Control algorithms for dynamic attenuators

Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuator...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Medical physics (Lancaster) Ročník 41; číslo 6; s. 61907 - n/a
Hlavní autoři: Hsieh, Scott S., Pelc, Norbert J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States American Association of Physicists in Medicine 01.06.2014
Témata:
ISSN:0094-2405, 2473-4209, 2473-4209, 0094-2405
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without increasing peak variance. The 15-element piecewise-linear dynamic attenuator reduces dose by an average of 42%, and the perfect attenuator reduces dose by an average of 50%. Improvements in peak variance are several times larger than improvements in mean variance. Heuristic control eliminates the need for a prescan. For the piecewise-linear attenuator, the cost of heuristic control is an increase in dose of 9%. The proposed iterated WMV minimization produces results that are within a few percent of the true solution. Conclusions: Dynamic attenuators show potential for significant dose reduction. A wide class of dynamic attenuators can be accurately controlled using the described methods.
AbstractList Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without increasing peak variance. The 15-element piecewise-linear dynamic attenuator reduces dose by an average of 42%, and the perfect attenuator reduces dose by an average of 50%. Improvements in peak variance are several times larger than improvements in mean variance. Heuristic control eliminates the need for a prescan. For the piecewise-linear attenuator, the cost of heuristic control is an increase in dose of 9%. The proposed iterated WMV minimization produces results that are within a few percent of the true solution. Conclusions: Dynamic attenuators show potential for significant dose reduction. A wide class of dynamic attenuators can be accurately controlled using the described methods.
The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not require a priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without increasing peak variance. The 15-element piecewise-linear dynamic attenuator reduces dose by an average of 42%, and the perfect attenuator reduces dose by an average of 50%. Improvements in peak variance are several times larger than improvements in mean variance. Heuristic control eliminates the need for a prescan. For the piecewise-linear attenuator, the cost of heuristic control is an increase in dose of 9%. The proposed iterated WMV minimization produces results that are within a few percent of the true solution. Dynamic attenuators show potential for significant dose reduction. A wide class of dynamic attenuators can be accurately controlled using the described methods.
The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator.PURPOSEThe authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator.The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not require a priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen.METHODSThe authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not require a priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen.The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without increasing peak variance. The 15-element piecewise-linear dynamic attenuator reduces dose by an average of 42%, and the perfect attenuator reduces dose by an average of 50%. Improvements in peak variance are several times larger than improvements in mean variance. Heuristic control eliminates the need for a prescan. For the piecewise-linear attenuator, the cost of heuristic control is an increase in dose of 9%. The proposed iterated WMV minimization produces results that are within a few percent of the true solution.RESULTSThe translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without increasing peak variance. The 15-element piecewise-linear dynamic attenuator reduces dose by an average of 42%, and the perfect attenuator reduces dose by an average of 50%. Improvements in peak variance are several times larger than improvements in mean variance. Heuristic control eliminates the need for a prescan. For the piecewise-linear attenuator, the cost of heuristic control is an increase in dose of 9%. The proposed iterated WMV minimization produces results that are within a few percent of the true solution.Dynamic attenuators show potential for significant dose reduction. A wide class of dynamic attenuators can be accurately controlled using the described methods.CONCLUSIONSDynamic attenuators show potential for significant dose reduction. A wide class of dynamic attenuators can be accurately controlled using the described methods.
Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without increasing peak variance. The 15-element piecewise-linear dynamic attenuator reduces dose by an average of 42%, and the perfect attenuator reduces dose by an average of 50%. Improvements in peak variance are several times larger than improvements in mean variance. Heuristic control eliminates the need for a prescan. For the piecewise-linear attenuator, the cost of heuristic control is an increase in dose of 9%. The proposed iterated WMV minimization produces results that are within a few percent of the true solution. Conclusions: Dynamic attenuators show potential for significant dose reduction. A wide class of dynamic attenuators can be accurately controlled using the described methods.
Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not require a priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without increasing peak variance. The 15-element piecewise-linear dynamic attenuator reduces dose by an average of 42%, and the perfect attenuator reduces dose by an average of 50%. Improvements in peak variance are several times larger than improvements in mean variance. Heuristic control eliminates the need for a prescan. For the piecewise-linear attenuator, the cost of heuristic control is an increase in dose of 9%. The proposed iterated WMV minimization produces results that are within a few percent of the true solution. Conclusions: Dynamic attenuators show potential for significant dose reduction. A wide class of dynamic attenuators can be accurately controlled using the described methods.
Author Hsieh, Scott S.
Pelc, Norbert J.
Author_xml – sequence: 1
  givenname: Scott S.
  surname: Hsieh
  fullname: Hsieh, Scott S.
  email: sshsieh@stanford.edu
  organization: Department of Radiology, Stanford University, Stanford, California 94305 and Department of Electrical Engineering, Stanford University, Stanford, California 94305
– sequence: 2
  givenname: Norbert J.
  surname: Pelc
  fullname: Pelc, Norbert J.
  organization: Department of Radiology, Stanford University, Stanford California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24877818$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22250608$$D View this record in Osti.gov
BookMark eNp9kV1rFDEUhoNU7LZ64R-QBW-0MG0-ZzI3gix-QUUv9Drk40w3MpOsSbay_96U2Za2tL1K4DznyUveI3QQYgCEXhN8SgiRZ-SUy050tHuGFpR3rOEU9wdogXHPG8qxOERHOf_BGLdM4BfokFa-k0Qu0MkqhpLiuNTjRUy-rKe8HGJaul3Qk7dLXQqErS4x5Zfo-aDHDK_25zH6_fnTr9XX5vzHl2-rj-eNFYR0jRwGI5njoC23hgClsjeEgGPdIOzQC2GIw9RJI8HVq2sxdIa1YCgxdcqO0YfZu9maCZyFGlCPapP8pNNORe3V3Unwa3URLxXHjHJOq-DtLIi5eJWtL2DXNoYAtihKqcAtlpV6t38mxb9byEVNPlsYRx0gbrMigpFetAyTir65negmyvU3VuD9DNgUc04w3CAEq6uKFFH7iip7do-tAXXxVz1oPz640cwb__wIu8fV6vvPPX8y8_na_GScR-HLmG7JN25g_wEyILwK
CODEN MPHYA6
CitedBy_id crossref_primary_10_1109_TMI_2014_2360381
crossref_primary_10_1002_mp_14084
crossref_primary_10_1002_mp_13272
crossref_primary_10_3390_app12189346
crossref_primary_10_1088_1361_6560_abe3d2
crossref_primary_10_1088_0031_9155_61_13_4974
Cites_doi 10.1118/1.3577766
10.1007/978-1-84800-155-8_7
10.1097/00004728-197701000-00009
10.1118/1.4829513
10.1088/0031-9155/52/14/003
10.1088/0031-9155/51/4/007
10.1118/1.598779
10.1109/TMI.2009.2034515
10.1118/1.1786171
10.1118/1.2737168
10.1118/1.3539602
10.3233/XST-130386
10.1118/1.4773880
10.1118/1.2748113
10.1118/1.4773879
10.1118/1.2789499
10.1118/1.598738
10.1088/0031-9155/50/16/016
10.1118/1.4789630
10.1148/radiol.2333031150
10.1097/00004728-197801000-00017
10.1118/1.2192887
10.1118/1.3574885
10.1118/1.3429056
10.1118/1.4862079
10.1118/1.598778
10.2214/AJR.06.0370
10.1017/CBO9780511804441
10.1117/12.911355
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2014 American Association of Physicists in Medicine
Copyright © 2014 American Association of Physicists in Medicine 2014 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2014 American Association of Physicists in Medicine
– notice: Copyright © 2014 American Association of Physicists in Medicine 2014 American Association of Physicists in Medicine
DBID AJDQP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
5PM
DOI 10.1118/1.4875727
DatabaseName AIP Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
0094-2405
EndPage n/a
ExternalDocumentID PMC4032442
22250608
24877818
10_1118_1_4875727
MP5727
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  grantid: R21 EB01557401
– fundername: NIH
  funderid: R21 EB01557401
– fundername: NIBIB NIH HHS
  grantid: R21 EB015574
– fundername: NIBIB NIH HHS
  grantid: R21 EB01557401
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
AJDQP
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMMB
AAMNL
AAYCA
ABDPE
ADMLS
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AITYG
ALVPJ
LH4
AAYXX
ABUFD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAJUZ
AAPBV
ABCVL
ABPTK
ADDAD
AEUQT
OTOTI
5PM
ID FETCH-LOGICAL-c5117-8ffb83d4eac4cb1e2289b11ed37f5cf955b1d02d8b8edb1dd60e7b36eb21b9553
IEDL.DBID DRFUL
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000337106300025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-2405
2473-4209
IngestDate Tue Nov 04 01:56:22 EST 2025
Thu May 18 22:37:59 EDT 2023
Fri Sep 05 07:53:48 EDT 2025
Mon Jul 21 06:01:28 EDT 2025
Sat Nov 29 01:32:29 EST 2025
Tue Nov 18 21:57:24 EST 2025
Thu Sep 25 07:36:55 EDT 2025
Sun Jul 14 10:05:21 EDT 2019
Fri Jun 21 00:28:34 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords dose reduction
dynamic bowtie
fluence field modulation
dynamic attenuators
Language English
License 0094-2405/2014/41(6)/061907/17/$30.00
http://onlinelibrary.wiley.com/termsAndConditions
http://doi.wiley.com/10.1002/tdm_license_1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5117-8ffb83d4eac4cb1e2289b11ed37f5cf955b1d02d8b8edb1dd60e7b36eb21b9553
Notes sshsieh@stanford.edu
Author to whom correspondence should be addressed. Electronic mail
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
Author to whom correspondence should be addressed. Electronic mail: sshsieh@stanford.edu
OpenAccessLink http://dx.doi.org/10.1118/1.4875727
PMID 24877818
PQID 1531956301
PQPubID 23479
PageCount 17
ParticipantIDs osti_scitechconnect_22250608
crossref_primary_10_1118_1_4875727
wiley_primary_10_1118_1_4875727_MP5727
proquest_miscellaneous_1531956301
crossref_citationtrail_10_1118_1_4875727
scitation_primary_10_1118_1_4875727
pubmed_primary_24877818
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4032442
PublicationCentury 2000
PublicationDate June 2014
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: June 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2014
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References Hsieh, Fleischmann, Pelc (c33) 2014; 41
Gies, Kalender, Wolf, Suess, Madsen (c7) 1999; 26
Taguchi, Frey, Wang, Iwanczyk, Barber (c3) 2010; 37
Hsieh, Pelc (c4) 2013; 40
Chesler, Riederer, Pelc (c21) 1977; 1
Kalender, Wolf, Suess (c8) 1999; 26
Szczykutowicz, Mistretta (c17) 2013; 40
Taguchi, Zhang, Frey, Wang, Iwanczyk, Nygard, Hartsough, Tsui, Barber (c2) 2011; 38
Bartolac, Graham, Siewerdsen, Jaffray (c9) 2011; 38
Schmidt, Star-Lack, Bennett, Mazin, Solomon, Fahrig, Pelc (c12) 2006; 33
Liu, Wang, Cong, Hsieh, Pelc (c5) 2013; 21
Harpen (c26) 1999; 26
Tang, Hsieh, Nilsen, Dutta, Samsonov, Hagiwara (c23) 2006; 51
Joseph, Spital (c37) 1978; 2
Bartolac, Jaffray (c30) 2013; 40
Szczykutowicz, Mistretta (c18) 2012; 8313
Thibault, Sauer, Bouman, Hsieh (c36) 2007; 34
Boedeker, McNitt-Gray (c25) 2007; 52
Mazin, Star-Lack, Bennett, Pelc (c11) 2007; 34
Szczykutowicz, Mistretta (c16) 2013; 40
Schmidt, Fahrig, Pelc, Solomon (c13) 2004; 31
Li, Udayasankar, Toth, Seamans, Small, Kalra (c19) 2007; 188
Tang, Hsieh, Hagiwara, Nilsen, Thibault, Drapkin (c24) 2005; 50
Kalra, Maher, Toth, Schmidt, Westerman, Morgan, Saini (c6) 2004; 233
Sperl, Beque, Claus, De Man, Senzig, Brokate (c10) 2010; 29
Köhler, Brendel, Proksa (c35) 2011; 38
Toth, Ge, Daly (c20) 2007; 34
2010; 37
2006; 51
2012; 8313
2013; 21
2011
2006; 33
2013; 40
2007; 188
1999; 26
2008
1978; 2
2006
2004
2003
2007; 52
2014; 41
2011; 38
2007; 34
2004; 233
2004; 31
2010; 29
1977; 1
2005; 50
2013
1988
Kalender (10.1118/1.4875727-BIB8|mp5727-cit-c8) 1999; 26
Szczykutowicz (10.1118/1.4875727-BIB17|mp5727-cit-c17) 2013; 40
Mazin (10.1118/1.4875727-BIB11|mp5727-cit-c11) 2007; 34
Tang (10.1118/1.4875727-BIB24|mp5727-cit-c24) 2005; 50
Chesler (10.1118/1.4875727-BIB21|mp5727-cit-c21) 1977; 1
Boedeker (10.1118/1.4875727-BIB25|mp5727-cit-c25) 2007; 52
Kalra (10.1118/1.4875727-BIB6|mp5727-cit-c6) 2004; 233
Bartolac (10.1118/1.4875727-BIB32|mp5727-cit-c32) 2013
Harpen (10.1118/1.4875727-BIB26|mp5727-cit-c26) 1999; 26
Thibault (10.1118/1.4875727-BIB36|mp5727-cit-c36) 2007; 34
Bartolac (10.1118/1.4875727-BIB30|mp5727-cit-c30) 2013; 40
Gies (10.1118/1.4875727-BIB7|mp5727-cit-c7) 1999; 26
Joseph (10.1118/1.4875727-BIB37|mp5727-cit-c37) 1978; 2
Hsieh (10.1118/1.4875727-BIB4|mp5727-cit-c4) 2013; 40
10.1118/1.4875727-BIB15|mp5727-cit-c15
Schmidt (10.1118/1.4875727-BIB12|mp5727-cit-c12) 2006; 33
Tang (10.1118/1.4875727-BIB23|mp5727-cit-c23) 2006; 51
Hsieh (10.1118/1.4875727-BIB33|mp5727-cit-c33) 2014; 41
Sperl (10.1118/1.4875727-BIB10|mp5727-cit-c10) 2010; 29
Schmidt (10.1118/1.4875727-BIB13|mp5727-cit-c13) 2004; 31
10.1118/1.4875727-BIB14|mp5727-cit-c14
Liu (10.1118/1.4875727-BIB5|mp5727-cit-c5) 2013; 21
Kak (10.1118/1.4875727-BIB22|mp5727-cit-c22) 1988
10.1118/1.4875727-BIB31|mp5727-cit-c31
Bartolac (10.1118/1.4875727-BIB9|mp5727-cit-c9) 2011; 38
Roessl (10.1118/1.4875727-BIB34|mp5727-cit-c34) 2013
Szczykutowicz (10.1118/1.4875727-BIB18|mp5727-cit-c18) 2012; 8313
Szczykutowicz (10.1118/1.4875727-BIB16|mp5727-cit-c16) 2013; 40
Grant (10.1118/1.4875727-BIB29|mp5727-cit-c29) 2008
Hsieh (10.1118/1.4875727-BIB1|mp5727-cit-c1) 2003
Li (10.1118/1.4875727-BIB19|mp5727-cit-c19) 2007; 188
10.1118/1.4875727-BIB28|mp5727-cit-c28
Taguchi (10.1118/1.4875727-BIB3|mp5727-cit-c3) 2010; 37
Taguchi (10.1118/1.4875727-BIB2|mp5727-cit-c2) 2011; 38
Toth (10.1118/1.4875727-BIB20|mp5727-cit-c20) 2007; 34
Boyd (10.1118/1.4875727-BIB27|mp5727-cit-c27) 2004
Köhler (10.1118/1.4875727-BIB35|mp5727-cit-c35) 2011; 38
21978114 - Med Phys. 2011 Jul;38 Suppl 1:S2
23387753 - Med Phys. 2013 Feb;40(2):021905
21452746 - Med Phys. 2011 Feb;38(2):1089-102
24320520 - Med Phys. 2013 Dec;40(12):121909
21978120 - Med Phys. 2011 Jul;38 Suppl 1:S76
10587203 - Med Phys. 1999 Nov;26(11):2231-4
23464325 - Med Phys. 2013 Mar;40(3):031910
17664594 - Phys Med Biol. 2007 Jul 21;52(14):4047-61
24506631 - Med Phys. 2014 Feb;41(2):021910
15498896 - Radiology. 2004 Dec;233(3):649-57
15487745 - Med Phys. 2004 Sep;31(9):2623-7
16077234 - Phys Med Biol. 2005 Aug 21;50(16):3889-905
20879558 - Med Phys. 2010 Aug;37(8):3957-69
16467583 - Phys Med Biol. 2006 Feb 21;51(4):855-74
20199910 - IEEE Trans Med Imaging. 2010 Mar;29(3):724-32
24191994 - J Xray Sci Technol. 2013;21(4):579-90
615896 - J Comput Assist Tomogr. 1977 Jan;1(1):64-74
17822016 - Med Phys. 2007 Jul;34(7):3093-101
16872094 - Med Phys. 2006 Jun;33(6):1867-78
17654916 - Med Phys. 2007 Jun;34(6):2133-42
23387754 - Med Phys. 2013 Feb;40(2):021906
17242267 - AJR Am J Roentgenol. 2007 Feb;188(2):547-52
10587204 - Med Phys. 1999 Nov;26(11):2235-47
10587205 - Med Phys. 1999 Nov;26(11):2248-53
670461 - J Comput Assist Tomogr. 1978 Jan;2(1):100-8
18072519 - Med Phys. 2007 Nov;34(11):4526-44
References_xml – volume: 41
  start-page: 021910
  year: 2014
  ident: c33
  article-title: Dose reduction using a dynamic, piecewise-linear attenuator
  publication-title: Med. Phys.
– volume: 40
  start-page: 121909
  year: 2013
  ident: c30
  article-title: Compensator models for fluence field modulated computed tomography
  publication-title: Med. Phys.
– volume: 26
  start-page: 2235
  year: 1999
  ident: c7
  article-title: Dose reduction in CT by anatomically adapted tube current modulation. I. Simulation studies
  publication-title: Med. Phys.
– volume: 1
  start-page: 64
  year: 1977
  ident: c21
  article-title: Noise due to photon counting statistics in computed x-ray tomography
  publication-title: J. Comput. Assist. Tomogr.
– volume: 38
  start-page: S76
  year: 2011
  ident: c35
  article-title: Beam shaper with optimized dose utility for helical cone-beam CT
  publication-title: Med. Phys.
– volume: 33
  start-page: 1867
  year: 2006
  ident: c12
  article-title: A prototype table-top inverse-geometry volumetric CT system
  publication-title: Med. Phys.
– volume: 8313
  start-page: 83134E
  year: 2012
  ident: c18
  article-title: Practical considerations for intensity modulated CT
  publication-title: Proc. SPIE
– volume: 34
  start-page: 2133
  year: 2007
  ident: c11
  article-title: Inverse-geometry volumetric CT system with multiple detector arrays for wide field-of-view imaging
  publication-title: Med. Phys.
– volume: 31
  start-page: 2623
  year: 2004
  ident: c13
  article-title: An inverse-geometry volumetric CT system with a large-area scanned source: A feasibility study
  publication-title: Med. Phys.
– volume: 34
  start-page: 3093
  year: 2007
  ident: c20
  article-title: The influence of patient centering on CT dose and image noise
  publication-title: Med. Phys.
– volume: 50
  start-page: 3889
  year: 2005
  ident: c24
  article-title: A three-dimensional weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT under a circular source trajectory
  publication-title: Phys. Med. Biol.
– volume: 21
  start-page: 579
  year: 2013
  ident: c5
  article-title: Dynamic bowtie for fan-beam CT
  publication-title: Journal of X-ray Science and Technology
– volume: 26
  start-page: 2231
  year: 1999
  ident: c26
  article-title: A simple theorem relating noise and patient dose in computed tomography
  publication-title: Med. Phys.
– volume: 34
  start-page: 4526
  year: 2007
  ident: c36
  article-title: A three-dimensional statistical approach to improved image quality for multislice helical CT
  publication-title: Med. Phys.
– volume: 2
  start-page: 100
  year: 1978
  ident: c37
  article-title: A method for correcting bone induced artifacts in computed tomography scanners
  publication-title: J. Comput. Assist. Tomogr.
– volume: 26
  start-page: 2248
  year: 1999
  ident: c8
  article-title: Dose reduction in CT by anatomically adapted tube current modulation. II. Phantom measurements
  publication-title: Med. Phys.
– volume: 51
  start-page: 855
  year: 2006
  ident: c23
  article-title: A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT—Helical scanning
  publication-title: Phys. Med. Biol.
– volume: 38
  start-page: 1089
  year: 2011
  ident: c2
  article-title: Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects
  publication-title: Med. Phys.
– volume: 40
  start-page: 031910
  year: 2013
  ident: c4
  article-title: The feasibility of a piecewise-linear dynamic bowtie filter
  publication-title: Med. Phys.
– volume: 40
  start-page: 021905
  year: 2013
  ident: c16
  article-title: Design of a digital beam attenuation system for computed tomography: Part I. System design and simulation framework
  publication-title: Med. Phys.
– volume: 38
  start-page: S2
  year: 2011
  ident: c9
  article-title: Fluence field optimization for noise and dose objectives in CT
  publication-title: Med. Phys.
– volume: 233
  start-page: 649
  year: 2004
  ident: c6
  article-title: Techniques and applications of automatic tube current modulation for CT
  publication-title: Radiology
– volume: 37
  start-page: 3957
  year: 2010
  ident: c3
  article-title: An analytical model of the effects of pulse pileup on the energy spectrum recorded by energy resolved photon counting x-ray detectors
  publication-title: Med. Phys.
– volume: 29
  start-page: 724
  year: 2010
  ident: c10
  article-title: Computer-assisted scan protocol and reconstruction (CASPAR)—Reduction of image noise and patient dose
  publication-title: IEEE Trans. Med. Imaging
– volume: 40
  start-page: 021906
  year: 2013
  ident: c17
  article-title: Design of a digital beam attenuation system for computed tomography. Part II. Performance study and initial results
  publication-title: Med. Phys.
– volume: 52
  start-page: 4047
  year: 2007
  ident: c25
  article-title: Application of the noise power spectrum in modern diagnostic MDCT: Part II. Noise power spectra and signal to noise
  publication-title: Phys. Med. Biol.
– volume: 188
  start-page: 547
  year: 2007
  ident: c19
  article-title: Automatic patient centering for MDCT: Effect on radiation dose
  publication-title: Am. J. Roentgenol.
– year: 2011
– volume: 38
  start-page: S2
  year: 2011
  end-page: S17
  article-title: Fluence field optimization for noise and dose objectives in CT
  publication-title: Med. Phys.
– volume: 34
  start-page: 2133
  year: 2007
  end-page: 2142
  article-title: Inverse‐geometry volumetric CT system with multiple detector arrays for wide field‐of‐view imaging
  publication-title: Med. Phys.
– volume: 26
  start-page: 2248
  year: 1999
  end-page: 2253
  article-title: Dose reduction in CT by anatomically adapted tube current modulation. II. Phantom measurements
  publication-title: Med. Phys.
– volume: 40
  start-page: 021905
  year: 2013
  article-title: Design of a digital beam attenuation system for computed tomography: Part I. System design and simulation framework
  publication-title: Med. Phys.
– volume: 37
  start-page: 3957
  year: 2010
  end-page: 3969
  article-title: An analytical model of the effects of pulse pileup on the energy spectrum recorded by energy resolved photon counting x‐ray detectors
  publication-title: Med. Phys.
– volume: 51
  start-page: 855
  year: 2006
  end-page: 874
  article-title: A three‐dimensional‐weighted cone beam filtered backprojection (CB‐FBP) algorithm for image reconstruction in volumetric CT—Helical scanning
  publication-title: Phys. Med. Biol.
– year: 2003
– volume: 1
  start-page: 64
  year: 1977
  end-page: 74
  article-title: Noise due to photon counting statistics in computed x‐ray tomography
  publication-title: J. Comput. Assist. Tomogr.
– volume: 21
  start-page: 579
  issue: 4
  year: 2013
  end-page: 590
  article-title: Dynamic bowtie for fan‐beam CT
  publication-title: Journal of X‐ray Science and Technology
– volume: 38
  start-page: S76
  year: 2011
  end-page: S84
  article-title: Beam shaper with optimized dose utility for helical cone‐beam CT
  publication-title: Med. Phys.
– volume: 26
  start-page: 2231
  year: 1999
  end-page: 2234
  article-title: A simple theorem relating noise and patient dose in computed tomography
  publication-title: Med. Phys.
– volume: 40
  start-page: 031910
  year: 2013
  article-title: The feasibility of a piecewise‐linear dynamic bowtie filter
  publication-title: Med. Phys.
– volume: 233
  start-page: 649
  year: 2004
  end-page: 657
  article-title: Techniques and applications of automatic tube current modulation for CT
  publication-title: Radiology
– start-page: 95
  year: 2008
  end-page: 110
  article-title: Graph implementations for nonsmooth convex programs
– volume: 34
  start-page: 3093
  year: 2007
  end-page: 3101
  article-title: The influence of patient centering on CT dose and image noise
  publication-title: Med. Phys.
– volume: 34
  start-page: 4526
  year: 2007
  end-page: 4544
  article-title: A three‐dimensional statistical approach to improved image quality for multislice helical CT
  publication-title: Med. Phys.
– volume: 26
  start-page: 2235
  year: 1999
  end-page: 2247
  article-title: Dose reduction in CT by anatomically adapted tube current modulation. I. Simulation studies
  publication-title: Med. Phys.
– volume: 188
  start-page: 547
  year: 2007
  end-page: 552
  article-title: Automatic patient centering for MDCT: Effect on radiation dose
  publication-title: Am. J. Roentgenol.
– volume: 40
  start-page: 121909
  year: 2013
  article-title: Compensator models for fluence field modulated computed tomography
  publication-title: Med. Phys.
– volume: 8313
  start-page: 83134E
  year: 2012
  article-title: Practical considerations for intensity modulated CT
  publication-title: Proc. SPIE
– volume: 50
  start-page: 3889
  year: 2005
  end-page: 3905
  article-title: A three‐dimensional weighted cone beam filtered backprojection (CB‐FBP) algorithm for image reconstruction in volumetric CT under a circular source trajectory
  publication-title: Phys. Med. Biol.
– volume: 29
  start-page: 724
  year: 2010
  end-page: 732
  article-title: Computer‐assisted scan protocol and reconstruction (CASPAR)—Reduction of image noise and patient dose
  publication-title: IEEE Trans. Med. Imaging
– volume: 52
  start-page: 4047
  year: 2007
  end-page: 4061
  article-title: Application of the noise power spectrum in modern diagnostic MDCT: Part II. Noise power spectra and signal to noise
  publication-title: Phys. Med. Biol.
– volume: 41
  start-page: 021910
  year: 2014
  article-title: Dose reduction using a dynamic, piecewise‐linear attenuator
  publication-title: Med. Phys.
– year: 2008
– year: 1988
– volume: 33
  start-page: 1867
  year: 2006
  end-page: 1878
  article-title: A prototype table‐top inverse‐geometry volumetric CT system
  publication-title: Med. Phys.
– year: 2006
– year: 2004
– volume: 2
  start-page: 100
  year: 1978
  end-page: 108
  article-title: A method for correcting bone induced artifacts in computed tomography scanners
  publication-title: J. Comput. Assist. Tomogr.
– volume: 40
  start-page: 021906
  year: 2013
  article-title: Design of a digital beam attenuation system for computed tomography. Part II. Performance study and initial results
  publication-title: Med. Phys.
– volume: 31
  start-page: 2623
  year: 2004
  end-page: 2627
  article-title: An inverse‐geometry volumetric CT system with a large‐area scanned source: A feasibility study
  publication-title: Med. Phys.
– volume: 38
  start-page: 1089
  year: 2011
  end-page: 1102
  article-title: Modeling the performance of a photon counting x‐ray detector for CT: Energy response and pulse pileup effects
  publication-title: Med. Phys.
– year: 2013
– volume: 38
  start-page: S76
  year: 2011
  ident: 10.1118/1.4875727-BIB35|mp5727-cit-c35
  article-title: Beam shaper with optimized dose utility for helical cone-beam CT
  publication-title: Med. Phys.
  doi: 10.1118/1.3577766
– start-page: 95
  volume-title: Recent Advances in Learning and Control
  year: 2008
  ident: 10.1118/1.4875727-BIB29|mp5727-cit-c29
  article-title: Graph implementations for nonsmooth convex programs
  doi: 10.1007/978-1-84800-155-8_7
– volume: 1
  start-page: 64
  year: 1977
  ident: 10.1118/1.4875727-BIB21|mp5727-cit-c21
  article-title: Noise due to photon counting statistics in computed x-ray tomography
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-197701000-00009
– volume: 40
  start-page: 121909
  year: 2013
  ident: 10.1118/1.4875727-BIB30|mp5727-cit-c30
  article-title: Compensator models for fluence field modulated computed tomography
  publication-title: Med. Phys.
  doi: 10.1118/1.4829513
– volume: 52
  start-page: 4047
  year: 2007
  ident: 10.1118/1.4875727-BIB25|mp5727-cit-c25
  article-title: Application of the noise power spectrum in modern diagnostic MDCT: Part II. Noise power spectra and signal to noise
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/52/14/003
– volume: 51
  start-page: 855
  year: 2006
  ident: 10.1118/1.4875727-BIB23|mp5727-cit-c23
  article-title: A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT-Helical scanning
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/4/007
– volume: 26
  start-page: 2235
  year: 1999
  ident: 10.1118/1.4875727-BIB7|mp5727-cit-c7
  article-title: Dose reduction in CT by anatomically adapted tube current modulation. I. Simulation studies
  publication-title: Med. Phys.
  doi: 10.1118/1.598779
– volume: 29
  start-page: 724
  year: 2010
  ident: 10.1118/1.4875727-BIB10|mp5727-cit-c10
  article-title: Computer-assisted scan protocol and reconstruction (CASPAR)-Reduction of image noise and patient dose
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2034515
– volume-title: Computed Tomography: Principles, Design, Artifacts, and Recent Advances
  year: 2003
  ident: 10.1118/1.4875727-BIB1|mp5727-cit-c1
– volume: 31
  start-page: 2623
  year: 2004
  ident: 10.1118/1.4875727-BIB13|mp5727-cit-c13
  article-title: An inverse-geometry volumetric CT system with a large-area scanned source: A feasibility study
  publication-title: Med. Phys.
  doi: 10.1118/1.1786171
– volume: 34
  start-page: 2133
  year: 2007
  ident: 10.1118/1.4875727-BIB11|mp5727-cit-c11
  article-title: Inverse-geometry volumetric CT system with multiple detector arrays for wide field-of-view imaging
  publication-title: Med. Phys.
  doi: 10.1118/1.2737168
– volume: 38
  start-page: 1089
  year: 2011
  ident: 10.1118/1.4875727-BIB2|mp5727-cit-c2
  article-title: Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects
  publication-title: Med. Phys.
  doi: 10.1118/1.3539602
– volume: 21
  start-page: 579
  issue: 4
  year: 2013
  ident: 10.1118/1.4875727-BIB5|mp5727-cit-c5
  article-title: Dynamic bowtie for fan-beam CT
  publication-title: Journal of X-ray Science and Technology
  doi: 10.3233/XST-130386
– volume: 40
  start-page: 021906
  year: 2013
  ident: 10.1118/1.4875727-BIB17|mp5727-cit-c17
  article-title: Design of a digital beam attenuation system for computed tomography. Part II. Performance study and initial results
  publication-title: Med. Phys.
  doi: 10.1118/1.4773880
– volume: 34
  start-page: 3093
  year: 2007
  ident: 10.1118/1.4875727-BIB20|mp5727-cit-c20
  article-title: The influence of patient centering on CT dose and image noise
  publication-title: Med. Phys.
  doi: 10.1118/1.2748113
– volume: 40
  start-page: 021905
  year: 2013
  ident: 10.1118/1.4875727-BIB16|mp5727-cit-c16
  article-title: Design of a digital beam attenuation system for computed tomography: Part I. System design and simulation framework
  publication-title: Med. Phys.
  doi: 10.1118/1.4773879
– volume: 34
  start-page: 4526
  year: 2007
  ident: 10.1118/1.4875727-BIB36|mp5727-cit-c36
  article-title: A three-dimensional statistical approach to improved image quality for multislice helical CT
  publication-title: Med. Phys.
  doi: 10.1118/1.2789499
– volume: 26
  start-page: 2248
  year: 1999
  ident: 10.1118/1.4875727-BIB8|mp5727-cit-c8
  article-title: Dose reduction in CT by anatomically adapted tube current modulation. II. Phantom measurements
  publication-title: Med. Phys.
  doi: 10.1118/1.598738
– volume: 50
  start-page: 3889
  year: 2005
  ident: 10.1118/1.4875727-BIB24|mp5727-cit-c24
  article-title: A three-dimensional weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT under a circular source trajectory
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/50/16/016
– volume: 40
  start-page: 031910
  year: 2013
  ident: 10.1118/1.4875727-BIB4|mp5727-cit-c4
  article-title: The feasibility of a piecewise-linear dynamic bowtie filter
  publication-title: Med. Phys.
  doi: 10.1118/1.4789630
– volume: 233
  start-page: 649
  year: 2004
  ident: 10.1118/1.4875727-BIB6|mp5727-cit-c6
  article-title: Techniques and applications of automatic tube current modulation for CT
  publication-title: Radiology
  doi: 10.1148/radiol.2333031150
– volume: 2
  start-page: 100
  year: 1978
  ident: 10.1118/1.4875727-BIB37|mp5727-cit-c37
  article-title: A method for correcting bone induced artifacts in computed tomography scanners
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-197801000-00017
– ident: 10.1118/1.4875727-BIB28|mp5727-cit-c28
– volume: 33
  start-page: 1867
  year: 2006
  ident: 10.1118/1.4875727-BIB12|mp5727-cit-c12
  article-title: A prototype table-top inverse-geometry volumetric CT system
  publication-title: Med. Phys.
  doi: 10.1118/1.2192887
– volume: 38
  start-page: S2
  year: 2011
  ident: 10.1118/1.4875727-BIB9|mp5727-cit-c9
  article-title: Fluence field optimization for noise and dose objectives in CT
  publication-title: Med. Phys.
  doi: 10.1118/1.3574885
– volume: 37
  start-page: 3957
  year: 2010
  ident: 10.1118/1.4875727-BIB3|mp5727-cit-c3
  article-title: An analytical model of the effects of pulse pileup on the energy spectrum recorded by energy resolved photon counting x-ray detectors
  publication-title: Med. Phys.
  doi: 10.1118/1.3429056
– ident: 10.1118/1.4875727-BIB31|mp5727-cit-c31
– ident: 10.1118/1.4875727-BIB14|mp5727-cit-c14
– volume-title: Principles of Computerized Tomographic Imaging
  year: 1988
  ident: 10.1118/1.4875727-BIB22|mp5727-cit-c22
– volume: 41
  start-page: 021910
  year: 2014
  ident: 10.1118/1.4875727-BIB33|mp5727-cit-c33
  article-title: Dose reduction using a dynamic, piecewise-linear attenuator
  publication-title: Med. Phys.
  doi: 10.1118/1.4862079
– volume: 26
  start-page: 2231
  year: 1999
  ident: 10.1118/1.4875727-BIB26|mp5727-cit-c26
  article-title: A simple theorem relating noise and patient dose in computed tomography
  publication-title: Med. Phys.
  doi: 10.1118/1.598778
– volume: 188
  start-page: 547
  year: 2007
  ident: 10.1118/1.4875727-BIB19|mp5727-cit-c19
  article-title: Automatic patient centering for MDCT: Effect on radiation dose
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.06.0370
– volume-title: Strategies for fluence field modulated CT
  year: 2013
  ident: 10.1118/1.4875727-BIB32|mp5727-cit-c32
– volume-title: Convex Optimization
  year: 2004
  ident: 10.1118/1.4875727-BIB27|mp5727-cit-c27
  doi: 10.1017/CBO9780511804441
– ident: 10.1118/1.4875727-BIB15|mp5727-cit-c15
– volume-title: Dynamic beam-shaper for high flux photon-counting computed tomography
  year: 2013
  ident: 10.1118/1.4875727-BIB34|mp5727-cit-c34
– volume: 8313
  start-page: 83134E
  year: 2012
  ident: 10.1118/1.4875727-BIB18|mp5727-cit-c18
  article-title: Practical considerations for intensity modulated CT
  publication-title: Proc. SPIE
  doi: 10.1117/12.911355
– reference: 17242267 - AJR Am J Roentgenol. 2007 Feb;188(2):547-52
– reference: 23387753 - Med Phys. 2013 Feb;40(2):021905
– reference: 23464325 - Med Phys. 2013 Mar;40(3):031910
– reference: 10587205 - Med Phys. 1999 Nov;26(11):2248-53
– reference: 17822016 - Med Phys. 2007 Jul;34(7):3093-101
– reference: 10587204 - Med Phys. 1999 Nov;26(11):2235-47
– reference: 17664594 - Phys Med Biol. 2007 Jul 21;52(14):4047-61
– reference: 21978120 - Med Phys. 2011 Jul;38 Suppl 1:S76
– reference: 21978114 - Med Phys. 2011 Jul;38 Suppl 1:S2
– reference: 18072519 - Med Phys. 2007 Nov;34(11):4526-44
– reference: 21452746 - Med Phys. 2011 Feb;38(2):1089-102
– reference: 17654916 - Med Phys. 2007 Jun;34(6):2133-42
– reference: 670461 - J Comput Assist Tomogr. 1978 Jan;2(1):100-8
– reference: 16872094 - Med Phys. 2006 Jun;33(6):1867-78
– reference: 24191994 - J Xray Sci Technol. 2013;21(4):579-90
– reference: 15487745 - Med Phys. 2004 Sep;31(9):2623-7
– reference: 23387754 - Med Phys. 2013 Feb;40(2):021906
– reference: 10587203 - Med Phys. 1999 Nov;26(11):2231-4
– reference: 20879558 - Med Phys. 2010 Aug;37(8):3957-69
– reference: 24506631 - Med Phys. 2014 Feb;41(2):021910
– reference: 615896 - J Comput Assist Tomogr. 1977 Jan;1(1):64-74
– reference: 15498896 - Radiology. 2004 Dec;233(3):649-57
– reference: 20199910 - IEEE Trans Med Imaging. 2010 Mar;29(3):724-32
– reference: 16467583 - Phys Med Biol. 2006 Feb 21;51(4):855-74
– reference: 16077234 - Phys Med Biol. 2005 Aug 21;50(16):3889-905
– reference: 24320520 - Med Phys. 2013 Dec;40(12):121909
SSID ssj0006350
Score 2.1602285
Snippet Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are...
The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient...
Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
wiley
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 61907
SubjectTerms ABDOMEN
ALGORITHMS
ANATOMY
attenuators
BEAM SHAPING
Biological material, e.g. blood, urine; Haemocytometers
CHEST
computational complexity
Computed tomography
Computer Simulation
Computerised tomographs
computerised tomography
DEGREES OF FREEDOM
DOSE LIMITS
dose reduction
dosimetry
Dosimetry/exposure assessment
dynamic attenuators
dynamic bowtie
Equipment Design
FILTERS
fluence field modulation
Humans
Illumination
Image reconstruction
medical control systems
Medical image noise
MINIMIZATION
Models, Theoretical
Optimization
Photons
piecewise linear techniques
Radiation Dosage
RADIATION DOSES
Radiation Imaging Physics
RADIATION PROTECTION AND DOSIMETRY
Radiography, Abdominal - instrumentation
Radiography, Abdominal - methods
Radiography, Thoracic - instrumentation
Radiography, Thoracic - methods
Scintigraphy
Tissues
Tomography, X-Ray Computed - instrumentation
Tomography, X-Ray Computed - methods
Title Control algorithms for dynamic attenuators
URI http://dx.doi.org/10.1118/1.4875727
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.4875727
https://www.ncbi.nlm.nih.gov/pubmed/24877818
https://www.proquest.com/docview/1531956301
https://www.osti.gov/biblio/22250608
https://pubmed.ncbi.nlm.nih.gov/PMC4032442
Volume 41
WOSCitedRecordID wos000337106300025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tHV8vfIyvwJjChxBCCsR2UjviCQ0qHrZpQkzqmxXHNq00kqlp9_dzF6dBFQUh8ZRIPtuxz-f7XXy-A3hllEPcoUyCQsiTjEmRFFwWaKrYDAG5UNx0WUuO5empmk6Lsx34sL4LE-JDDD_cSDK6_ZoEvDR9FhJGjuvsHWFtVL-7sMdx3eYj2Pv0dXJ-PGzEqEvDDZQio0OEvA8shNXfD5U31NGoQbHaBjV_95i8iQoqnJVvotpOLU3u_NeA7sLtHo3GH8PyuQc7rt6HGyf9efs-XO8cRKv2Prw9Cj7tcXnxvVnMl7MfbYx4N7Yho31MYTrrFVnw7QM4n3z-dvQl6fMsJBXCLVRS3hslbIZ7cFYZ5jgaYYYxZ4X0eeWLPDfMptwqZKzFVztOnTRijEY5M1gqHsKobmr3GGIhKb5fLpmXLvNGlE6OTcoq70vHnVARvFlPt15PIOXCuNDBGFGa6X4WIngxkF6GyBvbiA6IZ5q44apZRc5B1VKTEZuOU-zu-ZqXGsWGzkLK2jWrVjPaeyg2GovgUeDt0AvHxiUCmQjkBtcHAgrJvVlSz2ddaG4cPOIlHsHLYX387eO3UF01i18U-tL6CF53q-bP7eiTM3o8-VfCp3ALYV8WHN4OYLRcrNwzuFZdLeft4hB25VQd9rL0E2alG8s
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwED-NDhhfeGw8AgPCQ2hCCovjpE4kvqBBNURbTWiT9s2qX7TSlkxNu7-fuzgNqigIiU-JlLMd--58v7PPZ4C3KreIO3IVoRImUcoEj4pEFOiqmBQBOc8T1dxaMhTjcX5-XpxswcfVWRifH6JbcCPNaOZrUnBakG61nCLX2QcC22h_b8B2imKE8r39-fvgbNjNxGhM_RGUIqVdhKzNLITFD7vCa_aoV6FebcKav4dM7qCF8pvl67C2sUuDe__Xo_twt8Wj4ScvQA9gy5a7cHvU7rjvwq0mRFTXe_D-yEe1h5OLH9V8tphe1iEi3tD4O-1DStRZLsmHrx_C2eDL6dFx1N60EGkEXGimnFM5NynOwqlWzCbohinGrOHCZdoVWaaYiROTI2sNvpp-bIXifXTLmcKv_BH0yqq0TyDkgjL8ZYI5YVOn-MSKvoqZdm5iE8vzAA5W4y1XI0i3YVxI747kksl2FAJ43ZFe-dwbm4j2iWmS2GH1VFN4kF5IcmPjfozNvVoxU6Li0G7IpLTVspaMZh_KjsYCeOyZ27WSYOUCoUwAYo3tHQEl5V7_Us6mTXJu7DwipiSAN52A_O3nN1BdV_NfFPLKuADeNWLz53rk6IQeT_-V8CXsHJ-OhnL4dfztGdxBEJj68Ld96C3mS_scburrxayev2hV6iev1B7T
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NDgYvfIyPBQYEmBBCCovjpE4kXtBGBaKrKsSkvVn1F620JVPT7u_fXZwGVRSExFMi-WzHPp_vd_H5DuBA5RZxR64iFMIkSpngUZGIAk0VkyIg53mimqwlQzEa5WdnxXgLPq7uwvj4EN0PN5KMZr8mAbeXxrVSTp7r7AOBbdS_N2A7pSQyPdg-_j44HXY7MSpTfwWlSOkUIWsjC2H1w67ymj7qVShXm7Dm7y6Tt1FD-cPydVjb6KXBvf8b0X242-LR8JNfQA9gy5a7sHPSnrjvwq3GRVTXD-H9kfdqDyfnP6v5bDG9qENEvKHxOe1DCtRZLsmGrx_B6eDzj6MvUZtpIdIIuFBNOadyblLchVOtmE3QDFOMWcOFy7QrskwxEycmR9YafDX92ArF-2iWM4Wl_DH0yqq0exByQRH-MsGcsKlTfGJFX8VMOzexieV5AO9W8y1XM0jZMM6lN0dyyWQ7CwG87kgvfeyNTUT7xDRJ7LB6qsk9SC8kmbFxP8buXq2YKVFw6DRkUtpqWUtGuw9FR2MBPPHM7XpJsHGBUCYAscb2joCCcq-XlLNpE5wbB4-IKQngTbdA_vbxG6iuqvkvCokrJIC3zbL5czvyZEyPp_9K-BJ2xscDOfw6-vYM7iAGTL332z70FvOlfQ439dViVs9ftBJ1DQ4AHk4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+algorithms+for+dynamic+attenuators&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Hsieh%2C+Scott+S.&rft.au=Pelc%2C+Norbert+J.&rft.date=2014-06-01&rft.pub=American+Association+of+Physicists+in+Medicine&rft.issn=0094-2405&rft.eissn=0094-2405&rft.volume=41&rft.issue=6&rft_id=info:doi/10.1118%2F1.4875727&rft_id=info%3Apmid%2F24877818&rft.externalDocID=PMC4032442
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon