Exhaled breath analysis with a colorimetric sensor array for the identification and characterization of lung cancer
The pattern of exhaled breath volatile organic compounds represents a metabolic biosignature with the potential to identify and characterize lung cancer. Breath biosignature-based classification of homogeneous subgroups of lung cancer may be more accurate than a global breath signature. Combining br...
Uložené v:
| Vydané v: | Journal of thoracic oncology Ročník 7; číslo 1; s. 137 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
01.01.2012
|
| Predmet: | |
| ISSN: | 1556-1380, 1556-1380 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The pattern of exhaled breath volatile organic compounds represents a metabolic biosignature with the potential to identify and characterize lung cancer. Breath biosignature-based classification of homogeneous subgroups of lung cancer may be more accurate than a global breath signature. Combining breath biosignatures with clinical risk factors may improve the accuracy of the signature.
To develop an exhaled breath biosignature of lung cancer using a colorimetric sensor array and to determine the accuracy of breath biosignatures of lung cancer characteristics with and without the inclusion of clinical risk factors.
The exhaled breath of 229 study subjects, 92 with lung cancer and 137 controls, was drawn across a colorimetric sensor array. Logistic prediction models were developed and statistically validated based on the color changes of the sensor. Age, sex, smoking history, and chronic obstructive pulmonary disease were incorporated in the prediction models.
The validated prediction model of the combined breath and clinical biosignature was moderately accurate at distinguishing lung cancer from control subjects (C-statistic 0.811). The accuracy improved when the model focused on only one histology (C-statistic 0.825-0.890). Individuals with different histologies could be accurately distinguished from one another (C-statistic 0.864 for adenocarcinoma versus squamous cell carcinoma). Moderate accuracies were noted for validated breath biosignatures of stage and survival (C-statistic 0.785 and 0.693, respectively).
A colorimetric sensor array is capable of identifying exhaled breath biosignatures of lung cancer. The accuracy of breath biosignatures can be optimized by evaluating specific histologies and incorporating clinical risk factors. |
|---|---|
| AbstractList | The pattern of exhaled breath volatile organic compounds represents a metabolic biosignature with the potential to identify and characterize lung cancer. Breath biosignature-based classification of homogeneous subgroups of lung cancer may be more accurate than a global breath signature. Combining breath biosignatures with clinical risk factors may improve the accuracy of the signature.INTRODUCTIONThe pattern of exhaled breath volatile organic compounds represents a metabolic biosignature with the potential to identify and characterize lung cancer. Breath biosignature-based classification of homogeneous subgroups of lung cancer may be more accurate than a global breath signature. Combining breath biosignatures with clinical risk factors may improve the accuracy of the signature.To develop an exhaled breath biosignature of lung cancer using a colorimetric sensor array and to determine the accuracy of breath biosignatures of lung cancer characteristics with and without the inclusion of clinical risk factors.OBJECTIVESTo develop an exhaled breath biosignature of lung cancer using a colorimetric sensor array and to determine the accuracy of breath biosignatures of lung cancer characteristics with and without the inclusion of clinical risk factors.The exhaled breath of 229 study subjects, 92 with lung cancer and 137 controls, was drawn across a colorimetric sensor array. Logistic prediction models were developed and statistically validated based on the color changes of the sensor. Age, sex, smoking history, and chronic obstructive pulmonary disease were incorporated in the prediction models.METHODSThe exhaled breath of 229 study subjects, 92 with lung cancer and 137 controls, was drawn across a colorimetric sensor array. Logistic prediction models were developed and statistically validated based on the color changes of the sensor. Age, sex, smoking history, and chronic obstructive pulmonary disease were incorporated in the prediction models.The validated prediction model of the combined breath and clinical biosignature was moderately accurate at distinguishing lung cancer from control subjects (C-statistic 0.811). The accuracy improved when the model focused on only one histology (C-statistic 0.825-0.890). Individuals with different histologies could be accurately distinguished from one another (C-statistic 0.864 for adenocarcinoma versus squamous cell carcinoma). Moderate accuracies were noted for validated breath biosignatures of stage and survival (C-statistic 0.785 and 0.693, respectively).RESULTSThe validated prediction model of the combined breath and clinical biosignature was moderately accurate at distinguishing lung cancer from control subjects (C-statistic 0.811). The accuracy improved when the model focused on only one histology (C-statistic 0.825-0.890). Individuals with different histologies could be accurately distinguished from one another (C-statistic 0.864 for adenocarcinoma versus squamous cell carcinoma). Moderate accuracies were noted for validated breath biosignatures of stage and survival (C-statistic 0.785 and 0.693, respectively).A colorimetric sensor array is capable of identifying exhaled breath biosignatures of lung cancer. The accuracy of breath biosignatures can be optimized by evaluating specific histologies and incorporating clinical risk factors.CONCLUSIONSA colorimetric sensor array is capable of identifying exhaled breath biosignatures of lung cancer. The accuracy of breath biosignatures can be optimized by evaluating specific histologies and incorporating clinical risk factors. The pattern of exhaled breath volatile organic compounds represents a metabolic biosignature with the potential to identify and characterize lung cancer. Breath biosignature-based classification of homogeneous subgroups of lung cancer may be more accurate than a global breath signature. Combining breath biosignatures with clinical risk factors may improve the accuracy of the signature. To develop an exhaled breath biosignature of lung cancer using a colorimetric sensor array and to determine the accuracy of breath biosignatures of lung cancer characteristics with and without the inclusion of clinical risk factors. The exhaled breath of 229 study subjects, 92 with lung cancer and 137 controls, was drawn across a colorimetric sensor array. Logistic prediction models were developed and statistically validated based on the color changes of the sensor. Age, sex, smoking history, and chronic obstructive pulmonary disease were incorporated in the prediction models. The validated prediction model of the combined breath and clinical biosignature was moderately accurate at distinguishing lung cancer from control subjects (C-statistic 0.811). The accuracy improved when the model focused on only one histology (C-statistic 0.825-0.890). Individuals with different histologies could be accurately distinguished from one another (C-statistic 0.864 for adenocarcinoma versus squamous cell carcinoma). Moderate accuracies were noted for validated breath biosignatures of stage and survival (C-statistic 0.785 and 0.693, respectively). A colorimetric sensor array is capable of identifying exhaled breath biosignatures of lung cancer. The accuracy of breath biosignatures can be optimized by evaluating specific histologies and incorporating clinical risk factors. |
| Author | Beukemann, Mary C Mazzone, Peter J Xu, Yaomin Mekhail, Tarek Na, Jie Kemling, Jonathan W Suslick, Kenneth S Sasidhar, Madhu Wang, Xiao-Feng |
| Author_xml | – sequence: 1 givenname: Peter J surname: Mazzone fullname: Mazzone, Peter J email: mazzonp@ccf.org organization: Respiratory Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA. mazzonp@ccf.org – sequence: 2 givenname: Xiao-Feng surname: Wang fullname: Wang, Xiao-Feng – sequence: 3 givenname: Yaomin surname: Xu fullname: Xu, Yaomin – sequence: 4 givenname: Tarek surname: Mekhail fullname: Mekhail, Tarek – sequence: 5 givenname: Mary C surname: Beukemann fullname: Beukemann, Mary C – sequence: 6 givenname: Jie surname: Na fullname: Na, Jie – sequence: 7 givenname: Jonathan W surname: Kemling fullname: Kemling, Jonathan W – sequence: 8 givenname: Kenneth S surname: Suslick fullname: Suslick, Kenneth S – sequence: 9 givenname: Madhu surname: Sasidhar fullname: Sasidhar, Madhu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22071780$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUFtLwzAYDTJxF_0HInnzqTOXtkkfZcwbg73svaTJFxvpkpm06Pz1Vpzg07lwOHDOHE188IDQNSVLSipx97LbLklDKAdOJePcSGLP0IwWRZlRLsnkH5-ieUpvhOQFyeUFmjJGBBWSzFBaf7aqA4ObCKpvsfKqOyaX8If7UViHLkS3hz46jRP4FCJWMaojtiPrW8DOgO-ddVr1LvixwGDdqqh0D9F9_ZrB4m7wr1grryFeonOrugRXJ1yg3cN6t3rKNtvH59X9JtMFpTbLecW4LaUy1jKpTZUbDaYiWghoqCGWW2Zo3uSkrIhh0gJw0ZRclUJIVbIFuv2tPcTwPkDq671LGrpOeQhDqitKq7waPxmTN6fk0OzB1IdxsYrH-u8m9g3zkm-9 |
| CitedBy_id | crossref_primary_10_3390_chemosensors11090501 crossref_primary_10_1080_10408347_2025_2536822 crossref_primary_10_1080_00032719_2013_782550 crossref_primary_10_1080_14737159_2024_2316755 crossref_primary_10_3390_jcm10010032 crossref_primary_10_1016_j_snb_2017_10_091 crossref_primary_10_1097_01_JAA_0000443964_38857_22 crossref_primary_10_1016_j_snb_2020_127932 crossref_primary_10_1016_j_aca_2014_03_014 crossref_primary_10_1016_j_lungcan_2015_07_005 crossref_primary_10_1088_1752_7163_ad6474 crossref_primary_10_1002_sim_8454 crossref_primary_10_1371_journal_pone_0174802 crossref_primary_10_1007_s40137_013_0032_z crossref_primary_10_1016_j_snb_2017_11_067 crossref_primary_10_1038_s41598_017_02154_9 crossref_primary_10_1016_j_imed_2024_09_004 crossref_primary_10_3390_s22031238 crossref_primary_10_1088_1752_7163_ab09ae crossref_primary_10_1039_C3CS60329F crossref_primary_10_1039_D5NR01714A crossref_primary_10_1513_AnnalsATS_201411_540OC crossref_primary_10_1164_rccm_202310_1759OC crossref_primary_10_1016_j_esmogo_2025_100132 crossref_primary_10_3390_metabo5010003 crossref_primary_10_1016_j_imu_2021_100715 crossref_primary_10_1088_1752_7155_10_1_016007 crossref_primary_10_1002_smll_201501904 crossref_primary_10_1016_j_arbr_2020_10_004 crossref_primary_10_1016_j_trac_2021_116397 crossref_primary_10_1109_TBME_2015_2409092 crossref_primary_10_1002_cam4_162 crossref_primary_10_1016_j_diagmicrobio_2018_06_014 crossref_primary_10_1164_rccm_201410_1777CI crossref_primary_10_1586_14737140_2014_866044 crossref_primary_10_1007_s40242_014_4005_2 crossref_primary_10_3390_s17102420 crossref_primary_10_1039_C8CS00317C crossref_primary_10_1200_EDBK_199767 crossref_primary_10_3390_chemosensors9080209 crossref_primary_10_1016_j_clinbiochem_2025_110898 crossref_primary_10_1016_j_snb_2017_07_134 crossref_primary_10_3390_metabo9030052 crossref_primary_10_1088_1752_7155_9_4_046002 crossref_primary_10_1016_j_jtcvs_2014_06_006 crossref_primary_10_1088_1752_7155_7_3_039001 crossref_primary_10_1016_j_cbpa_2012_10_030 crossref_primary_10_1109_JSEN_2025_3576057 crossref_primary_10_1007_s11051_023_05783_6 crossref_primary_10_1038_s41598_020_62803_4 crossref_primary_10_1586_14737159_2016_1149469 crossref_primary_10_1002_sim_9687 crossref_primary_10_1016_j_snb_2017_08_057 crossref_primary_10_1109_JSEN_2020_3001285 crossref_primary_10_1007_s00216_021_03333_4 crossref_primary_10_1016_j_tibtech_2016_08_005 crossref_primary_10_1136_jclinpath_2014_202414 crossref_primary_10_1002_ange_201500153 crossref_primary_10_4155_bio_13_183 crossref_primary_10_1186_1465_9921_13_117 crossref_primary_10_1039_c3cs60179j crossref_primary_10_1118_1_4892381 crossref_primary_10_2217_nnm_13_64 crossref_primary_10_3390_s25030797 crossref_primary_10_1038_bjc_2014_411 crossref_primary_10_3390_metabo5010140 crossref_primary_10_1586_14737140_2013_866044 crossref_primary_10_2217_bmm_2020_0828 crossref_primary_10_1016_j_nancom_2016_09_001 crossref_primary_10_3390_bios14020090 crossref_primary_10_1002_mas_21393 crossref_primary_10_1097_LBR_0000000000000509 crossref_primary_10_3390_bios11090337 crossref_primary_10_1007_s00542_024_05656_5 crossref_primary_10_1016_j_microc_2024_110051 crossref_primary_10_1007_s40291_023_00640_7 crossref_primary_10_1038_srep07312 crossref_primary_10_1111_cea_12052 crossref_primary_10_1183_16000617_0011_2019 crossref_primary_10_1002_anie_201500153 crossref_primary_10_1016_j_snb_2024_135578 crossref_primary_10_1088_1752_7155_9_3_034001 crossref_primary_10_1016_j_talanta_2023_124767 crossref_primary_10_3390_s18020378 crossref_primary_10_1016_j_bios_2023_115237 crossref_primary_10_1088_1752_7163_ab0684 crossref_primary_10_3390_s19235333 crossref_primary_10_1016_j_jtcvs_2023_02_029 crossref_primary_10_1134_S1061934819050034 crossref_primary_10_2217_fon_2017_0676 crossref_primary_10_3390_foods11223577 crossref_primary_10_3390_app14114506 crossref_primary_10_3390_metabo13020203 crossref_primary_10_1038_srep16491 crossref_primary_10_3390_s17020287 crossref_primary_10_1016_j_snb_2019_03_023 crossref_primary_10_2147_LCTT_S320493 crossref_primary_10_2217_lmt_13_58 crossref_primary_10_3390_biomedicines11113029 crossref_primary_10_1142_S1088424617300026 crossref_primary_10_1021_acssensors_5c01026 crossref_primary_10_3390_chemosensors13010015 crossref_primary_10_1016_j_arbres_2019_12_023 crossref_primary_10_1146_annurev_anchem_062011_143205 crossref_primary_10_3390_s16111891 crossref_primary_10_1016_j_snb_2023_134561 crossref_primary_10_1007_s11306_024_02180_5 crossref_primary_10_3390_molecules26123776 crossref_primary_10_1016_j_chest_2022_09_042 crossref_primary_10_1097_JTO_0000000000000447 crossref_primary_10_1183_23120541_00723_2024 crossref_primary_10_1016_j_apsusc_2025_162985 crossref_primary_10_1016_j_chest_2017_01_018 crossref_primary_10_1007_s10854_022_08703_x crossref_primary_10_1183_16000617_0002_2019 crossref_primary_10_1016_j_thorsurg_2013_01_002 crossref_primary_10_1088_1752_7163_abaecb crossref_primary_10_1007_s00216_018_0948_3 crossref_primary_10_1088_1361_6528_ab82d5 crossref_primary_10_1016_j_cca_2020_12_036 crossref_primary_10_1007_s11306_013_0568_z crossref_primary_10_1016_j_trac_2022_116655 crossref_primary_10_1586_14737159_2015_1043895 crossref_primary_10_1016_j_proche_2016_07_027 crossref_primary_10_1016_S1872_2040_13_60658_1 crossref_primary_10_1039_D5RA02537K crossref_primary_10_1109_JSEN_2013_2259810 crossref_primary_10_1177_1553350618781267 crossref_primary_10_1039_C3AN02112B crossref_primary_10_1088_1752_7155_8_2_027112 crossref_primary_10_1007_s00604_019_3696_y crossref_primary_10_1016_j_compbiomed_2020_103706 crossref_primary_10_1088_1752_7163_acb791 crossref_primary_10_1134_S1061934821080050 crossref_primary_10_1007_s10812_019_00775_8 crossref_primary_10_1016_j_arcmed_2018_04_004 crossref_primary_10_3390_bios10110171 crossref_primary_10_3389_fonc_2021_606915 crossref_primary_10_3103_S1068337221040046 crossref_primary_10_1039_C8RA09640F crossref_primary_10_1016_j_tube_2012_04_002 crossref_primary_10_18632_oncotarget_5938 crossref_primary_10_3390_bios10080084 crossref_primary_10_3390_chemosensors11060317 crossref_primary_10_1063_5_0025462 crossref_primary_10_1021_acs_chemrev_8b00226 crossref_primary_10_1093_annonc_mds303 crossref_primary_10_3390_s22030718 crossref_primary_10_3390_bios7040059 crossref_primary_10_1007_s13167_017_0083_9 crossref_primary_10_1016_j_jtho_2018_02_026 crossref_primary_10_1088_1752_7163_aca119 crossref_primary_10_1016_j_bios_2014_10_023 crossref_primary_10_1007_s00216_015_9200_6 crossref_primary_10_1080_10408347_2016_1233805 crossref_primary_10_1070_RCR4831 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1097/JTO.0b013e318233d80f |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1556-1380 |
| ExternalDocumentID | 22071780 |
| Genre | Clinical Trial Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: U01 ES016011 – fundername: NIEHS NIH HHS grantid: U01ES016011 |
| GroupedDBID | --- .55 .XZ .Z2 0R~ 457 53G 5GY 5VS AAEDW AAKAS AALRI AAWTL AAXUO AAYWO ABBUW ABJNI ABMAC ABPMR ACDDN ACGFS ACVFH ACWDW ACWRI ADBBV ADBIZ ADCNI ADEZE ADVLN ADZCM AE3 AENEX AEUPX AEXQZ AFJKZ AFPUW AFTJW AFTRI AGHFR AIGII AITUG AIZYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BOYCO C45 CGR CS3 CUY CVF DU5 E.X EBS ECM EFKBS EIF EJD EX3 F5P FDB FL- HZ~ IN~ KD2 NPM NTWIH O9- OFXIZ OGEVE OK1 OVD P2P ROL S4S SSZ TEORI V2I W3M WOQ WOW X7M 7X8 |
| ID | FETCH-LOGICAL-c511f-43923f68adff28cd94dced90c77eb1d0f3f2d14b40690d28fee37b63a6778a62 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 198 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000300305600021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1556-1380 |
| IngestDate | Thu Oct 02 06:21:31 EDT 2025 Mon Nov 17 00:29:35 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c511f-43923f68adff28cd94dced90c77eb1d0f3f2d14b40690d28fee37b63a6778a62 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1097/JTO.0b013e318233d80f |
| PMID | 22071780 |
| PQID | 911949045 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_911949045 pubmed_primary_22071780 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-Jan 20120101 |
| PublicationDateYYYYMMDD | 2012-01-01 |
| PublicationDate_xml | – month: 01 year: 2012 text: 2012-Jan |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of thoracic oncology |
| PublicationTitleAlternate | J Thorac Oncol |
| PublicationYear | 2012 |
| SSID | ssj0045048 |
| Score | 2.4572341 |
| Snippet | The pattern of exhaled breath volatile organic compounds represents a metabolic biosignature with the potential to identify and characterize lung cancer.... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 137 |
| SubjectTerms | Adenocarcinoma - diagnosis Adenocarcinoma - pathology Adult Aged Breath Tests Carcinoma, Non-Small-Cell Lung - diagnosis Carcinoma, Non-Small-Cell Lung - pathology Carcinoma, Small Cell - diagnosis Carcinoma, Small Cell - pathology Carcinoma, Squamous Cell - diagnosis Carcinoma, Squamous Cell - pathology Colorimetry Humans Logistic Models Lung Neoplasms - diagnosis Lung Neoplasms - pathology Middle Aged Neoplasm Staging Predictive Value of Tests Prospective Studies ROC Curve |
| Title | Exhaled breath analysis with a colorimetric sensor array for the identification and characterization of lung cancer |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22071780 https://www.proquest.com/docview/911949045 |
| Volume | 7 |
| WOSCitedRecordID | wos000300305600021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAIsTC-1FeuoE1qmu7eUwIISqEaOnQoVvk-Gy1EmpKAgj-PeckLRNiYMmUWNH5fPf5Ht8xds25doQSXCCyEANlIx5kpqtoQ1zo4kxhDyvK_KdoOIwnk2TU1OaUTVnl0iZWhhpz42PkHTqUiUoIgNwsXgM_NMonV5sJGuusJQnJ-IquaLJKIqger4ZnkcesqPb4snMuiTqP4-efEKCQEmPufseYla_p7_7zL_fYTgMy4bbWin22ZucHbGvQpNEPWXn_OSXHgJB5yDgF3TCTgI_KggbPZO1p_z17P5R00c0L0EWhv4AgLhBkhBk2VUbVxtICCGZF_Vx3dkLu4IVMCRivWMURG_fvx3cPQTN9ITAEwlxASEVIF8YanROxwUShsZhwE0Vk35E76QR2VeZbZzmK2FkroyyU2lPS6VAcs415PrenDExsuSZBo-eeMxw1vWBlxpWSque4aTNYCjMl5fYZCz23-XuZrsTZZif1hqSLmoQjFcLfRGN-9vfH52ybYI6oAycXrOXoYNtLtmk-3mZlcVUpDT2Ho8E3RkjOaQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exhaled+breath+analysis+with+a+colorimetric+sensor+array+for+the+identification+and+characterization+of+lung+cancer&rft.jtitle=Journal+of+thoracic+oncology&rft.au=Mazzone%2C+Peter+J&rft.au=Wang%2C+Xiao-Feng&rft.au=Xu%2C+Yaomin&rft.au=Mekhail%2C+Tarek&rft.date=2012-01-01&rft.eissn=1556-1380&rft.volume=7&rft.issue=1&rft.spage=137&rft_id=info:doi/10.1097%2FJTO.0b013e318233d80f&rft_id=info%3Apmid%2F22071780&rft_id=info%3Apmid%2F22071780&rft.externalDocID=22071780 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-1380&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-1380&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-1380&client=summon |