The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis

Upon disturbance of their function by stress, mitochondria can signal to the nucleus to steer the expression of responsive genes. This mitochondria-to-nucleus communication is often referred to as mitochondrial retrograde regulation (MRR). Although reactive oxygen species and calcium are likely cand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell Jg. 25; H. 9; S. 3472
Hauptverfasser: De Clercq, Inge, Vermeirssen, Vanessa, Van Aken, Olivier, Vandepoele, Klaas, Murcha, Monika W, Law, Simon R, Inzé, Annelies, Ng, Sophia, Ivanova, Aneta, Rombaut, Debbie, van de Cotte, Brigitte, Jaspers, Pinja, Van de Peer, Yves, Kangasjärvi, Jaakko, Whelan, James, Van Breusegem, Frank
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 01.09.2013
Schlagworte:
ISSN:1532-298X, 1532-298X
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Upon disturbance of their function by stress, mitochondria can signal to the nucleus to steer the expression of responsive genes. This mitochondria-to-nucleus communication is often referred to as mitochondrial retrograde regulation (MRR). Although reactive oxygen species and calcium are likely candidate signaling molecules for MRR, the protein signaling components in plants remain largely unknown. Through meta-analysis of transcriptome data, we detected a set of genes that are common and robust targets of MRR and used them as a bait to identify its transcriptional regulators. In the upstream regions of these mitochondrial dysfunction stimulon (MDS) genes, we found a cis-regulatory element, the mitochondrial dysfunction motif (MDM), which is necessary and sufficient for gene expression under various mitochondrial perturbation conditions. Yeast one-hybrid analysis and electrophoretic mobility shift assays revealed that the transmembrane domain-containing no apical meristem/Arabidopsis transcription activation factor/cup-shaped cotyledon transcription factors (ANAC013, ANAC016, ANAC017, ANAC053, and ANAC078) bound to the MDM cis-regulatory element. We demonstrate that ANAC013 mediates MRR-induced expression of the MDS genes by direct interaction with the MDM cis-regulatory element and triggers increased oxidative stress tolerance. In conclusion, we characterized ANAC013 as a regulator of MRR upon stress in Arabidopsis thaliana.
AbstractList Upon disturbance of their function by stress, mitochondria can signal to the nucleus to steer the expression of responsive genes. This mitochondria-to-nucleus communication is often referred to as mitochondrial retrograde regulation (MRR). Although reactive oxygen species and calcium are likely candidate signaling molecules for MRR, the protein signaling components in plants remain largely unknown. Through meta-analysis of transcriptome data, we detected a set of genes that are common and robust targets of MRR and used them as a bait to identify its transcriptional regulators. In the upstream regions of these mitochondrial dysfunction stimulon (MDS) genes, we found a cis-regulatory element, the mitochondrial dysfunction motif (MDM), which is necessary and sufficient for gene expression under various mitochondrial perturbation conditions. Yeast one-hybrid analysis and electrophoretic mobility shift assays revealed that the transmembrane domain-containing no apical meristem/Arabidopsis transcription activation factor/cup-shaped cotyledon transcription factors (ANAC013, ANAC016, ANAC017, ANAC053, and ANAC078) bound to the MDM cis-regulatory element. We demonstrate that ANAC013 mediates MRR-induced expression of the MDS genes by direct interaction with the MDM cis-regulatory element and triggers increased oxidative stress tolerance. In conclusion, we characterized ANAC013 as a regulator of MRR upon stress in Arabidopsis thaliana.Upon disturbance of their function by stress, mitochondria can signal to the nucleus to steer the expression of responsive genes. This mitochondria-to-nucleus communication is often referred to as mitochondrial retrograde regulation (MRR). Although reactive oxygen species and calcium are likely candidate signaling molecules for MRR, the protein signaling components in plants remain largely unknown. Through meta-analysis of transcriptome data, we detected a set of genes that are common and robust targets of MRR and used them as a bait to identify its transcriptional regulators. In the upstream regions of these mitochondrial dysfunction stimulon (MDS) genes, we found a cis-regulatory element, the mitochondrial dysfunction motif (MDM), which is necessary and sufficient for gene expression under various mitochondrial perturbation conditions. Yeast one-hybrid analysis and electrophoretic mobility shift assays revealed that the transmembrane domain-containing no apical meristem/Arabidopsis transcription activation factor/cup-shaped cotyledon transcription factors (ANAC013, ANAC016, ANAC017, ANAC053, and ANAC078) bound to the MDM cis-regulatory element. We demonstrate that ANAC013 mediates MRR-induced expression of the MDS genes by direct interaction with the MDM cis-regulatory element and triggers increased oxidative stress tolerance. In conclusion, we characterized ANAC013 as a regulator of MRR upon stress in Arabidopsis thaliana.
Upon disturbance of their function by stress, mitochondria can signal to the nucleus to steer the expression of responsive genes. This mitochondria-to-nucleus communication is often referred to as mitochondrial retrograde regulation (MRR). Although reactive oxygen species and calcium are likely candidate signaling molecules for MRR, the protein signaling components in plants remain largely unknown. Through meta-analysis of transcriptome data, we detected a set of genes that are common and robust targets of MRR and used them as a bait to identify its transcriptional regulators. In the upstream regions of these mitochondrial dysfunction stimulon (MDS) genes, we found a cis-regulatory element, the mitochondrial dysfunction motif (MDM), which is necessary and sufficient for gene expression under various mitochondrial perturbation conditions. Yeast one-hybrid analysis and electrophoretic mobility shift assays revealed that the transmembrane domain-containing no apical meristem/Arabidopsis transcription activation factor/cup-shaped cotyledon transcription factors (ANAC013, ANAC016, ANAC017, ANAC053, and ANAC078) bound to the MDM cis-regulatory element. We demonstrate that ANAC013 mediates MRR-induced expression of the MDS genes by direct interaction with the MDM cis-regulatory element and triggers increased oxidative stress tolerance. In conclusion, we characterized ANAC013 as a regulator of MRR upon stress in Arabidopsis thaliana.
Author Vandepoele, Klaas
Van Breusegem, Frank
Murcha, Monika W
Law, Simon R
Rombaut, Debbie
Kangasjärvi, Jaakko
Van de Peer, Yves
Van Aken, Olivier
Ng, Sophia
Whelan, James
Inzé, Annelies
Ivanova, Aneta
van de Cotte, Brigitte
Vermeirssen, Vanessa
Jaspers, Pinja
De Clercq, Inge
Author_xml – sequence: 1
  givenname: Inge
  surname: De Clercq
  fullname: De Clercq, Inge
  organization: Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
– sequence: 2
  givenname: Vanessa
  surname: Vermeirssen
  fullname: Vermeirssen, Vanessa
– sequence: 3
  givenname: Olivier
  surname: Van Aken
  fullname: Van Aken, Olivier
– sequence: 4
  givenname: Klaas
  surname: Vandepoele
  fullname: Vandepoele, Klaas
– sequence: 5
  givenname: Monika W
  surname: Murcha
  fullname: Murcha, Monika W
– sequence: 6
  givenname: Simon R
  surname: Law
  fullname: Law, Simon R
– sequence: 7
  givenname: Annelies
  surname: Inzé
  fullname: Inzé, Annelies
– sequence: 8
  givenname: Sophia
  surname: Ng
  fullname: Ng, Sophia
– sequence: 9
  givenname: Aneta
  surname: Ivanova
  fullname: Ivanova, Aneta
– sequence: 10
  givenname: Debbie
  surname: Rombaut
  fullname: Rombaut, Debbie
– sequence: 11
  givenname: Brigitte
  surname: van de Cotte
  fullname: van de Cotte, Brigitte
– sequence: 12
  givenname: Pinja
  surname: Jaspers
  fullname: Jaspers, Pinja
– sequence: 13
  givenname: Yves
  surname: Van de Peer
  fullname: Van de Peer, Yves
– sequence: 14
  givenname: Jaakko
  surname: Kangasjärvi
  fullname: Kangasjärvi, Jaakko
– sequence: 15
  givenname: James
  surname: Whelan
  fullname: Whelan, James
– sequence: 16
  givenname: Frank
  surname: Van Breusegem
  fullname: Van Breusegem, Frank
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24045019$$D View this record in MEDLINE/PubMed
BookMark eNpNUMtOwzAQtFARfcCVI_KRS8B2kiY5RhUvqYJLkbhFtrNujRI72A6C_-CDcaFIHFY7Ozs7K80cTYw1gNA5JVeUkvw6DDKCNFZBl-URmtE8ZQmrypfJPzxFc-9fCSFRVZ2gKctIlhNazdDXZge4h144biARdjQtfqxXOMTZS6eHoK3BistgHa7jhtAUq9HIPe-xNrjXwcqdNa3TvMMOgrNbx1uIcDt2_OfeKhziH_uh20i8A_bBgfdR4odoA3uf2nGhWzt47U_RseKdh7NDX6Dn25vN6j5ZP909rOp1InNKQ0JlSZcsT0UqIU2zUpEiBykLRpZClEqwvOAAoIpW0VIyQWisiqsYXJpxqdgCXf76Ds6-jeBD02svoetiFnb0Dc2yIoZcVTRKLw7SUfTQNoPTPXefzV-S7Bvy5XqM
CitedBy_id crossref_primary_10_1093_plcell_koac177
crossref_primary_10_1093_jxb_erae235
crossref_primary_10_3389_fpls_2016_01638
crossref_primary_10_3390_ijms19123737
crossref_primary_10_1111_tpj_16883
crossref_primary_10_1371_journal_pone_0201439
crossref_primary_10_1016_j_plaphy_2019_04_039
crossref_primary_10_1111_tpj_15314
crossref_primary_10_1038_s41467_024_50229_9
crossref_primary_10_1111_tpj_15317
crossref_primary_10_1111_tpj_16407
crossref_primary_10_1111_tpj_15319
crossref_primary_10_1111_plb_13477
crossref_primary_10_1186_s12870_018_1367_5
crossref_primary_10_1093_jxb_ery130
crossref_primary_10_1007_s12374_018_0285_2
crossref_primary_10_1093_pcp_pcae108
crossref_primary_10_1093_plphys_kiae008
crossref_primary_10_1093_plcell_koad277
crossref_primary_10_32604_phyton_2022_018118
crossref_primary_10_1111_tpj_15561
crossref_primary_10_1093_plphys_kiae596
crossref_primary_10_1042_BCJ20210810
crossref_primary_10_1073_pnas_2411579122
crossref_primary_10_1007_s00425_024_04594_w
crossref_primary_10_3389_fpls_2022_930721
crossref_primary_10_1111_tpj_12604
crossref_primary_10_1002_pld3_488
crossref_primary_10_1016_j_plantsci_2016_05_019
crossref_primary_10_3390_ijms18071427
crossref_primary_10_1111_ppl_12879
crossref_primary_10_3389_fpls_2021_704964
crossref_primary_10_1134_S0006297914130112
crossref_primary_10_1093_pcp_pcx054
crossref_primary_10_1111_nph_13775
crossref_primary_10_1073_pnas_1809429115
crossref_primary_10_1093_jxb_erw080
crossref_primary_10_1093_plphys_kiab195
crossref_primary_10_1016_j_freeradbiomed_2018_03_031
crossref_primary_10_1093_jxb_erae139
crossref_primary_10_1093_plphys_kiae584
crossref_primary_10_1038_s41598_020_65614_9
crossref_primary_10_1093_treephys_tpz005
crossref_primary_10_1111_tpj_14689
crossref_primary_10_3390_ijms231911176
crossref_primary_10_1007_s11105_015_0883_9
crossref_primary_10_3389_fpls_2020_01235
crossref_primary_10_1111_tra_12311
crossref_primary_10_1111_nph_19506
crossref_primary_10_1111_nph_18657
crossref_primary_10_1111_pce_15185
crossref_primary_10_1007_s00299_016_2042_7
crossref_primary_10_3390_antiox8120641
crossref_primary_10_3390_ijms24129793
crossref_primary_10_1111_pbi_14421
crossref_primary_10_1093_jxb_erad270
crossref_primary_10_1016_j_molp_2017_03_011
crossref_primary_10_1093_plcell_koad250
crossref_primary_10_1080_13102818_2019_1632739
crossref_primary_10_1016_j_molp_2016_01_009
crossref_primary_10_1093_jxb_erz330
crossref_primary_10_1111_pce_15198
crossref_primary_10_3390_ijms222312854
crossref_primary_10_1038_cdd_2017_68
crossref_primary_10_1111_nph_17024
crossref_primary_10_1111_nph_18594
crossref_primary_10_1073_pnas_1907071116
crossref_primary_10_1111_tpj_17133
crossref_primary_10_1093_jxb_ery168
crossref_primary_10_1074_jbc_REV120_012928
crossref_primary_10_1007_s13205_019_1924_0
crossref_primary_10_1371_journal_pgen_1004243
crossref_primary_10_3390_ijms26167760
crossref_primary_10_1105_tpc_113_113985
crossref_primary_10_1016_j_jbc_2022_101963
crossref_primary_10_3390_ijms25158164
crossref_primary_10_1016_j_stress_2025_100996
crossref_primary_10_1016_j_ibiod_2017_11_021
crossref_primary_10_1016_j_ijbiomac_2025_142400
crossref_primary_10_3390_ijms222212450
crossref_primary_10_3390_ijms25074088
crossref_primary_10_1007_s12298_018_0581_9
crossref_primary_10_1016_j_molp_2025_05_015
crossref_primary_10_1515_hsz_2018_0463
crossref_primary_10_3389_fpls_2015_00781
crossref_primary_10_1093_jxb_erz023
crossref_primary_10_3390_cells14030176
crossref_primary_10_1126_science_adg0995
crossref_primary_10_1089_bioe_2023_0002
crossref_primary_10_1111_tpj_16973
crossref_primary_10_1111_tpj_16614
crossref_primary_10_1111_nph_20425
crossref_primary_10_1111_nph_18340
crossref_primary_10_1111_pce_13669
crossref_primary_10_1111_pce_15611
crossref_primary_10_1016_j_plantsci_2022_111244
crossref_primary_10_1007_s11103_022_01240_5
crossref_primary_10_3389_fpls_2019_00749
crossref_primary_10_3390_plants11020205
crossref_primary_10_1016_j_cpb_2024_100389
crossref_primary_10_1186_s12964_018_0224_3
crossref_primary_10_1080_07352689_2020_1813922
crossref_primary_10_1038_s41598_020_58495_5
crossref_primary_10_1093_aob_mcz184
crossref_primary_10_1093_jxb_erz119
crossref_primary_10_1093_jxb_erac436
crossref_primary_10_1111_tpj_15057
crossref_primary_10_1016_j_bbagrm_2019_194432
crossref_primary_10_1111_tpj_15058
crossref_primary_10_1111_tpj_15856
crossref_primary_10_3390_ijms19102972
crossref_primary_10_1016_j_molp_2015_03_004
crossref_primary_10_1016_j_pbi_2016_06_002
crossref_primary_10_1093_jxb_erae161
crossref_primary_10_1016_j_freeradbiomed_2023_02_010
crossref_primary_10_3390_ijms21176173
crossref_primary_10_3390_ijms25147829
crossref_primary_10_1093_jxb_erad081
crossref_primary_10_1093_hr_uhae188
crossref_primary_10_1093_molbev_msae042
crossref_primary_10_3389_fpls_2017_02052
crossref_primary_10_1016_j_envexpbot_2018_09_007
crossref_primary_10_1093_jxb_erab218
crossref_primary_10_1038_s41477_021_00894_1
crossref_primary_10_3389_fpls_2022_835738
crossref_primary_10_1007_s11103_023_01333_9
crossref_primary_10_3389_fpls_2022_876843
crossref_primary_10_1016_j_plaphy_2025_110438
crossref_primary_10_1111_tpj_17215
crossref_primary_10_1104_pp_114_237495
crossref_primary_10_1111_nph_18038
crossref_primary_10_1093_mp_ssu066
crossref_primary_10_1038_s41586_023_06533_3
crossref_primary_10_1111_nph_16093
crossref_primary_10_1111_pce_12647
crossref_primary_10_1105_tpc_114_131417
crossref_primary_10_1016_j_molp_2015_08_008
crossref_primary_10_1111_pce_14393
crossref_primary_10_1111_nph_16536
crossref_primary_10_1007_s13258_018_0698_9
crossref_primary_10_1093_plphys_kiab138
crossref_primary_10_1111_nph_12739
crossref_primary_10_1186_s12870_020_02418_z
crossref_primary_10_3389_fpls_2015_00069
crossref_primary_10_3389_fpls_2016_01363
crossref_primary_10_1016_j_freeradbiomed_2019_02_006
crossref_primary_10_1111_ppl_70353
crossref_primary_10_1016_j_neuint_2017_04_016
crossref_primary_10_1093_mp_ssu070
crossref_primary_10_1093_mp_ssu071
crossref_primary_10_3389_fpls_2016_00812
crossref_primary_10_1093_jxb_erv386
crossref_primary_10_1016_j_molp_2025_06_005
crossref_primary_10_3389_fpls_2018_00555
crossref_primary_10_1111_nph_17614
crossref_primary_10_3390_plants12203626
crossref_primary_10_1074_jbc_M116_753426
crossref_primary_10_1016_j_ijbiomac_2025_144690
crossref_primary_10_3389_fgene_2022_901838
crossref_primary_10_3390_ijms22073291
crossref_primary_10_1093_jxb_erab265
crossref_primary_10_1111_tpj_15495
crossref_primary_10_1093_jxb_erad449
crossref_primary_10_3390_ijms24021356
crossref_primary_10_3390_antiox5010008
crossref_primary_10_1093_jxb_erac351
crossref_primary_10_1073_pnas_2221308120
crossref_primary_10_1093_hr_uhac251
crossref_primary_10_1111_tpj_14724
crossref_primary_10_3389_fpls_2022_834431
crossref_primary_10_1111_tpj_12665
crossref_primary_10_1093_plphys_kiae623
crossref_primary_10_1146_annurev_arplant_042916_041007
crossref_primary_10_3389_fpls_2022_883002
crossref_primary_10_1016_j_molp_2020_07_002
crossref_primary_10_1093_jxb_eru399
crossref_primary_10_1002_bies_201800018
crossref_primary_10_1002_pld3_85
crossref_primary_10_3390_ijms22010081
crossref_primary_10_1016_j_molcel_2017_10_006
crossref_primary_10_1111_pce_12884
crossref_primary_10_3389_fpls_2023_1286584
crossref_primary_10_3390_genes14020240
crossref_primary_10_1371_journal_pone_0122027
crossref_primary_10_1111_tpj_14975
crossref_primary_10_1016_j_molp_2014_11_022
crossref_primary_10_1093_jxb_erae090
crossref_primary_10_1016_j_plantsci_2024_112034
crossref_primary_10_1093_plphys_kiab101
crossref_primary_10_1111_nph_16985
crossref_primary_10_1093_molbev_msz031
crossref_primary_10_1016_j_sajb_2023_03_001
crossref_primary_10_1104_pp_114_249946
crossref_primary_10_1016_j_envexpbot_2022_105134
crossref_primary_10_1093_plphys_kiab225
crossref_primary_10_1093_jxb_eraa608
crossref_primary_10_1016_j_cub_2023_12_005
crossref_primary_10_1016_j_bbabio_2016_03_017
crossref_primary_10_3390_plants11020181
crossref_primary_10_1016_j_cub_2022_01_037
crossref_primary_10_1093_plcell_koac017
crossref_primary_10_1093_nar_gkaf065
crossref_primary_10_1016_j_scienta_2019_03_018
crossref_primary_10_1038_s41598_021_98107_4
crossref_primary_10_1111_pce_14596
crossref_primary_10_1111_pce_13021
crossref_primary_10_1186_s12870_021_03406_7
crossref_primary_10_1186_1471_2229_14_144
crossref_primary_10_7554_eLife_43284
crossref_primary_10_1007_s00425_018_2974_y
crossref_primary_10_1111_tpj_14383
crossref_primary_10_1016_j_postharvbio_2025_113451
crossref_primary_10_1093_plphys_kiac011
crossref_primary_10_1111_tpj_16216
crossref_primary_10_3390_plants12142731
crossref_primary_10_1002_pro_3754
crossref_primary_10_3390_ijms19092812
crossref_primary_10_1093_mp_ssu037
crossref_primary_10_1002_ece3_11343
crossref_primary_10_1042_BJ20141045
crossref_primary_10_1186_s12864_020_6479_2
crossref_primary_10_1111_pce_13034
crossref_primary_10_1016_j_freeradbiomed_2018_02_032
crossref_primary_10_1007_s00299_016_2090_z
crossref_primary_10_1016_j_plantsci_2024_112292
crossref_primary_10_3390_ijms20061309
crossref_primary_10_1016_j_molp_2024_01_006
crossref_primary_10_1111_ppl_12431
crossref_primary_10_1371_journal_pone_0136993
crossref_primary_10_1371_journal_pone_0102067
crossref_primary_10_1007_s11103_019_00825_x
crossref_primary_10_7717_peerj_4051
crossref_primary_10_3389_fpls_2022_818107
crossref_primary_10_1016_j_molp_2020_10_011
crossref_primary_10_1111_tpj_13276
crossref_primary_10_1038_s41598_020_68491_4
crossref_primary_10_1042_BCJ20160631
crossref_primary_10_1042_BCJ20200934
crossref_primary_10_1016_j_mito_2020_04_001
crossref_primary_10_1093_jxb_erw136
crossref_primary_10_1093_plcell_koac242
crossref_primary_10_1146_annurev_arplant_042817_040322
crossref_primary_10_1016_j_celrep_2024_114910
crossref_primary_10_1111_nph_18287
crossref_primary_10_1016_j_cub_2023_12_010
crossref_primary_10_1016_j_plaphy_2025_110207
crossref_primary_10_1016_j_tplants_2018_03_012
crossref_primary_10_3390_ijms21249755
crossref_primary_10_1111_nph_70381
crossref_primary_10_3390_plants13152071
crossref_primary_10_1016_j_freeradbiomed_2018_01_011
crossref_primary_10_1134_S1021443722010058
crossref_primary_10_1111_pce_12712
crossref_primary_10_3390_biom14080989
crossref_primary_10_1016_j_bbrc_2024_149840
crossref_primary_10_1038_s41598_022_14429_x
crossref_primary_10_3390_ijms16011894
crossref_primary_10_1039_c9pp00151d
crossref_primary_10_1186_s12870_019_2158_3
crossref_primary_10_1093_jxb_erv172
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1105/tpc.113.117168
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
Botany
EISSN 1532-298X
ExternalDocumentID 24045019
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2FS
2WC
2~F
4.4
53G
5VS
5WD
7X2
7X7
85S
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAWDT
AAXTN
AAYJJ
ABBHK
ABDFA
ABEJV
ABGNP
ABIME
ABJNI
ABMNT
ABPIB
ABPLY
ABPPZ
ABPTD
ABTLG
ABUWG
ABVGC
ABXSQ
ABXVV
ABXZS
ABZEO
ACBTR
ACFRR
ACGFO
ACGOD
ACHIC
ACIPB
ACIWK
ACNCT
ACPRK
ACUFI
ACUTJ
ACVCV
ACZBC
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADULT
ADVEK
ADXHL
ADYHW
AEEJZ
AENEX
AEUPB
AEUYN
AFAZZ
AFFNX
AFFZL
AFGWE
AFKRA
AFRAH
AFYAG
AGCDD
AGMDO
AGORE
AGUYK
AHGBF
AHMBA
AHXOZ
AICQM
AJBYB
AJDVS
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
APJGH
AQDSO
AQVQM
AS~
ATCPS
ATGXG
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BEYMZ
BHPHI
BPHCQ
BTFSW
BVXVI
C1A
CBGCD
CCPQU
CGR
CS3
CUY
CVF
D1J
DATOO
DIK
DU5
DWQXO
E3Z
EBS
ECGQY
ECM
EIF
EJD
F5P
F8P
F9R
FLUFQ
FOEOM
FYUFA
GNUQQ
GTFYD
GX1
H13
HCIFZ
HGD
HMCUK
HTVGU
H~9
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KOP
KQ8
KSI
KSN
LK8
M0K
M1P
M2P
M2Q
M7P
MV1
MVM
N9A
NEJ
NOMLY
NPM
NU-
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
RHI
ROX
RPB
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TR2
U5U
UBC
UKHRP
UKR
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YR2
YSK
ZCA
ZCG
ZCN
~KM
7X8
ID FETCH-LOGICAL-c511t-1c816253b3ce3348f075ecc7206bb8fb257aeeef7df18c2b012b09af11034acf2
IEDL.DBID 7X8
ISICitedReferencesCount 308
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000326287100025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-298X
IngestDate Sun Nov 09 10:30:57 EST 2025
Mon Jul 21 05:59:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-1c816253b3ce3348f075ecc7206bb8fb257aeeef7df18c2b012b09af11034acf2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.plantcell.org/content/plantcell/25/9/3472.full.pdf
PMID 24045019
PQID 1447105991
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1447105991
pubmed_primary_24045019
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle The Plant cell
PublicationTitleAlternate Plant Cell
PublicationYear 2013
SSID ssj0001719
Score 2.5686457
Snippet Upon disturbance of their function by stress, mitochondria can signal to the nucleus to steer the expression of responsive genes. This mitochondria-to-nucleus...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 3472
SubjectTerms Arabidopsis - drug effects
Arabidopsis - genetics
Arabidopsis - physiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Binding Sites
Cell Nucleus - metabolism
Endoplasmic Reticulum - metabolism
Gene Expression Profiling
Gene Expression Regulation, Plant
Mitochondria - metabolism
Mutation
Oligonucleotide Array Sequence Analysis
Oxidative Stress
Paraquat - pharmacology
Plants, Genetically Modified
Promoter Regions, Genetic - genetics
Protein Binding
Regulatory Sequences, Nucleic Acid - genetics
Rotenone - pharmacology
Seedlings - drug effects
Seedlings - genetics
Seedlings - physiology
Transcription Factors - genetics
Transcription Factors - metabolism
Transcriptional Activation
Title The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis
URI https://www.ncbi.nlm.nih.gov/pubmed/24045019
https://www.proquest.com/docview/1447105991
Volume 25
WOSCitedRecordID wos000326287100025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_qBnrxY37NLyJ4DTNJ12QnmcPhQccOKruNJE2kh7VzraL_h3-wL2nHToLgpRTahvLy8nu_JC_vh9AVjXXMKbUkss6QKJacSC4VcV0R-RAnZSik_fIgRiM5mfTG9YJbUadVLjExAHWSG79G3gHiLzwX6NGb-RvxqlF-d7WW0FhHDQ5Uxg9MMVlVC6ciCHvAoGaE9eSkLtoIzXTKufFyJn7Pksbyd3oZwsxw578_uIu2a4KJ-5VH7KE1m7VQ8zYHEvjVQpuDpcDbPvoGF8EzO4P5cmaJ9vpKeNQf4NKHryWY4EqQB_fhCfA47ONgcFWcZngGcADwmSXei_HCliHZK7Fw-1rLguHcYeCYOP9Mk1BjHFenU-CVkJxrfTv9hdJpks-LtDhAz8O7p8E9qUUaiAGuVhJqJIU5FNfcWH-q1wEHAbcQ7DrWWjoNkKCstU4kjkrDNAREfd1TDnqBR8o4dog2sjyzxwgbq3gMdBQ4g40SxpQTWlOpRTdSTHV5G10uLT8FU_mdDbBP_l5MV7Zvo6Oq-6bzqlrHFChL1AUie_KHr0_RFgtyFz6H7Aw1HECAPUdN81GmxeIieBdcR-PHH7u827w
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+membrane-bound+NAC+transcription+factor+ANAC013+functions+in+mitochondrial+retrograde+regulation+of+the+oxidative+stress+response+in+Arabidopsis&rft.jtitle=The+Plant+cell&rft.au=De+Clercq%2C+Inge&rft.au=Vermeirssen%2C+Vanessa&rft.au=Van+Aken%2C+Olivier&rft.au=Vandepoele%2C+Klaas&rft.date=2013-09-01&rft.eissn=1532-298X&rft.volume=25&rft.issue=9&rft.spage=3472&rft_id=info:doi/10.1105%2Ftpc.113.117168&rft_id=info%3Apmid%2F24045019&rft_id=info%3Apmid%2F24045019&rft.externalDocID=24045019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-298X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-298X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-298X&client=summon