Strong seasonal differences of bacterial polysaccharide utilization in the North Sea over an annual cycle
Summary Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton‐derived polysaccharides. The patterns and rates of two different polysaccharide utilization modes – extracellular hydrolysis and selfish uptake – have previously been found to c...
Uložené v:
| Vydané v: | Environmental microbiology Ročník 24; číslo 5; s. 2333 - 2347 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2022
Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 1462-2912, 1462-2920, 1462-2920 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Summary
Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton‐derived polysaccharides. The patterns and rates of two different polysaccharide utilization modes – extracellular hydrolysis and selfish uptake – have previously been found to change during spring phytoplankton bloom events. Here we investigated seasonal changes in bacterial utilization of three polysaccharides, laminarin, xylan and chondroitin sulfate. Strong seasonal differences were apparent in mode and speed of polysaccharide utilization, as well as in bacterial community compositions. Compared to the winter month of February, during the spring bloom in May, polysaccharide utilization was detected earlier in the incubations and a higher portion of all bacteria took up laminarin selfishly. Highest polysaccharide utilization was measured in June and September, mediated by bacterial communities that were significantly different from spring assemblages. Extensive selfish laminarin uptake, for example, was detectible within a few hours in June, while extracellular hydrolysis of chondroitin was dominant in September. In addition to the well‐known Bacteroidota and Gammaproteobacteria clades, the numerically minor verrucomicrobial clade Pedosphaeraceae could be identified as a rapid laminarin utilizer. In summary, polysaccharide utilization proved highly variable over the seasons, both in mode and speed, and also by the bacterial clades involved. |
|---|---|
| AbstractList | Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton‐derived polysaccharides. The patterns and rates of two different polysaccharide utilization modes – extracellular hydrolysis and selfish uptake – have previously been found to change during spring phytoplankton bloom events. Here we investigated seasonal changes in bacterial utilization of three polysaccharides, laminarin, xylan and chondroitin sulfate. Strong seasonal differences were apparent in mode and speed of polysaccharide utilization, as well as in bacterial community compositions. Compared to the winter month of February, during the spring bloom in May, polysaccharide utilization was detected earlier in the incubations and a higher portion of all bacteria took up laminarin selfishly. Highest polysaccharide utilization was measured in June and September, mediated by bacterial communities that were significantly different from spring assemblages. Extensive selfish laminarin uptake, for example, was detectible within a few hours in June, while extracellular hydrolysis of chondroitin was dominant in September. In addition to the well‐known Bacteroidota and Gammaproteobacteria clades, the numerically minor verrucomicrobial clade Pedosphaeraceae could be identified as a rapid laminarin utilizer. In summary, polysaccharide utilization proved highly variable over the seasons, both in mode and speed, and also by the bacterial clades involved. Summary Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton‐derived polysaccharides. The patterns and rates of two different polysaccharide utilization modes – extracellular hydrolysis and selfish uptake – have previously been found to change during spring phytoplankton bloom events. Here we investigated seasonal changes in bacterial utilization of three polysaccharides, laminarin, xylan and chondroitin sulfate. Strong seasonal differences were apparent in mode and speed of polysaccharide utilization, as well as in bacterial community compositions. Compared to the winter month of February, during the spring bloom in May, polysaccharide utilization was detected earlier in the incubations and a higher portion of all bacteria took up laminarin selfishly. Highest polysaccharide utilization was measured in June and September, mediated by bacterial communities that were significantly different from spring assemblages. Extensive selfish laminarin uptake, for example, was detectible within a few hours in June, while extracellular hydrolysis of chondroitin was dominant in September. In addition to the well‐known Bacteroidota and Gammaproteobacteria clades, the numerically minor verrucomicrobial clade Pedosphaeraceae could be identified as a rapid laminarin utilizer. In summary, polysaccharide utilization proved highly variable over the seasons, both in mode and speed, and also by the bacterial clades involved. Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton-derived polysaccharides. The patterns and rates of two different polysaccharide utilization modes - extracellular hydrolysis and selfish uptake - have previously been found to change during spring phytoplankton bloom events. Here we investigated seasonal changes in bacterial utilization of three polysaccharides, laminarin, xylan and chondroitin sulfate. Strong seasonal differences were apparent in mode and speed of polysaccharide utilization, as well as in bacterial community compositions. Compared to the winter month of February, during the spring bloom in May, polysaccharide utilization was detected earlier in the incubations and a higher portion of all bacteria took up laminarin selfishly. Highest polysaccharide utilization was measured in June and September, mediated by bacterial communities that were significantly different from spring assemblages. Extensive selfish laminarin uptake, for example, was detectible within a few hours in June, while extracellular hydrolysis of chondroitin was dominant in September. In addition to the well-known Bacteroidota and Gammaproteobacteria clades, the numerically minor verrucomicrobial clade Pedosphaeraceae could be identified as a rapid laminarin utilizer. In summary, polysaccharide utilization proved highly variable over the seasons, both in mode and speed, and also by the bacterial clades involved.Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton-derived polysaccharides. The patterns and rates of two different polysaccharide utilization modes - extracellular hydrolysis and selfish uptake - have previously been found to change during spring phytoplankton bloom events. Here we investigated seasonal changes in bacterial utilization of three polysaccharides, laminarin, xylan and chondroitin sulfate. Strong seasonal differences were apparent in mode and speed of polysaccharide utilization, as well as in bacterial community compositions. Compared to the winter month of February, during the spring bloom in May, polysaccharide utilization was detected earlier in the incubations and a higher portion of all bacteria took up laminarin selfishly. Highest polysaccharide utilization was measured in June and September, mediated by bacterial communities that were significantly different from spring assemblages. Extensive selfish laminarin uptake, for example, was detectible within a few hours in June, while extracellular hydrolysis of chondroitin was dominant in September. In addition to the well-known Bacteroidota and Gammaproteobacteria clades, the numerically minor verrucomicrobial clade Pedosphaeraceae could be identified as a rapid laminarin utilizer. In summary, polysaccharide utilization proved highly variable over the seasons, both in mode and speed, and also by the bacterial clades involved. |
| Author | Arnosti, Carol Giljan, Greta Kirstein, Inga V. Fuchs, Bernhard M. Amann, Rudolf |
| Author_xml | – sequence: 1 givenname: Greta orcidid: 0000-0002-7868-4495 surname: Giljan fullname: Giljan, Greta organization: Max Planck Institute for Marine Microbiology – sequence: 2 givenname: Carol orcidid: 0000-0002-6074-5341 surname: Arnosti fullname: Arnosti, Carol organization: University of North Carolina‐Chapel Hill – sequence: 3 givenname: Inga V. surname: Kirstein fullname: Kirstein, Inga V. organization: Alfred‐Wegner‐Institute Helmholtz‐Center for Polar and Marine Research, Biological Station Helgoland – sequence: 4 givenname: Rudolf surname: Amann fullname: Amann, Rudolf organization: Max Planck Institute for Marine Microbiology – sequence: 5 givenname: Bernhard M. surname: Fuchs fullname: Fuchs, Bernhard M. email: bfuchs@mpi-bremen.de organization: Max Planck Institute for Marine Microbiology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35384240$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1vVCEUxYmpsR-6dmdI3LgZ--Dx8ViaptYmVRfVNQHexaFhYIT3asa_vsxMnUU3ldwELvzOJTnnFB2lnACht6T7SNo6J0zQBVW0tVwp-QKdHG6ODmdCj9FprXddR2Qvu1fouOf9wCjrTlC4nUpOv3AFU3MyEY_BeyiQHFScPbbGTVBCe1jnuKnGuaUpYQQ8TyGGv2YKOeGQ8LQE_C2XaYlvweB8DwWb1CrNTeo2LsJr9NKbWOHN436Gfn6-_HHxZXHz_er64tPNwnFC5MKqAQS1puNSjNxQNTAwwnOimLVeKtsN0A-WKeqZBzkMvSIwshGso0J405-hD_u565J_z1AnvQrVQYwmQZ6rpkJyLpQY-v9AmRSc92yLvn-C3uW5NMN2AwkdFBOqUe8eqdmuYNTrElambPQ_vxtwvgdcybUW8AeEdHqbqN5mprf56V2iTcGfKFyYdrZPxYT4vO5PiLB57ht9-fV6r3sA1ZSyRw |
| CitedBy_id | crossref_primary_10_1128_spectrum_01602_24 crossref_primary_10_1016_j_celrep_2025_115415 crossref_primary_10_3389_fmars_2024_1462522 crossref_primary_10_1016_j_jhazmat_2025_139949 crossref_primary_10_1111_1462_2920_16687 crossref_primary_10_1111_1758_2229_13313 crossref_primary_10_1128_msystems_01287_22 |
| Cites_doi | 10.1038/s41396-018-0326-3 10.1111/j.1574-6941.2008.00587.x 10.1038/s41396-019-0476-y 10.1038/nrmicro2746 10.3354/meps010257 10.1016/S0168-6496(03)00305-2 10.1093/glycob/4.6.759 10.1038/ncomms14853 10.1016/S0304-4203(96)00041-2 10.1146/annurev-marine-032020-012810 10.1038/s41396-021-00928-8 10.1111/1462-2920.14304 10.1128/AEM.00899-14 10.1101/2021.07.26.453833 10.1128/AEM.02070-15 10.1016/j.marchem.2018.09.008 10.1093/nar/gks1219 10.7554/eLife.11888 10.1038/nature13995 10.1038/s41396-018-0242-6 10.1038/s41396-018-0243-5 10.1371/journal.pone.0035314 10.1038/ismej.2012.86 10.3389/fmars.2017.00006 10.1038/ismej.2016.66 10.1016/S0723-2020(11)80121-9 10.1128/AEM.69.6.3500-3509.2003 10.3389/fmicb.2020.583158 10.1126/science.1218344 10.1002/bies.20740 10.1111/1462-2920.14971 10.1080/01490450600897336 10.1128/JB.183.24.7224-7230.2001 10.1038/s41564-020-0720-2 10.1016/S0304-4203(98)00057-7 10.1128/AEM.01541-09 10.1371/journal.pone.0028900 10.4319/lo.2008.53.4.1294 10.1038/ismej.2017.26 10.3354/meps186105 10.3389/fmars.2019.00394 10.1579/0044-7447-33.8.565 10.1016/j.cub.2013.10.030 10.1073/pnas.1514645113 10.1016/S0146-6380(96)00112-X 10.1890/12-1652.1 10.1016/0016-7037(95)00247-W 10.1016/S1570-0232(03)00375-1 10.1016/j.syapm.2018.08.007 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by Society for Applied Microbiology and John Wiley & Sons Ltd. 2022 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. published by Society for Applied Microbiology and John Wiley & Sons Ltd. – notice: 2022 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 7S9 L.6 |
| DOI | 10.1111/1462-2920.15997 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Aqualine Bacteriology Abstracts (Microbiology B) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oceanic Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Oceanic Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1462-2920 |
| EndPage | 2347 |
| ExternalDocumentID | 35384240 10_1111_1462_2920_15997 EMI15997 |
| Genre | article Journal Article |
| GeographicLocations | North Sea |
| GeographicLocations_xml | – name: North Sea |
| GrantInformation_xml | – fundername: U.S. National Science Foundation funderid: OCE‐1736772; OCE‐2022952 – fundername: Max‐Planck‐Gesellschaft – fundername: Deutsche Forschungsgemeinschaft funderid: FOR 2406; FU 627/2‐1 – fundername: U.S. National Science Foundation grantid: OCE-2022952 – fundername: Deutsche Forschungsgemeinschaft grantid: FU 627/2-1 – fundername: U.S. National Science Foundation grantid: OCE-1736772 – fundername: Max-Planck-Gesellschaft – fundername: Deutsche Forschungsgemeinschaft grantid: FOR 2406 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION O8X NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c5117-b98e62ba0576d5a2984ea6f5194bbf79b08e38b492f4fe788391ed4debc266fa3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000782950000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1462-2912 1462-2920 |
| IngestDate | Fri Jul 11 18:31:24 EDT 2025 Sun Nov 09 12:33:33 EST 2025 Fri Jul 25 12:14:11 EDT 2025 Wed Feb 19 02:25:48 EST 2025 Sat Nov 29 06:57:57 EST 2025 Tue Nov 18 22:35:21 EST 2025 Wed Jan 22 16:26:09 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Attribution-NonCommercial 2022 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5117-b98e62ba0576d5a2984ea6f5194bbf79b08e38b492f4fe788391ed4debc266fa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7868-4495 0000-0002-6074-5341 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.15997 |
| PMID | 35384240 |
| PQID | 2671289469 |
| PQPubID | 1066360 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2675569683 proquest_miscellaneous_2647655343 proquest_journals_2671289469 pubmed_primary_35384240 crossref_primary_10_1111_1462_2920_15997 crossref_citationtrail_10_1111_1462_2920_15997 wiley_primary_10_1111_1462_2920_15997_EMI15997 |
| PublicationCentury | 2000 |
| PublicationDate | May 2022 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: England – name: Oxford |
| PublicationTitle | Environmental microbiology |
| PublicationTitleAlternate | Environ Microbiol |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2020a; 22 2017; 8 2001; 183 2019; 6 2017; 4 1995; 59 2018; 206 2004; 47 2019; 13 2013; 41 1999; 186 2016; 10 1983; 10 2014; 24 2008; 30 1992; 15 2008; 53 1998; 63 2013; 7 2011; 6 2018; 20 2003; 793 2012; 10 1996; 55 2021; 13 2004; 33 2016; 5 2021; 38 2021; 15 2020; 5 2014; 80 2009; 75 2006; 23 2019; 42 2015; 81 2021 2017; 11 2013; 94 2016; 113 2003; 69 2015; 517 2008; 66 2016; 82 1996; 25 2012; 7 2012; 336 1994; 4 2020b; 11 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 Orellana H.L. (e_1_2_6_39_1) 2021; 38 e_1_2_6_18_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 Bennke C.M. (e_1_2_6_13_1) 2016; 82 e_1_2_6_27_1 e_1_2_6_46_1 |
| References_xml | – volume: 59 start-page: 4247 year: 1995 end-page: 4257 article-title: Measurement of depth‐ and site‐related differences in polysaccharide hydrolysis rates in marine sediments publication-title: Geochim Cosmochim Acta – volume: 55 start-page: 281 year: 1996 end-page: 297 article-title: Major biochemical composition of dissolved higher molecular weight organic matter in seawater publication-title: Mar Chem – volume: 22 start-page: 1884 year: 2020a end-page: 1900 article-title: Short‐term changes in polysaccharide utilization mechanisms of marine bacterioplankton during a spring phytoplankton bloom publication-title: Environ Microbiol – volume: 5 start-page: 1 year: 2020 end-page: 14 article-title: use hundreds of enzymes to digest the algal polysaccharide fucoidan publication-title: Nat Microbiol – volume: 13 start-page: 76 year: 2019 end-page: 91 article-title: Polysaccharide utilization loci of North Sea as basis for using SusC/D‐protein expression for predicting major phytoplankton glycans publication-title: ISME J. – volume: 13 start-page: 2800 year: 2019 end-page: 2816 article-title: In marine the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes publication-title: ISME J – volume: 7 start-page: 1 year: 2012 end-page: 11 article-title: Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of publication-title: PLoS ONE – year: 2021 article-title: Selfish bacteria are active throughout the water column of the ocean publication-title: bioRxiv – volume: 25 start-page: 105 year: 1996 end-page: 115 article-title: A new method for measuring polysaccharide hydrolysis rates in marine environments publication-title: Org Geochem – volume: 23 start-page: 551 year: 2006 end-page: 563 article-title: Organic carbon degradation in arctic marine sediments, Svalbard: a comparison of initial and terminal steps publication-title: Geomicrobiol J – volume: 517 start-page: 165 year: 2015 end-page: 169 article-title: Human gut can utilize yeast mannan through a selfish mechanism publication-title: Nature – volume: 38 start-page: 1 year: 2021 end-page: 12 article-title: Verrucomicrobiota are specialized consumers of sulfated methyl pentoses during diatom blooms publication-title: ISME J – volume: 81 start-page: 7385 year: 2015 end-page: 7393 article-title: A model of extracellular enzymes in free‐ living microbes: which strategy pays off? publication-title: Appl Environ Microbiol – volume: 336 start-page: 608 year: 2012 end-page: 611 article-title: Substrate‐ controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom publication-title: Science – volume: 20 start-page: 2941 year: 2018 end-page: 2954 article-title: Structure and function of high Arctic pelagic, particle‐ associated and benthic bacterial communities publication-title: Environ Microbiol – volume: 33 start-page: 565 year: 2004 end-page: 575 article-title: Particulate organic matter in the sea: the composition conundrum publication-title: Ambio – volume: 793 start-page: 181 year: 2003 end-page: 191 article-title: Fluorescent derivatization of polysaccharides and carbohydrate‐containing biopolymers for measurement of enzyme activities in complex media publication-title: J Chromat B – volume: 41 start-page: 590 year: 2013 end-page: 596 article-title: The SILVA ribosomal RNA gene database project: improved data processing and web‐based tools publication-title: Nucl Acids Res – volume: 4 start-page: 1 year: 2017 end-page: 10 article-title: Marine polysaccharide sulfatases publication-title: Front Mar Sci – volume: 10 start-page: 257 year: 1983 end-page: 263 article-title: The ecological role of water‐column microbes in the sea publication-title: Mar Ecol Prog Ser – volume: 13 start-page: 1119 year: 2019 end-page: 1132 article-title: Selfish, sharing and scavenging bacteria in the Atlantic Ocean: a biogeographical study of bacterial substrate utilization publication-title: ISME J – volume: 10 start-page: 2582 year: 2016 end-page: 2592 article-title: Bacteriplankton niche partitioning in the use of phytoplankton‐derived dissolved organic carbon: quantity is more important than quality publication-title: ISME J – volume: 63 start-page: 131 year: 1998 end-page: 144 article-title: Carbohydrates in phytoplankton and freshly produced dissolved organic matter publication-title: Mar Chem – volume: 69 start-page: 3500 year: 2003 end-page: 3509 article-title: Bacterial colonization of particles: growth and interactions publication-title: Appl Environ Microbiol – volume: 6 start-page: 1 year: 2011 end-page: 6 article-title: Latitudinal gradients in degradation of marine dissolved organic carbon publication-title: PLoS One – volume: 75 start-page: 7537 year: 2009 end-page: 7541 article-title: Introducing mothur: open‐source, platform‐independent, community‐supported software for describing and comparing microbial communities publication-title: Appl Environ Microbiol – volume: 11 start-page: 1640 year: 2017 end-page: 1650 article-title: An alternative polysaccharide uptake mechanism of marine bacteria publication-title: ISME J – volume: 183 start-page: 7224 year: 2001 end-page: 7230 article-title: Biochemical analysis of interactions of outer membrane proteins that contribute to starch utilization by publication-title: J Bacteriol – volume: 15 start-page: 593 year: 1992 end-page: 600 article-title: Phylogenetic oligodeoxynucleotide probes for the major subclasses of : problems and solutions publication-title: Syst Appl Microbiol – volume: 94 start-page: 870 year: 2013 end-page: 881 article-title: Coaggregation in a microbial predator – prey system affects competition and trophic transfer efficiency publication-title: Ecology – volume: 206 start-page: 93 year: 2018 end-page: 99 article-title: A mechanistic microbial underpinning for the size‐reactivity continuum of dissolved organic carbon degradation publication-title: Mar Chem – volume: 47 start-page: 387 year: 2004 end-page: 396 article-title: Antagonistic activity of bacteria isolated from organic aggregates of the German Wassen Sea publication-title: FEMS Microbiol Ecol – volume: 30 start-page: 296 year: 2008 end-page: 298 article-title: Multicellular behavior in bacteria: communication, cooperation, competition and cheating publication-title: BioEssays – volume: 11 start-page: 1 year: 2020b end-page: 14 article-title: Extensive microbial processing of polysaccharides in the South Pacific Gyre via selfish uptake and extracellular hydrolysis publication-title: Front Microbiol – volume: 15 start-page: 2336 year: 2021 end-page: 2350 article-title: Changing expression patterns of TonB‐dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom publication-title: ISME J – volume: 13 start-page: 81 year: 2021 end-page: 108 article-title: The biogeochemistry of marine polysaccharides: sources, inventories, and bacterial drivers of the carbohydrate cycle publication-title: Ann Rev Mar Sci – volume: 24 start-page: 50 year: 2014 end-page: 55 article-title: Solutions to the public goods dilemma in bacterial biofilms publication-title: Curr Biol – volume: 10 start-page: 323 year: 2012 end-page: 335 article-title: How glycan metabolism shapes the human gut microbiota publication-title: Nat Rev Microbiol – volume: 186 start-page: 105 year: 1999 end-page: 117 article-title: A comparison of the chemical characteristics of oceanic DOM and extracellular DOM produced by marine algae publication-title: Mar Ecol Prog Ser – volume: 66 start-page: 343 year: 2008 end-page: 351 article-title: Functional differences between Arctic seawater and sedimentary microbial communities: contrasts in microbial hydrolysis of complex substrates publication-title: FEMS Microbiol Ecol – volume: 7 start-page: 137 year: 2013 end-page: 147 article-title: Metabolic potential of a single cell belonging to one of the most abundant lineages in freshwater bacterioplankton publication-title: ISME J – volume: 8 start-page: 1 year: 2017 end-page: 14 article-title: Determining the bacterial cell biology of publication-title: Nat Commun – volume: 5 year: 2016 article-title: Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms publication-title: eLife – volume: 113 start-page: 3143 year: 2016 end-page: 3151 article-title: Deciphering Ocean carbon in a changing world publication-title: Proc Natl Acad Sci U S A – volume: 4 start-page: 759 year: 1994 end-page: 767 article-title: Invited commentary: a calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 x 10 structures for a reducing hexasaccharide: The to development of sinle‐method saccharide sequencing or synthesis systems publication-title: Glycobiology – volume: 80 start-page: 3749 year: 2014 end-page: 3756 article-title: are candidates for polysaccharide‐degrading bacterioplankton in an arctic fjord of Svalbard publication-title: Appl Environ Microbiol – volume: 53 start-page: 1294 year: 2008 end-page: 1302 article-title: Resilience of North Sea phytoplankton spring bloom dynamics: an analysis of long‐term data at Helgoland Roads publication-title: Limnol Oceanogr – volume: 42 start-page: 41 year: 2019 end-page: 53 article-title: Prosiliicoccus vernus, a spring phytoplankton bloom associated member of the publication-title: Syst Appl Microbiol – volume: 6 start-page: 1 year: 2019 end-page: 13 article-title: Gulf stream ring intrusion on the mid‐Atlantic bight shelf affects microbially‐driven carbon cycling publication-title: Front Mar Sci – volume: 82 start-page: 3289 year: 2016 end-page: 3296 article-title: Modification of a high‐throughput automatic microbial cell enumeration system for shipboard analyses publication-title: Auto Microb Cell – ident: e_1_2_6_41_1 doi: 10.1038/s41396-018-0326-3 – ident: e_1_2_6_6_1 doi: 10.1111/j.1574-6941.2008.00587.x – ident: e_1_2_6_32_1 doi: 10.1038/s41396-019-0476-y – ident: e_1_2_6_31_1 doi: 10.1038/nrmicro2746 – ident: e_1_2_6_11_1 doi: 10.3354/meps010257 – ident: e_1_2_6_27_1 doi: 10.1016/S0168-6496(03)00305-2 – ident: e_1_2_6_33_1 doi: 10.1093/glycob/4.6.759 – volume: 82 start-page: 3289 year: 2016 ident: e_1_2_6_13_1 article-title: Modification of a high‐throughput automatic microbial cell enumeration system for shipboard analyses publication-title: Auto Microb Cell – ident: e_1_2_6_15_1 doi: 10.1038/ncomms14853 – volume: 38 start-page: 1 year: 2021 ident: e_1_2_6_39_1 article-title: Verrucomicrobiota are specialized consumers of sulfated methyl pentoses during diatom blooms publication-title: ISME J – ident: e_1_2_6_37_1 doi: 10.1016/S0304-4203(96)00041-2 – ident: e_1_2_6_10_1 doi: 10.1146/annurev-marine-032020-012810 – ident: e_1_2_6_22_1 doi: 10.1038/s41396-021-00928-8 – ident: e_1_2_6_12_1 doi: 10.1111/1462-2920.14304 – ident: e_1_2_6_16_1 doi: 10.1128/AEM.00899-14 – ident: e_1_2_6_25_1 doi: 10.1101/2021.07.26.453833 – ident: e_1_2_6_50_1 doi: 10.1128/AEM.02070-15 – ident: e_1_2_6_8_1 doi: 10.1016/j.marchem.2018.09.008 – ident: e_1_2_6_40_1 doi: 10.1093/nar/gks1219 – ident: e_1_2_6_49_1 doi: 10.7554/eLife.11888 – ident: e_1_2_6_19_1 doi: 10.1038/nature13995 – ident: e_1_2_6_30_1 doi: 10.1038/s41396-018-0242-6 – ident: e_1_2_6_51_1 doi: 10.1038/s41396-018-0243-5 – ident: e_1_2_6_36_1 doi: 10.1371/journal.pone.0035314 – ident: e_1_2_6_24_1 doi: 10.1038/ismej.2012.86 – ident: e_1_2_6_28_1 doi: 10.3389/fmars.2017.00006 – ident: e_1_2_6_45_1 doi: 10.1038/ismej.2016.66 – ident: e_1_2_6_35_1 doi: 10.1016/S0723-2020(11)80121-9 – ident: e_1_2_6_26_1 doi: 10.1128/AEM.69.6.3500-3509.2003 – ident: e_1_2_6_43_1 doi: 10.3389/fmicb.2020.583158 – ident: e_1_2_6_48_1 doi: 10.1126/science.1218344 – ident: e_1_2_6_21_1 doi: 10.1002/bies.20740 – ident: e_1_2_6_44_1 doi: 10.1111/1462-2920.14971 – ident: e_1_2_6_7_1 doi: 10.1080/01490450600897336 – ident: e_1_2_6_17_1 doi: 10.1128/JB.183.24.7224-7230.2001 – ident: e_1_2_6_47_1 doi: 10.1038/s41564-020-0720-2 – ident: e_1_2_6_14_1 doi: 10.1016/S0304-4203(98)00057-7 – ident: e_1_2_6_46_1 doi: 10.1128/AEM.01541-09 – ident: e_1_2_6_9_1 doi: 10.1371/journal.pone.0028900 – ident: e_1_2_6_52_1 doi: 10.4319/lo.2008.53.4.1294 – ident: e_1_2_6_42_1 doi: 10.1038/ismej.2017.26 – ident: e_1_2_6_2_1 doi: 10.3354/meps186105 – ident: e_1_2_6_29_1 doi: 10.3389/fmars.2019.00394 – ident: e_1_2_6_34_1 doi: 10.1579/0044-7447-33.8.565 – ident: e_1_2_6_20_1 doi: 10.1016/j.cub.2013.10.030 – ident: e_1_2_6_38_1 doi: 10.1073/pnas.1514645113 – ident: e_1_2_6_4_1 doi: 10.1016/S0146-6380(96)00112-X – ident: e_1_2_6_18_1 doi: 10.1890/12-1652.1 – ident: e_1_2_6_3_1 doi: 10.1016/0016-7037(95)00247-W – ident: e_1_2_6_5_1 doi: 10.1016/S1570-0232(03)00375-1 – ident: e_1_2_6_23_1 doi: 10.1016/j.syapm.2018.08.007 |
| SSID | ssj0017370 |
| Score | 2.4277132 |
| Snippet | Summary
Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton‐derived polysaccharides. The... Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton‐derived polysaccharides. The patterns and... Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton-derived polysaccharides. The patterns and... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2333 |
| SubjectTerms | algal blooms Annual variations Bacteria bacterial communities Blooms carbon Carbon cycle Chondroitin sulfate Extracellular gamma-Proteobacteria Heterotrophic bacteria Hydrolysis Laminarin North Sea Phytoplankton Plankton Polysaccharides Saccharides Seasonal variation Seasonal variations Seasons Spring Spring (season) Uptake Utilization Xylan |
| Title | Strong seasonal differences of bacterial polysaccharide utilization in the North Sea over an annual cycle |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.15997 https://www.ncbi.nlm.nih.gov/pubmed/35384240 https://www.proquest.com/docview/2671289469 https://www.proquest.com/docview/2647655343 https://www.proquest.com/docview/2675569683 |
| Volume | 24 |
| WOSCitedRecordID | wos000782950000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1462-2920 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017370 issn: 1462-2912 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-QwEB_8OMEXP-5OXb-I4MO9VLZJ2jSPoi4-iIgfsG8lSZNjYemKq8L-986k3aJ33B0HvpRCJ22amcn8JsnMABy7PFgVjE_6QVeJ9JY2CVN0VQqXBZf1jclDLDahrq-L4VDftKcJKRamyQ_RLbiRZsT5mhTc2Ok7JUcV5wnVWjpBi6zVIiynqVAk2FzedBsJSsR6cS1xytvsPnSY55cXfDRMv6HNj-A1Wp_B-if0ewPWWujJThtZ2YQFX3-FlaYY5ewbjO5oVfwno1VDgudsXjsFZxI2Ccw2eZ3xweNkPJsaRwFbo8ozFN1xG83JRjVDRMnibhC784bRCVFmatbkPmVuhp_-Dg-Di_uzy6QtxJA45JtKrC58zq1BbJdXmeG6kB55iOBPWhuUtv3Ci8JKzYMMHp1qoVNfycpbh_Y_GLEFS_Wk9jvARBp0UfUr9LKcFFVmFQLQ4C3lI1U25T04mXOhdG2WciqWMS7n3gqNX0njV8bx68GPrsFjk6Djz6T7c7aWraZOS54rNNFa5roHR91j1DHaODG1n7wQjVR5lgkp_kajsowyDSHNdiMyXX8EWhWJ0Al_LkrGvzpaogrGm93_bbAHq5ziM-KJzH1Yen568Qfwxb0-j6ZPh1E18KqGxSEsn98OHq7eAN_8DPo |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED-NAtpetvEx1o0xT-KBl6AmtuP4cdpWMdH1YYDEW2Q7NqpUpYgCUv_73TlpxIcGmrS3SD4nju_O97uzfQew7_JgVTA-GQRdJcJb2iRM0VUpnAxODozJQyw2ocbj4vxc370L0-SH6AJupBlxvSYFp4D0HS1HHc8SKrZ0iCZZqxVYFShMsger338Pz0bdXoLisWRcS55mbYIfOs_z4BX3bdMjwHkfv0YDNHzzP4b-Fl638JN9beRlA174ehPWm4KUiy2YnFBk_IJR5JAgOlvWT8HVhM0Cs01uZ2y4nE0Xc-Po0tak8gzFd9re6GSTmiGqZHFHiJ14w-iUKDM1a_KfMrfAT2_D2fDH6bejpC3GkDjknUqsLnyeWYP4Lq-kyXQhPPIRAaCwNihtB4XnhRU6CyJ4dKy5Tn0lKm8dYoBg-Dvo1bPavwfG06CLalChp-UEr6RVCEKDt5STVNk068Phkg2lazOVU8GMabn0WGj-Spq_Ms5fHw66DpdNko6_k-4u-Vq22jovs1yhmdYi13340jWjntHmian97IZohMql5II_RaOkpGxDSLPTyEw3Ho6WRSB8wp-LovHcQEtUw_jw4V87fIaXR6e_RuXo5_j4I7zK6L5GPKG5C73rqxv_Cdbc7fVkfrXXasofGkcP7w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB_saYsvflStp62u0AdfUi7Z3Wz2UdTDohyFKvQt7Gc5OHJHry3cf9-ZTS5clVYE3wI7m2x2ZnZ--_UbgENXRquiCdkoap-JYGmTMMepSuVkdHJkTBlTsgk1mVRnZ3rzLkzLD9EvuJFnpPGaHDwsfNzwcvTxIqNkS0cYkrXagodC4khL7M7ipN9JUDwljOuE86Kj96HTPL-94HZk-gNu3kavKfyMn_6Phj-DJx34ZJ9aa3kOD0KzC9ttOsrVC5ie0rr4OaN1QwLobJ09BccSNo_MtszOWLCYz1ZL4-jK1tQHhsY76-5zsmnDEFOytB_EToNhdEaUmYa17KfMrfDTL-HX-OvPz9-yLhVD5lBzKrO6CmVhDaK70ktT6EoE1CLCP2FtVNqOqsArK3QRRQw4reY6D174YB0igGj4Kxg08ya8BsbzqCs_8jjPcoJ7aRVC0BgsMZIqmxdDOFqroXYdTzmly5jV6_kK9V9N_Ven_hvCx77CoqXouFt0f63XuvPVZV2UCoO0FqUewoe-GL2Mtk5ME-ZXJCNUKSUX_D4ZJSVxDaHMXmszfXs4xhWB4Al_LpnG3xpaoxOmhzf_WuE97Jx8Gdc_jiff38Ljgi5rpOOZ-zC4vLgKB_DIXV9OlxfvkpvcAKkCDdg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+seasonal+differences+of+bacterial+polysaccharide+utilization+in+the+North+Sea+over+an+annual+cycle&rft.jtitle=Environmental+microbiology&rft.au=Giljan%2C+Greta&rft.au=Arnosti%2C+Carol&rft.au=Kirstein%2C+Inga+V.&rft.au=Amann%2C+Rudolf&rft.date=2022-05-01&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=24&rft.issue=5&rft.spage=2333&rft.epage=2347&rft_id=info:doi/10.1111%2F1462-2920.15997&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1462_2920_15997 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |