Discrimination of multiple sclerosis using scanning laser ophthalmoscopy images with autoencoder-based feature extraction

Optical coherence tomography (OCT) investigations have revealed that the thickness of inner retinal layers becomes decreased in multiple sclerosis (MS) patients, compared to healthy control (HC) individuals. To date, a number of studies have applied machine learning to OCT thickness measurements, ai...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multiple sclerosis and related disorders Ročník 88; s. 105743
Hlavní autoři: Aghababaei, Ali, Arian, Roya, Soltanipour, Asieh, Ashtari, Fereshteh, Rabbani, Hossein, Kafieh, Raheleh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.08.2024
Témata:
ISSN:2211-0348, 2211-0356, 2211-0356
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Optical coherence tomography (OCT) investigations have revealed that the thickness of inner retinal layers becomes decreased in multiple sclerosis (MS) patients, compared to healthy control (HC) individuals. To date, a number of studies have applied machine learning to OCT thickness measurements, aiming to enable accurate and automated diagnosis of the disease. However, there have much less emphasis on other less common retinal imaging modalities, like infrared scanning laser ophthalmoscopy (IR-SLO), for classifying MS. IR-SLO uses laser light to capture high-resolution fundus images, often performed in conjunction with OCT to lock B-scans at a fixed position. We incorporated two independent datasets of IR-SLO images from the Isfahan and Johns Hopkins centers, consisting of 164 MS and 150 HC images. A subject-wise data splitting approach was employed to ensure that there was no leakage between training and test datasets. Several state-of-the-art convolutional neural networks (CNNs), including VGG-16, VGG-19, ResNet-50, and InceptionV3, and a CNN with a custom architecture were employed. In the next step, we designed a convolutional autoencoder (CAE) to extract semantic features subsequently given as inputs to four conventional ML classifiers, including support vector machine (SVM), k-nearest neighbor (K-NN), random forest (RF), and multi-layer perceptron (MLP). The custom CNN (85 % accuracy, 85 % sensitivity, 87 % specificity, 93 % area under the receiver operating characteristics [AUROC], and 94 % area under the precision-recall curve [AUPRC]) outperformed state-of-the-art models (84 % accuracy, 83 % sensitivity, 87 % specificity, 92 % AUROC, and 94 % AUPRC); however, utilizing a combination of the CAE and MLP yields even superior results (88 % accuracy, 86 % sensitivity, 91 % specificity, 94 % AUROC, and 95 % AUPRC). We utilized IR-SLO images to differentiate between MS and HC eyes, with promising results achieved using a combination of CAE and MLP. Future multi-center studies involving more heterogenous data are necessary to assess the feasibility of integrating IR-SLO images into routine clinical practice.
AbstractList Optical coherence tomography (OCT) investigations have revealed that the thickness of inner retinal layers becomes decreased in multiple sclerosis (MS) patients, compared to healthy control (HC) individuals. To date, a number of studies have applied machine learning to OCT thickness measurements, aiming to enable accurate and automated diagnosis of the disease. However, there have much less emphasis on other less common retinal imaging modalities, like infrared scanning laser ophthalmoscopy (IR-SLO), for classifying MS. IR-SLO uses laser light to capture high-resolution fundus images, often performed in conjunction with OCT to lock B-scans at a fixed position. We incorporated two independent datasets of IR-SLO images from the Isfahan and Johns Hopkins centers, consisting of 164 MS and 150 HC images. A subject-wise data splitting approach was employed to ensure that there was no leakage between training and test datasets. Several state-of-the-art convolutional neural networks (CNNs), including VGG-16, VGG-19, ResNet-50, and InceptionV3, and a CNN with a custom architecture were employed. In the next step, we designed a convolutional autoencoder (CAE) to extract semantic features subsequently given as inputs to four conventional ML classifiers, including support vector machine (SVM), k-nearest neighbor (K-NN), random forest (RF), and multi-layer perceptron (MLP). The custom CNN (85 % accuracy, 85 % sensitivity, 87 % specificity, 93 % area under the receiver operating characteristics [AUROC], and 94 % area under the precision-recall curve [AUPRC]) outperformed state-of-the-art models (84 % accuracy, 83 % sensitivity, 87 % specificity, 92 % AUROC, and 94 % AUPRC); however, utilizing a combination of the CAE and MLP yields even superior results (88 % accuracy, 86 % sensitivity, 91 % specificity, 94 % AUROC, and 95 % AUPRC). We utilized IR-SLO images to differentiate between MS and HC eyes, with promising results achieved using a combination of CAE and MLP. Future multi-center studies involving more heterogenous data are necessary to assess the feasibility of integrating IR-SLO images into routine clinical practice.
AbstractObjectiveOptical coherence tomography (OCT) investigations have revealed that the thickness of inner retinal layers becomes decreased in multiple sclerosis (MS) patients, compared to healthy control (HC) individuals. To date, a number of studies have applied machine learning to OCT thickness measurements, aiming to enable accurate and automated diagnosis of the disease. However, there have much less emphasis on other less common retinal imaging modalities, like infrared scanning laser ophthalmoscopy (IR-SLO), for classifying MS. IR-SLO uses laser light to capture high-resolution fundus images, often performed in conjunction with OCT to lock B-scans at a fixed position. MethodsWe incorporated two independent datasets of IR-SLO images from the Isfahan and Johns Hopkins centers, consisting of 164 MS and 150 HC images. A subject-wise data splitting approach was employed to ensure that there was no leakage between training and test datasets. Several state-of-the-art convolutional neural networks (CNNs), including VGG-16, VGG-19, ResNet-50, and InceptionV3, and a CNN with a custom architecture were employed. In the next step, we designed a convolutional autoencoder (CAE) to extract semantic features subsequently given as inputs to four conventional ML classifiers, including support vector machine (SVM), k-nearest neighbor (K-NN), random forest (RF), and multi-layer perceptron (MLP). ResultsThe custom CNN (85 % accuracy, 85 % sensitivity, 87 % specificity, 93 % area under the receiver operating characteristics [AUROC], and 94 % area under the precision-recall curve [AUPRC]) outperformed state-of-the-art models (84 % accuracy, 83 % sensitivity, 87 % specificity, 92 % AUROC, and 94 % AUPRC); however, utilizing a combination of the CAE and MLP yields even superior results (88 % accuracy, 86 % sensitivity, 91 % specificity, 94 % AUROC, and 95 % AUPRC). ConclusionsWe utilized IR-SLO images to differentiate between MS and HC eyes, with promising results achieved using a combination of CAE and MLP. Future multi-center studies involving more heterogenous data are necessary to assess the feasibility of integrating IR-SLO images into routine clinical practice.
Optical coherence tomography (OCT) investigations have revealed that the thickness of inner retinal layers becomes decreased in multiple sclerosis (MS) patients, compared to healthy control (HC) individuals. To date, a number of studies have applied machine learning to OCT thickness measurements, aiming to enable accurate and automated diagnosis of the disease. However, there have much less emphasis on other less common retinal imaging modalities, like infrared scanning laser ophthalmoscopy (IR-SLO), for classifying MS. IR-SLO uses laser light to capture high-resolution fundus images, often performed in conjunction with OCT to lock B-scans at a fixed position.OBJECTIVEOptical coherence tomography (OCT) investigations have revealed that the thickness of inner retinal layers becomes decreased in multiple sclerosis (MS) patients, compared to healthy control (HC) individuals. To date, a number of studies have applied machine learning to OCT thickness measurements, aiming to enable accurate and automated diagnosis of the disease. However, there have much less emphasis on other less common retinal imaging modalities, like infrared scanning laser ophthalmoscopy (IR-SLO), for classifying MS. IR-SLO uses laser light to capture high-resolution fundus images, often performed in conjunction with OCT to lock B-scans at a fixed position.We incorporated two independent datasets of IR-SLO images from the Isfahan and Johns Hopkins centers, consisting of 164 MS and 150 HC images. A subject-wise data splitting approach was employed to ensure that there was no leakage between training and test datasets. Several state-of-the-art convolutional neural networks (CNNs), including VGG-16, VGG-19, ResNet-50, and InceptionV3, and a CNN with a custom architecture were employed. In the next step, we designed a convolutional autoencoder (CAE) to extract semantic features subsequently given as inputs to four conventional ML classifiers, including support vector machine (SVM), k-nearest neighbor (K-NN), random forest (RF), and multi-layer perceptron (MLP).METHODSWe incorporated two independent datasets of IR-SLO images from the Isfahan and Johns Hopkins centers, consisting of 164 MS and 150 HC images. A subject-wise data splitting approach was employed to ensure that there was no leakage between training and test datasets. Several state-of-the-art convolutional neural networks (CNNs), including VGG-16, VGG-19, ResNet-50, and InceptionV3, and a CNN with a custom architecture were employed. In the next step, we designed a convolutional autoencoder (CAE) to extract semantic features subsequently given as inputs to four conventional ML classifiers, including support vector machine (SVM), k-nearest neighbor (K-NN), random forest (RF), and multi-layer perceptron (MLP).The custom CNN (85 % accuracy, 85 % sensitivity, 87 % specificity, 93 % area under the receiver operating characteristics [AUROC], and 94 % area under the precision-recall curve [AUPRC]) outperformed state-of-the-art models (84 % accuracy, 83 % sensitivity, 87 % specificity, 92 % AUROC, and 94 % AUPRC); however, utilizing a combination of the CAE and MLP yields even superior results (88 % accuracy, 86 % sensitivity, 91 % specificity, 94 % AUROC, and 95 % AUPRC).RESULTSThe custom CNN (85 % accuracy, 85 % sensitivity, 87 % specificity, 93 % area under the receiver operating characteristics [AUROC], and 94 % area under the precision-recall curve [AUPRC]) outperformed state-of-the-art models (84 % accuracy, 83 % sensitivity, 87 % specificity, 92 % AUROC, and 94 % AUPRC); however, utilizing a combination of the CAE and MLP yields even superior results (88 % accuracy, 86 % sensitivity, 91 % specificity, 94 % AUROC, and 95 % AUPRC).We utilized IR-SLO images to differentiate between MS and HC eyes, with promising results achieved using a combination of CAE and MLP. Future multi-center studies involving more heterogenous data are necessary to assess the feasibility of integrating IR-SLO images into routine clinical practice.CONCLUSIONSWe utilized IR-SLO images to differentiate between MS and HC eyes, with promising results achieved using a combination of CAE and MLP. Future multi-center studies involving more heterogenous data are necessary to assess the feasibility of integrating IR-SLO images into routine clinical practice.
ArticleNumber 105743
Author Kafieh, Raheleh
Arian, Roya
Soltanipour, Asieh
Aghababaei, Ali
Ashtari, Fereshteh
Rabbani, Hossein
Author_xml – sequence: 1
  givenname: Ali
  surname: Aghababaei
  fullname: Aghababaei, Ali
  organization: Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
– sequence: 2
  givenname: Roya
  surname: Arian
  fullname: Arian, Roya
  organization: Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
– sequence: 3
  givenname: Asieh
  surname: Soltanipour
  fullname: Soltanipour, Asieh
  organization: Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
– sequence: 4
  givenname: Fereshteh
  surname: Ashtari
  fullname: Ashtari, Fereshteh
  organization: Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
– sequence: 5
  givenname: Hossein
  surname: Rabbani
  fullname: Rabbani, Hossein
  organization: Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
– sequence: 6
  givenname: Raheleh
  orcidid: 0000-0003-0087-9476
  surname: Kafieh
  fullname: Kafieh, Raheleh
  email: raheleh.kafieh@durham.ac.uk
  organization: Department of Engineering, Durham University, South Road, Durham, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38945032$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1rFDEUhoO02Fr7CwTJpTez5ms-FlEo9aOFghfqdcgkZ7pZM8mYZNT992a6bS8KsoGQk_C-53CekxfoyAcPCL2iZEUJbd5uV2NS0awYYaK81K3gz9ApY5RWhNfN0WMsuhN0ntKWlNXUVDT0OTrh3VrUhLNTtPtok452tF5lGzwOAx5nl-3kACftIIZkE56T9bflrrxfAqcSRBymTd4oN4akw7TDdlS3kPAfmzdYzTmA18FArPoiNngAlecIGP7mqPRS6iU6HpRLcH5_nqEfnz99v7yqbr5-ub68uKl0TWmu-NoMbc_auhODqQ1r-l7wslvW143QHR2MaHXPNOWs452CRd3wwRjT9W1H-Rl6s887xfBrhpTlWFoG55SHMCfJSSuKd921Rfr6Xjr3Ixg5FTAq7uQDriLge4EuXFKE4VFCiVzmIrfybi5ymYvcz6W41k9c2uY73IWFdQe87_deKIh-W4gyaVvQgrERdJYm2AP-D0_82llvtXI_YQdpG-boC31JZWKSyG_Lr1k-DROkNEwWfO_-n-Bg-X9tqtUe
CitedBy_id crossref_primary_10_3390_bioengineering12080847
crossref_primary_10_3390_jcm14072166
crossref_primary_10_1016_j_cosrev_2025_100821
Cites_doi 10.1002/brb3.2302
10.1016/j.msard.2023.104725
10.1177/1352458517750009
10.3390/s19235323
10.1186/s12874-019-0681-4
10.1007/s42979-021-00592-x
10.3109/08820538.2013.810277
10.1093/brain/awaa427
10.1016/j.msard.2020.102625
10.1016/j.compbiomed.2020.104165
10.1038/nature14539
10.1007/s11263-019-01228-7
10.1016/j.neucom.2019.10.118
10.3390/s22010167
10.1371/journal.pone.0216410
10.1001/archopht.1982.01030030137016
10.1016/j.dib.2018.12.073
10.1080/01616412.2020.1726585
10.1136/bjophthalmol-2020-317659
10.1016/S1474-4422(17)30470-2
10.1007/s10439-022-02930-3
10.1017/9781108860604
10.21105/joss.00861
10.1016/S1474-4422(17)30278-8
10.1016/j.msard.2023.104846
10.1145/3292500.3330701
10.1177/1352458519845116
10.1136/bjophthalmol-2017-310477
10.1109/CVPR.2016.308
10.1016/j.compbiomed.2021.104416
10.1371/journal.pone.0289495
10.3390/photonics10030234
10.1177/13524585221112605
10.1212/WNL.0000000000200883
10.1111/aos.12156
10.1109/ACCESS.2020.3041291
10.1002/wics.101
10.1214/aoms/1177703732
ContentType Journal Article
Copyright 2024 The Author(s)
The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 The Author(s)
– notice: The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.msard.2024.105743
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2211-0356
EndPage 105743
ExternalDocumentID 38945032
10_1016_j_msard_2024_105743
S2211034824003201
1_s2_0_S2211034824003201
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1P~
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABGSF
ABJNI
ABMAC
ABMZM
ABTEW
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EFKBS
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
KOM
M41
MO0
MOBAO
O-L
O9-
OAUVE
OP~
P-8
P-9
PC.
Q38
ROL
SDF
SEL
SPCBC
SSH
SSN
SSU
SSZ
T5K
Z5R
~G-
~HD
AACTN
AFKWA
AJOXV
AMFUW
RIG
6I.
AAFTH
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c511t-39df7b27584fd5d26bb43bb472b564c81fd47cb2c132838aef7b263fddd8b7813
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001284293200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2211-0348
2211-0356
IngestDate Mon Sep 29 06:16:32 EDT 2025
Mon Jul 21 05:50:11 EDT 2025
Sat Nov 29 06:26:13 EST 2025
Tue Nov 18 21:49:06 EST 2025
Sat Aug 17 15:43:09 EDT 2024
Tue Feb 25 20:07:12 EST 2025
Tue Oct 14 19:33:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Keywords Multiple Sclerosis
Feature Extraction
Optical Coherence Tomography
Scanning Laser Ophthalmoscopy
Machine Learning
Deep Learning
Language English
License This is an open access article under the CC BY-NC license.
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c511t-39df7b27584fd5d26bb43bb472b564c81fd47cb2c132838aef7b263fddd8b7813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0087-9476
OpenAccessLink https://www.clinicalkey.es/playcontent/1-s2.0-S2211034824003201
PMID 38945032
PQID 3074132987
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_3074132987
pubmed_primary_38945032
crossref_primary_10_1016_j_msard_2024_105743
crossref_citationtrail_10_1016_j_msard_2024_105743
elsevier_sciencedirect_doi_10_1016_j_msard_2024_105743
elsevier_clinicalkeyesjournals_1_s2_0_S2211034824003201
elsevier_clinicalkey_doi_10_1016_j_msard_2024_105743
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Multiple sclerosis and related disorders
PublicationTitleAlternate Mult Scler Relat Disord
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ortiz, Mallen, Boquete, Sánchez-Morla, Cordón, Vilades (bib0012) 2023; 74
Simonyan K., Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition [Internet]. arXiv; 2015 [cited 2023 May 16]. Available from
Arian, Mahmoudi, Riazi-Esfahani, Faghihi, Mirshahi, Ghassemi, Khodabande, Kafieh, Khalili Pour (bib50) 2023; 10
Hernandez, Ramon-Julvez, Vilades, Cordon, Mayordomo, Garcia-Martin, Raafat (bib0008) 2023; 18
Ciftci Kavaklioglu, Erdman, Goldenberg, Kavaklioglu, Alexander, Oppermann (bib0017) 2022; 28
Garcia-Martin, Ortiz, Boquete, Sánchez-Morla, Barea, Cavaliere (bib0021) 2021; 129
Akiba T., Sano S., Yanase T., Ohta T., Koyama M. Optuna: A Next-Generation Hyperparameter Optimization Framework [Internet]. arXiv; 2019 [cited 2023 Jul 25]. Available from
LeCun, Bengio, Hinton (bib0042) 2015; 521
Abdi, Williams (bib0034) 2010; 2
Szegedy C., Vanhoucke V., Ioffe S., Shlens J., Wojna Z. Rethinking the Inception Architecture For Computer Vision [Internet]. arXiv; 2015 [cited 2023 May 10]. Available from
.
Mehlig B. Machine Learning with Neural Networks: An Introduction for Scientists and Engineers [Internet]. 1st ed. Cambridge University Press; 2021 [cited 2024 Jun 22]. Available from
Cervantes, Garcia-Lamont, Rodríguez-Mazahua, Lopez (bib0041) 2020; 408
Fischer, Otto, Delori, Pace, Staurenghi (bib0024) 2019
Feucht, Maier, Lepennetier, Pettenkofer, Wetzlmair, Daltrozzo (bib0045) 2019; 25
Pathak, Krahenbuhl, Donahue, Darrell, Efros (bib0043) 2016
Quigley, Addicks, Green (bib0044) 1960; 100
Petzold, Balcer, Calabresi, Costello, Frohman, Frohman (bib0003) 2017; 16
Ashtari, Ataei, Kafieh, Khodabandeh, Barzegar, Raei (bib0026) 2021; 47
Khodabandeh, Rabbani, Bidabadi, Bonyani, Kafieh (bib0015) 2024
Ulusoy, Horasanlı, Işık-Ulusoy (bib0047) 2020; 42
López-Dorado, Ortiz, Satue, Rodrigo, Barea, Sánchez-Morla (bib0019) 2021; 22
Halder, Milner (bib0049) 2021; 144
Sidey-Gibbons, Sidey-Gibbons (bib0006) 2019; 19
Thompson, Banwell, Barkhof, Carroll, Coetzee, Comi (bib0001) 2018; 17
He K., Zhang X., Ren S., Sun J. Deep Residual Learning For Image Recognition [Internet]. arXiv; 2015 [cited 2023 May 10]. Available from
Mehmood, Ali, Song, Din, Guo, Shah (bib0002) 2021; 11
Saeb, Lonini, Jayaraman, Mohr, Kording (bib0028) 2017; 6
Zhang, Wang, Wang, Delgado, Hernandez, Hu (bib0010) 2020; 8
Garcia-Martin, Pablo, Herrero, Ara, Martin, Larrosa (bib0009) 2013; 91
Liashchynskyi P., Liashchynskyi P. Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS [Internet]. arXiv; 2019 [cited 2023 Jul 25]. Available from
Huber (bib0037) 1964; 35
Bartler, Hinderer, Grad-LAM (bib0039) 2021
Wisely, Wang, Henao, Grewal, Thompson, Robbins (bib0025) 2022; 106
Deng, Dong, Socher, Li, Li, ImageNet (bib0032) 2009
Nabizadeh, Ramezannezhad, Kargar, Sharafi, Ghaderi (bib0022) 2022
Pérez del Palomar, Cegoñino, Montolío, Orduna, Vilades, Sebastián, Bhattacharya (bib0018) 2019; 14
Bank D., Koenigstein N., Giryes R. Autoencoders [Internet]. arXiv; 2021 [cited 2023 Jul 4]. Available from
Aumann, Donner, Fischer, Müller (bib0023) 2019
Cavaliere, Vilades, Alonso-Rodríguez, Rodrigo, Pablo, Miguel (bib0020) 2019; 19
Garcia-Martin, Herrero, Bambo, Ara, Martin, Polo (bib0013) 2015; 30
Montolío, Martín-Gallego, Cegoñino, Orduna, Vilades, Garcia-Martin (bib0011) 2021; 133
Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib0038) 2020; 128
Kenney, Liu, Hasanaj, Joseph, Abu Al-Hassan, Balk (bib0014) 2022; 99
Sarker (bib0004) 2021; 2
Montolío, Cegoñino, Garcia-Martin, Pérez del Palomar (bib0007) 2022; 50
Spain, Liu, Zhang, Jia, Tan, Bourdette (bib0048) 2018; 102
Murphy, Kwakyi, Iftikhar, Zafar, Lambe, Pellegrini (bib0046) 2020; 26
McInnes, Healy, Saul (bib0040) 2018; 3
Khodabandeh, Rabbani, Ashtari, Zimmermann, Motamedi, Brandt (bib0016) 2023
He, Carass, Solomon, Saidha, Calabresi, Prince (bib0027) 2019; 22
Bartler (10.1016/j.msard.2024.105743_bib0039) 2021
Garcia-Martin (10.1016/j.msard.2024.105743_bib0021) 2021; 129
He (10.1016/j.msard.2024.105743_bib0027) 2019; 22
Khodabandeh (10.1016/j.msard.2024.105743_bib0015) 2024
Nabizadeh (10.1016/j.msard.2024.105743_bib0022) 2022
Abdi (10.1016/j.msard.2024.105743_bib0034) 2010; 2
Pathak (10.1016/j.msard.2024.105743_bib0043) 2016
López-Dorado (10.1016/j.msard.2024.105743_bib0019) 2021; 22
Saeb (10.1016/j.msard.2024.105743_bib0028) 2017; 6
Hernandez (10.1016/j.msard.2024.105743_bib0008) 2023; 18
McInnes (10.1016/j.msard.2024.105743_bib0040) 2018; 3
10.1016/j.msard.2024.105743_bib0005
Ashtari (10.1016/j.msard.2024.105743_bib0026) 2021; 47
Spain (10.1016/j.msard.2024.105743_bib0048) 2018; 102
Sidey-Gibbons (10.1016/j.msard.2024.105743_bib0006) 2019; 19
Feucht (10.1016/j.msard.2024.105743_bib0045) 2019; 25
Thompson (10.1016/j.msard.2024.105743_bib0001) 2018; 17
Ulusoy (10.1016/j.msard.2024.105743_bib0047) 2020; 42
Pérez del Palomar (10.1016/j.msard.2024.105743_bib0018) 2019; 14
Sarker (10.1016/j.msard.2024.105743_bib0004) 2021; 2
Huber (10.1016/j.msard.2024.105743_bib0037) 1964; 35
Cavaliere (10.1016/j.msard.2024.105743_bib0020) 2019; 19
Montolío (10.1016/j.msard.2024.105743_bib0007) 2022; 50
Kenney (10.1016/j.msard.2024.105743_bib0014) 2022; 99
Petzold (10.1016/j.msard.2024.105743_bib0003) 2017; 16
10.1016/j.msard.2024.105743_bib0030
10.1016/j.msard.2024.105743_bib0031
Garcia-Martin (10.1016/j.msard.2024.105743_bib0009) 2013; 91
10.1016/j.msard.2024.105743_bib0033
10.1016/j.msard.2024.105743_bib0035
10.1016/j.msard.2024.105743_bib0036
Quigley (10.1016/j.msard.2024.105743_bib0044) 1960; 100
Cervantes (10.1016/j.msard.2024.105743_bib0041) 2020; 408
Khodabandeh (10.1016/j.msard.2024.105743_bib0016) 2023
LeCun (10.1016/j.msard.2024.105743_bib0042) 2015; 521
Aumann (10.1016/j.msard.2024.105743_bib0023) 2019
Ciftci Kavaklioglu (10.1016/j.msard.2024.105743_bib0017) 2022; 28
Ortiz (10.1016/j.msard.2024.105743_bib0012) 2023; 74
Arian (10.1016/j.msard.2024.105743_bib50) 2023; 10
Montolío (10.1016/j.msard.2024.105743_bib0011) 2021; 133
Wisely (10.1016/j.msard.2024.105743_bib0025) 2022; 106
Selvaraju (10.1016/j.msard.2024.105743_bib0038) 2020; 128
10.1016/j.msard.2024.105743_bib0029
Fischer (10.1016/j.msard.2024.105743_bib0024) 2019
Deng (10.1016/j.msard.2024.105743_bib0032) 2009
Mehmood (10.1016/j.msard.2024.105743_bib0002) 2021; 11
Murphy (10.1016/j.msard.2024.105743_bib0046) 2020; 26
Zhang (10.1016/j.msard.2024.105743_bib0010) 2020; 8
Garcia-Martin (10.1016/j.msard.2024.105743_bib0013) 2015; 30
Halder (10.1016/j.msard.2024.105743_bib0049) 2021; 144
References_xml – volume: 19
  start-page: 5323
  year: 2019
  ident: bib0020
  article-title: Computer-aided diagnosis of multiple sclerosis using a support vector machine and optical coherence tomography features
  publication-title: Sensors
– volume: 2
  start-page: 160
  year: 2021
  ident: bib0004
  article-title: Machine learning: algorithms, real-world applications and research directions
  publication-title: SN Comput. Sci.
– volume: 28
  start-page: 2253
  year: 2022
  end-page: 2262
  ident: bib0017
  article-title: Machine learning classification of multiple sclerosis in children using optical coherence tomography
  publication-title: Mult. Scler. J.
– volume: 25
  start-page: 224
  year: 2019
  end-page: 234
  ident: bib0045
  article-title: Optical coherence tomography angiography indicates associations of the retinal vascular network and disease activity in multiple sclerosis
  publication-title: Mult Scler
– volume: 35
  start-page: 73
  year: 1964
  end-page: 101
  ident: bib0037
  article-title: Robust estimation of a location parameter
  publication-title: Ann. Math. Stat.
– reference: Simonyan K., Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition [Internet]. arXiv; 2015 [cited 2023 May 16]. Available from:
– volume: 74
  year: 2023
  ident: bib0012
  article-title: Diagnosis of multiple sclerosis using optical coherence tomography supported by artificial intelligence
  publication-title: Mult. Scler. Relat. Disord.
– volume: 50
  start-page: 507
  year: 2022
  end-page: 528
  ident: bib0007
  article-title: Comparison of machine learning methods using spectralis OCT for diagnosis and disability progression prognosis in multiple sclerosis
  publication-title: Ann. Biomed. Eng.
– volume: 2
  start-page: 433
  year: 2010
  end-page: 459
  ident: bib0034
  article-title: Principal component analysis
  publication-title: WIREs Comput. Stat.
– volume: 30
  start-page: 11
  year: 2015
  end-page: 19
  ident: bib0013
  article-title: Artificial neural network techniques to improve the ability of optical coherence tomography to detect optic neuritis
  publication-title: Semin. Ophthalmol.
– volume: 99
  start-page: e1100
  year: 2022
  end-page: e1112
  ident: bib0014
  article-title: The role of optical coherence tomography criteria and machine learning in multiple sclerosis and optic neuritis diagnosis
  publication-title: Neurology
– year: 2024
  ident: bib0015
  article-title: Comprehensive Evaluation of Artificial Intelligence Models for Diagnosis of Multiple Sclerosis Using Information from Retinal Layers Multicenter OCT Images [Internet]
– volume: 18
  year: 2023
  ident: bib0008
  article-title: Explainable artificial intelligence toward usable and trustworthy computer-aided diagnosis of multiple sclerosis from optical coherence tomography
  publication-title: PLOS One
– volume: 22
  start-page: 601
  year: 2019
  end-page: 604
  ident: bib0027
  article-title: Retinal layer parcellation of optical coherence tomography images: data resource for multiple sclerosis and healthy controls
  publication-title: Data Brief
– reference: Liashchynskyi P., Liashchynskyi P. Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS [Internet]. arXiv; 2019 [cited 2023 Jul 25]. Available from:
– reference: Szegedy C., Vanhoucke V., Ioffe S., Shlens J., Wojna Z. Rethinking the Inception Architecture For Computer Vision [Internet]. arXiv; 2015 [cited 2023 May 10]. Available from:
– start-page: 35
  year: 2019
  end-page: 57
  ident: bib0024
  article-title: Scanning laser ophthalmoscopy (SLO)
  publication-title: In: High Resolution Imaging in Microscopy and Ophthalmology
– volume: 91
  start-page: e628
  year: 2013
  end-page: e634
  ident: bib0009
  article-title: Neural networks to identify multiple sclerosis with optical coherence tomography
  publication-title: Acta Ophthalmol.
– start-page: 1407
  year: 2021
  end-page: 1411
  ident: bib0039
  publication-title: Proceedings of the 2020 28th European Signal Processing Conference (EUSIPCO)
– year: 2023
  ident: bib0016
  article-title: Discrimination of multiple sclerosis using multicenter OCT images
  publication-title: Mult. Scler. Relat. Disord.
– reference: Akiba T., Sano S., Yanase T., Ohta T., Koyama M. Optuna: A Next-Generation Hyperparameter Optimization Framework [Internet]. arXiv; 2019 [cited 2023 Jul 25]. Available from:
– year: 2022
  ident: bib0022
  article-title: Diagnostic performance of artificial intelligence in multiple sclerosis: a systematic review and meta-analysis
  publication-title: Neurol. Sci.
– start-page: 2536
  year: 2016
  end-page: 2544
  ident: bib0043
  article-title: Context encoders: feature learning by inpainting
  publication-title: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [Internet]
– volume: 133
  year: 2021
  ident: bib0011
  article-title: Machine learning in diagnosis and disability prediction of multiple sclerosis using optical coherence tomography
  publication-title: Comput. Biol. Med.
– volume: 19
  start-page: 64
  year: 2019
  ident: bib0006
  article-title: Machine learning in medicine: a practical introduction
  publication-title: BMC Med. Res. Methodol.
– reference: Mehlig B. Machine Learning with Neural Networks: An Introduction for Scientists and Engineers [Internet]. 1st ed. Cambridge University Press; 2021 [cited 2024 Jun 22]. Available from:
– volume: 100
  start-page: 135
  year: 1960
  end-page: 146
  ident: bib0044
  article-title: Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy
  publication-title: Arch. Ophthalmol.
– volume: 106
  start-page: 388
  year: 2022
  end-page: 395
  ident: bib0025
  article-title: Convolutional neural network to identify symptomatic Alzheimer's disease using multimodal retinal imaging
  publication-title: Br. J. Ophthalmol.
– volume: 10
  start-page: 234
  year: 2023
  ident: bib50
  article-title: Automatic choroid vascularity index calculation in optical coherence tomography images with low-contrast sclerochoroidal junction using deep learning
  publication-title: Photonics
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib0032
  article-title: A large-scale hierarchical image database
  publication-title: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 16
  start-page: 797
  year: 2017
  end-page: 812
  ident: bib0003
  article-title: Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis
  publication-title: Lancet Neurol.
– volume: 42
  start-page: 319
  year: 2020
  end-page: 326
  ident: bib0047
  article-title: Optical coherence tomography angiography findings of multiple sclerosis with or without optic neuritis
  publication-title: Neurol. Res.
– volume: 22
  start-page: 167
  year: 2021
  ident: bib0019
  article-title: Early diagnosis of multiple sclerosis using swept-source optical coherence tomography and convolutional neural networks trained with data augmentation
  publication-title: Sensors
– volume: 129
  year: 2021
  ident: bib0021
  article-title: Early diagnosis of multiple sclerosis by OCT analysis using Cohen's d method and a neural network as classifier
  publication-title: Comput. Biol. Med.
– start-page: 59
  year: 2019
  end-page: 85
  ident: bib0023
  article-title: Optical coherence tomography (OCT): principle and technical realization
  publication-title: High Resolution Imaging in Microscopy and Ophthalmology
– volume: 144
  start-page: 402
  year: 2021
  end-page: 410
  ident: bib0049
  article-title: Hypoxia in multiple sclerosis; is it the chicken or the egg?
  publication-title: Brain
– volume: 128
  start-page: 336
  year: 2020
  end-page: 359
  ident: bib0038
  article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization
  publication-title: Int. J. Comput. Vis.
– volume: 17
  start-page: 162
  year: 2018
  end-page: 173
  ident: bib0001
  article-title: Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria
  publication-title: Lancet Neurol.
– reference: .
– reference: He K., Zhang X., Ren S., Sun J. Deep Residual Learning For Image Recognition [Internet]. arXiv; 2015 [cited 2023 May 10]. Available from:
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0042
  article-title: Deep learning
  publication-title: Nature
– volume: 408
  start-page: 189
  year: 2020
  end-page: 215
  ident: bib0041
  article-title: A comprehensive survey on support vector machine classification: applications, challenges and trends
  publication-title: Neurocomputing
– volume: 11
  year: 2021
  ident: bib0002
  article-title: Optical coherence tomography monitoring and diagnosing retinal changes in multiple sclerosis
  publication-title: Brain Behav.
– volume: 26
  start-page: 815
  year: 2020
  end-page: 828
  ident: bib0046
  article-title: Alterations in the retinal vasculature occur in multiple sclerosis and exhibit novel correlations with disability and visual function measures
  publication-title: Mult. Scler. J.
– volume: 8
  start-page: 221590
  year: 2020
  end-page: 221598
  ident: bib0010
  article-title: Wavelet features of the thickness map of retinal ganglion cell-inner plexiform layer best discriminate prior optic neuritis in patients with multiple sclerosis
  publication-title: IEEe Access
– volume: 14
  year: 2019
  ident: bib0018
  article-title: Swept source optical coherence tomography to early detect multiple sclerosis disease. The use of machine learning techniques
  publication-title: PLoS One
– volume: 47
  year: 2021
  ident: bib0026
  article-title: Optical coherence tomography in neuromyelitis optica spectrum disorder and multiple sclerosis: a population-based study
  publication-title: Mult. Scler. Relat. Disord.
– volume: 102
  start-page: 520
  year: 2018
  end-page: 524
  ident: bib0048
  article-title: Optical coherence tomography angiography enhances the detection of optic nerve damage in multiple sclerosis
  publication-title: Br. J. Ophthalmol.
– volume: 6
  year: 2017
  ident: bib0028
  publication-title: The Need to Approximate the Use-Case in Clinical Machine Learning
– reference: Bank D., Koenigstein N., Giryes R. Autoencoders [Internet]. arXiv; 2021 [cited 2023 Jul 4]. Available from:
– volume: 3
  year: 2018
  ident: bib0040
  article-title: Großberger L. UMAP: Uniform Manifold Approximation and Projection
  publication-title: J. Open Source Softw.
– volume: 11
  issue: 10
  year: 2021
  ident: 10.1016/j.msard.2024.105743_bib0002
  article-title: Optical coherence tomography monitoring and diagnosing retinal changes in multiple sclerosis
  publication-title: Brain Behav.
  doi: 10.1002/brb3.2302
– volume: 74
  year: 2023
  ident: 10.1016/j.msard.2024.105743_bib0012
  article-title: Diagnosis of multiple sclerosis using optical coherence tomography supported by artificial intelligence
  publication-title: Mult. Scler. Relat. Disord.
  doi: 10.1016/j.msard.2023.104725
– start-page: 35
  year: 2019
  ident: 10.1016/j.msard.2024.105743_bib0024
  article-title: Scanning laser ophthalmoscopy (SLO)
– start-page: 248
  year: 2009
  ident: 10.1016/j.msard.2024.105743_bib0032
  article-title: A large-scale hierarchical image database
– volume: 25
  start-page: 224
  issue: 2
  year: 2019
  ident: 10.1016/j.msard.2024.105743_bib0045
  article-title: Optical coherence tomography angiography indicates associations of the retinal vascular network and disease activity in multiple sclerosis
  publication-title: Mult Scler
  doi: 10.1177/1352458517750009
– volume: 19
  start-page: 5323
  issue: 23
  year: 2019
  ident: 10.1016/j.msard.2024.105743_bib0020
  article-title: Computer-aided diagnosis of multiple sclerosis using a support vector machine and optical coherence tomography features
  publication-title: Sensors
  doi: 10.3390/s19235323
– volume: 19
  start-page: 64
  issue: 1
  year: 2019
  ident: 10.1016/j.msard.2024.105743_bib0006
  article-title: Machine learning in medicine: a practical introduction
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-019-0681-4
– volume: 2
  start-page: 160
  issue: 3
  year: 2021
  ident: 10.1016/j.msard.2024.105743_bib0004
  article-title: Machine learning: algorithms, real-world applications and research directions
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00592-x
– volume: 30
  start-page: 11
  issue: 1
  year: 2015
  ident: 10.1016/j.msard.2024.105743_bib0013
  article-title: Artificial neural network techniques to improve the ability of optical coherence tomography to detect optic neuritis
  publication-title: Semin. Ophthalmol.
  doi: 10.3109/08820538.2013.810277
– ident: 10.1016/j.msard.2024.105743_bib0035
– ident: 10.1016/j.msard.2024.105743_bib0029
– start-page: 1407
  year: 2021
  ident: 10.1016/j.msard.2024.105743_bib0039
– year: 2024
  ident: 10.1016/j.msard.2024.105743_bib0015
– volume: 144
  start-page: 402
  issue: 2
  year: 2021
  ident: 10.1016/j.msard.2024.105743_bib0049
  article-title: Hypoxia in multiple sclerosis; is it the chicken or the egg?
  publication-title: Brain
  doi: 10.1093/brain/awaa427
– volume: 47
  year: 2021
  ident: 10.1016/j.msard.2024.105743_bib0026
  article-title: Optical coherence tomography in neuromyelitis optica spectrum disorder and multiple sclerosis: a population-based study
  publication-title: Mult. Scler. Relat. Disord.
  doi: 10.1016/j.msard.2020.102625
– volume: 129
  year: 2021
  ident: 10.1016/j.msard.2024.105743_bib0021
  article-title: Early diagnosis of multiple sclerosis by OCT analysis using Cohen's d method and a neural network as classifier
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104165
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.msard.2024.105743_bib0042
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 128
  start-page: 336
  issue: 2
  year: 2020
  ident: 10.1016/j.msard.2024.105743_bib0038
  article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01228-7
– volume: 408
  start-page: 189
  year: 2020
  ident: 10.1016/j.msard.2024.105743_bib0041
  article-title: A comprehensive survey on support vector machine classification: applications, challenges and trends
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.118
– volume: 22
  start-page: 167
  issue: 1
  year: 2021
  ident: 10.1016/j.msard.2024.105743_bib0019
  article-title: Early diagnosis of multiple sclerosis using swept-source optical coherence tomography and convolutional neural networks trained with data augmentation
  publication-title: Sensors
  doi: 10.3390/s22010167
– volume: 14
  issue: 5
  year: 2019
  ident: 10.1016/j.msard.2024.105743_bib0018
  article-title: Swept source optical coherence tomography to early detect multiple sclerosis disease. The use of machine learning techniques
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0216410
– volume: 100
  start-page: 135
  issue: 1
  year: 1960
  ident: 10.1016/j.msard.2024.105743_bib0044
  article-title: Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy
  publication-title: Arch. Ophthalmol.
  doi: 10.1001/archopht.1982.01030030137016
– volume: 22
  start-page: 601
  year: 2019
  ident: 10.1016/j.msard.2024.105743_bib0027
  article-title: Retinal layer parcellation of optical coherence tomography images: data resource for multiple sclerosis and healthy controls
  publication-title: Data Brief
  doi: 10.1016/j.dib.2018.12.073
– volume: 42
  start-page: 319
  issue: 4
  year: 2020
  ident: 10.1016/j.msard.2024.105743_bib0047
  article-title: Optical coherence tomography angiography findings of multiple sclerosis with or without optic neuritis
  publication-title: Neurol. Res.
  doi: 10.1080/01616412.2020.1726585
– ident: 10.1016/j.msard.2024.105743_bib0036
– volume: 106
  start-page: 388
  issue: 3
  year: 2022
  ident: 10.1016/j.msard.2024.105743_bib0025
  article-title: Convolutional neural network to identify symptomatic Alzheimer's disease using multimodal retinal imaging
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2020-317659
– start-page: 2536
  year: 2016
  ident: 10.1016/j.msard.2024.105743_bib0043
  article-title: Context encoders: feature learning by inpainting
– volume: 17
  start-page: 162
  issue: 2
  year: 2018
  ident: 10.1016/j.msard.2024.105743_bib0001
  article-title: Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(17)30470-2
– volume: 50
  start-page: 507
  issue: 5
  year: 2022
  ident: 10.1016/j.msard.2024.105743_bib0007
  article-title: Comparison of machine learning methods using spectralis OCT for diagnosis and disability progression prognosis in multiple sclerosis
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-022-02930-3
– ident: 10.1016/j.msard.2024.105743_bib0005
  doi: 10.1017/9781108860604
– volume: 3
  issue: 29
  year: 2018
  ident: 10.1016/j.msard.2024.105743_bib0040
  article-title: Großberger L. UMAP: Uniform Manifold Approximation and Projection
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00861
– volume: 16
  start-page: 797
  issue: 10
  year: 2017
  ident: 10.1016/j.msard.2024.105743_bib0003
  article-title: Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(17)30278-8
– year: 2023
  ident: 10.1016/j.msard.2024.105743_bib0016
  article-title: Discrimination of multiple sclerosis using multicenter OCT images
  publication-title: Mult. Scler. Relat. Disord.
  doi: 10.1016/j.msard.2023.104846
– ident: 10.1016/j.msard.2024.105743_bib0033
  doi: 10.1145/3292500.3330701
– start-page: 59
  year: 2019
  ident: 10.1016/j.msard.2024.105743_bib0023
  article-title: Optical coherence tomography (OCT): principle and technical realization
– year: 2022
  ident: 10.1016/j.msard.2024.105743_bib0022
  article-title: Diagnostic performance of artificial intelligence in multiple sclerosis: a systematic review and meta-analysis
  publication-title: Neurol. Sci.
– volume: 26
  start-page: 815
  issue: 7
  year: 2020
  ident: 10.1016/j.msard.2024.105743_bib0046
  article-title: Alterations in the retinal vasculature occur in multiple sclerosis and exhibit novel correlations with disability and visual function measures
  publication-title: Mult. Scler. J.
  doi: 10.1177/1352458519845116
– volume: 102
  start-page: 520
  issue: 4
  year: 2018
  ident: 10.1016/j.msard.2024.105743_bib0048
  article-title: Optical coherence tomography angiography enhances the detection of optic nerve damage in multiple sclerosis
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2017-310477
– ident: 10.1016/j.msard.2024.105743_bib0031
  doi: 10.1109/CVPR.2016.308
– volume: 6
  year: 2017
  ident: 10.1016/j.msard.2024.105743_bib0028
– volume: 133
  year: 2021
  ident: 10.1016/j.msard.2024.105743_bib0011
  article-title: Machine learning in diagnosis and disability prediction of multiple sclerosis using optical coherence tomography
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104416
– volume: 18
  issue: 8
  year: 2023
  ident: 10.1016/j.msard.2024.105743_bib0008
  article-title: Explainable artificial intelligence toward usable and trustworthy computer-aided diagnosis of multiple sclerosis from optical coherence tomography
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0289495
– volume: 10
  start-page: 234
  year: 2023
  ident: 10.1016/j.msard.2024.105743_bib50
  article-title: Automatic choroid vascularity index calculation in optical coherence tomography images with low-contrast sclerochoroidal junction using deep learning
  publication-title: Photonics
  doi: 10.3390/photonics10030234
– volume: 28
  start-page: 2253
  issue: 14
  year: 2022
  ident: 10.1016/j.msard.2024.105743_bib0017
  article-title: Machine learning classification of multiple sclerosis in children using optical coherence tomography
  publication-title: Mult. Scler. J.
  doi: 10.1177/13524585221112605
– ident: 10.1016/j.msard.2024.105743_bib0030
– volume: 99
  start-page: e1100
  issue: 11
  year: 2022
  ident: 10.1016/j.msard.2024.105743_bib0014
  article-title: The role of optical coherence tomography criteria and machine learning in multiple sclerosis and optic neuritis diagnosis
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000200883
– volume: 91
  start-page: e628
  issue: 8
  year: 2013
  ident: 10.1016/j.msard.2024.105743_bib0009
  article-title: Neural networks to identify multiple sclerosis with optical coherence tomography
  publication-title: Acta Ophthalmol.
  doi: 10.1111/aos.12156
– volume: 8
  start-page: 221590
  year: 2020
  ident: 10.1016/j.msard.2024.105743_bib0010
  article-title: Wavelet features of the thickness map of retinal ganglion cell-inner plexiform layer best discriminate prior optic neuritis in patients with multiple sclerosis
  publication-title: IEEe Access
  doi: 10.1109/ACCESS.2020.3041291
– volume: 2
  start-page: 433
  issue: 4
  year: 2010
  ident: 10.1016/j.msard.2024.105743_bib0034
  article-title: Principal component analysis
  publication-title: WIREs Comput. Stat.
  doi: 10.1002/wics.101
– volume: 35
  start-page: 73
  issue: 1
  year: 1964
  ident: 10.1016/j.msard.2024.105743_bib0037
  article-title: Robust estimation of a location parameter
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177703732
SSID ssj0000651461
Score 2.3288336
Snippet Optical coherence tomography (OCT) investigations have revealed that the thickness of inner retinal layers becomes decreased in multiple sclerosis (MS)...
AbstractObjectiveOptical coherence tomography (OCT) investigations have revealed that the thickness of inner retinal layers becomes decreased in multiple...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105743
SubjectTerms Adult
Deep Learning
Feature Extraction
Female
Humans
Machine Learning
Male
Middle Aged
Multiple Sclerosis
Multiple Sclerosis - diagnostic imaging
Neural Networks, Computer
Neurology
Ophthalmoscopy - methods
Optical Coherence Tomography
Scanning Laser Ophthalmoscopy
Sensitivity and Specificity
Tomography, Optical Coherence - methods
Title Discrimination of multiple sclerosis using scanning laser ophthalmoscopy images with autoencoder-based feature extraction
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2211034824003201
https://www.clinicalkey.es/playcontent/1-s2.0-S2211034824003201
https://dx.doi.org/10.1016/j.msard.2024.105743
https://www.ncbi.nlm.nih.gov/pubmed/38945032
https://www.proquest.com/docview/3074132987
Volume 88
WOSCitedRecordID wos001284293200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2211-0356
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000651461
  issn: 2211-0348
  databaseCode: AIEXJ
  dateStart: 20210701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DiFeEHfKZTISbyEVsZPaeaxgEyBtQtqQ-mYlsUMztUmVtNP6r_iJHMeOSykr7AFVjdrUdlKfL-d8cc4FobdUgRVkPPPzkEo_ZFHixzQP_WAUyUTFaZ4kptgEOzvjk0n8tdf70cXCXM1YWfLr63jxX0UN-0DYOnT2FuJ2g8IO-AxChy2IHbb_JPiPhdYE2sOlI4POabCBpmAVi8ZbtUsETWYqFnlAoVXtVYvpcprM5pUOVVl7xTzRCSBM9NtqWemUl1LVvjZ80stVmxLUA-Vem-CIX3nu6e4hW0d27XoHnaXN-ekI_fj7NEnhpQoTdVNsgFjYJ1XV2lmQ82oGnLZYwHS0zZtCuVXtcTNdJiZ8_kTVCr7Z3-zSBgmdY53VgITo9VtqUnF26tpUAbT6VlcpNmmedkyBWZW4HM4buNSGevjhpvV24u3fDKJzU-w84C5FO4jQgwgzyAE6JCyKeR8djj8fT764dT2gdLpUuq5p2J19l-yqdSvcOZ2bCNFNNzwt8bl4gO7bOxY8Nkh7iHqqfITunlqfjMdovQ04XOW4Axx20sct4HAHONwCDm8DDhvAYQ04vAM4bAGHN4B7gr6dHF98-OTbgh5-Brx-6dNY5iyFeeNhLiNJRmkaUngzkkajMONBLkOWpSQLKLBenijdekRzKSVPGQ_oU9Qvq1I9R5glQU4kyRRTPOQRS1KwVSkNZBSnKQ_JAJFuVkVms93roiszsUeoA_TOdVqYZC_7m4eduEQXxwyWVwAC93djf-qmGqtEGhGIhoj34lwjSANI-3lTYOoDNHI9LUE2xPfvh3zToUmA-dDPBJNSVatGUH1LQUnM2QA9MzBzfx20eBjBgV_cblpeonubi_kV6i_rlXqN7mRXy6Kpj9ABm_Aje9X8BE0c-ls
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrimination+of+multiple+sclerosis+using+scanning+laser+ophthalmoscopy+images+with+autoencoder-based+feature+extraction&rft.jtitle=Multiple+sclerosis+and+related+disorders&rft.au=Aghababaei%2C+Ali&rft.au=Arian%2C+Roya&rft.au=Soltanipour%2C+Asieh&rft.au=Ashtari%2C+Fereshteh&rft.date=2024-08-01&rft.issn=2211-0348&rft.volume=88&rft.spage=105743&rft_id=info:doi/10.1016%2Fj.msard.2024.105743&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_msard_2024_105743
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22110348%2Fcov200h.gif