ROS-triggered endothelial cell death mechanisms: Focus on pyroptosis, parthanatos, and ferroptosis
The endothelium is a single layer of epithelium covering the surface of the vascular system, and it represents a physical barrier between the blood and vessel wall that plays an important role in maintaining intravascular homeostasis. However, endothelial dysfunction or endothelial cell death can ca...
Gespeichert in:
| Veröffentlicht in: | Frontiers in immunology Jg. 13; S. 1039241 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Frontiers Media S.A
01.11.2022
|
| Schlagworte: | |
| ISSN: | 1664-3224, 1664-3224 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The endothelium is a single layer of epithelium covering the surface of the vascular system, and it represents a physical barrier between the blood and vessel wall that plays an important role in maintaining intravascular homeostasis. However, endothelial dysfunction or endothelial cell death can cause vascular barrier disruption, vasoconstriction and diastolic dysfunction, vascular smooth muscle cell proliferation and migration, inflammatory responses, and thrombosis, which are closely associated with the progression of several diseases, such as atherosclerosis, hypertension, coronary atherosclerotic heart disease, ischemic stroke, acute lung injury, acute kidney injury, diabetic retinopathy, and Alzheimer’s disease. Oxidative stress caused by the overproduction of reactive oxygen species (ROS) is an important mechanism underlying endothelial cell death. Growing evidence suggests that ROS can trigger endothelial cell death in various ways, including pyroptosis, parthanatos, and ferroptosis. Therefore, this review will systematically illustrate the source of ROS in endothelial cells (ECs); reveal the molecular mechanism by which ROS trigger pyroptosis, parthanatos, and ferroptosis in ECs; and provide new ideas for the research and treatment of endothelial dysfunction-related diseases. |
|---|---|
| AbstractList | The endothelium is a single layer of epithelium covering the surface of the vascular system, and it represents a physical barrier between the blood and vessel wall that plays an important role in maintaining intravascular homeostasis. However, endothelial dysfunction or endothelial cell death can cause vascular barrier disruption, vasoconstriction and diastolic dysfunction, vascular smooth muscle cell proliferation and migration, inflammatory responses, and thrombosis, which are closely associated with the progression of several diseases, such as atherosclerosis, hypertension, coronary atherosclerotic heart disease, ischemic stroke, acute lung injury, acute kidney injury, diabetic retinopathy, and Alzheimer’s disease. Oxidative stress caused by the overproduction of reactive oxygen species (ROS) is an important mechanism underlying endothelial cell death. Growing evidence suggests that ROS can trigger endothelial cell death in various ways, including pyroptosis, parthanatos, and ferroptosis. Therefore, this review will systematically illustrate the source of ROS in endothelial cells (ECs); reveal the molecular mechanism by which ROS trigger pyroptosis, parthanatos, and ferroptosis in ECs; and provide new ideas for the research and treatment of endothelial dysfunction-related diseases. The endothelium is a single layer of epithelium covering the surface of the vascular system, and it represents a physical barrier between the blood and vessel wall that plays an important role in maintaining intravascular homeostasis. However, endothelial dysfunction or endothelial cell death can cause vascular barrier disruption, vasoconstriction and diastolic dysfunction, vascular smooth muscle cell proliferation and migration, inflammatory responses, and thrombosis, which are closely associated with the progression of several diseases, such as atherosclerosis, hypertension, coronary atherosclerotic heart disease, ischemic stroke, acute lung injury, acute kidney injury, diabetic retinopathy, and Alzheimer's disease. Oxidative stress caused by the overproduction of reactive oxygen species (ROS) is an important mechanism underlying endothelial cell death. Growing evidence suggests that ROS can trigger endothelial cell death in various ways, including pyroptosis, parthanatos, and ferroptosis. Therefore, this review will systematically illustrate the source of ROS in endothelial cells (ECs); reveal the molecular mechanism by which ROS trigger pyroptosis, parthanatos, and ferroptosis in ECs; and provide new ideas for the research and treatment of endothelial dysfunction-related diseases.The endothelium is a single layer of epithelium covering the surface of the vascular system, and it represents a physical barrier between the blood and vessel wall that plays an important role in maintaining intravascular homeostasis. However, endothelial dysfunction or endothelial cell death can cause vascular barrier disruption, vasoconstriction and diastolic dysfunction, vascular smooth muscle cell proliferation and migration, inflammatory responses, and thrombosis, which are closely associated with the progression of several diseases, such as atherosclerosis, hypertension, coronary atherosclerotic heart disease, ischemic stroke, acute lung injury, acute kidney injury, diabetic retinopathy, and Alzheimer's disease. Oxidative stress caused by the overproduction of reactive oxygen species (ROS) is an important mechanism underlying endothelial cell death. Growing evidence suggests that ROS can trigger endothelial cell death in various ways, including pyroptosis, parthanatos, and ferroptosis. Therefore, this review will systematically illustrate the source of ROS in endothelial cells (ECs); reveal the molecular mechanism by which ROS trigger pyroptosis, parthanatos, and ferroptosis in ECs; and provide new ideas for the research and treatment of endothelial dysfunction-related diseases. |
| Author | Zhu, Zhicheng Piao, Hulin Zheng, Dongdong Wei, Ran Liu, Jia Liu, Kexiang |
| AuthorAffiliation | 2 Department of Cardiology, The Second Hospital of Jilin University , Changchun , China 1 Department of Cardiovascular Surgery of the Second Hospital of Jilin University, Changchun , Jilin , China |
| AuthorAffiliation_xml | – name: 1 Department of Cardiovascular Surgery of the Second Hospital of Jilin University, Changchun , Jilin , China – name: 2 Department of Cardiology, The Second Hospital of Jilin University , Changchun , China |
| Author_xml | – sequence: 1 givenname: Dongdong surname: Zheng fullname: Zheng, Dongdong – sequence: 2 givenname: Jia surname: Liu fullname: Liu, Jia – sequence: 3 givenname: Hulin surname: Piao fullname: Piao, Hulin – sequence: 4 givenname: Zhicheng surname: Zhu fullname: Zhu, Zhicheng – sequence: 5 givenname: Ran surname: Wei fullname: Wei, Ran – sequence: 6 givenname: Kexiang surname: Liu fullname: Liu, Kexiang |
| BookMark | eNp9kUtv1DAUhSNUJErpH2DlJYtmavs6dswCCVWUVqpUicfacuybGVdJHGwHqf-eTGdAlAXe-HHP-Xx1z-vqZIoTVtVbRjcArb7swzguG0453zAKmgv2ojplUooaOBcnf51fVec5P9B1CQ0AzWnVfbn_WpcUtltM6AlOPpYdDsEOxOEwEI-27MiIbmenkMf8nlxHt2QSJzI_pjiXmEO-ILNNZVXY9XpB7ORJj-l39U31srdDxvPjflZ9v_707eqmvrv_fHv18a52DWOlBsa576zQne2U16AtaOa1gg4VMgAFXnCQIBB522CHjPUO2kYK67gXCGfV7YHro30wcwqjTY8m2mCeHmLamrXL4AY0kjYt72SrmaSi0b5TimrhPW0sVet0VtaHA2teuhG9w6kkOzyDPq9MYWe28afRUoLWcgW8OwJS_LFgLmYMeT9RO2FcsuEKlFBM83aV8oPUpZhzwv7PN4yafcDmKWCzD9gcA15N7T8mF4otIe7bCcP_rL8AMAKvpg |
| CitedBy_id | crossref_primary_10_1016_j_csbj_2024_08_012 crossref_primary_10_1007_s11064_025_04348_4 crossref_primary_10_1016_j_intimp_2024_113177 crossref_primary_10_1016_j_jsbmb_2024_106663 crossref_primary_10_3389_fimmu_2023_1151185 crossref_primary_10_1016_j_placenta_2023_09_010 crossref_primary_10_3390_antiox13050551 crossref_primary_10_1002_btm2_70025 crossref_primary_10_1002_ptr_70041 crossref_primary_10_1021_acs_jmedchem_4c01966 crossref_primary_10_3389_fphar_2025_1601017 crossref_primary_10_3390_antiox14091071 crossref_primary_10_1007_s12035_025_05253_1 crossref_primary_10_1016_j_ijpx_2024_100315 crossref_primary_10_1038_s41598_024_64638_9 crossref_primary_10_3892_ijo_2024_5634 crossref_primary_10_1055_s_0044_1791940 crossref_primary_10_3389_fphys_2025_1516167 crossref_primary_10_3389_fphar_2023_1215020 crossref_primary_10_1016_j_intimp_2025_115190 crossref_primary_10_1007_s11655_024_4206_6 crossref_primary_10_1167_iovs_66_1_17 crossref_primary_10_1142_S0192415X25500193 crossref_primary_10_3233_CH_242396 crossref_primary_10_1016_j_phymed_2024_155817 crossref_primary_10_1016_j_cstres_2024_12_001 crossref_primary_10_1002_adfm_202413518 crossref_primary_10_3390_antiox13070831 crossref_primary_10_1016_j_phymed_2024_155489 crossref_primary_10_2147_IJN_S527475 crossref_primary_10_3389_fimmu_2024_1392259 crossref_primary_10_3389_fphar_2025_1626566 crossref_primary_10_1016_j_intimp_2024_113722 crossref_primary_10_1016_j_ejphar_2025_177472 crossref_primary_10_1016_j_ijbiomac_2024_134779 crossref_primary_10_1016_j_ijbiomac_2025_146380 crossref_primary_10_1016_j_redox_2025_103614 crossref_primary_10_1038_s41401_025_01516_8 crossref_primary_10_1186_s13578_025_01401_1 crossref_primary_10_4103_NRR_NRR_D_24_01343 crossref_primary_10_4239_wjd_v15_i11_2189 crossref_primary_10_1016_j_cej_2024_159141 crossref_primary_10_1038_s42003_024_07251_w crossref_primary_10_3390_ph18010112 crossref_primary_10_36485_1561_6274_2025_29_2_50_57 crossref_primary_10_1186_s13020_025_01153_7 crossref_primary_10_31083_RCM37415 crossref_primary_10_1016_j_mtnano_2025_100652 crossref_primary_10_12677_acm_2025_1551528 crossref_primary_10_1016_j_pmatsci_2025_101436 crossref_primary_10_1016_j_heliyon_2023_e21093 crossref_primary_10_1016_j_tox_2024_153727 crossref_primary_10_1002_adhm_202301746 crossref_primary_10_3390_ani13193098 crossref_primary_10_1038_s41401_024_01345_1 crossref_primary_10_3390_ijms25021186 crossref_primary_10_1016_j_yexcr_2024_114210 crossref_primary_10_3390_ijms252111457 crossref_primary_10_1016_j_biopha_2024_117476 crossref_primary_10_3390_cells12222604 crossref_primary_10_1007_s12672_025_02791_x crossref_primary_10_3892_ijmm_2025_5603 crossref_primary_10_1016_j_jep_2023_117515 crossref_primary_10_1016_j_yexcr_2025_114757 crossref_primary_10_3389_fimmu_2024_1464762 crossref_primary_10_1515_jtim_2025_0004 crossref_primary_10_1111_jcmm_70310 crossref_primary_10_1016_j_bbrc_2024_150451 crossref_primary_10_1016_j_freeradbiomed_2025_09_036 crossref_primary_10_1038_s41598_023_41194_2 crossref_primary_10_3390_antiox12111925 crossref_primary_10_1186_s12891_024_08267_3 crossref_primary_10_1016_j_hlc_2024_11_010 crossref_primary_10_1038_s41598_023_49367_9 crossref_primary_10_1039_D4FO06458E crossref_primary_10_2174_0113816128263069231010111347 crossref_primary_10_1007_s10557_024_07578_w crossref_primary_10_3389_fmicb_2023_1167160 crossref_primary_10_1186_s12933_024_02269_0 crossref_primary_10_1016_j_niox_2023_10_002 crossref_primary_10_2147_JIR_S414316 crossref_primary_10_3390_antiox13020232 crossref_primary_10_1097_HJH_0000000000003890 crossref_primary_10_1186_s12931_023_02631_y crossref_primary_10_1016_j_pdpdt_2024_104427 crossref_primary_10_3390_molecules30071513 crossref_primary_10_1016_j_jep_2025_119981 crossref_primary_10_3748_wjg_v30_i32_3730 crossref_primary_10_1016_j_jpha_2025_101431 crossref_primary_10_1038_s41420_024_01978_5 crossref_primary_10_1371_journal_ppat_1013380 crossref_primary_10_1007_s11418_025_01930_6 crossref_primary_10_1007_s12672_024_01361_x crossref_primary_10_1161_ATVBAHA_123_319833 crossref_primary_10_1016_j_brainres_2023_148611 crossref_primary_10_3390_ijms241713052 crossref_primary_10_1016_j_wneu_2024_04_051 crossref_primary_10_1016_j_exer_2025_110576 crossref_primary_10_1007_s12031_025_02369_w crossref_primary_10_1002_mco2_791 crossref_primary_10_1016_j_pharmthera_2025_108864 crossref_primary_10_3389_fphys_2025_1520669 crossref_primary_10_3390_life14080967 crossref_primary_10_1111_1440_1681_70033 crossref_primary_10_1111_cbdd_14560 crossref_primary_10_1016_j_jhazmat_2025_138260 crossref_primary_10_1080_16078454_2023_2301633 crossref_primary_10_1007_s10495_025_02160_7 crossref_primary_10_1016_j_ijbiomac_2024_133899 crossref_primary_10_1007_s10565_025_10066_y crossref_primary_10_7717_peerj_17692 crossref_primary_10_1016_j_trac_2023_117337 crossref_primary_10_3389_fimmu_2024_1435139 crossref_primary_10_1111_jog_16237 crossref_primary_10_1016_j_biomaterials_2024_122923 crossref_primary_10_1016_j_jep_2023_117608 crossref_primary_10_3390_ijms25169061 crossref_primary_10_1016_j_fct_2024_114483 crossref_primary_10_1002_smll_202500047 crossref_primary_10_1016_j_jns_2025_123620 crossref_primary_10_1016_j_mce_2025_112633 crossref_primary_10_1007_s10495_024_01992_z crossref_primary_10_1016_j_actbio_2025_06_034 crossref_primary_10_1016_j_intimp_2024_112311 crossref_primary_10_1021_acsnano_4c16161 crossref_primary_10_2147_JIR_S448903 crossref_primary_10_3389_fphar_2025_1527684 crossref_primary_10_1186_s40001_025_02851_6 crossref_primary_10_1016_j_jiec_2023_12_006 crossref_primary_10_1007_s12035_025_04881_x crossref_primary_10_1097_HC9_0000000000000714 crossref_primary_10_3389_fimmu_2025_1604652 crossref_primary_10_1016_j_gene_2025_149635 crossref_primary_10_1016_j_mce_2023_112111 crossref_primary_10_20307_nps_2023_29_3_146 crossref_primary_10_3389_fcvm_2025_1582049 crossref_primary_10_1038_s41443_024_00926_2 crossref_primary_10_3389_fphar_2025_1538697 crossref_primary_10_1186_s12860_024_00506_8 crossref_primary_10_1055_s_0044_1788280 crossref_primary_10_1002_bab_2676 crossref_primary_10_1080_00439339_2025_2507826 crossref_primary_10_3233_CH_232003 crossref_primary_10_1136_bjo_2024_326932 crossref_primary_10_1016_j_intimp_2025_114560 crossref_primary_10_1111_cns_14865 crossref_primary_10_3390_antiox13010116 crossref_primary_10_1002_ptr_8167 crossref_primary_10_1016_j_jdiacomp_2023_108565 crossref_primary_10_1002_ptr_70059 crossref_primary_10_1016_j_biopha_2024_117706 crossref_primary_10_1016_j_toxlet_2024_05_001 crossref_primary_10_3389_fimmu_2023_1269451 crossref_primary_10_3390_biomedicines12030664 crossref_primary_10_3389_fmed_2025_1621079 crossref_primary_10_1007_s11064_025_04452_5 crossref_primary_10_1096_fj_202500724R crossref_primary_10_1016_j_heliyon_2024_e32289 crossref_primary_10_1016_j_metabol_2025_156359 crossref_primary_10_1016_j_tice_2023_102290 crossref_primary_10_1016_j_jbc_2023_105397 crossref_primary_10_1134_S0026893324060049 crossref_primary_10_1152_ajpcell_00577_2024 crossref_primary_10_3390_antiox13040424 crossref_primary_10_3389_fphar_2025_1543697 crossref_primary_10_1038_s41598_024_72454_4 crossref_primary_10_1016_j_genrep_2025_102185 crossref_primary_10_31083_j_fbl2803045 crossref_primary_10_1038_s42003_024_07132_2 crossref_primary_10_1016_j_tice_2025_102775 crossref_primary_10_1002_adhm_202303027 crossref_primary_10_3389_fimmu_2025_1567980 crossref_primary_10_1016_j_lfs_2024_123195 crossref_primary_10_1016_j_ajt_2024_11_025 crossref_primary_10_3389_fcvm_2025_1545231 crossref_primary_10_1371_journal_pone_0311922 crossref_primary_10_1002_advs_202506438 crossref_primary_10_1038_s41467_023_44227_6 crossref_primary_10_1093_burnst_tkaf007 crossref_primary_10_1002_mco2_70057 crossref_primary_10_1016_j_jep_2024_117892 crossref_primary_10_1016_j_cellimm_2024_104908 crossref_primary_10_1007_s11033_025_10522_2 crossref_primary_10_1007_s10495_024_01989_8 crossref_primary_10_1016_j_lfs_2023_121954 crossref_primary_10_1042_CS20255877 crossref_primary_10_1093_toxres_tfae022 crossref_primary_10_3389_fimmu_2023_1165507 crossref_primary_10_1139_bcb_2023_0009 crossref_primary_10_1016_j_ejphar_2023_175674 crossref_primary_10_34133_bmr_0234 crossref_primary_10_1097_MD_0000000000040951 crossref_primary_10_1155_bmri_5513856 crossref_primary_10_3389_fimmu_2025_1642984 crossref_primary_10_1177_09603271251323753 crossref_primary_10_1016_j_intimp_2024_111946 crossref_primary_10_1007_s00011_023_01800_5 crossref_primary_10_3389_fonc_2023_1308869 crossref_primary_10_3390_molecules28041861 crossref_primary_10_1016_j_freeradbiomed_2024_02_020 crossref_primary_10_1002_arch_70038 crossref_primary_10_3389_fendo_2025_1393883 crossref_primary_10_1007_s12035_024_04126_3 crossref_primary_10_1016_j_jff_2024_106520 crossref_primary_10_1007_s12012_025_10020_8 crossref_primary_10_1089_ars_2023_0524 crossref_primary_10_4251_wjgo_v17_i9_107651 crossref_primary_10_1002_smtd_202400273 crossref_primary_10_3389_fimmu_2025_1610121 crossref_primary_10_3892_ijmm_2025_5537 crossref_primary_10_1002_adfm_202504384 crossref_primary_10_31083_j_fbl2811289 crossref_primary_10_1016_j_jep_2024_118057 crossref_primary_10_3390_cells12091341 crossref_primary_10_1016_j_nbd_2023_106314 crossref_primary_10_1002_ptr_8372 crossref_primary_10_1016_j_ijbiomac_2024_139038 crossref_primary_10_1080_10255842_2025_2482129 crossref_primary_10_1186_s12951_025_03343_9 crossref_primary_10_1016_j_freeradbiomed_2025_04_021 crossref_primary_10_1038_s41419_024_06780_w crossref_primary_10_1111_bph_17311 crossref_primary_10_1016_j_bbamcr_2024_119823 crossref_primary_10_1016_j_jstrokecerebrovasdis_2025_108314 crossref_primary_10_1016_j_heliyon_2024_e30814 crossref_primary_10_1016_j_expneurol_2024_114943 crossref_primary_10_3390_ijms25179278 crossref_primary_10_3389_fnmol_2025_1585079 crossref_primary_10_3390_antiox13070789 crossref_primary_10_1113_EP091520 crossref_primary_10_1016_j_phymed_2024_156169 crossref_primary_10_1016_j_phymed_2024_155752 crossref_primary_10_1002_advs_202407133 crossref_primary_10_1016_j_envint_2025_109367 crossref_primary_10_1186_s12951_024_02453_0 crossref_primary_10_1016_j_micpath_2025_107609 crossref_primary_10_1016_j_phymed_2024_156286 crossref_primary_10_2147_JIR_S536127 crossref_primary_10_1371_journal_pone_0299382 crossref_primary_10_1016_j_ijbiomac_2024_129341 crossref_primary_10_1177_00368504251370676 crossref_primary_10_3389_fimmu_2025_1661805 crossref_primary_10_1007_s12012_025_10007_5 crossref_primary_10_1016_j_atherosclerosis_2025_120399 crossref_primary_10_1016_j_fct_2025_115455 crossref_primary_10_3390_biom14121519 crossref_primary_10_3389_fimmu_2024_1374506 crossref_primary_10_1016_j_biopha_2023_114993 crossref_primary_10_3389_fphar_2024_1484532 crossref_primary_10_3389_fcvm_2025_1633438 crossref_primary_10_1016_j_ijbiomac_2023_124708 crossref_primary_10_1016_j_intimp_2023_110801 crossref_primary_10_3390_ph16091201 crossref_primary_10_1007_s11010_024_05172_0 crossref_primary_10_3389_fcvm_2025_1608658 crossref_primary_10_3389_fendo_2024_1382777 crossref_primary_10_3389_fphar_2025_1570069 crossref_primary_10_1016_j_matdes_2023_111930 crossref_primary_10_1038_s41392_024_01958_2 crossref_primary_10_1186_s12951_024_02939_x crossref_primary_10_3389_fphar_2024_1415145 crossref_primary_10_1016_j_phyplu_2025_100795 crossref_primary_10_1016_j_phymed_2025_156784 crossref_primary_10_2147_JIR_S536145 crossref_primary_10_1016_j_bcp_2024_116186 crossref_primary_10_1016_j_heliyon_2023_e23589 crossref_primary_10_3389_fendo_2023_1234824 crossref_primary_10_1111_apha_14087 crossref_primary_10_1007_s00109_023_02413_5 crossref_primary_10_1002_smll_202404463 crossref_primary_10_1016_j_heliyon_2024_e36826 crossref_primary_10_1371_journal_pone_0312383 crossref_primary_10_1007_s11064_024_04226_5 crossref_primary_10_1002_fsn3_4049 crossref_primary_10_1111_1440_1681_13910 crossref_primary_10_3390_biomedicines13051154 crossref_primary_10_3390_ijms26157204 crossref_primary_10_3390_life13081659 crossref_primary_10_3390_ijms241512021 crossref_primary_10_1002_cbin_70064 crossref_primary_10_2174_0115680096284068240506095417 crossref_primary_10_1016_j_scitotenv_2023_168073 crossref_primary_10_3389_fcell_2025_1611055 crossref_primary_10_3892_mmr_2024_13170 crossref_primary_10_1016_j_ejphar_2025_177430 crossref_primary_10_1155_ije_1186113 crossref_primary_10_1016_j_bioorg_2024_107596 crossref_primary_10_1080_17435889_2024_2382667 crossref_primary_10_1111_1440_1681_13909 crossref_primary_10_1038_s41598_024_51609_3 crossref_primary_10_2147_JIR_S480528 crossref_primary_10_1002_smll_202310608 crossref_primary_10_1186_s12951_024_02566_6 crossref_primary_10_2174_0113816128303026240514111200 crossref_primary_10_1007_s00018_024_05432_8 crossref_primary_10_1038_s41419_025_07527_x crossref_primary_10_1186_s12974_025_03382_x crossref_primary_10_1155_cdr_4506032 crossref_primary_10_1007_s12033_025_01441_5 crossref_primary_10_3389_fphar_2025_1538059 crossref_primary_10_1038_s41392_025_02253_4 crossref_primary_10_1016_j_ijbiomac_2025_145188 crossref_primary_10_1002_jbt_70268 crossref_primary_10_3389_fphar_2024_1463520 crossref_primary_10_5713_ab_24_0547 crossref_primary_10_1080_10408363_2024_2370267 crossref_primary_10_1007_s12035_024_04172_x crossref_primary_10_1038_s41598_024_62910_6 crossref_primary_10_3892_etm_2024_12623 crossref_primary_10_3390_ijms252211989 crossref_primary_10_1016_j_niox_2024_11_004 crossref_primary_10_1186_s13018_025_05520_w crossref_primary_10_3390_ph18101427 crossref_primary_10_1016_j_mito_2024_101920 crossref_primary_10_1016_j_envres_2025_121102 crossref_primary_10_3389_fphys_2024_1326392 crossref_primary_10_1002_jbt_70387 crossref_primary_10_1186_s13020_024_01022_9 crossref_primary_10_1038_s41598_024_71435_x crossref_primary_10_1007_s12010_025_05214_3 crossref_primary_10_1016_j_intimp_2024_113902 crossref_primary_10_1016_j_pdpdt_2024_104104 crossref_primary_10_1007_s10695_024_01434_2 crossref_primary_10_1016_j_heliyon_2023_e22805 crossref_primary_10_1016_j_jconrel_2024_11_013 crossref_primary_10_1177_0271678X241264401 crossref_primary_10_1016_j_intimp_2025_115389 crossref_primary_10_3389_fphar_2024_1477938 crossref_primary_10_1021_polymscitech_4c00055 crossref_primary_10_1016_j_intimp_2024_112010 crossref_primary_10_1007_s12035_025_04724_9 crossref_primary_10_1167_iovs_66_4_51 crossref_primary_10_1021_acsami_4c13481 |
| Cites_doi | 10.1155/2021/9074206 10.1038/s41419-020-02985-x 10.1038/nri2725 10.1007/s13238-020-00789-5 10.1161/ATVBAHA.107.156406 10.1016/j.redox.2019.101171 10.1016/j.ejphar.2019.172795 10.1016/j.freeradbiomed.2014.07.046 10.1016/j.vph.2021.106881 10.1016/j.redox.2018.02.013 10.1016/j.vph.2017.05.005 10.1016/j.redox.2019.101254 10.2337/db13-0417 10.1038/nrd.2018.97 10.1016/j.cell.2012.03.042 10.1016/j.pharmthera.2013.07.004 10.1164/rccm.201304-0686PP 10.1080/15548627.2020.1810918 10.1161/ATVBAHA.117.309813 10.1016/j.redox.2019.101239 10.1016/s0895-7061(01)02317-2 10.1161/CIRCRESAHA.116.309326 10.1016/j.tplants.2016.08.002 10.1007/s00125-012-2557-6 10.1161/HYPERTENSIONAHA.111.190140 10.1042/CS20210468 10.1073/pnas.97.20.10723 10.1038/s41419-017-0257-3 10.2165/00003495-199700531-00006 10.1161/CIRCULATIONAHA.111.030775 10.1016/j.cell.2004.11.002 10.1016/j.cytogfr.2011.10.001 10.1016/j.it.2019.09.005 10.3389/fphar.2019.00306 10.1016/j.freeradbiomed.2017.12.017 10.1038/nature18629 10.4049/jimmunol.2000373 10.1016/j.freeradbiomed.2013.07.003 10.1016/s0092-8674(03)00314-3 10.1016/j.freeradbiomed.2020.12.026 10.1007/s10753-020-01289-8 10.1038/nature15514 10.1038/s41419-020-2298-2 10.1073/pnas.95.16.9220 10.3390/ijms18091965 10.1038/nrd3403 10.2337/diabetes.52.10.2603 10.1016/j.redox.2019.101410 10.1016/j.tcb.2020.02.009 10.1038/ni.1831 10.1016/j.tcb.2015.10.014 10.1016/j.redox.2020.101638 10.1016/j.immuni.2013.05.016 10.3390/ijms21228793 10.1016/j.it.2014.02.007 10.1038/nature18590 10.1155/2019/5028181 10.1038/s41577-019-0165-0 10.1016/j.redox.2013.04.001 10.1016/S0140-6736(14)60107-0 10.1038/s41419-022-04786-w 10.18632/aging.202386 10.1089/ars.2014.5994 10.1016/s0891-5849(02)00956-5 10.1172/JCI119131 10.1016/j.abb.2008.05.017 10.1016/j.cell.2013.12.010 10.1016/j.redox.2021.102195 10.1016/j.immuni.2019.05.020 10.1007/s00018-021-04109-w 10.1089/ars.2008.2220 10.3389/fphar.2018.00882 10.1196/annals.1427.014 10.1126/science.272.5262.735 10.1172/JCI45161 10.1016/j.tem.2014.06.012 10.1016/j.phrs.2020.105299 10.1161/CIRCRESAHA.118.314402 10.3390/ijms20153775 10.1155/2021/6241242 10.1161/01.RES.0000247034.24662.b4 10.1007/s00018-008-7516-5 10.1152/ajpheart.00579.2003 10.1016/j.redox.2017.10.002 10.1161/ATVBAHA.107.142182 10.3390/cancers12010138 10.1126/science.aad6872 10.1155/2017/1249614 10.1016/j.redox.2020.101650 10.3389/fimmu.2020.585146 10.1016/j.redox.2014.08.003 10.1089/ars.2017.7313 10.4239/wjd.v12.i2.124 10.1152/physrev.00022.2018 10.1155/2019/3462530 10.4103/1673-5374.274344 10.1016/j.mam.2008.05.005 10.1111/bph.12416 10.1161/CIRCRESAHA.115.306301 10.1016/j.redox.2015.09.005 10.1111/imr.12286 10.2147/DDDT.S231916 10.1016/S0021-9258(19)50005-9 10.1016/j.freeradbiomed.2019.09.015 10.1111/1440-1681.12685 10.1152/physrev.00044.2005 10.1016/j.biopha.2018.03.129 10.1007/978-1-59745-521-3_11 10.1038/s41569-019-0260-8 10.1016/j.redox.2018.101072 10.1038/nri.2016.58 10.1126/scisignal.2000902 10.1152/physrev.00026.2013 10.1161/CIRCRESAHA.116.308427 10.1038/cr.2015.139 10.1038/s41392-020-00428-9 10.1155/2019/3150145 10.1038/nature15541 10.3389/fendo.2020.00591 10.1093/eurheartj/ehr304 10.1073/pnas.221292098 10.2337/db12-1374 10.1016/j.redox.2014.02.005 10.1038/s41422-020-00441-1 10.1007/s00011-016-1002-6 10.1016/j.freeradbiomed.2017.03.017 10.1089/ars.2010.3586 10.1016/s0378-1119(01)00449-8 10.1161/HYPERTENSIONAHA.118.11184 10.1007/s12975-020-00844-7 10.1161/01.res.86.3.347 10.1038/ni.1631 10.1093/cvr/cvab295 10.1089/ars.2020.8112 10.1080/15548627.2021.1911016 10.1016/j.tcb.2017.05.005 10.1161/ATVBAHA.107.147009 10.1016/j.redox.2016.12.036 10.1016/j.cbpa.2007.08.038 10.1161/CIRCRESAHA.115.304262 10.1093/cvr/cvaa168 10.1038/cdd.2015.176 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Zheng, Liu, Piao, Zhu, Wei and Liu. Copyright © 2022 Zheng, Liu, Piao, Zhu, Wei and Liu 2022 Zheng, Liu, Piao, Zhu, Wei and Liu |
| Copyright_xml | – notice: Copyright © 2022 Zheng, Liu, Piao, Zhu, Wei and Liu. – notice: Copyright © 2022 Zheng, Liu, Piao, Zhu, Wei and Liu 2022 Zheng, Liu, Piao, Zhu, Wei and Liu |
| DBID | AAYXX CITATION 7X8 5PM DOA |
| DOI | 10.3389/fimmu.2022.1039241 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1664-3224 |
| ExternalDocumentID | oai_doaj_org_article_60582b689160459db77094dd05a07000 PMC9663996 10_3389_fimmu_2022_1039241 |
| GrantInformation_xml | – fundername: ; grantid: 81970399 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM 7X8 5PM |
| ID | FETCH-LOGICAL-c511t-3122dba49bab7d939a391d973be7e13373d423634ee285ebe11fc38564ac2d4e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 381 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000885320300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-3224 |
| IngestDate | Fri Oct 03 12:45:01 EDT 2025 Thu Aug 21 18:39:18 EDT 2025 Wed Oct 01 13:28:40 EDT 2025 Tue Nov 18 21:36:35 EST 2025 Sat Nov 29 03:28:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c511t-3122dba49bab7d939a391d973be7e13373d423634ee285ebe11fc38564ac2d4e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Benoit Pourcet, Université de Lille, France Reviewed by: Aleksandr E. Vendrov, University of Michigan, United States; Roman A. Zinovkin, Lomonosov Moscow State University, Russia These authors have contributed equally to this work This article was submitted to Inflammation, a section of the journal Frontiers in Immunology |
| OpenAccessLink | https://doaj.org/article/60582b689160459db77094dd05a07000 |
| PQID | 2737471928 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_60582b689160459db77094dd05a07000 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9663996 proquest_miscellaneous_2737471928 crossref_primary_10_3389_fimmu_2022_1039241 crossref_citationtrail_10_3389_fimmu_2022_1039241 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in immunology |
| PublicationYear | 2022 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Drummond (B39) 2000; 86 Rochette (B7) 2013; 140 Cheng (B25) 2001; 269 Dolmatova (B36) 2021; 16 Stockwell (B132) 2020; 30 Bretón-Romero (B20) 2014; 2 Liang (B112) 2018; 72 Mangan (B81) 2018; 17 Aslan (B55) 2001; 98 Hornung (B80) 2008; 9 Vassiliou (B14) 2020; 21 Jiang (B37) 2020; 36 Li (B142) 2021; 13 Zhang (B94) 2019; 865 El Assar (B5) 2013; 65 Godo (B1) 2017; 37 Cohausz (B107) 2008; 65 Kong (B139) 2022; 13 Zamyatina (B71) 2020; 11 Elliott (B73) 2015; 265 Andrabi (B104) 2008; 1147 Koppula (B133) 2021; 12 Fatokun (B97) 2014; 171 Tschopp (B83) 2010; 10 Förstermann (B2) 2017; 120 Chen (B88) 2018; 103 Chen (B120) 2021; 17 Bajic (B127) 2019; 2019 Abdul (B141) 2021; 12 Dixon (B134) 2012; 149 Bai (B61) 2020; 11 Abu Nabah (B3) 2007; 27 Takaya (B49) 2007; 27 Lin (B82) 2019; 26 Dan Dunn (B21) 2015; 6 Del Re (B102) 2019; 99 Enroth (B54) 2000; 97 Daiber (B56) 2021; 163 Kovacs (B62) 2017; 27 Dunn (B92) 2014; 63 Zhao (B38) 2017; 11 Wang (B106) 2011; 4 Liu (B109) 2022; 79 Rao (B23) 2020; 36 Martinet (B101) 2019; 10 Wang (B108) 2016; 354 Chapple (B44) 2013; 1 Robinson (B96) 2019; 26 Van Opdenbosch (B59) 2019; 50 Faller (B67) 2008; 476 Gui (B16) 2020; 11 Lambert (B22) 2009; 554 Wang (B129) 2020; 31 Bárány (B103) 2017; 2017 Wei (B117) 2017; 44 Schmidt (B50) 2019; 21 Ferguson (B130) 2019; 24 Youn (B35) 2012; 55 Mizuno (B27) 1992; 267 Choi (B118) 2012; 59 Zorov (B19) 2014; 94 Groemping (B29) 2003; 113 Pandey (B116) 2014; 115 Zhang (B123) 2020; 15 Lopez-Castejon (B53) 2011; 22 Zhang (B113) 2004; 286 Zhang (B24) 2020; 17 Zhuang (B60) 2019; 125 Hu (B13) 2017; 120 Ding (B63) 2016; 535 Wu (B86) 2020; 43 Bonventre (B15) 2011; 121 Rovira-Llopis (B78) 2018; 29 Luo (B137) 2021; 12 Zhou (B99) 2021; 163 Meza (B89) 2019; 20 Brandes (B33) 2014; 76 Harrison (B51) 2002; 33 Li (B119) 2020; 11 Yamazaki (B17) 2017; 18 Vásquez-Vivar (B48) 1998; 95 Wang (B114) 2018; 9 Swanson (B70) 2019; 19 Sharma (B124) 2021; 2021 Frey (B26) 2009; 11 Cau (B95) 2021; 139 Craige (B40) 2011; 124 Schröder (B32) 2017; 109 Stroes (B47) 1997; 99 Liao (B90) 2018; 115 Kayagaki (B65) 2015; 526 Gimbrone (B10) 2016; 118 Hang (B87) 2020; 14 Li (B143) 2020; 12 Ferro (B12) 1997 Yan (B125) 2021; 6 Chen (B8) 2017; 66 Yang (B135) 2014; 156 Polito (B52) 2021; 48 Liu (B66) 2016; 535 Kassan (B140) 2013; 62 Förstermann (B42) 2012; 33 Klinger (B43) 2013; 188 Tang (B121) 2021; 31 Broz (B57) 2016; 16 Ryoo (B115) 2006; 99 Kim (B100) 2004; 119 Heusch (B11) 2014; 383 Yang (B122) 2016; 26 Martín-Sánchez (B69) 2016; 23 Mathews (B111) 2008; 28 Drummond (B30) 2014; 25 Surprenant (B74) 1996; 272 He (B68) 2015; 25 Lv (B126) 2019; 2019 Lubos (B131) 2011; 15 Higashi (B46) 2002; 15 Incalza (B4) 2018; 100 Horng (B76) 2014; 35 Heeres (B105) 2007; 11 Jiang (B110) 2018; 14 Li (B91) 2019; 145 Shi (B64) 2015; 526 Bedard (B6) 2007; 87 Han (B85) 2018; 16 Limb (B9) 1999; 40 Xue (B58) 2019; 40 Drummond (B31) 2011; 10 Matikainen (B72) 2020; 204 Sheng (B138) 2021; 2021 Abais (B79) 2015; 22 Zhou (B84) 2010; 11 Lu (B128) 2009; 30 Ouerd (B34) 2021; 117 Wu (B93) 2018; 9 da Silva (B41) 2021; 135 Hegedűs (B98) 2014; 2 Wu (B45) 2021; 34 Muñoz-Planillo (B75) 2013; 38 Qin (B136) 2021; 17 Kitada (B28) 2003; 52 Mittler (B18) 2017; 22 Chen (B77) 2019; 2019 |
| References_xml | – volume: 2021 year: 2021 ident: B124 article-title: Positive and negative regulation of ferroptosis and its role in maintaining metabolic and redox homeostasis publication-title: Oxid Med Cell Longev doi: 10.1155/2021/9074206 – volume: 11 start-page: 776 year: 2020 ident: B61 article-title: NLRP3 inflammasome in endothelial dysfunction publication-title: Cell Death Dis doi: 10.1038/s41419-020-02985-x – volume: 10 year: 2010 ident: B83 article-title: NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production publication-title: Nat Rev Immunol doi: 10.1038/nri2725 – volume: 12 start-page: 599 year: 2021 ident: B133 article-title: Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy publication-title: Protein Cell doi: 10.1007/s13238-020-00789-5 – volume: 28 year: 2008 ident: B111 article-title: PARP-1 inhibition prevents oxidative and nitrosative stress-induced endothelial cell death via transactivation of the VEGF receptor 2 publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.107.156406 – volume: 24 year: 2019 ident: B130 article-title: The glutathione system and the related thiol network in caenorhabditis elegans publication-title: Redox Biol doi: 10.1016/j.redox.2019.101171 – volume: 865 year: 2019 ident: B94 article-title: Contribution of cathepsin b-dependent Nlrp3 inflammasome activation to nicotine-induced endothelial barrier dysfunction publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2019.172795 – volume: 76 year: 2014 ident: B33 article-title: Nox family NADPH oxidases: Molecular mechanisms of activation publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2014.07.046 – volume: 139 year: 2021 ident: B95 article-title: Angiotensin-II activates vascular inflammasome and induces vascular damage publication-title: Vascul Pharmacol doi: 10.1016/j.vph.2021.106881 – volume: 16 start-page: 32 year: 2018 ident: B85 article-title: Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis publication-title: Redox Biol doi: 10.1016/j.redox.2018.02.013 – volume: 100 start-page: 1 year: 2018 ident: B4 article-title: Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases publication-title: Vascul Pharmacol doi: 10.1016/j.vph.2017.05.005 – volume: 26 year: 2019 ident: B82 article-title: PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation publication-title: Redox Biol doi: 10.1016/j.redox.2019.101254 – volume: 63 year: 2014 ident: B92 article-title: A critical role for thioredoxin-interacting protein in diabetes-related impairment of angiogenesis publication-title: Diabetes doi: 10.2337/db13-0417 – volume: 17 start-page: 588 year: 2018 ident: B81 article-title: Targeting the NLRP3 inflammasome in inflammatory diseases publication-title: Nat Rev Drug Discovery doi: 10.1038/nrd.2018.97 – volume: 149 year: 2012 ident: B134 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death publication-title: Cell doi: 10.1016/j.cell.2012.03.042 – volume: 140 year: 2013 ident: B7 article-title: Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets publication-title: Pharmacol Ther doi: 10.1016/j.pharmthera.2013.07.004 – volume: 188 year: 2013 ident: B43 article-title: Nitric oxide deficiency and endothelial dysfunction in pulmonary arterial hypertension publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201304-0686PP – volume: 17 year: 2021 ident: B120 article-title: Ferroptosis: machinery and regulation publication-title: Autophagy doi: 10.1080/15548627.2020.1810918 – volume: 37 year: 2017 ident: B1 article-title: Endothelial functions publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.117.309813 – volume: 26 year: 2019 ident: B96 article-title: Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos publication-title: Redox Biol doi: 10.1016/j.redox.2019.101239 – volume: 15 year: 2002 ident: B46 article-title: Tetrahydrobiopterin enhances forearm vascular response to acetylcholine in both normotensive and hypertensive individuals publication-title: Am J Hypertens doi: 10.1016/s0895-7061(01)02317-2 – volume: 120 year: 2017 ident: B2 article-title: Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis publication-title: Circ Res doi: 10.1161/CIRCRESAHA.116.309326 – volume: 22 year: 2017 ident: B18 article-title: ROS are good publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2016.08.002 – volume: 55 year: 2012 ident: B35 article-title: The p47phox- and NADPH oxidase organiser 1 (NOXO1)-dependent activation of NADPH oxidase 1 (NOX1) mediates endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction in a streptozotocin-induced murine model of diabetes publication-title: Diabetologia doi: 10.1007/s00125-012-2557-6 – volume: 59 year: 2012 ident: B118 article-title: Poly(ADP-ribose) polymerase 1 inhibition improves coronary arteriole function in type 2 diabetes mellitus publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.111.190140 – volume: 135 year: 2021 ident: B41 article-title: Lysophosphatidylcholine induces oxidative stress in human endothelial cells via NOX5 activation - implications in atherosclerosis publication-title: Clin Sci (Lond). doi: 10.1042/CS20210468 – volume: 97 year: 2000 ident: B54 article-title: Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.97.20.10723 – volume: 9 start-page: 171 year: 2018 ident: B93 article-title: Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis publication-title: Cell Death Dis doi: 10.1038/s41419-017-0257-3 – start-page: 30 year: 1997 ident: B12 article-title: Endothelial dysfunction and hypertension publication-title: Drugs doi: 10.2165/00003495-199700531-00006 – volume: 124 year: 2011 ident: B40 article-title: NADPH oxidase 4 promotes endothelial angiogenesis through endothelial nitric oxide synthase activation publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.111.030775 – volume: 119 year: 2004 ident: B100 article-title: NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1 publication-title: Cell doi: 10.1016/j.cell.2004.11.002 – volume: 22 year: 2011 ident: B53 article-title: Understanding the mechanism of IL-1β secretion publication-title: Cytokine Growth Factor Rev doi: 10.1016/j.cytogfr.2011.10.001 – volume: 40 year: 2019 ident: B58 article-title: Emerging activators and regulators of inflammasomes and pyroptosis publication-title: Trends Immunol doi: 10.1016/j.it.2019.09.005 – volume: 10 year: 2019 ident: B101 article-title: Macrophage death as a pharmacological target in atherosclerosis publication-title: Front Pharmacol doi: 10.3389/fphar.2019.00306 – volume: 115 year: 2018 ident: B90 article-title: NADPH oxidase 4 and endothelial nitric oxide synthase contribute to endothelial dysfunction mediated by histone methylations in metabolic memory publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2017.12.017 – volume: 535 year: 2016 ident: B66 article-title: Inflammasome-activated gasdermin d causes pyroptosis by forming membrane pores publication-title: Nature doi: 10.1038/nature18629 – volume: 204 year: 2020 ident: B72 article-title: Function and regulation of noncanonical caspase-4/5/11 inflammasome publication-title: J Immunol doi: 10.4049/jimmunol.2000373 – volume: 65 start-page: 380 year: 2013 ident: B5 article-title: Oxidative stress and vascular inflammation in aging publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2013.07.003 – volume: 113 year: 2003 ident: B29 article-title: Molecular basis of phosphorylation-induced activation of the NADPH oxidase publication-title: Cell doi: 10.1016/s0092-8674(03)00314-3 – volume: 163 year: 2021 ident: B56 article-title: Discovery of new therapeutic redox targets for cardioprotection against ischemia/reperfusion injury and heart failure publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2020.12.026 – volume: 43 year: 2020 ident: B86 article-title: MLKL aggravates ox-LDL-Induced cell pyroptosis via activation of NLRP3 inflammasome in human umbilical vein endothelial cells publication-title: Inflammation doi: 10.1007/s10753-020-01289-8 – volume: 526 year: 2015 ident: B64 article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death publication-title: Nature doi: 10.1038/nature15514 – volume: 11 start-page: 88 year: 2020 ident: B119 article-title: Ferroptosis: past, present and future publication-title: Cell Death Dis doi: 10.1038/s41419-020-2298-2 – volume: 95 year: 1998 ident: B48 article-title: Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.95.16.9220 – volume: 18 year: 2017 ident: B17 article-title: Blood-brain barrier dysfunction and the pathogenesis of alzheimer's disease publication-title: Int J Mol Sci doi: 10.3390/ijms18091965 – volume: 10 year: 2011 ident: B31 article-title: Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets publication-title: Nat Rev Drug Discovery doi: 10.1038/nrd3403 – volume: 52 year: 2003 ident: B28 article-title: Translocation of glomerular p47phox and p67phox by protein kinase c-beta activation is required for oxidative stress in diabetic nephropathy publication-title: Diabetes doi: 10.2337/diabetes.52.10.2603 – volume: 31 year: 2020 ident: B129 article-title: Sexual dimorphism in glutathione metabolism and glutathione-dependent responses publication-title: Redox Biol doi: 10.1016/j.redox.2019.101410 – volume: 30 year: 2020 ident: B132 article-title: Emerging mechanisms and disease relevance of ferroptosis publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2020.02.009 – volume: 11 year: 2010 ident: B84 article-title: Thioredoxin-interacting protein links oxidative stress to inflammasome activation publication-title: Nat Immunol doi: 10.1038/ni.1831 – volume: 26 year: 2016 ident: B122 article-title: Ferroptosis: Death by lipid peroxidation publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2015.10.014 – volume: 36 year: 2020 ident: B37 article-title: Targeting NOX4 alleviates sepsis-induced acute lung injury via attenuation of redox-sensitive activation of CaMKII/ERK1/2/MLCK and endothelial cell barrier dysfunction publication-title: Redox Biol doi: 10.1016/j.redox.2020.101638 – volume: 38 year: 2013 ident: B75 article-title: K⁺ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter publication-title: Immunity doi: 10.1016/j.immuni.2013.05.016 – volume: 21 year: 2020 ident: B14 article-title: Endothelial damage in acute respiratory distress syndrome publication-title: Int J Mol Sci doi: 10.3390/ijms21228793 – volume: 35 year: 2014 ident: B76 article-title: Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome publication-title: Trends Immunol doi: 10.1016/j.it.2014.02.007 – volume: 535 year: 2016 ident: B63 article-title: Pore-forming activity and structural autoinhibition of the gasdermin family publication-title: Nature doi: 10.1038/nature18590 – volume: 2019 year: 2019 ident: B127 article-title: Glutathione "Redox homeostasis" and its relation to cardiovascular disease publication-title: Oxid Med Cell Longev doi: 10.1155/2019/5028181 – volume: 19 year: 2019 ident: B70 article-title: The NLRP3 inflammasome: molecular activation and regulation to therapeutics publication-title: Nat Rev Immunol doi: 10.1038/s41577-019-0165-0 – volume: 1 year: 2013 ident: B44 article-title: Effects of 4-hydroxynonenal on vascular endothelial and smooth muscle cell redox signaling and function in health and disease publication-title: Redox Biol doi: 10.1016/j.redox.2013.04.001 – volume: 383 year: 2014 ident: B11 article-title: Cardiovascular remodelling in coronary artery disease and heart failure publication-title: Lancet doi: 10.1016/S0140-6736(14)60107-0 – volume: 13 start-page: 336 year: 2022 ident: B139 article-title: Targeted P2X7/NLRP3 signaling pathway against inflammation, apoptosis, and pyroptosis of retinal endothelial cells in diabetic retinopathy publication-title: Cell Death Dis doi: 10.1038/s41419-022-04786-w – volume: 13 year: 2021 ident: B142 article-title: Oxaliplatin induces the PARP1-mediated parthanatos in oral squamous cell carcinoma by increasing production of ROS publication-title: Aging (Albany NY). doi: 10.18632/aging.202386 – volume: 22 year: 2015 ident: B79 article-title: Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector publication-title: Antioxid Redox Signal doi: 10.1089/ars.2014.5994 – volume: 33 year: 2002 ident: B51 article-title: Structure and function of xanthine oxidoreductase: where are we now publication-title: Free Radic Biol Med doi: 10.1016/s0891-5849(02)00956-5 – volume: 99 year: 1997 ident: B47 article-title: Tetrahydrobiopterin restores endothelial function in hypercholesterolemia publication-title: J Clin Invest. doi: 10.1172/JCI119131 – volume: 476 start-page: 12 year: 2008 ident: B67 article-title: Mechanistic studies of sodium pump publication-title: Arch Biochem Biophys doi: 10.1016/j.abb.2008.05.017 – volume: 156 year: 2014 ident: B135 article-title: Regulation of ferroptotic cancer cell death by GPX4 publication-title: Cell doi: 10.1016/j.cell.2013.12.010 – volume: 48 year: 2021 ident: B52 article-title: Xanthine oxidoreductase: A leading actor in cardiovascular disease drama publication-title: Redox Biol doi: 10.1016/j.redox.2021.102195 – volume: 40 year: 1999 ident: B9 article-title: Vascular adhesion molecules in vitreous from eyes with proliferative diabetic retinopathy publication-title: Invest Ophthalmol Vis Sci – volume: 50 year: 2019 ident: B59 article-title: Caspases in cell death, inflammation, and disease publication-title: Immunity doi: 10.1016/j.immuni.2019.05.020 – volume: 79 start-page: 60 year: 2022 ident: B109 article-title: The key players of parthanatos: opportunities for targeting multiple levels in the therapy of parthanatos-based pathogenesis publication-title: Cell Mol Life Sci doi: 10.1007/s00018-021-04109-w – volume: 11 start-page: 791 year: 2009 ident: B26 article-title: NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology publication-title: Antioxid Redox Signal doi: 10.1089/ars.2008.2220 – volume: 9 year: 2018 ident: B114 article-title: Poly (ADP-ribose) polymerase 1 mediated arginase II activation is responsible for oxidized LDL-induced endothelial dysfunction publication-title: Front Pharmacol doi: 10.3389/fphar.2018.00882 – volume: 1147 year: 2008 ident: B104 article-title: Mitochondrial and nuclear cross talk in cell death: parthanatos publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1427.014 – volume: 272 year: 1996 ident: B74 article-title: The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7) publication-title: Science doi: 10.1126/science.272.5262.735 – volume: 121 year: 2011 ident: B15 article-title: Cellular pathophysiology of ischemic acute kidney injury publication-title: J Clin Invest. doi: 10.1172/JCI45161 – volume: 25 year: 2014 ident: B30 article-title: Endothelial NADPH oxidases: which NOX to target in vascular disease publication-title: Trends Endocrinol Metab doi: 10.1016/j.tem.2014.06.012 – volume: 163 year: 2021 ident: B99 article-title: Deng y. parthanatos and its associated components: Promising therapeutic targets for cancer publication-title: Pharmacol Res doi: 10.1016/j.phrs.2020.105299 – volume: 125 start-page: 590 year: 2019 ident: B60 article-title: Endothelial Foxp1 suppresses atherosclerosis via modulation of Nlrp3 inflammasome activation publication-title: Circ Res doi: 10.1161/CIRCRESAHA.118.314402 – volume: 20 year: 2019 ident: B89 article-title: Endothelial dysfunction: Is there a hyperglycemia-induced imbalance of NOX and NOS publication-title: Int J Mol Sci doi: 10.3390/ijms20153775 – volume: 2021 year: 2021 ident: B138 article-title: Astragaloside IV inhibits bleomycin-induced ferroptosis in human umbilical vein endothelial cells by mediating LPC publication-title: Oxid Med Cell Longev doi: 10.1155/2021/6241242 – volume: 99 year: 2006 ident: B115 article-title: Oxidized low-density lipoprotein-dependent endothelial arginase II activation contributes to impaired nitric oxide signaling publication-title: Circ Res doi: 10.1161/01.RES.0000247034.24662.b4 – volume: 65 year: 2008 ident: B107 article-title: The roles of poly(ADP-ribose)-metabolizing enzymes in alkylation-induced cell death publication-title: Cell Mol Life Sci doi: 10.1007/s00018-008-7516-5 – volume: 286 year: 2004 ident: B113 article-title: Role of AIF in human coronary artery endothelial cell apoptosis publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00579.2003 – volume: 14 year: 2018 ident: B110 article-title: The dual role of poly(ADP-ribose) polymerase-1 in modulating parthanatos and autophagy under oxidative stress in rat cochlear marginal cells of the stria vascularis publication-title: Redox Biol doi: 10.1016/j.redox.2017.10.002 – volume: 27 year: 2007 ident: B49 article-title: A specific role for eNOS-derived reactive oxygen species in atherosclerosis progression publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.107.142182 – volume: 12 year: 2020 ident: B143 article-title: Disulfiram/Copper induces antitumor activity against both nasopharyngeal cancer cells and cancer-associated fibroblasts through ROS/MAPK and ferroptosis pathways publication-title: Cancers (Basel). doi: 10.3390/cancers12010138 – volume: 354 year: 2016 ident: B108 article-title: A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1 publication-title: Science doi: 10.1126/science.aad6872 – volume: 2017 year: 2017 ident: B103 article-title: Oxidative stress-related parthanatos of circulating mononuclear leukocytes in heart failure publication-title: Oxid Med Cell Longev doi: 10.1155/2017/1249614 – volume: 36 year: 2020 ident: B23 article-title: Nicotinamide nucleotide transhydrogenase (NNT) regulates mitochondrial ROS and endothelial dysfunction in response to angiotensin II publication-title: Redox Biol doi: 10.1016/j.redox.2020.101650 – volume: 11 year: 2020 ident: B71 article-title: Lipopolysaccharide recognition in the crossroads of TLR4 and caspase-4/11 mediated inflammatory pathways publication-title: Front Immunol doi: 10.3389/fimmu.2020.585146 – volume: 2 year: 2014 ident: B98 article-title: Inputs and outputs of poly(ADP-ribosyl)ation: Relevance to oxidative stress publication-title: Redox Biol doi: 10.1016/j.redox.2014.08.003 – volume: 29 year: 2018 ident: B78 article-title: Mitochondria, the NLRP3 inflammasome, and sirtuins in type 2 diabetes: New therapeutic targets publication-title: Antioxid Redox Signal doi: 10.1089/ars.2017.7313 – volume: 12 year: 2021 ident: B137 article-title: Role of ferroptosis in the process of diabetes-induced endothelial dysfunction publication-title: World J Diabetes. doi: 10.4239/wjd.v12.i2.124 – volume: 99 year: 2019 ident: B102 article-title: Fundamental mechanisms of regulated cell death and implications for heart disease publication-title: Physiol Rev doi: 10.1152/physrev.00022.2018 – volume: 2019 year: 2019 ident: B77 article-title: ER stress activates the NLRP3 inflammasome: A novel mechanism of atherosclerosis publication-title: Oxid Med Cell Longev doi: 10.1155/2019/3462530 – volume: 15 year: 2020 ident: B123 article-title: Neuroprotective effect of deferoxamine on erastininduced ferroptosis in primary cortical neurons publication-title: Neural Regener Res doi: 10.4103/1673-5374.274344 – volume: 30 start-page: 42 year: 2009 ident: B128 article-title: Regulation of glutathione synthesis publication-title: Mol Aspects Med doi: 10.1016/j.mam.2008.05.005 – volume: 171 year: 2014 ident: B97 article-title: Dawson TM. parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities publication-title: Br J Pharmacol doi: 10.1111/bph.12416 – volume: 118 year: 2016 ident: B10 article-title: Endothelial cell dysfunction and the pathobiology of atherosclerosis publication-title: Circ Res doi: 10.1161/CIRCRESAHA.115.306301 – volume: 6 year: 2015 ident: B21 article-title: Reactive oxygen species and mitochondria: A nexus of cellular homeostasis publication-title: Redox Biol doi: 10.1016/j.redox.2015.09.005 – volume: 265 start-page: 35 year: 2015 ident: B73 article-title: Initiation and perpetuation of NLRP3 inflammasome activation and assembly publication-title: Immunol Rev doi: 10.1111/imr.12286 – volume: 14 year: 2020 ident: B87 article-title: Ox-LDL causes endothelial cell injury through ASK1/NLRP3-mediated inflammasome activation via endoplasmic reticulum stress publication-title: Drug Des Devel Ther doi: 10.2147/DDDT.S231916 – volume: 267 year: 1992 ident: B27 article-title: Regulation of the superoxide-generating NADPH oxidase by a small GTP-binding protein and its stimulatory and inhibitory GDP/GTP exchange proteins publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)50005-9 – volume: 145 year: 2019 ident: B91 article-title: Protective effects of acarbose against vascular endothelial dysfunction through inhibiting Nox4/NLRP3 inflammasome pathway in diabetic rats publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2019.09.015 – volume: 44 year: 2017 ident: B117 article-title: Poly(ADP-ribose) polymerase 1 deficiency increases nitric oxide production and attenuates aortic atherogenesis through downregulation of arginase II publication-title: Clin Exp Pharmacol Physiol doi: 10.1111/1440-1681.12685 – volume: 87 start-page: 245 year: 2007 ident: B6 article-title: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology publication-title: Physiol Rev doi: 10.1152/physrev.00044.2005 – volume: 103 year: 2018 ident: B88 article-title: MicroRNA-20a protects human aortic endothelial cells from ox-LDL-induced inflammation through targeting TLR4 and TXNIP signaling publication-title: BioMed Pharmacother. doi: 10.1016/j.biopha.2018.03.129 – volume: 554 year: 2009 ident: B22 article-title: Reactive oxygen species production by mitochondria publication-title: Methods Mol Biol doi: 10.1007/978-1-59745-521-3_11 – volume: 17 year: 2020 ident: B24 article-title: NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets publication-title: Nat Rev Cardiol doi: 10.1038/s41569-019-0260-8 – volume: 21 year: 2019 ident: B50 article-title: The impact of xanthine oxidase (XO) on hemolytic diseases publication-title: Redox Biol doi: 10.1016/j.redox.2018.101072 – volume: 16 year: 2016 ident: B57 article-title: Inflammasomes: mechanism of assembly, regulation and signalling publication-title: Nat Rev Immunol doi: 10.1038/nri.2016.58 – volume: 4 start-page: ra20 year: 2011 ident: B106 article-title: Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos) publication-title: Sci Signal doi: 10.1126/scisignal.2000902 – volume: 94 year: 2014 ident: B19 article-title: Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release publication-title: Physiol Rev doi: 10.1152/physrev.00026.2013 – volume: 120 year: 2017 ident: B13 article-title: Cerebral vascular disease and neurovascular injury in ischemic stroke publication-title: Circ Res doi: 10.1161/CIRCRESAHA.116.308427 – volume: 25 year: 2015 ident: B68 article-title: Gasdermin d is an executor of pyroptosis and required for interleukin-1β secretion publication-title: Cell Res doi: 10.1038/cr.2015.139 – volume: 6 start-page: 49 year: 2021 ident: B125 article-title: Ferroptosis: mechanisms and links with diseases publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-020-00428-9 – volume: 2019 year: 2019 ident: B126 article-title: Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy publication-title: Oxid Med Cell Longev doi: 10.1155/2019/3150145 – volume: 526 year: 2015 ident: B65 article-title: Caspase-11 cleaves gasdermin d for non-canonical inflammasome signalling publication-title: Nature doi: 10.1038/nature15541 – volume: 11 year: 2020 ident: B16 article-title: Endothelial dysfunction in diabetic retinopathy publication-title: Front Endocrinol (Lausanne). doi: 10.3389/fendo.2020.00591 – volume: 33 year: 2012 ident: B42 article-title: Nitric oxide synthases: regulation and function publication-title: Eur Heart J doi: 10.1093/eurheartj/ehr304 – volume: 98 year: 2001 ident: B55 article-title: Oxygen radical inhibition of nitric oxide-dependent vascular function in sickle cell disease publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.221292098 – volume: 62 year: 2013 ident: B140 article-title: Enhanced NF-κB activity impairs vascular function through PARP-1-, SP-1-, and COX-2-dependent mechanisms in type 2 diabetes publication-title: Diabetes doi: 10.2337/db12-1374 – volume: 2 year: 2014 ident: B20 article-title: Hydrogen peroxide signaling in vascular endothelial cells publication-title: Redox Biol doi: 10.1016/j.redox.2014.02.005 – volume: 31 year: 2021 ident: B121 article-title: Ferroptosis: molecular mechanisms and health implications publication-title: Cell Res doi: 10.1038/s41422-020-00441-1 – volume: 66 year: 2017 ident: B8 article-title: Activation of the TXNIP/NLRP3 inflammasome pathway contributes to inflammation in diabetic retinopathy: a novel inhibitory effect of minocycline publication-title: Inflammation Res doi: 10.1007/s00011-016-1002-6 – volume: 109 start-page: 22 year: 2017 ident: B32 article-title: Organizers and activators: Cytosolic nox proteins impacting on vascular function publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2017.03.017 – volume: 15 year: 2011 ident: B131 article-title: Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities publication-title: Antioxid Redox Signal doi: 10.1089/ars.2010.3586 – volume: 269 year: 2001 ident: B25 article-title: Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5 publication-title: Gene doi: 10.1016/s0378-1119(01)00449-8 – volume: 72 year: 2018 ident: B112 article-title: PARP-1 (Poly[ADP-ribose] polymerase 1) inhibition protects from ang II (Angiotensin II)-induced abdominal aortic aneurysm in mice publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.118.11184 – volume: 12 year: 2021 ident: B141 article-title: Deferoxamine treatment prevents post-stroke vasoregression and neurovascular unit remodeling leading to improved functional outcomes in type 2 Male diabetic rats: Role of endothelial ferroptosis publication-title: Transl Stroke Res doi: 10.1007/s12975-020-00844-7 – volume: 86 year: 2000 ident: B39 article-title: Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression by hydrogen peroxide publication-title: Circ Res doi: 10.1161/01.res.86.3.347 – volume: 9 year: 2008 ident: B80 article-title: Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization publication-title: Nat Immunol doi: 10.1038/ni.1631 – volume: 16 year: 2021 ident: B36 article-title: Endothelial Poldip2 regulates sepsis-induced lung injury via rho pathway activation publication-title: Cardiovasc Res doi: 10.1093/cvr/cvab295 – volume: 34 year: 2021 ident: B45 article-title: Oxidative stress, GTPCH1, and endothelial nitric oxide synthase uncoupling in hypertension publication-title: Antioxid Redox Signal doi: 10.1089/ars.2020.8112 – volume: 17 year: 2021 ident: B136 article-title: Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells publication-title: Autophagy doi: 10.1080/15548627.2021.1911016 – volume: 27 year: 2017 ident: B62 article-title: Gasdermins: Effectors of pyroptosis publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2017.05.005 – volume: 27 year: 2007 ident: B3 article-title: CXCR2 blockade impairs angiotensin II-induced CC chemokine synthesis and mononuclear leukocyte infiltration publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.107.147009 – volume: 11 year: 2017 ident: B38 article-title: Tert-butyl hydroperoxide (t-BHP) induced apoptosis and necroptosis in endothelial cells: Roles of NOX4 and mitochondrion publication-title: Redox Biol doi: 10.1016/j.redox.2016.12.036 – volume: 11 year: 2007 ident: B105 article-title: Poly(ADP-ribose) makes a date with death publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2007.08.038 – volume: 115 year: 2014 ident: B116 article-title: OxLDL triggers retrograde translocation of arginase2 in aortic endothelial cells via ROCK and mitochondrial processing peptidase publication-title: Circ Res doi: 10.1161/CIRCRESAHA.115.304262 – volume: 117 year: 2021 ident: B34 article-title: Endothelium-restricted endothelin-1 overexpression in type 1 diabetes worsens atherosclerosis and immune cell infiltration via NOX1 publication-title: Cardiovasc Res doi: 10.1093/cvr/cvaa168 – volume: 23 year: 2016 ident: B69 article-title: Inflammasome-dependent IL-1β release depends upon membrane permeabilisation publication-title: Cell Death Differ doi: 10.1038/cdd.2015.176 |
| SSID | ssj0000493335 |
| Score | 2.6994114 |
| SecondaryResourceType | review_article |
| Snippet | The endothelium is a single layer of epithelium covering the surface of the vascular system, and it represents a physical barrier between the blood and vessel... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1039241 |
| SubjectTerms | endothelial cells ferroptosis Immunology parthanatos pyroptosis reactive oxygen species |
| Title | ROS-triggered endothelial cell death mechanisms: Focus on pyroptosis, parthanatos, and ferroptosis |
| URI | https://www.proquest.com/docview/2737471928 https://pubmed.ncbi.nlm.nih.gov/PMC9663996 https://doaj.org/article/60582b689160459db77094dd05a07000 |
| Volume | 13 |
| WOSCitedRecordID | wos000885320300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-3224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493335 issn: 1664-3224 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BBQcOiKdYHpWRuEHU-rGx3RugrnqhIB7S3izHnkBQN1ltski98Ns7TrLV5gKXXiIldhLrm3HyfYlnBuCNFZoX3GCGPOSZkkhzDo_LLCaDe6GDCqovNqHPz81yab_slfpKa8KG9MADcEfpt50ockM0htiHjYXWpEgiXcuTtx73ap1Yz56Y-j3wXinlfIiSIRVmj8pqtdqSHhQixZmT6uCTN1GfsH_CMqdrJPdeOosHcH9ki-z9MMqHcAvrR3B3qB95-RiKr5-_ZR3p65-p4ibDOqZ4qgtyKZY-yLOY-B1bYYrurdpVe8IWTdi2rKnZ-nLTrLumrdp3bE0oUA-S37Tj68hK3Oxan8CPxen3j2fZWDQhC8SdOnqmChELr2zhCx2ttF5aHq2WBWokQaplJAaVS4UozJxMyHkZpJnnygcRFcqncFA3NT4DRk6mckOKIhBrQj43sRRRC29IIimu-Az4DkAXxoziqbDFhSNlkUB3Peguge5G0Gfw9vqc9ZBP45-9PyS7XPdMubD7A-QhbvQQ9z8PmcHrnVUdzZ2Ev6-x2baOqFvS5FaYGeiJuSd3nLbU1a8-CzeBQOQuf34TQ3wB94iGcTkEOb6Eg26zxVdwJ_zpqnZzCLf10hz2Hk7bT39PrwAHe_8J |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ROS-triggered+endothelial+cell+death+mechanisms%3A+Focus+on+pyroptosis%2C+parthanatos%2C+and+ferroptosis&rft.jtitle=Frontiers+in+immunology&rft.au=Zheng%2C+Dongdong&rft.au=Liu%2C+Jia&rft.au=Piao%2C+Hulin&rft.au=Zhu%2C+Zhicheng&rft.date=2022-11-01&rft.issn=1664-3224&rft.eissn=1664-3224&rft.volume=13&rft_id=info:doi/10.3389%2Ffimmu.2022.1039241&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fimmu_2022_1039241 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |