHGZM PHGZT PQGLB RJT RZJ TUS 7SC 7SP 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c511t-42c05c5356c4c21c990a1feda277a485510c1ab9e6a982c63265d56c3e4d09f83 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000889120800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1343-0130 |
| IngestDate | Sun Nov 09 06:07:32 EST 2025 Tue Nov 18 22:38:07 EST 2025 Sat Nov 29 06:43:34 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c511t-42c05c5356c4c21c990a1feda277a485510c1ab9e6a982c63265d56c3e4d09f83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doi.org/10.20965/jaciii.2022.p0842 |
| PQID | 2715435655 |
| PQPubID | 4911628 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2715435655 crossref_citationtrail_10_20965_jaciii_2022_p0842 crossref_primary_10_20965_jaciii_2022_p0842 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Tokyo |
| PublicationPlace_xml | – name: Tokyo |
| PublicationTitle | Journal of advanced computational intelligence and intelligent informatics |
| PublicationYear | 2022 |
| Publisher | Fuji Technology Press Co. Ltd |
| Publisher_xml | – name: Fuji Technology Press Co. Ltd |
| References | key-10.20965/jaciii.2022.p0842-29 key-10.20965/jaciii.2022.p0842-28 key-10.20965/jaciii.2022.p0842-27 key-10.20965/jaciii.2022.p0842-26 key-10.20965/jaciii.2022.p0842-21 key-10.20965/jaciii.2022.p0842-20 key-10.20965/jaciii.2022.p0842-25 key-10.20965/jaciii.2022.p0842-24 key-10.20965/jaciii.2022.p0842-23 key-10.20965/jaciii.2022.p0842-22 key-10.20965/jaciii.2022.p0842-18 key-10.20965/jaciii.2022.p0842-17 key-10.20965/jaciii.2022.p0842-16 key-10.20965/jaciii.2022.p0842-15 key-10.20965/jaciii.2022.p0842-19 key-10.20965/jaciii.2022.p0842-1 key-10.20965/jaciii.2022.p0842-50 key-10.20965/jaciii.2022.p0842-3 key-10.20965/jaciii.2022.p0842-2 key-10.20965/jaciii.2022.p0842-5 key-10.20965/jaciii.2022.p0842-10 key-10.20965/jaciii.2022.p0842-54 key-10.20965/jaciii.2022.p0842-4 key-10.20965/jaciii.2022.p0842-53 key-10.20965/jaciii.2022.p0842-7 key-10.20965/jaciii.2022.p0842-52 key-10.20965/jaciii.2022.p0842-6 key-10.20965/jaciii.2022.p0842-51 key-10.20965/jaciii.2022.p0842-9 key-10.20965/jaciii.2022.p0842-14 key-10.20965/jaciii.2022.p0842-58 key-10.20965/jaciii.2022.p0842-8 key-10.20965/jaciii.2022.p0842-13 key-10.20965/jaciii.2022.p0842-57 key-10.20965/jaciii.2022.p0842-12 key-10.20965/jaciii.2022.p0842-56 key-10.20965/jaciii.2022.p0842-11 key-10.20965/jaciii.2022.p0842-55 key-10.20965/jaciii.2022.p0842-49 key-10.20965/jaciii.2022.p0842-48 key-10.20965/jaciii.2022.p0842-43 key-10.20965/jaciii.2022.p0842-42 key-10.20965/jaciii.2022.p0842-41 key-10.20965/jaciii.2022.p0842-40 key-10.20965/jaciii.2022.p0842-47 key-10.20965/jaciii.2022.p0842-46 key-10.20965/jaciii.2022.p0842-45 key-10.20965/jaciii.2022.p0842-44 key-10.20965/jaciii.2022.p0842-39 key-10.20965/jaciii.2022.p0842-38 key-10.20965/jaciii.2022.p0842-37 key-10.20965/jaciii.2022.p0842-32 key-10.20965/jaciii.2022.p0842-31 key-10.20965/jaciii.2022.p0842-30 key-10.20965/jaciii.2022.p0842-36 key-10.20965/jaciii.2022.p0842-35 key-10.20965/jaciii.2022.p0842-34 key-10.20965/jaciii.2022.p0842-33 |
| References_xml | – ident: key-10.20965/jaciii.2022.p0842-49 doi: 10.1109/ICCV.2015.203 – ident: key-10.20965/jaciii.2022.p0842-55 – ident: key-10.20965/jaciii.2022.p0842-11 doi: 10.1016/j.cosrev.2020.100310 – ident: key-10.20965/jaciii.2022.p0842-7 doi: 10.20965/jaciii.2020.p0944 – ident: key-10.20965/jaciii.2022.p0842-26 doi: 10.1109/ICACCI.2018.8554430 – ident: key-10.20965/jaciii.2022.p0842-30 doi: 10.1109/ACCESS.2017.2787738 – ident: key-10.20965/jaciii.2022.p0842-4 doi: 10.1186/s13638-020-01826-x – ident: key-10.20965/jaciii.2022.p0842-52 doi: 10.1109/CVPR.2016.492 – ident: key-10.20965/jaciii.2022.p0842-25 doi: 10.1515/ecce-2017-0005 – ident: key-10.20965/jaciii.2022.p0842-43 doi: 10.1109/TNNLS.2018.2805098 – ident: key-10.20965/jaciii.2022.p0842-40 doi: 10.11591/ijai.v11.i2.pp699-708 – ident: key-10.20965/jaciii.2022.p0842-46 – ident: key-10.20965/jaciii.2022.p0842-13 doi: 10.20965/jaciii.2021.p0003 – ident: key-10.20965/jaciii.2022.p0842-56 – ident: key-10.20965/jaciii.2022.p0842-41 doi: 10.1109/IGARSS.2019.8900113 – ident: key-10.20965/jaciii.2022.p0842-9 doi: 10.1109/CVPR.2014.119 – ident: key-10.20965/jaciii.2022.p0842-5 doi: 10.20965/jaciii.2020.p0953 – ident: key-10.20965/jaciii.2022.p0842-17 doi: 10.1016/j.neucom.2020.09.045 – ident: key-10.20965/jaciii.2022.p0842-35 – ident: key-10.20965/jaciii.2022.p0842-51 doi: 10.1109/ICCV.2015.162 – ident: key-10.20965/jaciii.2022.p0842-24 doi: 10.1109/URAI.2017.7992787 – ident: key-10.20965/jaciii.2022.p0842-27 doi: 10.23919/CCC50068.2020.9189302 – ident: key-10.20965/jaciii.2022.p0842-37 doi: 10.11591/ijai.v10.i4.pp1079-1090 – ident: key-10.20965/jaciii.2022.p0842-31 doi: 10.3390/s20113298 – ident: key-10.20965/jaciii.2022.p0842-28 doi: 10.1109/ATSIP.2016.7523073 – ident: key-10.20965/jaciii.2022.p0842-21 doi: 10.11591/ijece.v10i1.pp538-548 – ident: key-10.20965/jaciii.2022.p0842-14 doi: 10.3390/robotics9030063 – ident: key-10.20965/jaciii.2022.p0842-32 doi: 10.1109/ICESC51422.2021.9532863 – ident: key-10.20965/jaciii.2022.p0842-45 doi: 10.1007/978-981-15-7078-0_3 – ident: key-10.20965/jaciii.2022.p0842-2 – ident: key-10.20965/jaciii.2022.p0842-18 doi: 10.20965/jaciii.2018.p0683 – ident: key-10.20965/jaciii.2022.p0842-1 doi: 10.26555/ijain.v8i1.819 – ident: key-10.20965/jaciii.2022.p0842-53 – ident: key-10.20965/jaciii.2022.p0842-19 doi: 10.20965/jrm.2021.p1385 – ident: key-10.20965/jaciii.2022.p0842-47 doi: 10.1088/1742-6596/2161/1/012016 – ident: key-10.20965/jaciii.2022.p0842-38 doi: 10.5772/6223 – ident: key-10.20965/jaciii.2022.p0842-3 doi: 10.1109/HNICEM51456.2020.9400014 – ident: key-10.20965/jaciii.2022.p0842-42 doi: 10.1109/TIP.2016.2624198 – ident: key-10.20965/jaciii.2022.p0842-54 doi: 10.1109/TPAMI.2017.2699184 – ident: key-10.20965/jaciii.2022.p0842-39 doi: 10.1109/AVSS.2018.8639378 – ident: key-10.20965/jaciii.2022.p0842-6 doi: 10.20965/jrm.2021.p1303 – ident: key-10.20965/jaciii.2022.p0842-8 doi: 10.1109/CVPR.2005.433 – ident: key-10.20965/jaciii.2022.p0842-12 – ident: key-10.20965/jaciii.2022.p0842-57 doi: 10.1007/s11263-009-0275-4 – ident: key-10.20965/jaciii.2022.p0842-50 doi: 10.1109/ICCV.2015.191 – ident: key-10.20965/jaciii.2022.p0842-34 doi: 10.1109/CCDC.2018.8408138 – ident: key-10.20965/jaciii.2022.p0842-16 – ident: key-10.20965/jaciii.2022.p0842-58 doi: 10.1007/s10462-018-9641-3 – ident: key-10.20965/jaciii.2022.p0842-33 doi: 10.1109/TSP.2018.8441178 – ident: key-10.20965/jaciii.2022.p0842-15 doi: 10.11591/ijai.v10.i3.pp576-583 – ident: key-10.20965/jaciii.2022.p0842-22 doi: 10.20965/jrm.2021.p0686 – ident: key-10.20965/jaciii.2022.p0842-48 doi: 10.1109/CVPR.2016.348 – ident: key-10.20965/jaciii.2022.p0842-23 doi: 10.1016/j.jare.2021.03.015 – ident: key-10.20965/jaciii.2022.p0842-10 doi: 10.11591/ijai.v11.i2.pp582-592 – ident: key-10.20965/jaciii.2022.p0842-20 doi: 10.1109/TMECH.2018.2794377 – ident: key-10.20965/jaciii.2022.p0842-29 doi: 10.1109/ICEIEC51955.2021.9463822 – ident: key-10.20965/jaciii.2022.p0842-36 doi: 10.1109/ICIP40778.2020.9190963 – ident: key-10.20965/jaciii.2022.p0842-44 doi: 10.1016/j.imavis.2020.103910 |
| SSID | ssj0001326041 ssib051641541 |
| Score | 2.2808514 |
| Snippet | The primary purpose of this research is to implement Deeplabv3 architecture’s deep neural network in detecting and segmenting portable X-ray source model parts... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 842 |
| SubjectTerms | Apertures Artificial neural networks Computer architecture Feature maps Neural networks Object recognition Portability Semantic segmentation X ray sources |
| Title | Object Detection and Segmentation Using Deeplabv3 Deep Neural Network for a Portable X-Ray Source Model |
| URI | https://www.proquest.com/docview/2715435655 |
| Volume | 26 |
| WOSCitedRecordID | wos000889120800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib051641541 issn: 1343-0130 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: K7- dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6efDit_g5cvAm0TZplvYkfiIoc2wqw0tJ0nQos85tDvzvfUlTh5ddvJRCk9DkvbyvvLwfQkeaKQVCjxGq3DFjoIhkSU5EZmIO7oAQ7t7a871oteJeL2n7gNvYp1VWMtEJ6uxD2xj5KRWg7BmYH_xs-EksapQ9XfUQGouobqskWOiGNn-p-ImDKwCdwlnMBWyVICp9sMimEbGgvEdDbQ2U0zepbUEHCmrtZBjEEf2rq_6Kaqd_blb_--draMVbnvi8ZJV1tGCKDbRaoTpgv8k3Uf9B2dgMvjITl6ZVYFlkuGv67_6aUoFdngE0MEPgoSlzb9iW-YDxW2VeOQZjGEvsElXVwOAe6chv3HVHBdgCsA220NPN9ePlLfFwDESDVTYhEdUB1xxmoiNNQw16TIa5ySQVQtoaM2GgQ6kS05RJTHUTFptn0JiZKAuSPGbbqFZ8FGYHYTBKs1AKYAoLN6N5kvMg56oZqoiZJpe7KKwWPtW-VrmFzBik4LM4YqUlsVJLrNQRaxcd__YZlpU65rY-qIiV-l07TmeU2pv_eR8t26HKXLMDVJuMvswhWtLTyet41ED1i-tWu9Nw_j087wRpOMb8AS3D5Qg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT-MwFH5ik-ACwya2GXxgTsiQ2HGdHEYIDSBQSwexqbdgO04FKqHQwog_xW_k2UlAXLhx4BYp9lNif2-z3wKwYbjWKPQ4ZdpfMwaaKp7kVGY2FugOSOnz1i5bst2OO53kZARe6lwYF1ZZy0QvqLM7487It5lEZc_R_BA7_Xvquka529W6hUYJi6Z9_o8u2-DP0R7u72_GDvbP_x7SqqsANWhcDGnETCCMQFImMiw0KI5VmNtMMSmVK5USBiZUOrENlcTMNNC-ERkO5jbKgiSPOdIdhfGIx9LxVVPSGr8CXQ_8yPD9jAfnBlHp80UubIkHZd4OczVXtm-UcQUkGKrRrX4QR-yjbvyoGry-O5j5biv1A6Yry5rslqwwCyO2mIOZumsFqYTYPHT_aXf2RPbs0IehFUQVGTmz3dsqDasgPo4CB9g-8sgT90_ElTFB-u0ybp6gsU8U8YG4umdJh56qZ3Lmr0KIazDXW4CLL_ndRRgr7gq7BASN7ixUEkHv2ukYkeQiyIVuhDritiHUMoT1RqemqsXuWoL0UvTJPDjSEhypA0fqwbEMm29z-mUlkk9Hr9XgSCupNEjfkbHy-et1mDw8P26lraN2cxWmHNkyrm4NxoYPj_YnTJin4fXg4ZdnAAJXX42jV4KkPMY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object+Detection+and+Segmentation+Using+Deeplabv3+Deep+Neural+Network+for+a+Portable+X-Ray+Source+Model&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Rogelio%2C+Jayson+P&rft.au=Dadios%2C+Elmer+P&rft.au=Vicerra+Ryan+Ray+P&rft.au=Bandala%2C+Argel+A&rft.date=2022-09-01&rft.pub=Fuji+Technology+Press+Co.+Ltd&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=26&rft.issue=5&rft.spage=842&rft.epage=850&rft_id=info:doi/10.20965%2Fjaciii.2022.p0842 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon |