Enhanced Anomaly Detection in IoT Networks Using Deep Autoencoders with Feature Selection Techniques
An enormous number of the Internet of Things (IoT) applications and their networks have significantly impacted people’s lives in diverse situations. With the increasing adoption of these applications in various sectors, ensuring reliability and security has become a critical concern. Moreover, the n...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 25; no. 10; p. 3150 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
16.05.2025
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | An enormous number of the Internet of Things (IoT) applications and their networks have significantly impacted people’s lives in diverse situations. With the increasing adoption of these applications in various sectors, ensuring reliability and security has become a critical concern. Moreover, the network that interconnected IoT devices uses advanced communications norms and technologies to capture and transmit data. Still, these networks are subject to various types of attacks that will lead to the loss of user data. Concurrently, the field of anomaly detection for the Internet of Things (IoT) is experiencing rapid expansion. This expansion requires a thorough analysis of application trends and existing gaps. Furthermore, it is critical in detecting interesting phenomena such as device damage and unknown events. However, this task is tough due to the unpredictable nature of anomalies and the complexity of the environment. This paper offers a technique that uses an autoencoder neural network to identify anomalous network communications in IoT networks. More specifically, we propose and implement a model that uses DAE (deep autoencoder) to detect and classify the network data, with an ANOVA F-Test for the feature selection. The proposed model is validated using the NSL-KDD dataset. Compared to some IoT-based anomaly detection models, the experimental results reveal that the suggested model is more efficient at enhancing the accuracy of detecting malicious data. The simulation results show that it works better, with an overall accuracy rate of 85% and 92% successively for the binary and multi-class classifications. |
|---|---|
| AbstractList | An enormous number of the Internet of Things (IoT) applications and their networks have significantly impacted people’s lives in diverse situations. With the increasing adoption of these applications in various sectors, ensuring reliability and security has become a critical concern. Moreover, the network that interconnected IoT devices uses advanced communications norms and technologies to capture and transmit data. Still, these networks are subject to various types of attacks that will lead to the loss of user data. Concurrently, the field of anomaly detection for the Internet of Things (IoT) is experiencing rapid expansion. This expansion requires a thorough analysis of application trends and existing gaps. Furthermore, it is critical in detecting interesting phenomena such as device damage and unknown events. However, this task is tough due to the unpredictable nature of anomalies and the complexity of the environment. This paper offers a technique that uses an autoencoder neural network to identify anomalous network communications in IoT networks. More specifically, we propose and implement a model that uses DAE (deep autoencoder) to detect and classify the network data, with an ANOVA F-Test for the feature selection. The proposed model is validated using the NSL-KDD dataset. Compared to some IoT-based anomaly detection models, the experimental results reveal that the suggested model is more efficient at enhancing the accuracy of detecting malicious data. The simulation results show that it works better, with an overall accuracy rate of 85% and 92% successively for the binary and multi-class classifications. An enormous number of the Internet of Things (IoT) applications and their networks have significantly impacted people's lives in diverse situations. With the increasing adoption of these applications in various sectors, ensuring reliability and security has become a critical concern. Moreover, the network that interconnected IoT devices uses advanced communications norms and technologies to capture and transmit data. Still, these networks are subject to various types of attacks that will lead to the loss of user data. Concurrently, the field of anomaly detection for the Internet of Things (IoT) is experiencing rapid expansion. This expansion requires a thorough analysis of application trends and existing gaps. Furthermore, it is critical in detecting interesting phenomena such as device damage and unknown events. However, this task is tough due to the unpredictable nature of anomalies and the complexity of the environment. This paper offers a technique that uses an autoencoder neural network to identify anomalous network communications in IoT networks. More specifically, we propose and implement a model that uses DAE (deep autoencoder) to detect and classify the network data, with an ANOVA F-Test for the feature selection. The proposed model is validated using the NSL-KDD dataset. Compared to some IoT-based anomaly detection models, the experimental results reveal that the suggested model is more efficient at enhancing the accuracy of detecting malicious data. The simulation results show that it works better, with an overall accuracy rate of 85% and 92% successively for the binary and multi-class classifications.An enormous number of the Internet of Things (IoT) applications and their networks have significantly impacted people's lives in diverse situations. With the increasing adoption of these applications in various sectors, ensuring reliability and security has become a critical concern. Moreover, the network that interconnected IoT devices uses advanced communications norms and technologies to capture and transmit data. Still, these networks are subject to various types of attacks that will lead to the loss of user data. Concurrently, the field of anomaly detection for the Internet of Things (IoT) is experiencing rapid expansion. This expansion requires a thorough analysis of application trends and existing gaps. Furthermore, it is critical in detecting interesting phenomena such as device damage and unknown events. However, this task is tough due to the unpredictable nature of anomalies and the complexity of the environment. This paper offers a technique that uses an autoencoder neural network to identify anomalous network communications in IoT networks. More specifically, we propose and implement a model that uses DAE (deep autoencoder) to detect and classify the network data, with an ANOVA F-Test for the feature selection. The proposed model is validated using the NSL-KDD dataset. Compared to some IoT-based anomaly detection models, the experimental results reveal that the suggested model is more efficient at enhancing the accuracy of detecting malicious data. The simulation results show that it works better, with an overall accuracy rate of 85% and 92% successively for the binary and multi-class classifications. |
| Audience | Academic |
| Author | Rhachi, Hamza Bouayad, Anas Balboul, Younes |
| AuthorAffiliation | IASSE Laboratory, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco; younes.balboul@usmba.ac.ma (Y.B.); anas.bouayad@usmba.ac.ma (A.B.) |
| AuthorAffiliation_xml | – name: IASSE Laboratory, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco; younes.balboul@usmba.ac.ma (Y.B.); anas.bouayad@usmba.ac.ma (A.B.) |
| Author_xml | – sequence: 1 givenname: Hamza orcidid: 0009-0007-3164-6356 surname: Rhachi fullname: Rhachi, Hamza – sequence: 2 givenname: Younes orcidid: 0000-0002-7521-9141 surname: Balboul fullname: Balboul, Younes – sequence: 3 givenname: Anas orcidid: 0000-0002-3372-1168 surname: Bouayad fullname: Bouayad, Anas |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40431942$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkstOWzEQhq2KqkDaRV-gOlI3dBHw9VxWVUShjYToomFt-TJJnJ7Yqe1TxNvXIWkECHlha-ab33M7RUc-eEDoI8HnjHX4IlFBMCMCv0EnhFM-binFR0_ex-g0pRXGlDHWvkPHHHNGOk5PkL3yS-UN2Griw1r1D9U3yGCyC75yvpqGWXUL-T7E36m6S84vih821WTIAbwJFmKq7l1eVteg8hCh-gX9PnwGZundnwHSe_R2rvoEH_b3CN1dX80uf4xvfn6fXk5uxkYQksekBl4zQiymncCEYKG7liqrWtvUoIURBrNGC9bUrNaghNFCKyBa49bYBrMRmu50bVAruYlureKDDMrJR0OIC6lidqYHqec1tti0vCWEN6rWmppO1F2xW624KVpfd1qbQa_BGvA5qv6Z6HOPd0u5CH8loYTUmDdF4WyvEMO2C1muXTLQ98pDGJJklNCmpaIMZYQ-v0BXYYi-9OqRImW07VbwfEctVKnA-XkoH5tyLKydKSsxd8U-aTltGBNdVwI-Pa3hkPz_8Rfgyw4wMaQUYX5ACJbb1ZKH1SrsxQvWuKy2ky5ZuP6ViH_lNc6n |
| CitedBy_id | crossref_primary_10_4236_ojapps_2025_159177 crossref_primary_10_53759_7669_jmc202505206 |
| Cites_doi | 10.47760/ijcsmc.2020.v09i10.012 10.1109/ACCESS.2021.3094024 10.1016/j.neucom.2019.11.016 10.3390/electronics10161876 10.3390/app11157050 10.1016/j.adhoc.2020.102177 10.1109/TEMSMET51618.2020.9557464 10.1007/978-981-15-6876-3_17 10.1007/s41870-022-01115-4 10.18280/isi.250503 10.1145/1541880.1541882 10.1109/SPW.2018.00013 10.1016/j.iot.2019.100059 10.1007/s13369-024-08951-5 10.1109/ICOEI48184.2020.9142921 10.1109/ACCESS.2022.3176317 10.1109/ACCESS.2021.3116612 10.1109/CCWC57344.2023.10099056 10.1109/ICAECT49130.2021.9392483 10.1109/ACCESS.2021.3132127 10.20944/preprints202408.0945.v1 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s25103150 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (NC Live) ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_bf60d0c8481147a6bb2c9569bf6dba4c PMC12116047 A842733599 40431942 10_3390_s25103150 |
| Genre | Journal Article |
| GeographicLocations | Morocco |
| GeographicLocations_xml | – name: Morocco |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c511t-16e46311d029501105b982ada8d76eb5c5c037b537636bea5cb5bae1bb08cd703 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001496889400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:34:23 EST 2025 Tue Nov 04 02:02:51 EST 2025 Fri Sep 05 15:59:56 EDT 2025 Tue Oct 07 07:31:12 EDT 2025 Tue Nov 04 18:13:15 EST 2025 Sun Jun 01 01:35:21 EDT 2025 Sat Nov 29 07:17:13 EST 2025 Tue Nov 18 22:24:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | internet of things data pre-processing anomaly detection deep autoencoder classification dataset feature selection |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c511t-16e46311d029501105b982ada8d76eb5c5c037b537636bea5cb5bae1bb08cd703 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0007-3164-6356 0000-0002-3372-1168 0000-0002-7521-9141 |
| OpenAccessLink | https://doaj.org/article/bf60d0c8481147a6bb2c9569bf6dba4c |
| PMID | 40431942 |
| PQID | 3212115087 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bf60d0c8481147a6bb2c9569bf6dba4c pubmedcentral_primary_oai_pubmedcentral_nih_gov_12116047 proquest_miscellaneous_3212782523 proquest_journals_3212115087 gale_infotracacademiconefile_A842733599 pubmed_primary_40431942 crossref_primary_10_3390_s25103150 crossref_citationtrail_10_3390_s25103150 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-16 |
| PublicationDateYYYYMMDD | 2025-05-16 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Xu (ref_15) 2021; 9 Ieracitano (ref_17) 2020; 387 Ullah (ref_4) 2021; 9 Gurung (ref_23) 2019; 11 Goyal (ref_1) 2023; 23 Sivasubramanian (ref_18) 2024; 49 ref_14 ref_13 ref_24 ref_11 ref_22 Chandola (ref_2) 2009; 41 Sarkar (ref_19) 2023; 15 Hasan (ref_6) 2019; 7 Thamaraiselvi (ref_10) 2020; 9 ref_3 Huang (ref_21) 2020; 105 ref_16 ref_9 ref_8 Ullah (ref_12) 2021; 9 Ullah (ref_5) 2022; 10 Fenanir (ref_20) 2020; 25 ref_7 |
| References_xml | – volume: 9 start-page: 95 year: 2020 ident: ref_10 article-title: Attack and anomaly detection in iot networks using machine learning publication-title: Int. J. Comput. Sci. Mob. Comput. doi: 10.47760/ijcsmc.2020.v09i10.012 – volume: 9 start-page: 123456 year: 2021 ident: ref_12 article-title: Design and Development of a Deep Learning-Based Model for Anomaly Detection in IoT Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3094024 – ident: ref_9 – volume: 387 start-page: 51 year: 2020 ident: ref_17 article-title: A novel statistical analysis and autoencoder driven intelligent intrusion detection approach publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.016 – ident: ref_13 doi: 10.3390/electronics10161876 – ident: ref_8 doi: 10.3390/app11157050 – volume: 105 start-page: 102177 year: 2020 ident: ref_21 article-title: IGAN-IDS: An imbalanced generative adversarial network towards intrusion detection system in ad-hoc networks publication-title: Ad. Hoc. Netw. doi: 10.1016/j.adhoc.2020.102177 – ident: ref_11 doi: 10.1109/TEMSMET51618.2020.9557464 – ident: ref_24 doi: 10.1007/978-981-15-6876-3_17 – volume: 15 start-page: 423 year: 2023 ident: ref_19 article-title: A supervised machine learning-based solution for efficient network intrusion detection using ensemble learning based on hyperparameter optimization publication-title: Int. J. Inf. Tecnol. doi: 10.1007/s41870-022-01115-4 – volume: 25 start-page: 569 year: 2020 ident: ref_20 article-title: A semi-supervised deep auto-encoder based intrusion detection for IoT publication-title: Ingénierie Des Systèmes D’information doi: 10.18280/isi.250503 – volume: 11 start-page: 8 year: 2019 ident: ref_23 article-title: Deep Learning Approach on Network Intrusion Detection System using NSL-KDD Dataset publication-title: Int. J. Comput. Netw. Inf. Secur. (IJCNIS) – volume: 41 start-page: 1 year: 2009 ident: ref_2 article-title: Anomaly detection: A survey publication-title: ACM Comput. Surv. doi: 10.1145/1541880.1541882 – ident: ref_3 doi: 10.1109/SPW.2018.00013 – volume: 7 start-page: 100059 year: 2019 ident: ref_6 article-title: Attack and anomaly detection in iot sensors in iot sites using machine learning approaches publication-title: Internet Things doi: 10.1016/j.iot.2019.100059 – volume: 49 start-page: 13061 year: 2024 ident: ref_18 article-title: Feature Extraction and Anomaly Detection Using Different Autoencoders for Modeling Intrusion Detection Systems publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-024-08951-5 – ident: ref_7 doi: 10.1109/ICOEI48184.2020.9142921 – volume: 10 start-page: 62722 year: 2022 ident: ref_5 article-title: Design and development of rnn anomaly detection model for iot networks publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3176317 – volume: 9 start-page: 140136 year: 2021 ident: ref_15 article-title: Improving Performance of Autoencoder Based Network Anomaly Detection on NSL-KDD Dataset publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3116612 – ident: ref_22 doi: 10.1109/CCWC57344.2023.10099056 – ident: ref_16 doi: 10.1109/ICAECT49130.2021.9392483 – volume: 9 start-page: 165907 year: 2021 ident: ref_4 article-title: A framework for anomaly detection in iot networks using conditional generative adversarial networks publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3132127 – ident: ref_14 doi: 10.20944/preprints202408.0945.v1 – volume: 23 start-page: 100 year: 2023 ident: ref_1 article-title: A review on IoT: Layered architecture, security issues and protocols publication-title: Int. J. Comput. Sci. Netw. Secur. (IJCSNS) |
| SSID | ssj0023338 |
| Score | 2.4609973 |
| Snippet | An enormous number of the Internet of Things (IoT) applications and their networks have significantly impacted people’s lives in diverse situations. With the... An enormous number of the Internet of Things (IoT) applications and their networks have significantly impacted people's lives in diverse situations. With the... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 3150 |
| SubjectTerms | Algorithms anomaly detection Artificial intelligence Comparative analysis Cybersecurity data pre-processing Data security dataset Datasets deep autoencoder Deep learning Energy consumption Feature selection Internet of Things Literature reviews Machine learning Neural networks Research methodology Wireless networks |
| SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4UAPvB-BggxCgktUJ44T-4QWaAWXFRKLtLfIdly6Ukm2mywS_54ZJ5tuBOLC1XYUW_PwjD3-PoDXqEXGcHkWS5PYGL2kiJXzNka_aI1IdaZ4FcgmivlcLZf6y3Dg1g5llTufGBx11Tg6Iz8WKYGRYThRvFtfxsQaRberA4XGdbhBtNmk58XyKuESmH_1aEICU_vjNpWB1IBP9qAA1f-nQ97bkabVknvbz-md_534Xbg9BJ5s1mvKPbjm6_twuAdH-ACqk_o8FASwWd38MBe_2EffhVKtmq1q9rlZsHlfNd6yUGqA_X7NZtuuIThMKolmdK7LKK7cbjz7Gkh26PPFDiq2fQjfTk8WHz7FAwtD7DAY6-Ik91kukqTiqZYULUirVWoqo6oi91Y66bgoLMHCiNx6I52V1vjEWq5chQ7lERzUTe2fAMNgseDa47aMSWVeWGVsYjQ9htUqcdJE8HYnl9INEOXElHFRYqpCIixHEUbwahy67nE5_jboPQl3HEBQ2qGh2XwvB8ss7VnOK-6IViDJCpNbmzpMGjW2V9ZkLoI3pBolGTxOxpnh3QIuiaCzypnKMAQUUusIjnYaUA6eoC2vxB_By7EbbZguZkztm20_BiM1mYoIHvfKNs45oB_pLI1ATdRwsqhpT706Dzjh9OOcZ8XTf8_rGdxKidSYIGnzIzjoNlv_HG66n92q3bwIFvUbflkrAw priority: 102 providerName: ProQuest |
| Title | Enhanced Anomaly Detection in IoT Networks Using Deep Autoencoders with Feature Selection Techniques |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40431942 https://www.proquest.com/docview/3212115087 https://www.proquest.com/docview/3212782523 https://pubmed.ncbi.nlm.nih.gov/PMC12116047 https://doaj.org/article/bf60d0c8481147a6bb2c9569bf6dba4c |
| Volume | 25 |
| WOSCitedRecordID | wos001496889400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiOcSWCqDkOASrfNwbB-70BV72KqCIpVTZDtebaUlXTUp0l72tzPjpFErkLhwycGeKLZnPI94_A3Ae5QiY7i4iIVJbIxaMouV8zZGvWhNlupc8SoUm5DTqVos9Gyn1BflhHXwwN3CHduLglfcEep7kktTWJs69Ok1tlfW5I60L5d6G0z1oVaGkVeHI5RhUH_cpCKUM-B71ieA9P-pinds0X6e5I7hOX0Mj3qPkY27kT6BO75-Cg93cASfQTWpL8NJPsNo_qe5umGffRtyrGq2rNnZas6mXbp3w0KOAPb7azbetCvCsaRcZkY_ZBk5hJu1Z99CdRx6fb7FeG2ew_fTyfzTl7gvnxA79KLaOCl8XmRJUvFUCzLzwmqVmsqoShbeCiccz6QlPJessN4IZ4U1PrGWK1ehJngBB_Wq9i-BoZcnufZoTzEaLKRVxiZG0y1WrRInTAQft8tauh5bnEpcXJUYYxAHyoEDEbwbSK87QI2_EZ0QbwYCwsAODSgZZS8Z5b8kI4IPxNmSdioOxpn-wgFOiTCvyrHK0XfLhNYRHG2ZX_ZbuCmzlNDv0H-VEbwdunHz0YmKqf1q09Ggi4XBfASHnawMYw6wRTpPI1B7UrQ3qf2eenkZAL7pwwXP5av_sQyv4UFKNYsJcbY4goN2vfFv4L771S6b9QjuyoUMTzWCeyeT6ezrKGwlfJ7fTrBtdnY--_EbVfUkSA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBQlY8H4EChgEKpuoiRMn8QKhgbbqqGWExCDNLtiOS0cqyTDJgPpTfCP3Osl0RiB2XbCNncROju8juT4H4CWiSKlAHPtChdpHKxn5mbHaR7uoVcRlnAWFE5tIR6NsMpEfN-BXvxeGyip7m-gMdVEZ-ka-E3EiI8NwIn07--6TahT9Xe0lNFpYHNqzn5iy1W-Gu_h-X3G-vzd-f-B3qgK-weCi8cPExkkUhkXApSDvJ7TMuCpUVqSJ1cIIE0SpJpqTKNFWCaOFVjbUOshMgQsEr3sJLqMdTynZSyfnCV6E-V7LXhRFMtipuXAiCsGaz3PSAH86gBUPuF6dueLu9m_-bw_qFtzoAms2aFfCbdiw5R24vkK3eBeKvfLEFTywQVl9U6dnbNc2rhStZNOSDasxG7VV8TVzpRTYbmdssGgqovukkm9G360Zxc2LuWWfnIgQnT7uqXDre_D5QqZ5HzbLqrQPgWEwnAbSYtiBSXOS6kzpUEna7Cuz0AjlweseB7npKNhJCeQ0x1SMIJMvIePBi2XXWcs78rdO7whMyw5EFe4OVPOveWd5cn2cBEVgSDYhjFOVaM0NJsUSjxdaxcaDbYJiTgYNB2NUty8Dp0TUYPkgizHEjYSUHmz1iMs7S1fn53Dz4PmyGW0U_XhSpa0WbR-MRAWPPHjQgns5ZsfuJGPuQbYG-7VJrbeU0xPHg043ToI4ffTvcT2DqwfjD0f50XB0-BiucRJwJvrdZAs2m_nCPoEr5kczredP3Wpm8OWiV8Vvp1OHNg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFL0aOgjBgvcjMIBBINhETZw4iRcIFTojqoGqEkWaWQXbcZlKQ1KaFjS_xtdxb160ArGbBdvYbe303FdyfQ7AM0SRUp6YuUL52kUvGbiJsdpFv6hVwGWYeFklNhGPx8nRkZzswM_2LAy1VbY-sXLUWWHoGXk_4ERGhulE3J81bRGT4cHrxTeXFKToTWsrp1FD5NCe_cDyrXw1GuJ__Zzzg_3p23duozDgGkw0Vq4f2TAKfD_zuBQUCYWWCVeZSrI4sloYYbwg1kR5EkTaKmG00Mr6WnuJydBY8HsvwC6m5CHvwe5k9GFy3JV7AVZ_NZdREEivX3JRSSp4WxGwEgr4MxxsxMPtXs2N4Hdw7X--bdfhapNys0FtIzdgx-Y34coGEeMtyPbzk6oVgg3y4qs6PWNDu6qa1HI2z9momLJx3S9fsqrJAsftgg3Wq4KIQKkZnNETbUYZ9Xpp2cdKXog-Pm1Jcsvb8OlctnkHenmR23vAME2OPWkxIcFyOop1orSvJB0DlolvhHLgZYuJ1DTk7KQRcppikUbwSTv4OPC0m7qoGUn-NukNAaubQCTi1YVi-SVtfFKqZ5GXeYYEFfwwVpHW3GC5LPF6plVoHHhBsEzJ1eFijGpObOCWiDQsHSQhJr-BkNKBvRZ9aeMDy_Q39Bx40g2j96JXUiq3xbqegzmq4IEDd2ugd2uueJ9kyB1Itkxga1PbI_n8pGJIpx-OvDC-_-91PYZLaAzp-9H48AFc5qTsTLy80R70Vsu1fQgXzffVvFw-akybwefzNotfDASRhQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Anomaly+Detection+in+IoT+Networks+Using+Deep+Autoencoders+with+Feature+Selection+Techniques&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Hamza+Rhachi&rft.au=Younes+Balboul&rft.au=Anas+Bouayad&rft.date=2025-05-16&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=10&rft.spage=3150&rft_id=info:doi/10.3390%2Fs25103150&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bf60d0c8481147a6bb2c9569bf6dba4c |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |