Exhaled breath analysis with a colorimetric sensor array for the identification and characterization of lung cancer

The pattern of exhaled breath volatile organic compounds represents a metabolic biosignature with the potential to identify and characterize lung cancer. Breath biosignature-based classification of homogeneous subgroups of lung cancer may be more accurate than a global breath signature. Combining br...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of thoracic oncology Ročník 7; číslo 1; s. 137
Hlavní autori: Mazzone, Peter J, Wang, Xiao-Feng, Xu, Yaomin, Mekhail, Tarek, Beukemann, Mary C, Na, Jie, Kemling, Jonathan W, Suslick, Kenneth S, Sasidhar, Madhu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.01.2012
Predmet:
ISSN:1556-1380, 1556-1380
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The pattern of exhaled breath volatile organic compounds represents a metabolic biosignature with the potential to identify and characterize lung cancer. Breath biosignature-based classification of homogeneous subgroups of lung cancer may be more accurate than a global breath signature. Combining breath biosignatures with clinical risk factors may improve the accuracy of the signature. To develop an exhaled breath biosignature of lung cancer using a colorimetric sensor array and to determine the accuracy of breath biosignatures of lung cancer characteristics with and without the inclusion of clinical risk factors. The exhaled breath of 229 study subjects, 92 with lung cancer and 137 controls, was drawn across a colorimetric sensor array. Logistic prediction models were developed and statistically validated based on the color changes of the sensor. Age, sex, smoking history, and chronic obstructive pulmonary disease were incorporated in the prediction models. The validated prediction model of the combined breath and clinical biosignature was moderately accurate at distinguishing lung cancer from control subjects (C-statistic 0.811). The accuracy improved when the model focused on only one histology (C-statistic 0.825-0.890). Individuals with different histologies could be accurately distinguished from one another (C-statistic 0.864 for adenocarcinoma versus squamous cell carcinoma). Moderate accuracies were noted for validated breath biosignatures of stage and survival (C-statistic 0.785 and 0.693, respectively). A colorimetric sensor array is capable of identifying exhaled breath biosignatures of lung cancer. The accuracy of breath biosignatures can be optimized by evaluating specific histologies and incorporating clinical risk factors.
AbstractList The pattern of exhaled breath volatile organic compounds represents a metabolic biosignature with the potential to identify and characterize lung cancer. Breath biosignature-based classification of homogeneous subgroups of lung cancer may be more accurate than a global breath signature. Combining breath biosignatures with clinical risk factors may improve the accuracy of the signature.INTRODUCTIONThe pattern of exhaled breath volatile organic compounds represents a metabolic biosignature with the potential to identify and characterize lung cancer. Breath biosignature-based classification of homogeneous subgroups of lung cancer may be more accurate than a global breath signature. Combining breath biosignatures with clinical risk factors may improve the accuracy of the signature.To develop an exhaled breath biosignature of lung cancer using a colorimetric sensor array and to determine the accuracy of breath biosignatures of lung cancer characteristics with and without the inclusion of clinical risk factors.OBJECTIVESTo develop an exhaled breath biosignature of lung cancer using a colorimetric sensor array and to determine the accuracy of breath biosignatures of lung cancer characteristics with and without the inclusion of clinical risk factors.The exhaled breath of 229 study subjects, 92 with lung cancer and 137 controls, was drawn across a colorimetric sensor array. Logistic prediction models were developed and statistically validated based on the color changes of the sensor. Age, sex, smoking history, and chronic obstructive pulmonary disease were incorporated in the prediction models.METHODSThe exhaled breath of 229 study subjects, 92 with lung cancer and 137 controls, was drawn across a colorimetric sensor array. Logistic prediction models were developed and statistically validated based on the color changes of the sensor. Age, sex, smoking history, and chronic obstructive pulmonary disease were incorporated in the prediction models.The validated prediction model of the combined breath and clinical biosignature was moderately accurate at distinguishing lung cancer from control subjects (C-statistic 0.811). The accuracy improved when the model focused on only one histology (C-statistic 0.825-0.890). Individuals with different histologies could be accurately distinguished from one another (C-statistic 0.864 for adenocarcinoma versus squamous cell carcinoma). Moderate accuracies were noted for validated breath biosignatures of stage and survival (C-statistic 0.785 and 0.693, respectively).RESULTSThe validated prediction model of the combined breath and clinical biosignature was moderately accurate at distinguishing lung cancer from control subjects (C-statistic 0.811). The accuracy improved when the model focused on only one histology (C-statistic 0.825-0.890). Individuals with different histologies could be accurately distinguished from one another (C-statistic 0.864 for adenocarcinoma versus squamous cell carcinoma). Moderate accuracies were noted for validated breath biosignatures of stage and survival (C-statistic 0.785 and 0.693, respectively).A colorimetric sensor array is capable of identifying exhaled breath biosignatures of lung cancer. The accuracy of breath biosignatures can be optimized by evaluating specific histologies and incorporating clinical risk factors.CONCLUSIONSA colorimetric sensor array is capable of identifying exhaled breath biosignatures of lung cancer. The accuracy of breath biosignatures can be optimized by evaluating specific histologies and incorporating clinical risk factors.
The pattern of exhaled breath volatile organic compounds represents a metabolic biosignature with the potential to identify and characterize lung cancer. Breath biosignature-based classification of homogeneous subgroups of lung cancer may be more accurate than a global breath signature. Combining breath biosignatures with clinical risk factors may improve the accuracy of the signature. To develop an exhaled breath biosignature of lung cancer using a colorimetric sensor array and to determine the accuracy of breath biosignatures of lung cancer characteristics with and without the inclusion of clinical risk factors. The exhaled breath of 229 study subjects, 92 with lung cancer and 137 controls, was drawn across a colorimetric sensor array. Logistic prediction models were developed and statistically validated based on the color changes of the sensor. Age, sex, smoking history, and chronic obstructive pulmonary disease were incorporated in the prediction models. The validated prediction model of the combined breath and clinical biosignature was moderately accurate at distinguishing lung cancer from control subjects (C-statistic 0.811). The accuracy improved when the model focused on only one histology (C-statistic 0.825-0.890). Individuals with different histologies could be accurately distinguished from one another (C-statistic 0.864 for adenocarcinoma versus squamous cell carcinoma). Moderate accuracies were noted for validated breath biosignatures of stage and survival (C-statistic 0.785 and 0.693, respectively). A colorimetric sensor array is capable of identifying exhaled breath biosignatures of lung cancer. The accuracy of breath biosignatures can be optimized by evaluating specific histologies and incorporating clinical risk factors.
Author Beukemann, Mary C
Mazzone, Peter J
Xu, Yaomin
Mekhail, Tarek
Na, Jie
Kemling, Jonathan W
Suslick, Kenneth S
Sasidhar, Madhu
Wang, Xiao-Feng
Author_xml – sequence: 1
  givenname: Peter J
  surname: Mazzone
  fullname: Mazzone, Peter J
  email: mazzonp@ccf.org
  organization: Respiratory Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA. mazzonp@ccf.org
– sequence: 2
  givenname: Xiao-Feng
  surname: Wang
  fullname: Wang, Xiao-Feng
– sequence: 3
  givenname: Yaomin
  surname: Xu
  fullname: Xu, Yaomin
– sequence: 4
  givenname: Tarek
  surname: Mekhail
  fullname: Mekhail, Tarek
– sequence: 5
  givenname: Mary C
  surname: Beukemann
  fullname: Beukemann, Mary C
– sequence: 6
  givenname: Jie
  surname: Na
  fullname: Na, Jie
– sequence: 7
  givenname: Jonathan W
  surname: Kemling
  fullname: Kemling, Jonathan W
– sequence: 8
  givenname: Kenneth S
  surname: Suslick
  fullname: Suslick, Kenneth S
– sequence: 9
  givenname: Madhu
  surname: Sasidhar
  fullname: Sasidhar, Madhu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22071780$$D View this record in MEDLINE/PubMed
BookMark eNpNUFtLwzAYDTJxF_0HInnzqTOXtkkfZcwbg73svaTJFxvpkpm06Pz1Vpzg07lwOHDOHE188IDQNSVLSipx97LbLklDKAdOJePcSGLP0IwWRZlRLsnkH5-ieUpvhOQFyeUFmjJGBBWSzFBaf7aqA4ObCKpvsfKqOyaX8If7UViHLkS3hz46jRP4FCJWMaojtiPrW8DOgO-ddVr1LvixwGDdqqh0D9F9_ZrB4m7wr1grryFeonOrugRXJ1yg3cN6t3rKNtvH59X9JtMFpTbLecW4LaUy1jKpTZUbDaYiWghoqCGWW2Zo3uSkrIhh0gJw0ZRclUJIVbIFuv2tPcTwPkDq671LGrpOeQhDqitKq7waPxmTN6fk0OzB1IdxsYrH-u8m9g3zkm-9
CitedBy_id crossref_primary_10_3390_chemosensors11090501
crossref_primary_10_1080_10408347_2025_2536822
crossref_primary_10_1080_00032719_2013_782550
crossref_primary_10_1080_14737159_2024_2316755
crossref_primary_10_3390_jcm10010032
crossref_primary_10_1016_j_snb_2017_10_091
crossref_primary_10_1097_01_JAA_0000443964_38857_22
crossref_primary_10_1016_j_snb_2020_127932
crossref_primary_10_1016_j_aca_2014_03_014
crossref_primary_10_1016_j_lungcan_2015_07_005
crossref_primary_10_1088_1752_7163_ad6474
crossref_primary_10_1002_sim_8454
crossref_primary_10_1371_journal_pone_0174802
crossref_primary_10_1007_s40137_013_0032_z
crossref_primary_10_1016_j_snb_2017_11_067
crossref_primary_10_1038_s41598_017_02154_9
crossref_primary_10_1016_j_imed_2024_09_004
crossref_primary_10_3390_s22031238
crossref_primary_10_1088_1752_7163_ab09ae
crossref_primary_10_1039_C3CS60329F
crossref_primary_10_1039_D5NR01714A
crossref_primary_10_1513_AnnalsATS_201411_540OC
crossref_primary_10_1164_rccm_202310_1759OC
crossref_primary_10_1016_j_esmogo_2025_100132
crossref_primary_10_3390_metabo5010003
crossref_primary_10_1016_j_imu_2021_100715
crossref_primary_10_1088_1752_7155_10_1_016007
crossref_primary_10_1002_smll_201501904
crossref_primary_10_1016_j_arbr_2020_10_004
crossref_primary_10_1016_j_trac_2021_116397
crossref_primary_10_1109_TBME_2015_2409092
crossref_primary_10_1002_cam4_162
crossref_primary_10_1016_j_diagmicrobio_2018_06_014
crossref_primary_10_1164_rccm_201410_1777CI
crossref_primary_10_1586_14737140_2014_866044
crossref_primary_10_1007_s40242_014_4005_2
crossref_primary_10_3390_s17102420
crossref_primary_10_1039_C8CS00317C
crossref_primary_10_1200_EDBK_199767
crossref_primary_10_3390_chemosensors9080209
crossref_primary_10_1016_j_clinbiochem_2025_110898
crossref_primary_10_1016_j_snb_2017_07_134
crossref_primary_10_3390_metabo9030052
crossref_primary_10_1088_1752_7155_9_4_046002
crossref_primary_10_1016_j_jtcvs_2014_06_006
crossref_primary_10_1088_1752_7155_7_3_039001
crossref_primary_10_1016_j_cbpa_2012_10_030
crossref_primary_10_1109_JSEN_2025_3576057
crossref_primary_10_1007_s11051_023_05783_6
crossref_primary_10_1038_s41598_020_62803_4
crossref_primary_10_1586_14737159_2016_1149469
crossref_primary_10_1002_sim_9687
crossref_primary_10_1016_j_snb_2017_08_057
crossref_primary_10_1109_JSEN_2020_3001285
crossref_primary_10_1007_s00216_021_03333_4
crossref_primary_10_1016_j_tibtech_2016_08_005
crossref_primary_10_1136_jclinpath_2014_202414
crossref_primary_10_1002_ange_201500153
crossref_primary_10_4155_bio_13_183
crossref_primary_10_1186_1465_9921_13_117
crossref_primary_10_1039_c3cs60179j
crossref_primary_10_1118_1_4892381
crossref_primary_10_2217_nnm_13_64
crossref_primary_10_3390_s25030797
crossref_primary_10_1038_bjc_2014_411
crossref_primary_10_3390_metabo5010140
crossref_primary_10_1586_14737140_2013_866044
crossref_primary_10_2217_bmm_2020_0828
crossref_primary_10_1016_j_nancom_2016_09_001
crossref_primary_10_3390_bios14020090
crossref_primary_10_1002_mas_21393
crossref_primary_10_1097_LBR_0000000000000509
crossref_primary_10_3390_bios11090337
crossref_primary_10_1007_s00542_024_05656_5
crossref_primary_10_1016_j_microc_2024_110051
crossref_primary_10_1007_s40291_023_00640_7
crossref_primary_10_1038_srep07312
crossref_primary_10_1111_cea_12052
crossref_primary_10_1183_16000617_0011_2019
crossref_primary_10_1002_anie_201500153
crossref_primary_10_1016_j_snb_2024_135578
crossref_primary_10_1088_1752_7155_9_3_034001
crossref_primary_10_1016_j_talanta_2023_124767
crossref_primary_10_3390_s18020378
crossref_primary_10_1016_j_bios_2023_115237
crossref_primary_10_1088_1752_7163_ab0684
crossref_primary_10_3390_s19235333
crossref_primary_10_1016_j_jtcvs_2023_02_029
crossref_primary_10_1134_S1061934819050034
crossref_primary_10_2217_fon_2017_0676
crossref_primary_10_3390_foods11223577
crossref_primary_10_3390_app14114506
crossref_primary_10_3390_metabo13020203
crossref_primary_10_1038_srep16491
crossref_primary_10_3390_s17020287
crossref_primary_10_1016_j_snb_2019_03_023
crossref_primary_10_2147_LCTT_S320493
crossref_primary_10_2217_lmt_13_58
crossref_primary_10_3390_biomedicines11113029
crossref_primary_10_1142_S1088424617300026
crossref_primary_10_1021_acssensors_5c01026
crossref_primary_10_3390_chemosensors13010015
crossref_primary_10_1016_j_arbres_2019_12_023
crossref_primary_10_1146_annurev_anchem_062011_143205
crossref_primary_10_3390_s16111891
crossref_primary_10_1016_j_snb_2023_134561
crossref_primary_10_1007_s11306_024_02180_5
crossref_primary_10_3390_molecules26123776
crossref_primary_10_1016_j_chest_2022_09_042
crossref_primary_10_1097_JTO_0000000000000447
crossref_primary_10_1183_23120541_00723_2024
crossref_primary_10_1016_j_apsusc_2025_162985
crossref_primary_10_1016_j_chest_2017_01_018
crossref_primary_10_1007_s10854_022_08703_x
crossref_primary_10_1183_16000617_0002_2019
crossref_primary_10_1016_j_thorsurg_2013_01_002
crossref_primary_10_1088_1752_7163_abaecb
crossref_primary_10_1007_s00216_018_0948_3
crossref_primary_10_1088_1361_6528_ab82d5
crossref_primary_10_1016_j_cca_2020_12_036
crossref_primary_10_1007_s11306_013_0568_z
crossref_primary_10_1016_j_trac_2022_116655
crossref_primary_10_1586_14737159_2015_1043895
crossref_primary_10_1016_j_proche_2016_07_027
crossref_primary_10_1016_S1872_2040_13_60658_1
crossref_primary_10_1039_D5RA02537K
crossref_primary_10_1109_JSEN_2013_2259810
crossref_primary_10_1177_1553350618781267
crossref_primary_10_1039_C3AN02112B
crossref_primary_10_1088_1752_7155_8_2_027112
crossref_primary_10_1007_s00604_019_3696_y
crossref_primary_10_1016_j_compbiomed_2020_103706
crossref_primary_10_1088_1752_7163_acb791
crossref_primary_10_1134_S1061934821080050
crossref_primary_10_1007_s10812_019_00775_8
crossref_primary_10_1016_j_arcmed_2018_04_004
crossref_primary_10_3390_bios10110171
crossref_primary_10_3389_fonc_2021_606915
crossref_primary_10_3103_S1068337221040046
crossref_primary_10_1039_C8RA09640F
crossref_primary_10_1016_j_tube_2012_04_002
crossref_primary_10_18632_oncotarget_5938
crossref_primary_10_3390_bios10080084
crossref_primary_10_3390_chemosensors11060317
crossref_primary_10_1063_5_0025462
crossref_primary_10_1021_acs_chemrev_8b00226
crossref_primary_10_1093_annonc_mds303
crossref_primary_10_3390_s22030718
crossref_primary_10_3390_bios7040059
crossref_primary_10_1007_s13167_017_0083_9
crossref_primary_10_1016_j_jtho_2018_02_026
crossref_primary_10_1088_1752_7163_aca119
crossref_primary_10_1016_j_bios_2014_10_023
crossref_primary_10_1007_s00216_015_9200_6
crossref_primary_10_1080_10408347_2016_1233805
crossref_primary_10_1070_RCR4831
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1097/JTO.0b013e318233d80f
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1556-1380
ExternalDocumentID 22071780
Genre Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: U01 ES016011
– fundername: NIEHS NIH HHS
  grantid: U01ES016011
GroupedDBID ---
.55
.XZ
.Z2
0R~
457
53G
5GY
5VS
AAEDW
AAKAS
AALRI
AAWTL
AAXUO
AAYWO
ABBUW
ABJNI
ABMAC
ABPMR
ACDDN
ACGFS
ACVFH
ACWDW
ACWRI
ADBBV
ADBIZ
ADCNI
ADEZE
ADVLN
ADZCM
AE3
AENEX
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AFTRI
AGHFR
AIGII
AITUG
AIZYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BOYCO
C45
CGR
CS3
CUY
CVF
DU5
E.X
EBS
ECM
EFKBS
EIF
EJD
EX3
F5P
FDB
FL-
HZ~
IN~
KD2
NPM
NTWIH
O9-
OFXIZ
OGEVE
OK1
OVD
P2P
ROL
S4S
SSZ
TEORI
V2I
W3M
WOQ
WOW
X7M
7X8
ID FETCH-LOGICAL-c511f-43923f68adff28cd94dced90c77eb1d0f3f2d14b40690d28fee37b63a6778a62
IEDL.DBID 7X8
ISICitedReferencesCount 198
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000300305600021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1556-1380
IngestDate Thu Oct 02 06:21:31 EDT 2025
Mon Nov 17 00:29:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511f-43923f68adff28cd94dced90c77eb1d0f3f2d14b40690d28fee37b63a6778a62
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://dx.doi.org/10.1097/JTO.0b013e318233d80f
PMID 22071780
PQID 911949045
PQPubID 23479
ParticipantIDs proquest_miscellaneous_911949045
pubmed_primary_22071780
PublicationCentury 2000
PublicationDate 2012-Jan
20120101
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-Jan
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of thoracic oncology
PublicationTitleAlternate J Thorac Oncol
PublicationYear 2012
SSID ssj0045048
Score 2.4572341
Snippet The pattern of exhaled breath volatile organic compounds represents a metabolic biosignature with the potential to identify and characterize lung cancer....
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 137
SubjectTerms Adenocarcinoma - diagnosis
Adenocarcinoma - pathology
Adult
Aged
Breath Tests
Carcinoma, Non-Small-Cell Lung - diagnosis
Carcinoma, Non-Small-Cell Lung - pathology
Carcinoma, Small Cell - diagnosis
Carcinoma, Small Cell - pathology
Carcinoma, Squamous Cell - diagnosis
Carcinoma, Squamous Cell - pathology
Colorimetry
Humans
Logistic Models
Lung Neoplasms - diagnosis
Lung Neoplasms - pathology
Middle Aged
Neoplasm Staging
Predictive Value of Tests
Prospective Studies
ROC Curve
Title Exhaled breath analysis with a colorimetric sensor array for the identification and characterization of lung cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/22071780
https://www.proquest.com/docview/911949045
Volume 7
WOSCitedRecordID wos000300305600021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAIsTC-1FeuoE1qmu7eUwIISqEaOnQoVvk-Gy1EmpKAgj-PeckLRNiYMmUWNH5fPf5Ht8xds25doQSXCCyEANlIx5kpqtoQ1zo4kxhDyvK_KdoOIwnk2TU1OaUTVnl0iZWhhpz42PkHTqUiUoIgNwsXgM_NMonV5sJGuusJQnJ-IquaLJKIqger4ZnkcesqPb4snMuiTqP4-efEKCQEmPufseYla_p7_7zL_fYTgMy4bbWin22ZucHbGvQpNEPWXn_OSXHgJB5yDgF3TCTgI_KggbPZO1p_z17P5R00c0L0EWhv4AgLhBkhBk2VUbVxtICCGZF_Vx3dkLu4IVMCRivWMURG_fvx3cPQTN9ITAEwlxASEVIF8YanROxwUShsZhwE0Vk35E76QR2VeZbZzmK2FkroyyU2lPS6VAcs415PrenDExsuSZBo-eeMxw1vWBlxpWSque4aTNYCjMl5fYZCz23-XuZrsTZZif1hqSLmoQjFcLfRGN-9vfH52ybYI6oAycXrOXoYNtLtmk-3mZlcVUpDT2Ho8E3RkjOaQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exhaled+breath+analysis+with+a+colorimetric+sensor+array+for+the+identification+and+characterization+of+lung+cancer&rft.jtitle=Journal+of+thoracic+oncology&rft.au=Mazzone%2C+Peter+J&rft.au=Wang%2C+Xiao-Feng&rft.au=Xu%2C+Yaomin&rft.au=Mekhail%2C+Tarek&rft.date=2012-01-01&rft.eissn=1556-1380&rft.volume=7&rft.issue=1&rft.spage=137&rft_id=info:doi/10.1097%2FJTO.0b013e318233d80f&rft_id=info%3Apmid%2F22071780&rft_id=info%3Apmid%2F22071780&rft.externalDocID=22071780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-1380&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-1380&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-1380&client=summon