Enhanced Anomaly Detection in IoT Networks Using Deep Autoencoders with Feature Selection Techniques

An enormous number of the Internet of Things (IoT) applications and their networks have significantly impacted people’s lives in diverse situations. With the increasing adoption of these applications in various sectors, ensuring reliability and security has become a critical concern. Moreover, the n...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 25; no. 10; p. 3150
Main Authors: Rhachi, Hamza, Balboul, Younes, Bouayad, Anas
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 16.05.2025
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An enormous number of the Internet of Things (IoT) applications and their networks have significantly impacted people’s lives in diverse situations. With the increasing adoption of these applications in various sectors, ensuring reliability and security has become a critical concern. Moreover, the network that interconnected IoT devices uses advanced communications norms and technologies to capture and transmit data. Still, these networks are subject to various types of attacks that will lead to the loss of user data. Concurrently, the field of anomaly detection for the Internet of Things (IoT) is experiencing rapid expansion. This expansion requires a thorough analysis of application trends and existing gaps. Furthermore, it is critical in detecting interesting phenomena such as device damage and unknown events. However, this task is tough due to the unpredictable nature of anomalies and the complexity of the environment. This paper offers a technique that uses an autoencoder neural network to identify anomalous network communications in IoT networks. More specifically, we propose and implement a model that uses DAE (deep autoencoder) to detect and classify the network data, with an ANOVA F-Test for the feature selection. The proposed model is validated using the NSL-KDD dataset. Compared to some IoT-based anomaly detection models, the experimental results reveal that the suggested model is more efficient at enhancing the accuracy of detecting malicious data. The simulation results show that it works better, with an overall accuracy rate of 85% and 92% successively for the binary and multi-class classifications.
AbstractList An enormous number of the Internet of Things (IoT) applications and their networks have significantly impacted people’s lives in diverse situations. With the increasing adoption of these applications in various sectors, ensuring reliability and security has become a critical concern. Moreover, the network that interconnected IoT devices uses advanced communications norms and technologies to capture and transmit data. Still, these networks are subject to various types of attacks that will lead to the loss of user data. Concurrently, the field of anomaly detection for the Internet of Things (IoT) is experiencing rapid expansion. This expansion requires a thorough analysis of application trends and existing gaps. Furthermore, it is critical in detecting interesting phenomena such as device damage and unknown events. However, this task is tough due to the unpredictable nature of anomalies and the complexity of the environment. This paper offers a technique that uses an autoencoder neural network to identify anomalous network communications in IoT networks. More specifically, we propose and implement a model that uses DAE (deep autoencoder) to detect and classify the network data, with an ANOVA F-Test for the feature selection. The proposed model is validated using the NSL-KDD dataset. Compared to some IoT-based anomaly detection models, the experimental results reveal that the suggested model is more efficient at enhancing the accuracy of detecting malicious data. The simulation results show that it works better, with an overall accuracy rate of 85% and 92% successively for the binary and multi-class classifications.
An enormous number of the Internet of Things (IoT) applications and their networks have significantly impacted people's lives in diverse situations. With the increasing adoption of these applications in various sectors, ensuring reliability and security has become a critical concern. Moreover, the network that interconnected IoT devices uses advanced communications norms and technologies to capture and transmit data. Still, these networks are subject to various types of attacks that will lead to the loss of user data. Concurrently, the field of anomaly detection for the Internet of Things (IoT) is experiencing rapid expansion. This expansion requires a thorough analysis of application trends and existing gaps. Furthermore, it is critical in detecting interesting phenomena such as device damage and unknown events. However, this task is tough due to the unpredictable nature of anomalies and the complexity of the environment. This paper offers a technique that uses an autoencoder neural network to identify anomalous network communications in IoT networks. More specifically, we propose and implement a model that uses DAE (deep autoencoder) to detect and classify the network data, with an ANOVA F-Test for the feature selection. The proposed model is validated using the NSL-KDD dataset. Compared to some IoT-based anomaly detection models, the experimental results reveal that the suggested model is more efficient at enhancing the accuracy of detecting malicious data. The simulation results show that it works better, with an overall accuracy rate of 85% and 92% successively for the binary and multi-class classifications.An enormous number of the Internet of Things (IoT) applications and their networks have significantly impacted people's lives in diverse situations. With the increasing adoption of these applications in various sectors, ensuring reliability and security has become a critical concern. Moreover, the network that interconnected IoT devices uses advanced communications norms and technologies to capture and transmit data. Still, these networks are subject to various types of attacks that will lead to the loss of user data. Concurrently, the field of anomaly detection for the Internet of Things (IoT) is experiencing rapid expansion. This expansion requires a thorough analysis of application trends and existing gaps. Furthermore, it is critical in detecting interesting phenomena such as device damage and unknown events. However, this task is tough due to the unpredictable nature of anomalies and the complexity of the environment. This paper offers a technique that uses an autoencoder neural network to identify anomalous network communications in IoT networks. More specifically, we propose and implement a model that uses DAE (deep autoencoder) to detect and classify the network data, with an ANOVA F-Test for the feature selection. The proposed model is validated using the NSL-KDD dataset. Compared to some IoT-based anomaly detection models, the experimental results reveal that the suggested model is more efficient at enhancing the accuracy of detecting malicious data. The simulation results show that it works better, with an overall accuracy rate of 85% and 92% successively for the binary and multi-class classifications.
Audience Academic
Author Rhachi, Hamza
Bouayad, Anas
Balboul, Younes
AuthorAffiliation IASSE Laboratory, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco; younes.balboul@usmba.ac.ma (Y.B.); anas.bouayad@usmba.ac.ma (A.B.)
AuthorAffiliation_xml – name: IASSE Laboratory, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco; younes.balboul@usmba.ac.ma (Y.B.); anas.bouayad@usmba.ac.ma (A.B.)
Author_xml – sequence: 1
  givenname: Hamza
  orcidid: 0009-0007-3164-6356
  surname: Rhachi
  fullname: Rhachi, Hamza
– sequence: 2
  givenname: Younes
  orcidid: 0000-0002-7521-9141
  surname: Balboul
  fullname: Balboul, Younes
– sequence: 3
  givenname: Anas
  orcidid: 0000-0002-3372-1168
  surname: Bouayad
  fullname: Bouayad, Anas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40431942$$D View this record in MEDLINE/PubMed
BookMark eNptkstOWzEQhq2KqkDaRV-gOlI3dBHw9VxWVUShjYToomFt-TJJnJ7Yqe1TxNvXIWkECHlha-ab33M7RUc-eEDoI8HnjHX4IlFBMCMCv0EnhFM-binFR0_ex-g0pRXGlDHWvkPHHHNGOk5PkL3yS-UN2Griw1r1D9U3yGCyC75yvpqGWXUL-T7E36m6S84vih821WTIAbwJFmKq7l1eVteg8hCh-gX9PnwGZundnwHSe_R2rvoEH_b3CN1dX80uf4xvfn6fXk5uxkYQksekBl4zQiymncCEYKG7liqrWtvUoIURBrNGC9bUrNaghNFCKyBa49bYBrMRmu50bVAruYlureKDDMrJR0OIC6lidqYHqec1tti0vCWEN6rWmppO1F2xW624KVpfd1qbQa_BGvA5qv6Z6HOPd0u5CH8loYTUmDdF4WyvEMO2C1muXTLQ98pDGJJklNCmpaIMZYQ-v0BXYYi-9OqRImW07VbwfEctVKnA-XkoH5tyLKydKSsxd8U-aTltGBNdVwI-Pa3hkPz_8Rfgyw4wMaQUYX5ACJbb1ZKH1SrsxQvWuKy2ky5ZuP6ViH_lNc6n
CitedBy_id crossref_primary_10_4236_ojapps_2025_159177
crossref_primary_10_53759_7669_jmc202505206
Cites_doi 10.47760/ijcsmc.2020.v09i10.012
10.1109/ACCESS.2021.3094024
10.1016/j.neucom.2019.11.016
10.3390/electronics10161876
10.3390/app11157050
10.1016/j.adhoc.2020.102177
10.1109/TEMSMET51618.2020.9557464
10.1007/978-981-15-6876-3_17
10.1007/s41870-022-01115-4
10.18280/isi.250503
10.1145/1541880.1541882
10.1109/SPW.2018.00013
10.1016/j.iot.2019.100059
10.1007/s13369-024-08951-5
10.1109/ICOEI48184.2020.9142921
10.1109/ACCESS.2022.3176317
10.1109/ACCESS.2021.3116612
10.1109/CCWC57344.2023.10099056
10.1109/ICAECT49130.2021.9392483
10.1109/ACCESS.2021.3132127
10.20944/preprints202408.0945.v1
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25103150
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (NC Live)
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_bf60d0c8481147a6bb2c9569bf6dba4c
PMC12116047
A842733599
40431942
10_3390_s25103150
Genre Journal Article
GeographicLocations Morocco
GeographicLocations_xml – name: Morocco
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c511t-16e46311d029501105b982ada8d76eb5c5c037b537636bea5cb5bae1bb08cd703
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001496889400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:34:23 EST 2025
Tue Nov 04 02:02:51 EST 2025
Fri Sep 05 15:59:56 EDT 2025
Tue Oct 07 07:31:12 EDT 2025
Tue Nov 04 18:13:15 EST 2025
Sun Jun 01 01:35:21 EDT 2025
Sat Nov 29 07:17:13 EST 2025
Tue Nov 18 22:24:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords internet of things
data pre-processing
anomaly detection
deep autoencoder
classification
dataset
feature selection
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-16e46311d029501105b982ada8d76eb5c5c037b537636bea5cb5bae1bb08cd703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0007-3164-6356
0000-0002-3372-1168
0000-0002-7521-9141
OpenAccessLink https://doaj.org/article/bf60d0c8481147a6bb2c9569bf6dba4c
PMID 40431942
PQID 3212115087
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_bf60d0c8481147a6bb2c9569bf6dba4c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12116047
proquest_miscellaneous_3212782523
proquest_journals_3212115087
gale_infotracacademiconefile_A842733599
pubmed_primary_40431942
crossref_primary_10_3390_s25103150
crossref_citationtrail_10_3390_s25103150
PublicationCentury 2000
PublicationDate 2025-05-16
PublicationDateYYYYMMDD 2025-05-16
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-16
  day: 16
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Xu (ref_15) 2021; 9
Ieracitano (ref_17) 2020; 387
Ullah (ref_4) 2021; 9
Gurung (ref_23) 2019; 11
Goyal (ref_1) 2023; 23
Sivasubramanian (ref_18) 2024; 49
ref_14
ref_13
ref_24
ref_11
ref_22
Chandola (ref_2) 2009; 41
Sarkar (ref_19) 2023; 15
Hasan (ref_6) 2019; 7
Thamaraiselvi (ref_10) 2020; 9
ref_3
Huang (ref_21) 2020; 105
ref_16
ref_9
ref_8
Ullah (ref_12) 2021; 9
Ullah (ref_5) 2022; 10
Fenanir (ref_20) 2020; 25
ref_7
References_xml – volume: 9
  start-page: 95
  year: 2020
  ident: ref_10
  article-title: Attack and anomaly detection in iot networks using machine learning
  publication-title: Int. J. Comput. Sci. Mob. Comput.
  doi: 10.47760/ijcsmc.2020.v09i10.012
– volume: 9
  start-page: 123456
  year: 2021
  ident: ref_12
  article-title: Design and Development of a Deep Learning-Based Model for Anomaly Detection in IoT Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3094024
– ident: ref_9
– volume: 387
  start-page: 51
  year: 2020
  ident: ref_17
  article-title: A novel statistical analysis and autoencoder driven intelligent intrusion detection approach
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.016
– ident: ref_13
  doi: 10.3390/electronics10161876
– ident: ref_8
  doi: 10.3390/app11157050
– volume: 105
  start-page: 102177
  year: 2020
  ident: ref_21
  article-title: IGAN-IDS: An imbalanced generative adversarial network towards intrusion detection system in ad-hoc networks
  publication-title: Ad. Hoc. Netw.
  doi: 10.1016/j.adhoc.2020.102177
– ident: ref_11
  doi: 10.1109/TEMSMET51618.2020.9557464
– ident: ref_24
  doi: 10.1007/978-981-15-6876-3_17
– volume: 15
  start-page: 423
  year: 2023
  ident: ref_19
  article-title: A supervised machine learning-based solution for efficient network intrusion detection using ensemble learning based on hyperparameter optimization
  publication-title: Int. J. Inf. Tecnol.
  doi: 10.1007/s41870-022-01115-4
– volume: 25
  start-page: 569
  year: 2020
  ident: ref_20
  article-title: A semi-supervised deep auto-encoder based intrusion detection for IoT
  publication-title: Ingénierie Des Systèmes D’information
  doi: 10.18280/isi.250503
– volume: 11
  start-page: 8
  year: 2019
  ident: ref_23
  article-title: Deep Learning Approach on Network Intrusion Detection System using NSL-KDD Dataset
  publication-title: Int. J. Comput. Netw. Inf. Secur. (IJCNIS)
– volume: 41
  start-page: 1
  year: 2009
  ident: ref_2
  article-title: Anomaly detection: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1541880.1541882
– ident: ref_3
  doi: 10.1109/SPW.2018.00013
– volume: 7
  start-page: 100059
  year: 2019
  ident: ref_6
  article-title: Attack and anomaly detection in iot sensors in iot sites using machine learning approaches
  publication-title: Internet Things
  doi: 10.1016/j.iot.2019.100059
– volume: 49
  start-page: 13061
  year: 2024
  ident: ref_18
  article-title: Feature Extraction and Anomaly Detection Using Different Autoencoders for Modeling Intrusion Detection Systems
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-024-08951-5
– ident: ref_7
  doi: 10.1109/ICOEI48184.2020.9142921
– volume: 10
  start-page: 62722
  year: 2022
  ident: ref_5
  article-title: Design and development of rnn anomaly detection model for iot networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3176317
– volume: 9
  start-page: 140136
  year: 2021
  ident: ref_15
  article-title: Improving Performance of Autoencoder Based Network Anomaly Detection on NSL-KDD Dataset
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3116612
– ident: ref_22
  doi: 10.1109/CCWC57344.2023.10099056
– ident: ref_16
  doi: 10.1109/ICAECT49130.2021.9392483
– volume: 9
  start-page: 165907
  year: 2021
  ident: ref_4
  article-title: A framework for anomaly detection in iot networks using conditional generative adversarial networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3132127
– ident: ref_14
  doi: 10.20944/preprints202408.0945.v1
– volume: 23
  start-page: 100
  year: 2023
  ident: ref_1
  article-title: A review on IoT: Layered architecture, security issues and protocols
  publication-title: Int. J. Comput. Sci. Netw. Secur. (IJCSNS)
SSID ssj0023338
Score 2.4609973
Snippet An enormous number of the Internet of Things (IoT) applications and their networks have significantly impacted people’s lives in diverse situations. With the...
An enormous number of the Internet of Things (IoT) applications and their networks have significantly impacted people's lives in diverse situations. With the...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3150
SubjectTerms Algorithms
anomaly detection
Artificial intelligence
Comparative analysis
Cybersecurity
data pre-processing
Data security
dataset
Datasets
deep autoencoder
Deep learning
Energy consumption
Feature selection
Internet of Things
Literature reviews
Machine learning
Neural networks
Research methodology
Wireless networks
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4UAPvB-BggxCgktUJ44T-4QWaAWXFRKLtLfIdly6Ukm2mywS_54ZJ5tuBOLC1XYUW_PwjD3-PoDXqEXGcHkWS5PYGL2kiJXzNka_aI1IdaZ4FcgmivlcLZf6y3Dg1g5llTufGBx11Tg6Iz8WKYGRYThRvFtfxsQaRberA4XGdbhBtNmk58XyKuESmH_1aEICU_vjNpWB1IBP9qAA1f-nQ97bkabVknvbz-md_534Xbg9BJ5s1mvKPbjm6_twuAdH-ACqk_o8FASwWd38MBe_2EffhVKtmq1q9rlZsHlfNd6yUGqA_X7NZtuuIThMKolmdK7LKK7cbjz7Gkh26PPFDiq2fQjfTk8WHz7FAwtD7DAY6-Ik91kukqTiqZYULUirVWoqo6oi91Y66bgoLMHCiNx6I52V1vjEWq5chQ7lERzUTe2fAMNgseDa47aMSWVeWGVsYjQ9htUqcdJE8HYnl9INEOXElHFRYqpCIixHEUbwahy67nE5_jboPQl3HEBQ2qGh2XwvB8ss7VnOK-6IViDJCpNbmzpMGjW2V9ZkLoI3pBolGTxOxpnh3QIuiaCzypnKMAQUUusIjnYaUA6eoC2vxB_By7EbbZguZkztm20_BiM1mYoIHvfKNs45oB_pLI1ATdRwsqhpT706Dzjh9OOcZ8XTf8_rGdxKidSYIGnzIzjoNlv_HG66n92q3bwIFvUbflkrAw
  priority: 102
  providerName: ProQuest
Title Enhanced Anomaly Detection in IoT Networks Using Deep Autoencoders with Feature Selection Techniques
URI https://www.ncbi.nlm.nih.gov/pubmed/40431942
https://www.proquest.com/docview/3212115087
https://www.proquest.com/docview/3212782523
https://pubmed.ncbi.nlm.nih.gov/PMC12116047
https://doaj.org/article/bf60d0c8481147a6bb2c9569bf6dba4c
Volume 25
WOSCitedRecordID wos001496889400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiOcSWCqDkOASrfNwbB-70BV72KqCIpVTZDtebaUlXTUp0l72tzPjpFErkLhwycGeKLZnPI94_A3Ae5QiY7i4iIVJbIxaMouV8zZGvWhNlupc8SoUm5DTqVos9Gyn1BflhHXwwN3CHduLglfcEep7kktTWJs69Ok1tlfW5I60L5d6G0z1oVaGkVeHI5RhUH_cpCKUM-B71ieA9P-pinds0X6e5I7hOX0Mj3qPkY27kT6BO75-Cg93cASfQTWpL8NJPsNo_qe5umGffRtyrGq2rNnZas6mXbp3w0KOAPb7azbetCvCsaRcZkY_ZBk5hJu1Z99CdRx6fb7FeG2ew_fTyfzTl7gvnxA79KLaOCl8XmRJUvFUCzLzwmqVmsqoShbeCiccz6QlPJessN4IZ4U1PrGWK1ehJngBB_Wq9i-BoZcnufZoTzEaLKRVxiZG0y1WrRInTAQft8tauh5bnEpcXJUYYxAHyoEDEbwbSK87QI2_EZ0QbwYCwsAODSgZZS8Z5b8kI4IPxNmSdioOxpn-wgFOiTCvyrHK0XfLhNYRHG2ZX_ZbuCmzlNDv0H-VEbwdunHz0YmKqf1q09Ggi4XBfASHnawMYw6wRTpPI1B7UrQ3qf2eenkZAL7pwwXP5av_sQyv4UFKNYsJcbY4goN2vfFv4L771S6b9QjuyoUMTzWCeyeT6ezrKGwlfJ7fTrBtdnY--_EbVfUkSA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBQlY8H4EChgEKpuoiRMn8QKhgbbqqGWExCDNLtiOS0cqyTDJgPpTfCP3Osl0RiB2XbCNncROju8juT4H4CWiSKlAHPtChdpHKxn5mbHaR7uoVcRlnAWFE5tIR6NsMpEfN-BXvxeGyip7m-gMdVEZ-ka-E3EiI8NwIn07--6TahT9Xe0lNFpYHNqzn5iy1W-Gu_h-X3G-vzd-f-B3qgK-weCi8cPExkkUhkXApSDvJ7TMuCpUVqSJ1cIIE0SpJpqTKNFWCaOFVjbUOshMgQsEr3sJLqMdTynZSyfnCV6E-V7LXhRFMtipuXAiCsGaz3PSAH86gBUPuF6dueLu9m_-bw_qFtzoAms2aFfCbdiw5R24vkK3eBeKvfLEFTywQVl9U6dnbNc2rhStZNOSDasxG7VV8TVzpRTYbmdssGgqovukkm9G360Zxc2LuWWfnIgQnT7uqXDre_D5QqZ5HzbLqrQPgWEwnAbSYtiBSXOS6kzpUEna7Cuz0AjlweseB7npKNhJCeQ0x1SMIJMvIePBi2XXWcs78rdO7whMyw5EFe4OVPOveWd5cn2cBEVgSDYhjFOVaM0NJsUSjxdaxcaDbYJiTgYNB2NUty8Dp0TUYPkgizHEjYSUHmz1iMs7S1fn53Dz4PmyGW0U_XhSpa0WbR-MRAWPPHjQgns5ZsfuJGPuQbYG-7VJrbeU0xPHg043ToI4ffTvcT2DqwfjD0f50XB0-BiucRJwJvrdZAs2m_nCPoEr5kczredP3Wpm8OWiV8Vvp1OHNg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFL0aOgjBgvcjMIBBINhETZw4iRcIFTojqoGqEkWaWQXbcZlKQ1KaFjS_xtdxb160ArGbBdvYbe303FdyfQ7AM0SRUp6YuUL52kUvGbiJsdpFv6hVwGWYeFklNhGPx8nRkZzswM_2LAy1VbY-sXLUWWHoGXk_4ERGhulE3J81bRGT4cHrxTeXFKToTWsrp1FD5NCe_cDyrXw1GuJ__Zzzg_3p23duozDgGkw0Vq4f2TAKfD_zuBQUCYWWCVeZSrI4sloYYbwg1kR5EkTaKmG00Mr6WnuJydBY8HsvwC6m5CHvwe5k9GFy3JV7AVZ_NZdREEivX3JRSSp4WxGwEgr4MxxsxMPtXs2N4Hdw7X--bdfhapNys0FtIzdgx-Y34coGEeMtyPbzk6oVgg3y4qs6PWNDu6qa1HI2z9momLJx3S9fsqrJAsftgg3Wq4KIQKkZnNETbUYZ9Xpp2cdKXog-Pm1Jcsvb8OlctnkHenmR23vAME2OPWkxIcFyOop1orSvJB0DlolvhHLgZYuJ1DTk7KQRcppikUbwSTv4OPC0m7qoGUn-NukNAaubQCTi1YVi-SVtfFKqZ5GXeYYEFfwwVpHW3GC5LPF6plVoHHhBsEzJ1eFijGpObOCWiDQsHSQhJr-BkNKBvRZ9aeMDy_Q39Bx40g2j96JXUiq3xbqegzmq4IEDd2ugd2uueJ9kyB1Itkxga1PbI_n8pGJIpx-OvDC-_-91PYZLaAzp-9H48AFc5qTsTLy80R70Vsu1fQgXzffVvFw-akybwefzNotfDASRhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Anomaly+Detection+in+IoT+Networks+Using+Deep+Autoencoders+with+Feature+Selection+Techniques&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Hamza+Rhachi&rft.au=Younes+Balboul&rft.au=Anas+Bouayad&rft.date=2025-05-16&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=10&rft.spage=3150&rft_id=info:doi/10.3390%2Fs25103150&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bf60d0c8481147a6bb2c9569bf6dba4c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon