Strong seasonal differences of bacterial polysaccharide utilization in the North Sea over an annual cycle

Summary Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton‐derived polysaccharides. The patterns and rates of two different polysaccharide utilization modes – extracellular hydrolysis and selfish uptake – have previously been found to c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Environmental microbiology Ročník 24; číslo 5; s. 2333 - 2347
Hlavní autori: Giljan, Greta, Arnosti, Carol, Kirstein, Inga V., Amann, Rudolf, Fuchs, Bernhard M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken, USA John Wiley & Sons, Inc 01.05.2022
Wiley Subscription Services, Inc
Predmet:
ISSN:1462-2912, 1462-2920, 1462-2920
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Summary Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton‐derived polysaccharides. The patterns and rates of two different polysaccharide utilization modes – extracellular hydrolysis and selfish uptake – have previously been found to change during spring phytoplankton bloom events. Here we investigated seasonal changes in bacterial utilization of three polysaccharides, laminarin, xylan and chondroitin sulfate. Strong seasonal differences were apparent in mode and speed of polysaccharide utilization, as well as in bacterial community compositions. Compared to the winter month of February, during the spring bloom in May, polysaccharide utilization was detected earlier in the incubations and a higher portion of all bacteria took up laminarin selfishly. Highest polysaccharide utilization was measured in June and September, mediated by bacterial communities that were significantly different from spring assemblages. Extensive selfish laminarin uptake, for example, was detectible within a few hours in June, while extracellular hydrolysis of chondroitin was dominant in September. In addition to the well‐known Bacteroidota and Gammaproteobacteria clades, the numerically minor verrucomicrobial clade Pedosphaeraceae could be identified as a rapid laminarin utilizer. In summary, polysaccharide utilization proved highly variable over the seasons, both in mode and speed, and also by the bacterial clades involved.
AbstractList Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton‐derived polysaccharides. The patterns and rates of two different polysaccharide utilization modes – extracellular hydrolysis and selfish uptake – have previously been found to change during spring phytoplankton bloom events. Here we investigated seasonal changes in bacterial utilization of three polysaccharides, laminarin, xylan and chondroitin sulfate. Strong seasonal differences were apparent in mode and speed of polysaccharide utilization, as well as in bacterial community compositions. Compared to the winter month of February, during the spring bloom in May, polysaccharide utilization was detected earlier in the incubations and a higher portion of all bacteria took up laminarin selfishly. Highest polysaccharide utilization was measured in June and September, mediated by bacterial communities that were significantly different from spring assemblages. Extensive selfish laminarin uptake, for example, was detectible within a few hours in June, while extracellular hydrolysis of chondroitin was dominant in September. In addition to the well‐known Bacteroidota and Gammaproteobacteria clades, the numerically minor verrucomicrobial clade Pedosphaeraceae could be identified as a rapid laminarin utilizer. In summary, polysaccharide utilization proved highly variable over the seasons, both in mode and speed, and also by the bacterial clades involved.
Summary Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton‐derived polysaccharides. The patterns and rates of two different polysaccharide utilization modes – extracellular hydrolysis and selfish uptake – have previously been found to change during spring phytoplankton bloom events. Here we investigated seasonal changes in bacterial utilization of three polysaccharides, laminarin, xylan and chondroitin sulfate. Strong seasonal differences were apparent in mode and speed of polysaccharide utilization, as well as in bacterial community compositions. Compared to the winter month of February, during the spring bloom in May, polysaccharide utilization was detected earlier in the incubations and a higher portion of all bacteria took up laminarin selfishly. Highest polysaccharide utilization was measured in June and September, mediated by bacterial communities that were significantly different from spring assemblages. Extensive selfish laminarin uptake, for example, was detectible within a few hours in June, while extracellular hydrolysis of chondroitin was dominant in September. In addition to the well‐known Bacteroidota and Gammaproteobacteria clades, the numerically minor verrucomicrobial clade Pedosphaeraceae could be identified as a rapid laminarin utilizer. In summary, polysaccharide utilization proved highly variable over the seasons, both in mode and speed, and also by the bacterial clades involved.
Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton-derived polysaccharides. The patterns and rates of two different polysaccharide utilization modes - extracellular hydrolysis and selfish uptake - have previously been found to change during spring phytoplankton bloom events. Here we investigated seasonal changes in bacterial utilization of three polysaccharides, laminarin, xylan and chondroitin sulfate. Strong seasonal differences were apparent in mode and speed of polysaccharide utilization, as well as in bacterial community compositions. Compared to the winter month of February, during the spring bloom in May, polysaccharide utilization was detected earlier in the incubations and a higher portion of all bacteria took up laminarin selfishly. Highest polysaccharide utilization was measured in June and September, mediated by bacterial communities that were significantly different from spring assemblages. Extensive selfish laminarin uptake, for example, was detectible within a few hours in June, while extracellular hydrolysis of chondroitin was dominant in September. In addition to the well-known Bacteroidota and Gammaproteobacteria clades, the numerically minor verrucomicrobial clade Pedosphaeraceae could be identified as a rapid laminarin utilizer. In summary, polysaccharide utilization proved highly variable over the seasons, both in mode and speed, and also by the bacterial clades involved.Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton-derived polysaccharides. The patterns and rates of two different polysaccharide utilization modes - extracellular hydrolysis and selfish uptake - have previously been found to change during spring phytoplankton bloom events. Here we investigated seasonal changes in bacterial utilization of three polysaccharides, laminarin, xylan and chondroitin sulfate. Strong seasonal differences were apparent in mode and speed of polysaccharide utilization, as well as in bacterial community compositions. Compared to the winter month of February, during the spring bloom in May, polysaccharide utilization was detected earlier in the incubations and a higher portion of all bacteria took up laminarin selfishly. Highest polysaccharide utilization was measured in June and September, mediated by bacterial communities that were significantly different from spring assemblages. Extensive selfish laminarin uptake, for example, was detectible within a few hours in June, while extracellular hydrolysis of chondroitin was dominant in September. In addition to the well-known Bacteroidota and Gammaproteobacteria clades, the numerically minor verrucomicrobial clade Pedosphaeraceae could be identified as a rapid laminarin utilizer. In summary, polysaccharide utilization proved highly variable over the seasons, both in mode and speed, and also by the bacterial clades involved.
Author Arnosti, Carol
Giljan, Greta
Kirstein, Inga V.
Fuchs, Bernhard M.
Amann, Rudolf
Author_xml – sequence: 1
  givenname: Greta
  orcidid: 0000-0002-7868-4495
  surname: Giljan
  fullname: Giljan, Greta
  organization: Max Planck Institute for Marine Microbiology
– sequence: 2
  givenname: Carol
  orcidid: 0000-0002-6074-5341
  surname: Arnosti
  fullname: Arnosti, Carol
  organization: University of North Carolina‐Chapel Hill
– sequence: 3
  givenname: Inga V.
  surname: Kirstein
  fullname: Kirstein, Inga V.
  organization: Alfred‐Wegner‐Institute Helmholtz‐Center for Polar and Marine Research, Biological Station Helgoland
– sequence: 4
  givenname: Rudolf
  surname: Amann
  fullname: Amann, Rudolf
  organization: Max Planck Institute for Marine Microbiology
– sequence: 5
  givenname: Bernhard M.
  surname: Fuchs
  fullname: Fuchs, Bernhard M.
  email: bfuchs@mpi-bremen.de
  organization: Max Planck Institute for Marine Microbiology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35384240$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1vVCEUxYmpsR-6dmdI3LgZ--Dx8ViaptYmVRfVNQHexaFhYIT3asa_vsxMnUU3ldwELvzOJTnnFB2lnACht6T7SNo6J0zQBVW0tVwp-QKdHG6ODmdCj9FprXddR2Qvu1fouOf9wCjrTlC4nUpOv3AFU3MyEY_BeyiQHFScPbbGTVBCe1jnuKnGuaUpYQQ8TyGGv2YKOeGQ8LQE_C2XaYlvweB8DwWb1CrNTeo2LsJr9NKbWOHN436Gfn6-_HHxZXHz_er64tPNwnFC5MKqAQS1puNSjNxQNTAwwnOimLVeKtsN0A-WKeqZBzkMvSIwshGso0J405-hD_u565J_z1AnvQrVQYwmQZ6rpkJyLpQY-v9AmRSc92yLvn-C3uW5NMN2AwkdFBOqUe8eqdmuYNTrElambPQ_vxtwvgdcybUW8AeEdHqbqN5mprf56V2iTcGfKFyYdrZPxYT4vO5PiLB57ht9-fV6r3sA1ZSyRw
CitedBy_id crossref_primary_10_1128_spectrum_01602_24
crossref_primary_10_1016_j_celrep_2025_115415
crossref_primary_10_3389_fmars_2024_1462522
crossref_primary_10_1016_j_jhazmat_2025_139949
crossref_primary_10_1111_1462_2920_16687
crossref_primary_10_1111_1758_2229_13313
crossref_primary_10_1128_msystems_01287_22
Cites_doi 10.1038/s41396-018-0326-3
10.1111/j.1574-6941.2008.00587.x
10.1038/s41396-019-0476-y
10.1038/nrmicro2746
10.3354/meps010257
10.1016/S0168-6496(03)00305-2
10.1093/glycob/4.6.759
10.1038/ncomms14853
10.1016/S0304-4203(96)00041-2
10.1146/annurev-marine-032020-012810
10.1038/s41396-021-00928-8
10.1111/1462-2920.14304
10.1128/AEM.00899-14
10.1101/2021.07.26.453833
10.1128/AEM.02070-15
10.1016/j.marchem.2018.09.008
10.1093/nar/gks1219
10.7554/eLife.11888
10.1038/nature13995
10.1038/s41396-018-0242-6
10.1038/s41396-018-0243-5
10.1371/journal.pone.0035314
10.1038/ismej.2012.86
10.3389/fmars.2017.00006
10.1038/ismej.2016.66
10.1016/S0723-2020(11)80121-9
10.1128/AEM.69.6.3500-3509.2003
10.3389/fmicb.2020.583158
10.1126/science.1218344
10.1002/bies.20740
10.1111/1462-2920.14971
10.1080/01490450600897336
10.1128/JB.183.24.7224-7230.2001
10.1038/s41564-020-0720-2
10.1016/S0304-4203(98)00057-7
10.1128/AEM.01541-09
10.1371/journal.pone.0028900
10.4319/lo.2008.53.4.1294
10.1038/ismej.2017.26
10.3354/meps186105
10.3389/fmars.2019.00394
10.1579/0044-7447-33.8.565
10.1016/j.cub.2013.10.030
10.1073/pnas.1514645113
10.1016/S0146-6380(96)00112-X
10.1890/12-1652.1
10.1016/0016-7037(95)00247-W
10.1016/S1570-0232(03)00375-1
10.1016/j.syapm.2018.08.007
ContentType Journal Article
Copyright 2022 The Authors. published by Society for Applied Microbiology and John Wiley & Sons Ltd.
2022 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Society for Applied Microbiology and John Wiley & Sons Ltd.
– notice: 2022 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
7S9
L.6
DOI 10.1111/1462-2920.15997
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Aqualine
Bacteriology Abstracts (Microbiology B)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Oceanic Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 2347
ExternalDocumentID 35384240
10_1111_1462_2920_15997
EMI15997
Genre article
Journal Article
GeographicLocations North Sea
GeographicLocations_xml – name: North Sea
GrantInformation_xml – fundername: U.S. National Science Foundation
  funderid: OCE‐1736772; OCE‐2022952
– fundername: Max‐Planck‐Gesellschaft
– fundername: Deutsche Forschungsgemeinschaft
  funderid: FOR 2406; FU 627/2‐1
– fundername: U.S. National Science Foundation
  grantid: OCE-2022952
– fundername: Deutsche Forschungsgemeinschaft
  grantid: FU 627/2-1
– fundername: U.S. National Science Foundation
  grantid: OCE-1736772
– fundername: Max-Planck-Gesellschaft
– fundername: Deutsche Forschungsgemeinschaft
  grantid: FOR 2406
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c5117-b98e62ba0576d5a2984ea6f5194bbf79b08e38b492f4fe788391ed4debc266fa3
IEDL.DBID 24P
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000782950000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1462-2912
1462-2920
IngestDate Fri Jul 11 18:31:24 EDT 2025
Sun Nov 09 12:33:33 EST 2025
Fri Jul 25 12:14:11 EDT 2025
Wed Feb 19 02:25:48 EST 2025
Sat Nov 29 06:57:57 EST 2025
Tue Nov 18 22:35:21 EST 2025
Wed Jan 22 16:26:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution-NonCommercial
2022 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5117-b98e62ba0576d5a2984ea6f5194bbf79b08e38b492f4fe788391ed4debc266fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7868-4495
0000-0002-6074-5341
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.15997
PMID 35384240
PQID 2671289469
PQPubID 1066360
PageCount 15
ParticipantIDs proquest_miscellaneous_2675569683
proquest_miscellaneous_2647655343
proquest_journals_2671289469
pubmed_primary_35384240
crossref_primary_10_1111_1462_2920_15997
crossref_citationtrail_10_1111_1462_2920_15997
wiley_primary_10_1111_1462_2920_15997_EMI15997
PublicationCentury 2000
PublicationDate May 2022
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: Oxford
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2020a; 22
2017; 8
2001; 183
2019; 6
2017; 4
1995; 59
2018; 206
2004; 47
2019; 13
2013; 41
1999; 186
2016; 10
1983; 10
2014; 24
2008; 30
1992; 15
2008; 53
1998; 63
2013; 7
2011; 6
2018; 20
2003; 793
2012; 10
1996; 55
2021; 13
2004; 33
2016; 5
2021; 38
2021; 15
2020; 5
2014; 80
2009; 75
2006; 23
2019; 42
2015; 81
2021
2017; 11
2013; 94
2016; 113
2003; 69
2015; 517
2008; 66
2016; 82
1996; 25
2012; 7
2012; 336
1994; 4
2020b; 11
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
Orellana H.L. (e_1_2_6_39_1) 2021; 38
e_1_2_6_18_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
Bennke C.M. (e_1_2_6_13_1) 2016; 82
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 59
  start-page: 4247
  year: 1995
  end-page: 4257
  article-title: Measurement of depth‐ and site‐related differences in polysaccharide hydrolysis rates in marine sediments
  publication-title: Geochim Cosmochim Acta
– volume: 55
  start-page: 281
  year: 1996
  end-page: 297
  article-title: Major biochemical composition of dissolved higher molecular weight organic matter in seawater
  publication-title: Mar Chem
– volume: 22
  start-page: 1884
  year: 2020a
  end-page: 1900
  article-title: Short‐term changes in polysaccharide utilization mechanisms of marine bacterioplankton during a spring phytoplankton bloom
  publication-title: Environ Microbiol
– volume: 5
  start-page: 1
  year: 2020
  end-page: 14
  article-title: use hundreds of enzymes to digest the algal polysaccharide fucoidan
  publication-title: Nat Microbiol
– volume: 13
  start-page: 76
  year: 2019
  end-page: 91
  article-title: Polysaccharide utilization loci of North Sea as basis for using SusC/D‐protein expression for predicting major phytoplankton glycans
  publication-title: ISME J.
– volume: 13
  start-page: 2800
  year: 2019
  end-page: 2816
  article-title: In marine the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes
  publication-title: ISME J
– volume: 7
  start-page: 1
  year: 2012
  end-page: 11
  article-title: Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of
  publication-title: PLoS ONE
– year: 2021
  article-title: Selfish bacteria are active throughout the water column of the ocean
  publication-title: bioRxiv
– volume: 25
  start-page: 105
  year: 1996
  end-page: 115
  article-title: A new method for measuring polysaccharide hydrolysis rates in marine environments
  publication-title: Org Geochem
– volume: 23
  start-page: 551
  year: 2006
  end-page: 563
  article-title: Organic carbon degradation in arctic marine sediments, Svalbard: a comparison of initial and terminal steps
  publication-title: Geomicrobiol J
– volume: 517
  start-page: 165
  year: 2015
  end-page: 169
  article-title: Human gut can utilize yeast mannan through a selfish mechanism
  publication-title: Nature
– volume: 38
  start-page: 1
  year: 2021
  end-page: 12
  article-title: Verrucomicrobiota are specialized consumers of sulfated methyl pentoses during diatom blooms
  publication-title: ISME J
– volume: 81
  start-page: 7385
  year: 2015
  end-page: 7393
  article-title: A model of extracellular enzymes in free‐ living microbes: which strategy pays off?
  publication-title: Appl Environ Microbiol
– volume: 336
  start-page: 608
  year: 2012
  end-page: 611
  article-title: Substrate‐ controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom
  publication-title: Science
– volume: 20
  start-page: 2941
  year: 2018
  end-page: 2954
  article-title: Structure and function of high Arctic pelagic, particle‐ associated and benthic bacterial communities
  publication-title: Environ Microbiol
– volume: 33
  start-page: 565
  year: 2004
  end-page: 575
  article-title: Particulate organic matter in the sea: the composition conundrum
  publication-title: Ambio
– volume: 793
  start-page: 181
  year: 2003
  end-page: 191
  article-title: Fluorescent derivatization of polysaccharides and carbohydrate‐containing biopolymers for measurement of enzyme activities in complex media
  publication-title: J Chromat B
– volume: 41
  start-page: 590
  year: 2013
  end-page: 596
  article-title: The SILVA ribosomal RNA gene database project: improved data processing and web‐based tools
  publication-title: Nucl Acids Res
– volume: 4
  start-page: 1
  year: 2017
  end-page: 10
  article-title: Marine polysaccharide sulfatases
  publication-title: Front Mar Sci
– volume: 10
  start-page: 257
  year: 1983
  end-page: 263
  article-title: The ecological role of water‐column microbes in the sea
  publication-title: Mar Ecol Prog Ser
– volume: 13
  start-page: 1119
  year: 2019
  end-page: 1132
  article-title: Selfish, sharing and scavenging bacteria in the Atlantic Ocean: a biogeographical study of bacterial substrate utilization
  publication-title: ISME J
– volume: 10
  start-page: 2582
  year: 2016
  end-page: 2592
  article-title: Bacteriplankton niche partitioning in the use of phytoplankton‐derived dissolved organic carbon: quantity is more important than quality
  publication-title: ISME J
– volume: 63
  start-page: 131
  year: 1998
  end-page: 144
  article-title: Carbohydrates in phytoplankton and freshly produced dissolved organic matter
  publication-title: Mar Chem
– volume: 69
  start-page: 3500
  year: 2003
  end-page: 3509
  article-title: Bacterial colonization of particles: growth and interactions
  publication-title: Appl Environ Microbiol
– volume: 6
  start-page: 1
  year: 2011
  end-page: 6
  article-title: Latitudinal gradients in degradation of marine dissolved organic carbon
  publication-title: PLoS One
– volume: 75
  start-page: 7537
  year: 2009
  end-page: 7541
  article-title: Introducing mothur: open‐source, platform‐independent, community‐supported software for describing and comparing microbial communities
  publication-title: Appl Environ Microbiol
– volume: 11
  start-page: 1640
  year: 2017
  end-page: 1650
  article-title: An alternative polysaccharide uptake mechanism of marine bacteria
  publication-title: ISME J
– volume: 183
  start-page: 7224
  year: 2001
  end-page: 7230
  article-title: Biochemical analysis of interactions of outer membrane proteins that contribute to starch utilization by
  publication-title: J Bacteriol
– volume: 15
  start-page: 593
  year: 1992
  end-page: 600
  article-title: Phylogenetic oligodeoxynucleotide probes for the major subclasses of : problems and solutions
  publication-title: Syst Appl Microbiol
– volume: 94
  start-page: 870
  year: 2013
  end-page: 881
  article-title: Coaggregation in a microbial predator – prey system affects competition and trophic transfer efficiency
  publication-title: Ecology
– volume: 206
  start-page: 93
  year: 2018
  end-page: 99
  article-title: A mechanistic microbial underpinning for the size‐reactivity continuum of dissolved organic carbon degradation
  publication-title: Mar Chem
– volume: 47
  start-page: 387
  year: 2004
  end-page: 396
  article-title: Antagonistic activity of bacteria isolated from organic aggregates of the German Wassen Sea
  publication-title: FEMS Microbiol Ecol
– volume: 30
  start-page: 296
  year: 2008
  end-page: 298
  article-title: Multicellular behavior in bacteria: communication, cooperation, competition and cheating
  publication-title: BioEssays
– volume: 11
  start-page: 1
  year: 2020b
  end-page: 14
  article-title: Extensive microbial processing of polysaccharides in the South Pacific Gyre via selfish uptake and extracellular hydrolysis
  publication-title: Front Microbiol
– volume: 15
  start-page: 2336
  year: 2021
  end-page: 2350
  article-title: Changing expression patterns of TonB‐dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom
  publication-title: ISME J
– volume: 13
  start-page: 81
  year: 2021
  end-page: 108
  article-title: The biogeochemistry of marine polysaccharides: sources, inventories, and bacterial drivers of the carbohydrate cycle
  publication-title: Ann Rev Mar Sci
– volume: 24
  start-page: 50
  year: 2014
  end-page: 55
  article-title: Solutions to the public goods dilemma in bacterial biofilms
  publication-title: Curr Biol
– volume: 10
  start-page: 323
  year: 2012
  end-page: 335
  article-title: How glycan metabolism shapes the human gut microbiota
  publication-title: Nat Rev Microbiol
– volume: 186
  start-page: 105
  year: 1999
  end-page: 117
  article-title: A comparison of the chemical characteristics of oceanic DOM and extracellular DOM produced by marine algae
  publication-title: Mar Ecol Prog Ser
– volume: 66
  start-page: 343
  year: 2008
  end-page: 351
  article-title: Functional differences between Arctic seawater and sedimentary microbial communities: contrasts in microbial hydrolysis of complex substrates
  publication-title: FEMS Microbiol Ecol
– volume: 7
  start-page: 137
  year: 2013
  end-page: 147
  article-title: Metabolic potential of a single cell belonging to one of the most abundant lineages in freshwater bacterioplankton
  publication-title: ISME J
– volume: 8
  start-page: 1
  year: 2017
  end-page: 14
  article-title: Determining the bacterial cell biology of
  publication-title: Nat Commun
– volume: 5
  year: 2016
  article-title: Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms
  publication-title: eLife
– volume: 113
  start-page: 3143
  year: 2016
  end-page: 3151
  article-title: Deciphering Ocean carbon in a changing world
  publication-title: Proc Natl Acad Sci U S A
– volume: 4
  start-page: 759
  year: 1994
  end-page: 767
  article-title: Invited commentary: a calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 x 10 structures for a reducing hexasaccharide: The to development of sinle‐method saccharide sequencing or synthesis systems
  publication-title: Glycobiology
– volume: 80
  start-page: 3749
  year: 2014
  end-page: 3756
  article-title: are candidates for polysaccharide‐degrading bacterioplankton in an arctic fjord of Svalbard
  publication-title: Appl Environ Microbiol
– volume: 53
  start-page: 1294
  year: 2008
  end-page: 1302
  article-title: Resilience of North Sea phytoplankton spring bloom dynamics: an analysis of long‐term data at Helgoland Roads
  publication-title: Limnol Oceanogr
– volume: 42
  start-page: 41
  year: 2019
  end-page: 53
  article-title: Prosiliicoccus vernus, a spring phytoplankton bloom associated member of the
  publication-title: Syst Appl Microbiol
– volume: 6
  start-page: 1
  year: 2019
  end-page: 13
  article-title: Gulf stream ring intrusion on the mid‐Atlantic bight shelf affects microbially‐driven carbon cycling
  publication-title: Front Mar Sci
– volume: 82
  start-page: 3289
  year: 2016
  end-page: 3296
  article-title: Modification of a high‐throughput automatic microbial cell enumeration system for shipboard analyses
  publication-title: Auto Microb Cell
– ident: e_1_2_6_41_1
  doi: 10.1038/s41396-018-0326-3
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1574-6941.2008.00587.x
– ident: e_1_2_6_32_1
  doi: 10.1038/s41396-019-0476-y
– ident: e_1_2_6_31_1
  doi: 10.1038/nrmicro2746
– ident: e_1_2_6_11_1
  doi: 10.3354/meps010257
– ident: e_1_2_6_27_1
  doi: 10.1016/S0168-6496(03)00305-2
– ident: e_1_2_6_33_1
  doi: 10.1093/glycob/4.6.759
– volume: 82
  start-page: 3289
  year: 2016
  ident: e_1_2_6_13_1
  article-title: Modification of a high‐throughput automatic microbial cell enumeration system for shipboard analyses
  publication-title: Auto Microb Cell
– ident: e_1_2_6_15_1
  doi: 10.1038/ncomms14853
– volume: 38
  start-page: 1
  year: 2021
  ident: e_1_2_6_39_1
  article-title: Verrucomicrobiota are specialized consumers of sulfated methyl pentoses during diatom blooms
  publication-title: ISME J
– ident: e_1_2_6_37_1
  doi: 10.1016/S0304-4203(96)00041-2
– ident: e_1_2_6_10_1
  doi: 10.1146/annurev-marine-032020-012810
– ident: e_1_2_6_22_1
  doi: 10.1038/s41396-021-00928-8
– ident: e_1_2_6_12_1
  doi: 10.1111/1462-2920.14304
– ident: e_1_2_6_16_1
  doi: 10.1128/AEM.00899-14
– ident: e_1_2_6_25_1
  doi: 10.1101/2021.07.26.453833
– ident: e_1_2_6_50_1
  doi: 10.1128/AEM.02070-15
– ident: e_1_2_6_8_1
  doi: 10.1016/j.marchem.2018.09.008
– ident: e_1_2_6_40_1
  doi: 10.1093/nar/gks1219
– ident: e_1_2_6_49_1
  doi: 10.7554/eLife.11888
– ident: e_1_2_6_19_1
  doi: 10.1038/nature13995
– ident: e_1_2_6_30_1
  doi: 10.1038/s41396-018-0242-6
– ident: e_1_2_6_51_1
  doi: 10.1038/s41396-018-0243-5
– ident: e_1_2_6_36_1
  doi: 10.1371/journal.pone.0035314
– ident: e_1_2_6_24_1
  doi: 10.1038/ismej.2012.86
– ident: e_1_2_6_28_1
  doi: 10.3389/fmars.2017.00006
– ident: e_1_2_6_45_1
  doi: 10.1038/ismej.2016.66
– ident: e_1_2_6_35_1
  doi: 10.1016/S0723-2020(11)80121-9
– ident: e_1_2_6_26_1
  doi: 10.1128/AEM.69.6.3500-3509.2003
– ident: e_1_2_6_43_1
  doi: 10.3389/fmicb.2020.583158
– ident: e_1_2_6_48_1
  doi: 10.1126/science.1218344
– ident: e_1_2_6_21_1
  doi: 10.1002/bies.20740
– ident: e_1_2_6_44_1
  doi: 10.1111/1462-2920.14971
– ident: e_1_2_6_7_1
  doi: 10.1080/01490450600897336
– ident: e_1_2_6_17_1
  doi: 10.1128/JB.183.24.7224-7230.2001
– ident: e_1_2_6_47_1
  doi: 10.1038/s41564-020-0720-2
– ident: e_1_2_6_14_1
  doi: 10.1016/S0304-4203(98)00057-7
– ident: e_1_2_6_46_1
  doi: 10.1128/AEM.01541-09
– ident: e_1_2_6_9_1
  doi: 10.1371/journal.pone.0028900
– ident: e_1_2_6_52_1
  doi: 10.4319/lo.2008.53.4.1294
– ident: e_1_2_6_42_1
  doi: 10.1038/ismej.2017.26
– ident: e_1_2_6_2_1
  doi: 10.3354/meps186105
– ident: e_1_2_6_29_1
  doi: 10.3389/fmars.2019.00394
– ident: e_1_2_6_34_1
  doi: 10.1579/0044-7447-33.8.565
– ident: e_1_2_6_20_1
  doi: 10.1016/j.cub.2013.10.030
– ident: e_1_2_6_38_1
  doi: 10.1073/pnas.1514645113
– ident: e_1_2_6_4_1
  doi: 10.1016/S0146-6380(96)00112-X
– ident: e_1_2_6_18_1
  doi: 10.1890/12-1652.1
– ident: e_1_2_6_3_1
  doi: 10.1016/0016-7037(95)00247-W
– ident: e_1_2_6_5_1
  doi: 10.1016/S1570-0232(03)00375-1
– ident: e_1_2_6_23_1
  doi: 10.1016/j.syapm.2018.08.007
SSID ssj0017370
Score 2.4277132
Snippet Summary Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton‐derived polysaccharides. The...
Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton‐derived polysaccharides. The patterns and...
Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton-derived polysaccharides. The patterns and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2333
SubjectTerms algal blooms
Annual variations
Bacteria
bacterial communities
Blooms
carbon
Carbon cycle
Chondroitin sulfate
Extracellular
gamma-Proteobacteria
Heterotrophic bacteria
Hydrolysis
Laminarin
North Sea
Phytoplankton
Plankton
Polysaccharides
Saccharides
Seasonal variation
Seasonal variations
Seasons
Spring
Spring (season)
Uptake
Utilization
Xylan
Title Strong seasonal differences of bacterial polysaccharide utilization in the North Sea over an annual cycle
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.15997
https://www.ncbi.nlm.nih.gov/pubmed/35384240
https://www.proquest.com/docview/2671289469
https://www.proquest.com/docview/2647655343
https://www.proquest.com/docview/2675569683
Volume 24
WOSCitedRecordID wos000782950000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1462-2920
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017370
  issn: 1462-2912
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-QwEB_8OMEXP-5OXb-I4MO9VLZJ2jSPoi4-iIgfsG8lSZNjYemKq8L-986k3aJ33B0HvpRCJ22amcn8JsnMABy7PFgVjE_6QVeJ9JY2CVN0VQqXBZf1jclDLDahrq-L4VDftKcJKRamyQ_RLbiRZsT5mhTc2Ok7JUcV5wnVWjpBi6zVIiynqVAk2FzedBsJSsR6cS1xytvsPnSY55cXfDRMv6HNj-A1Wp_B-if0ewPWWujJThtZ2YQFX3-FlaYY5ewbjO5oVfwno1VDgudsXjsFZxI2Ccw2eZ3xweNkPJsaRwFbo8ozFN1xG83JRjVDRMnibhC784bRCVFmatbkPmVuhp_-Dg-Di_uzy6QtxJA45JtKrC58zq1BbJdXmeG6kB55iOBPWhuUtv3Ci8JKzYMMHp1qoVNfycpbh_Y_GLEFS_Wk9jvARBp0UfUr9LKcFFVmFQLQ4C3lI1U25T04mXOhdG2WciqWMS7n3gqNX0njV8bx68GPrsFjk6Djz6T7c7aWraZOS54rNNFa5roHR91j1DHaODG1n7wQjVR5lgkp_kajsowyDSHNdiMyXX8EWhWJ0Al_LkrGvzpaogrGm93_bbAHq5ziM-KJzH1Yen568Qfwxb0-j6ZPh1E18KqGxSEsn98OHq7eAN_8DPo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED-NAtpetvEx1o0xT-KBl6AmtuP4cdpWMdH1YYDEW2Q7NqpUpYgCUv_73TlpxIcGmrS3SD4nju_O97uzfQew7_JgVTA-GQRdJcJb2iRM0VUpnAxODozJQyw2ocbj4vxc370L0-SH6AJupBlxvSYFp4D0HS1HHc8SKrZ0iCZZqxVYFShMsger338Pz0bdXoLisWRcS55mbYIfOs_z4BX3bdMjwHkfv0YDNHzzP4b-Fl638JN9beRlA174ehPWm4KUiy2YnFBk_IJR5JAgOlvWT8HVhM0Cs01uZ2y4nE0Xc-Po0tak8gzFd9re6GSTmiGqZHFHiJ14w-iUKDM1a_KfMrfAT2_D2fDH6bejpC3GkDjknUqsLnyeWYP4Lq-kyXQhPPIRAaCwNihtB4XnhRU6CyJ4dKy5Tn0lKm8dYoBg-Dvo1bPavwfG06CLalChp-UEr6RVCEKDt5STVNk068Phkg2lazOVU8GMabn0WGj-Spq_Ms5fHw66DpdNko6_k-4u-Vq22jovs1yhmdYi13340jWjntHmian97IZohMql5II_RaOkpGxDSLPTyEw3Ho6WRSB8wp-LovHcQEtUw_jw4V87fIaXR6e_RuXo5_j4I7zK6L5GPKG5C73rqxv_Cdbc7fVkfrXXasofGkcP7w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB_saYsvflStp62u0AdfUi7Z3Wz2UdTDohyFKvQt7Gc5OHJHry3cf9-ZTS5clVYE3wI7m2x2ZnZ--_UbgENXRquiCdkoap-JYGmTMMepSuVkdHJkTBlTsgk1mVRnZ3rzLkzLD9EvuJFnpPGaHDwsfNzwcvTxIqNkS0cYkrXagodC4khL7M7ipN9JUDwljOuE86Kj96HTPL-94HZk-gNu3kavKfyMn_6Phj-DJx34ZJ9aa3kOD0KzC9ttOsrVC5ie0rr4OaN1QwLobJ09BccSNo_MtszOWLCYz1ZL4-jK1tQHhsY76-5zsmnDEFOytB_EToNhdEaUmYa17KfMrfDTL-HX-OvPz9-yLhVD5lBzKrO6CmVhDaK70ktT6EoE1CLCP2FtVNqOqsArK3QRRQw4reY6D174YB0igGj4Kxg08ya8BsbzqCs_8jjPcoJ7aRVC0BgsMZIqmxdDOFqroXYdTzmly5jV6_kK9V9N_Ven_hvCx77CoqXouFt0f63XuvPVZV2UCoO0FqUewoe-GL2Mtk5ME-ZXJCNUKSUX_D4ZJSVxDaHMXmszfXs4xhWB4Al_LpnG3xpaoxOmhzf_WuE97Jx8Gdc_jiff38Ljgi5rpOOZ-zC4vLgKB_DIXV9OlxfvkpvcAKkCDdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+seasonal+differences+of+bacterial+polysaccharide+utilization+in+the+North+Sea+over+an+annual+cycle&rft.jtitle=Environmental+microbiology&rft.au=Giljan%2C+Greta&rft.au=Arnosti%2C+Carol&rft.au=Kirstein%2C+Inga+V.&rft.au=Amann%2C+Rudolf&rft.date=2022-05-01&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=24&rft.issue=5&rft.spage=2333&rft.epage=2347&rft_id=info:doi/10.1111%2F1462-2920.15997&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1462_2920_15997
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon