Inferring past demographic changes from contemporary genetic data: A simulation‐based evaluation of the ABC methods implemented in diyabc
Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood‐based inference approaches severely restricts their applicability to large data sets or complex models...
Gespeichert in:
| Veröffentlicht in: | Molecular ecology resources Jg. 17; H. 6; S. e94 - e110 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Wiley Subscription Services, Inc
01.11.2017
|
| Schlagworte: | |
| ISSN: | 1755-098X, 1755-0998, 1755-0998 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood‐based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation (ABC) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC‐based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single‐population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., Neμ) compared to unscaled parameters (e.g., Ne and μ). We concluded that diyabc‐based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes. |
|---|---|
| AbstractList | Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood-based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation (ABC) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC-based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single-population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., Ne μ) compared to unscaled parameters (e.g., Ne and μ). We concluded that diyabc-based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes.Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood-based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation (ABC) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC-based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single-population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., Ne μ) compared to unscaled parameters (e.g., Ne and μ). We concluded that diyabc-based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes. Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood‐based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation (ABC) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC‐based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single‐population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., Nₑμ) compared to unscaled parameters (e.g., Nₑ and μ). We concluded that diyabc‐based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes. Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood-based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation (ABC) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC-based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single-population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., Neµ) compared to unscaled parameters (e.g., Ne and µ). We concluded that diyabc-based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes. Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood‐based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation (ABC) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC‐based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single‐population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., Neμ) compared to unscaled parameters (e.g., Ne and μ). We concluded that diyabc‐based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes. Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood‐based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation ( ABC ) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC ‐based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single‐population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., N e μ) compared to unscaled parameters (e.g., N e and μ). We concluded that diyabc ‐based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes. Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood-based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation (ABC) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC-based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single-population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., N μ) compared to unscaled parameters (e.g., N and μ). We concluded that diyabc-based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes. |
| Author | Palsbøll, Per J. Cabrera, Andrea A. |
| Author_xml | – sequence: 1 givenname: Andrea A. orcidid: 0000-0001-5385-1114 surname: Cabrera fullname: Cabrera, Andrea A. email: andrea_ca_gt@yahoo.com organization: University of Groningen – sequence: 2 givenname: Per J. surname: Palsbøll fullname: Palsbøll, Per J. email: palsboll@gmail.com organization: University of Groningen |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28654208$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkT-PFCEYh4k54_3R2s6Q2NjsHbADw9jtbU695NRGE7sJA-_schlgBEaznb2Nn9FPIrt7bnHN0kDePL8XeJ9zdOKDB4ReUnJJy7qiNecz0jTykjLRiCfo7FA5OZzlt1N0ntI9IYI0dfUMnTIpeMWIPEO_b30PMVq_wqNKGRtwYRXVuLYa67XyK0i4j8FhHXwGN4ao4gavwEMuhFFZvcULnKybBpVt8H9__elUAoPhhxqmXQmHHuc14MX1EjvI62AStm4cwEFpabD12NiN6vRz9LRXQ4IXD_sF-vru5svyw-zu8_vb5eJupjmlYtZ3nHJRC8K6umNgwMwZmdeghGJKUMNhLriumlp3temAqapiuua6l5UxTW_mF-jNvu8Yw_cJUm6dTRqGQXkIU2oZ4XMpKiHZUZQ2tGKyFqIq6OtH6H2Yoi8fKZQoryWSyUK9eqCmzoFpx2hdmWj730gBrvaAjiGlCP0BoaTdOm-3Vtut4XbnvCT4o4S2eTf5HJUdjud-2gE2x65pP9582uf-AWzMwFo |
| CitedBy_id | crossref_primary_10_1038_s41598_021_90325_0 crossref_primary_10_1186_s12862_020_01646_z crossref_primary_10_3390_d15030425 crossref_primary_10_3390_d15091021 crossref_primary_10_1038_s41598_020_75044_2 crossref_primary_10_1007_s10530_020_02390_7 crossref_primary_10_1007_s11295_023_01590_1 crossref_primary_10_1186_s12862_019_1451_y crossref_primary_10_1139_cjfas_2018_0416 crossref_primary_10_1111_1440_1703_70010 crossref_primary_10_3390_d14080617 crossref_primary_10_1002_ece3_5804 crossref_primary_10_1111_1755_0998_12758 crossref_primary_10_1371_journal_pone_0277298 crossref_primary_10_1093_forestry_cpz063 crossref_primary_10_1093_sysbio_syad073 crossref_primary_10_1017_qua_2018_150 crossref_primary_10_1186_s12711_021_00639_w crossref_primary_10_1111_ibi_13107 crossref_primary_10_1111_eva_12779 crossref_primary_10_1371_journal_pone_0245604 crossref_primary_10_1007_s10682_021_10111_2 crossref_primary_10_1007_s12686_021_01237_0 crossref_primary_10_1038_s41598_021_85042_7 crossref_primary_10_1111_eva_13520 crossref_primary_10_1007_s10531_021_02321_5 crossref_primary_10_1093_jhered_esz047 crossref_primary_10_1111_ddi_13304 crossref_primary_10_3390_genes14122146 crossref_primary_10_1371_journal_pone_0300468 crossref_primary_10_1007_s10592_021_01399_2 crossref_primary_10_1002_ece3_4143 crossref_primary_10_1111_mec_15881 crossref_primary_10_1007_s10530_022_02787_6 crossref_primary_10_1111_mec_15521 crossref_primary_10_1111_jbi_13207 crossref_primary_10_3390_d14060439 crossref_primary_10_1002_ece3_4449 crossref_primary_10_7717_peerj_5198 crossref_primary_10_1111_ibi_13197 crossref_primary_10_3389_fmars_2024_1396411 crossref_primary_10_1007_s10531_018_1612_0 crossref_primary_10_1111_jse_12728 crossref_primary_10_1111_ibi_12864 crossref_primary_10_1007_s10592_022_01463_5 crossref_primary_10_1016_j_ympev_2019_106523 crossref_primary_10_1111_jbi_13192 |
| Cites_doi | 10.1534/genetics.103.024182 10.1111/eva.12110 10.1111/mec.13034 10.1111/1467-985X.00264 10.1007/BF00356155 10.1073/pnas.0611164104 10.1016/j.cognition.2010.10.004 10.1093/oxfordjournals.molbev.a026011 10.1029/96PA03934 10.1534/genetics.112.143164 10.1093/oxfordjournals.molbev.a026046 10.1111/j.1095-8312.1996.tb01434.x 10.1093/oxfordjournals.molbev.a025855 10.1111/j.1365-294X.2010.04690.x 10.1111/j.1365-294X.2005.02644.x 10.1186/1471-2148-7-214 10.1111/eva.12170 10.1111/mec.12258 10.1111/j.1420-9101.2011.02362.x 10.1093/genetics/153.4.2013 10.1111/j.1365-294X.2010.04825.x 10.1111/mec.12881 10.1093/bioinformatics/btk051 10.1007/PL00006487 10.1073/pnas.1201258109 10.1038/nrg1318 10.1111/j.1365-294X.2004.02132.x 10.1093/hmg/2.8.1123 10.1371/journal.pgen.1003345 10.1038/nature10574 10.1890/06-0795.1 10.1093/genetics/150.1.499 10.1093/bioinformatics/btt763 10.1002/ece3.374 10.1111/j.1471-8286.2006.01368.x 10.1016/j.cub.2009.06.030 10.1093/bioinformatics/btp487 10.1534/genetics.110.121764 10.1098/rstb.1994.0079 10.1093/bioinformatics/btq278 10.1046/j.1365-294x.2001.01190.x 10.1111/mec.12465 10.1093/aob/mcu197 10.1038/hdy.2013.104 10.1371/journal.pcbi.1002803 10.1038/35016000 10.1186/1471-2164-9-315 10.1093/bioinformatics/btn514 10.1111/j.2041-210X.2011.00179.x 10.1098/rspb.2014.1558 10.1093/genetics/162.4.2025 10.1111/j.1365-294X.2011.05248.x 10.1007/BF02101694 10.1080/01621459.1979.10481632 10.1371/journal.pgen.1002703 10.1111/mec.12394 10.1371/journal.pgen.1003942 10.1007/s11336-013-9381-x 10.1186/1471-2105-11-401 10.1162/neco.1992.4.1.1 10.1111/j.1365-294X.2011.05322.x 10.1214/13-EJS854 10.1016/j.pbi.2008.02.009 10.1016/j.tree.2010.04.001 10.1111/2041-210X.12050 10.1038/nrg1961 10.1111/mec.12722 10.1038/nrg3130 10.1139/f04-113 10.3897/natureconservation.5.5734 10.1111/j.1471-8286.2007.01997.x 10.1111/j.1365-294X.2006.02908.x 10.1186/1471-2105-11-116 10.1186/1471-2148-8-167 10.1046/j.1365-294X.2002.01576.x 10.1093/molbev/msu187 10.1126/science.1172873 10.1111/j.1365-294X.2011.05363.x 10.1073/pnas.1102900108 |
| ContentType | Journal Article |
| Copyright | 2017 John Wiley & Sons Ltd 2017 John Wiley & Sons Ltd. Copyright © 2017 John Wiley & Sons Ltd |
| Copyright_xml | – notice: 2017 John Wiley & Sons Ltd – notice: 2017 John Wiley & Sons Ltd. – notice: Copyright © 2017 John Wiley & Sons Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
| DOI | 10.1111/1755-0998.12696 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA Entomology Abstracts CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Ecology |
| EISSN | 1755-0998 |
| EndPage | e110 |
| ExternalDocumentID | 28654208 10_1111_1755_0998_12696 MEN12696 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: University of Groningen |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD ESX F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION O8X CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c5116-fb51567602b7b2eded32037ea6a2a61d5e365c497cb7dbe2a442c75cf84dd9fd3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 59 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000415921900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1755-098X 1755-0998 |
| IngestDate | Fri Jul 11 18:35:24 EDT 2025 Thu Jul 10 21:55:19 EDT 2025 Sun Jul 13 05:22:33 EDT 2025 Mon Jul 21 05:42:04 EDT 2025 Sat Nov 29 02:35:27 EST 2025 Tue Nov 18 22:18:29 EST 2025 Wed Jan 22 16:31:42 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | model selection population genetics demographic inference approximate Bayesian computation |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5116-fb51567602b7b2eded32037ea6a2a61d5e365c497cb7dbe2a442c75cf84dd9fd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5385-1114 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1755-0998.12696 |
| PMID | 28654208 |
| PQID | 1966020828 |
| PQPubID | 1096410 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2053864682 proquest_miscellaneous_1914287664 proquest_journals_1966020828 pubmed_primary_28654208 crossref_primary_10_1111_1755_0998_12696 crossref_citationtrail_10_1111_1755_0998_12696 wiley_primary_10_1111_1755_0998_12696_MEN12696 |
| PublicationCentury | 2000 |
| PublicationDate | November 2017 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: November 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Molecular ecology resources |
| PublicationTitleAlternate | Mol Ecol Resour |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2004; 167 2011; 479 2010; 11 2007; 104 2004; 61 2013; 3 2013; 4 2011; 118 2013; 22 2010; 19 1999; 48 2002; 11 2008; 9 2004; 5 2008; 8 2013; 7 1985; 22 1979; 74 2012; 13 2013; 5 1993; 2 2014; 23 1998; 150 2013; 9 1994; 344 1998; 15 2010; 26 2010; 25 2006; 22 1999; 16 2000; 405 2011; 20 1987 2008; 24 2007; 7 2011; 24 2014; 281 2009; 19 2014; 7 2003; 166 1992; 3 2009; 325 1992; 4 2001; 10 2009; 25 2008; 18 2006; 7 2008 2004 2008; 11 1996; 58 2014; 114 2012; 109 2014; 112 2015; 24 2012; 3 2011; 108 1989; 123 2002; 162 1993; 10 2012; 192 2004; 13 1999; 153 2017 2014; 79 2014 2013 2014; 30 2011; 188 2012; 8 2014; 31 2005; 14 e_1_2_9_75_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 Beaumont M. A. (e_1_2_9_6_1) 2008 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 Gelman A. (e_1_2_9_31_1) 2014 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_60_1 e_1_2_9_2_1 Avise J. C. (e_1_2_9_4_1) 2004 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 R Development Core Team (e_1_2_9_68_1) 2013 Lippens C. (e_1_2_9_51_1) 2017 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
| References_xml | – volume: 112 start-page: 282 year: 2014 end-page: 290 article-title: Phylogeographic and population genetic analyses reveal Pleistocene isolation followed by high gene flow in a wide ranging, but endangered, freshwater mussel publication-title: Heredity – volume: 8 start-page: e1002703 year: 2012 article-title: New insight into the history of domesticated apple: Secondary contribution of the European wild apple to the genome of cultivated varieties publication-title: Plos Genetics – volume: 123 start-page: 585 year: 1989 end-page: 595 article-title: Statistical‐method for testing the neutral mutation hypothesis by DNA polymorphism publication-title: Genetics – volume: 19 start-page: 4554 year: 2010 end-page: 4571 article-title: Lineage divergence and speciation in the Web‐toed Salamanders (Plethodontidae: Hydromantes) of the Sierra Nevada, California publication-title: Molecular Ecology – volume: 24 start-page: 2713 year: 2008 end-page: 2719 article-title: Inferring population history with DIY ABC: A user‐friendly approach to approximate Bayesian computation publication-title: Bioinformatics – volume: 22 start-page: 3451 year: 2013 end-page: 3457 article-title: More precisely biased: Increasing the number of markers is not a silver bullet in genetic bottleneck testing publication-title: Molecular Ecology – volume: 9 start-page: 315 year: 2008 article-title: The complete mitochondrial genome of the Antarctic springtail (Hexapoda: Collembola) publication-title: BMC Genomics – volume: 325 start-page: 710 year: 2009 end-page: 714 article-title: The last glacial maximum publication-title: Science – volume: 7 start-page: 214 year: 2007 article-title: BEAST: Bayesian evolutionary analysis by sampling trees publication-title: BMC Evolutionary Biology – volume: 23 start-page: 3028 year: 2014 end-page: 3043 article-title: Model choice for phylogeographic inference using a large set of models publication-title: Molecular Ecology – volume: 344 start-page: 403 year: 1994 end-page: 410 article-title: Sampling theory for neutral alleles in a varying environment publication-title: Philosophical Transactions of the Royal Society of London Series B‐Biological Sciences – volume: 118 start-page: 2 year: 2011 end-page: 16 article-title: Conceptual complexity and the bias/variance tradeoff publication-title: Cognition – volume: 22 start-page: 160 year: 1985 end-page: 174 article-title: Dating of the human ape splitting by a molecular clock of mitochondrial‐DNA publication-title: Journal of Molecular Evolution – volume: 18 start-page: S56 year: 2008 end-page: S76 article-title: Climate change and the molecular ecology of Arctic marine mammals publication-title: Ecological Applications – volume: 7 start-page: 759 year: 2006 end-page: 770 article-title: Modern computational approaches for analysing molecular genetic variation data publication-title: Nature Reviews Genetics – volume: 9 start-page: e1003942 year: 2013 article-title: Demographic divergence history of pied flycatcher and collared flycatcher inferred from whole‐genome re‐sequencing data publication-title: Plos Genetics – volume: 192 start-page: 1027 year: 2012 end-page: 1047 article-title: A novel approach for choosing summary statistics in approximate Bayesian computation publication-title: Genetics – volume: 108 start-page: 15112 year: 2011 end-page: 15117 article-title: Lack of confidence in approximate Bayesian computation model choice publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 19 start-page: R584 year: 2009 end-page: R594 article-title: Ecological change, range fluctuations and population dynamics during the Pleistocene publication-title: Current Biology – volume: 8 start-page: 299 year: 2008 end-page: 301 article-title: ONeSAMP: A program to estimate effective population size using approximate Bayesian computation publication-title: Molecular Ecology Resources – year: 2014 – volume: 5 start-page: 89 year: 2013 end-page: 94 article-title: Generation length for mammals publication-title: Nature Conservation – volume: 22 start-page: 3444 year: 2013 end-page: 3450 article-title: The number of markers and samples needed for detecting bottlenecks under realistic scenarios, with and without recovery: A simulation‐based study publication-title: Molecular Ecology – volume: 7 start-page: 195 year: 2014 end-page: 211 article-title: History of the invasive African olive tree in Australia and Hawaii: Evidence for sequential bottlenecks and hybridization with the Mediterranean olive publication-title: Evolutionary Applications – volume: 167 start-page: 747 year: 2004 end-page: 760 article-title: Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of a and publication-title: Genetics – volume: 25 start-page: 2747 year: 2009 end-page: 2749 article-title: PopABC: A program to infer historical demographic parameters publication-title: Bioinformatics – volume: 405 start-page: 907 year: 2000 end-page: 913 article-title: The genetic legacy of the Quaternary ice ages publication-title: Nature – volume: 61 start-page: 1807 year: 2004 end-page: 1816 article-title: A fossil record of colonization and response of lacustrine fish populations to climate change publication-title: Canadian Journal of Fisheries and Aquatic Sciences – year: 2004 – volume: 20 start-page: 5313 year: 2011 end-page: 5327 article-title: Multiple lines of evidence for demographic and range expansion of a temperate species ( ) during the last glaciation publication-title: Molecular Ecology – volume: 4 start-page: 684 year: 2013 end-page: 687 article-title: EasyABC: Performing efficient approximate Bayesian computation sampling schemes using R publication-title: Methods in Ecology and Evolution – volume: 114 start-page: 1687 year: 2014 end-page: 1700 article-title: Evidence for cryptic northern refugia in the last glacial period in publication-title: Annals of Botany – volume: 26 start-page: 1797 year: 2010 end-page: 1799 article-title: ABC‐SysBio‐approximate Bayesian computation in Python with GPU support publication-title: Bioinformatics – volume: 79 start-page: 185 year: 2014 end-page: 209 article-title: Hierarchical approximate Bayesian computation publication-title: Psychometrika – volume: 188 start-page: 165 year: 2011 end-page: 179 article-title: Inferring population decline and expansion from microsatellite data: A simulation‐based evaluation of the Msvar method publication-title: Genetics – volume: 11 start-page: 1591 year: 2002 end-page: 1604 article-title: Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis publication-title: Molecular Ecology – volume: 10 start-page: 305 year: 2001 end-page: 318 article-title: Detection of reduction in population size using data from microsatellite loci publication-title: Molecular Ecology – volume: 20 start-page: 3989 year: 2011 end-page: 4008 article-title: Bayesian inference of a historical bottleneck in a heavily exploited marine mammal publication-title: Molecular Ecology – volume: 3 start-page: 475 year: 2012 end-page: 479 article-title: abc: An R package for approximate Bayesian computation (ABC) publication-title: Methods in Ecology and Evolution – volume: 22 start-page: 5221 year: 2013 end-page: 5236 article-title: Extinction and recolonization of maritime Antarctica in the limpet (Strebel, 1908) during the last glacial cycle: Toward a model of Quaternary biogeography in shallow Antarctic invertebrates publication-title: Molecular Ecology – volume: 15 start-page: 1269 year: 1998 end-page: 1274 article-title: High mutation rate of a long microsatellite allele in provides evidence for allele‐specific mutation rates publication-title: Molecular Biology and Evolution – volume: 15 start-page: 957 year: 1998 end-page: 966 article-title: Asymmetrical directional mutation pressure in the mitochondrial genome of mammals publication-title: Molecular Biology and Evolution – volume: 48 start-page: 427 year: 1999 end-page: 434 article-title: Nucleotide substitution rate of mammalian mitochondrial genomes publication-title: Journal of Molecular Evolution – volume: 11 start-page: 103 year: 2008 end-page: 109 article-title: Demographic processes shaping genetic variation publication-title: Current Opinion in Plant Biology – volume: 58 start-page: 247 year: 1996 end-page: 276 article-title: Some genetic consequences of ice ages, and their role in divergence and speciation publication-title: Biological Journal of the Linnean Society – year: 1987 – volume: 74 start-page: 153 year: 1979 end-page: 160 article-title: A predictive approach to model selection publication-title: Journal of the American Statistical Association – volume: 104 start-page: 2785 year: 2007 end-page: 2790 article-title: Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 13 start-page: 110 year: 2012 end-page: 122 article-title: Computer simulations: Tools for population and evolutionary genetics publication-title: Nature Reviews Genetics – volume: 7 start-page: 663 year: 2014 end-page: 681 article-title: Detecting past changes of effective population size publication-title: Evolutionary Applications – volume: 9 start-page: e1003345 year: 2013 article-title: Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution publication-title: Plos Genetics – volume: 24 start-page: 328 year: 2015 end-page: 345 article-title: Demographic inferences using short‐read genomic data in an approximate Bayesian computation framework: In silico evaluation of power, biases and proof of concept in Atlantic walrus publication-title: Molecular Ecology – volume: 162 start-page: 2025 year: 2002 end-page: 2035 article-title: Approximate Bayesian computation in population genetics publication-title: Genetics – volume: 10 start-page: 512 year: 1993 end-page: 526 article-title: Estimation of the number of nucleotide substitutions in the control region of mitochondrial‐DNA in humans and chimpanzees publication-title: Molecular Biology and Evolution – volume: 2 start-page: 1123 year: 1993 end-page: 1128 article-title: Mutation of human short tandem repeats publication-title: Human Molecular Genetics – volume: 5 start-page: 251 year: 2004 end-page: 261 article-title: The Bayesian revolution in genetics publication-title: Nature Reviews Genetics – volume: 166 start-page: 155 year: 2003 end-page: 188 article-title: Inferences from DNA data: Population histories, evolutionary processes and forensic match probabilities publication-title: Journal of the Royal Statistical Society Series a‐Statistics in Society – volume: 109 start-page: E2569 year: 2012 end-page: E2576 article-title: History of expansion and anthropogenic collapse in a top marine predator of the Black Sea estimated from genetic data publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 24 start-page: 2364 year: 2011 end-page: 2377 article-title: Approximate Bayesian computation reveals the factors that influence genetic diversity and population structure of foxsnakes publication-title: Journal of Evolutionary Biology – volume: 23 start-page: 4458 year: 2014 end-page: 4471 article-title: ABC inference of multi‐population divergence with admixture from unphased population genomic data publication-title: Molecular Ecology Notes – volume: 9 start-page: e1002803 year: 2013 article-title: Approximate Bayesian computation publication-title: PLoS Computational Biology – start-page: 135 year: 2008 end-page: 154 – volume: 16 start-page: 1357 year: 1999 end-page: 1368 article-title: Substitution rate variation among sites in mitochondrial hypervariable region I of humans and chimpanzees publication-title: Molecular Biology and Evolution – volume: 8 start-page: 167 year: 2008 article-title: Mutation patterns of mtDNA: Empirical inferences for the coding region publication-title: BMC Evolutionary Biology – volume: 20 start-page: 4654 year: 2011 end-page: 4670 article-title: Inferring the origin of populations introduced from a genetically structured native range by approximate Bayesian computation: Case study of the invasive ladybird publication-title: Molecular Ecology – volume: 150 start-page: 499 year: 1998 end-page: 510 article-title: Genealogical inference from microsatellite data publication-title: Genetics – volume: 281 start-page: 20141558 year: 2014 article-title: Ecological opportunities and specializations shaped genetic divergence in a highly mobile marine top predator publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 30 start-page: 1187 year: 2014 end-page: 1189 article-title: DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data publication-title: Bioinformatics – volume: 11 start-page: 116 year: 2010 article-title: ABCtoolbox: A versatile toolkit for approximate Bayesian computations publication-title: BMC Bioinformatics – volume: 153 start-page: 2013 year: 1999 end-page: 2029 article-title: Detecting population expansion and decline using microsatellites publication-title: Genetics – volume: 14 start-page: 2873 year: 2005 end-page: 2882 article-title: Ancient DNA from pollen: A genetic record of population history in Scots pine publication-title: Molecular Ecology – volume: 13 start-page: 837 year: 2004 end-page: 851 article-title: Evaluating the performance of likelihood methods for detecting population structure and migration publication-title: Molecular Ecology – volume: 479 start-page: 359 year: 2011 end-page: 364 article-title: Species‐specific responses of Late Quaternary megafauna to climate and humans publication-title: Nature – volume: 3 start-page: 452 year: 1992 end-page: 456 article-title: Estimation of microsatellite mutation‐rates in recombinant inbred strains of mouse publication-title: Mammalian Genome – volume: 4 start-page: 1 year: 1992 end-page: 58 article-title: Neural networks and the bias/variance dilemma publication-title: Neural Computation – volume: 31 start-page: 2501 year: 2014 end-page: 2515 article-title: Detecting concerted demographic response across community assemblages using hierarchical Approximate Bayesian Computation publication-title: Molecular Biology and Evolution – volume: 22 start-page: 768 year: 2006 end-page: 770 article-title: LAMARC 2.0: Maximum likelihood and Bayesian estimation of population parameters publication-title: Bioinformatics – start-page: 1 year: 2017 end-page: 12 article-title: Genetic structure and invasion history of the house mouse ( ) in Senegal, West Africa: A legacy of colonial and contemporary times publication-title: Heredity – volume: 25 start-page: 410 year: 2010 end-page: 418 article-title: Approximate Bayesian Computation (ABC) in practice publication-title: Trends in Ecology & Evolution – volume: 3 start-page: 18 year: 2013 end-page: 37 article-title: Molecular insights into the historic demography of bowhead whales: Understanding the evolutionary basis of contemporary management practices publication-title: Ecology and Evolution – volume: 19 start-page: 2609 year: 2010 end-page: 2625 article-title: ABC as a flexible framework to estimate demography over space and time: Some cons, many pros publication-title: Molecular Ecology – volume: 11 start-page: 401 year: 2010 article-title: Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0) publication-title: BMC Bioinformatics – volume: 7 start-page: 2595 year: 2013 end-page: 2602 article-title: Two simple examples for understanding posterior p‐values whose distributions are far from uniform publication-title: Electronic Journal of Statistics – year: 2013 – ident: e_1_2_9_39_1 doi: 10.1534/genetics.103.024182 – ident: e_1_2_9_10_1 doi: 10.1111/eva.12110 – ident: e_1_2_9_76_1 doi: 10.1111/mec.13034 – ident: e_1_2_9_85_1 doi: 10.1111/1467-985X.00264 – ident: e_1_2_9_23_1 doi: 10.1007/BF00356155 – ident: e_1_2_9_40_1 doi: 10.1073/pnas.0611164104 – ident: e_1_2_9_12_1 doi: 10.1016/j.cognition.2010.10.004 – ident: e_1_2_9_69_1 doi: 10.1093/oxfordjournals.molbev.a026011 – ident: e_1_2_9_80_1 doi: 10.1029/96PA03934 – ident: e_1_2_9_3_1 doi: 10.1534/genetics.112.143164 – ident: e_1_2_9_26_1 doi: 10.1093/oxfordjournals.molbev.a026046 – ident: e_1_2_9_37_1 doi: 10.1111/j.1095-8312.1996.tb01434.x – ident: e_1_2_9_75_1 doi: 10.1093/oxfordjournals.molbev.a025855 – ident: e_1_2_9_9_1 doi: 10.1111/j.1365-294X.2010.04690.x – ident: e_1_2_9_63_1 doi: 10.1111/j.1365-294X.2005.02644.x – ident: e_1_2_9_24_1 doi: 10.1186/1471-2148-7-214 – ident: e_1_2_9_60_1 doi: 10.1111/eva.12170 – ident: e_1_2_9_42_1 doi: 10.1111/mec.12258 – ident: e_1_2_9_73_1 doi: 10.1111/j.1420-9101.2011.02362.x – ident: e_1_2_9_5_1 doi: 10.1093/genetics/153.4.2013 – ident: e_1_2_9_72_1 doi: 10.1111/j.1365-294X.2010.04825.x – ident: e_1_2_9_71_1 doi: 10.1111/mec.12881 – ident: e_1_2_9_48_1 doi: 10.1093/bioinformatics/btk051 – ident: e_1_2_9_66_1 doi: 10.1007/PL00006487 – ident: e_1_2_9_27_1 doi: 10.1073/pnas.1201258109 – ident: e_1_2_9_7_1 doi: 10.1038/nrg1318 – ident: e_1_2_9_2_1 doi: 10.1111/j.1365-294X.2004.02132.x – ident: e_1_2_9_82_1 doi: 10.1093/hmg/2.8.1123 – ident: e_1_2_9_13_1 doi: 10.1371/journal.pgen.1003345 – start-page: 1 year: 2017 ident: e_1_2_9_51_1 article-title: Genetic structure and invasion history of the house mouse (Mus musculus domesticus) in Senegal, West Africa: A legacy of colonial and contemporary times publication-title: Heredity – ident: e_1_2_9_54_1 doi: 10.1038/nature10574 – ident: e_1_2_9_61_1 doi: 10.1890/06-0795.1 – ident: e_1_2_9_84_1 doi: 10.1093/genetics/150.1.499 – ident: e_1_2_9_18_1 doi: 10.1093/bioinformatics/btt763 – ident: e_1_2_9_67_1 doi: 10.1002/ece3.374 – ident: e_1_2_9_78_1 doi: 10.1111/j.1471-8286.2006.01368.x – ident: e_1_2_9_44_1 doi: 10.1016/j.cub.2009.06.030 – ident: e_1_2_9_53_1 doi: 10.1093/bioinformatics/btp487 – ident: e_1_2_9_33_1 doi: 10.1534/genetics.110.121764 – ident: e_1_2_9_35_1 doi: 10.1098/rstb.1994.0079 – ident: e_1_2_9_50_1 doi: 10.1093/bioinformatics/btq278 – ident: e_1_2_9_28_1 doi: 10.1046/j.1365-294x.2001.01190.x – ident: e_1_2_9_34_1 doi: 10.1111/mec.12465 – ident: e_1_2_9_47_1 doi: 10.1093/aob/mcu197 – ident: e_1_2_9_45_1 doi: 10.1038/hdy.2013.104 – ident: e_1_2_9_77_1 doi: 10.1371/journal.pcbi.1002803 – ident: e_1_2_9_38_1 doi: 10.1038/35016000 – ident: e_1_2_9_14_1 doi: 10.1186/1471-2164-9-315 – ident: e_1_2_9_20_1 doi: 10.1093/bioinformatics/btn514 – ident: e_1_2_9_22_1 doi: 10.1111/j.2041-210X.2011.00179.x – ident: e_1_2_9_55_1 doi: 10.1098/rspb.2014.1558 – ident: e_1_2_9_8_1 doi: 10.1093/genetics/162.4.2025 – ident: e_1_2_9_43_1 doi: 10.1111/j.1365-294X.2011.05248.x – ident: e_1_2_9_36_1 doi: 10.1007/BF02101694 – ident: e_1_2_9_29_1 doi: 10.1080/01621459.1979.10481632 – ident: e_1_2_9_17_1 doi: 10.1371/journal.pgen.1002703 – volume-title: Molecular markers, natural history, and evolution year: 2004 ident: e_1_2_9_4_1 – ident: e_1_2_9_64_1 doi: 10.1111/mec.12394 – ident: e_1_2_9_57_1 doi: 10.1371/journal.pgen.1003942 – ident: e_1_2_9_81_1 doi: 10.1007/s11336-013-9381-x – ident: e_1_2_9_19_1 doi: 10.1186/1471-2105-11-401 – ident: e_1_2_9_32_1 doi: 10.1162/neco.1992.4.1.1 – ident: e_1_2_9_52_1 doi: 10.1111/j.1365-294X.2011.05322.x – ident: e_1_2_9_30_1 doi: 10.1214/13-EJS854 – ident: e_1_2_9_49_1 doi: 10.1016/j.pbi.2008.02.009 – ident: e_1_2_9_21_1 doi: 10.1016/j.tree.2010.04.001 – ident: e_1_2_9_46_1 doi: 10.1111/2041-210X.12050 – ident: e_1_2_9_56_1 doi: 10.1038/nrg1961 – start-page: 135 volume-title: Simulation, genetics and human prehistory year: 2008 ident: e_1_2_9_6_1 – ident: e_1_2_9_65_1 doi: 10.1111/mec.12722 – ident: e_1_2_9_41_1 doi: 10.1038/nrg3130 – ident: e_1_2_9_59_1 doi: 10.1139/f04-113 – ident: e_1_2_9_62_1 doi: 10.3897/natureconservation.5.5734 – volume-title: R: A language and environment for statistical computing year: 2013 ident: e_1_2_9_68_1 – ident: e_1_2_9_79_1 doi: 10.1111/j.1471-8286.2007.01997.x – ident: e_1_2_9_58_1 doi: 10.1111/j.1365-294X.2006.02908.x – ident: e_1_2_9_83_1 doi: 10.1186/1471-2105-11-116 – ident: e_1_2_9_74_1 doi: 10.1186/1471-2148-8-167 – ident: e_1_2_9_25_1 doi: 10.1046/j.1365-294X.2002.01576.x – ident: e_1_2_9_15_1 doi: 10.1093/molbev/msu187 – ident: e_1_2_9_16_1 doi: 10.1126/science.1172873 – volume-title: Bayesian data analysis year: 2014 ident: e_1_2_9_31_1 – ident: e_1_2_9_11_1 doi: 10.1111/j.1365-294X.2011.05363.x – ident: e_1_2_9_70_1 doi: 10.1073/pnas.1102900108 |
| SSID | ssj0060974 |
| Score | 2.4482548 |
| Snippet | Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e94 |
| SubjectTerms | Accuracy Adaptation Animals approximate Bayesian computation Approximation Bayesian analysis Bayesian theory Computer applications Computer Simulation computer software data collection Data recovery Datasets demographic inference Demographics Deoxyribonucleic acid DNA effective population size Gene sequencing Genetics, Population - methods Genotype Genotypes Likelihood Functions Mammals Mathematical models Microsatellite Repeats Mitochondrial DNA model selection Models, Genetic Nucleotide sequence Polymorphism, Single Nucleotide Population genetics Population number Populations Sequence Analysis, DNA Single-nucleotide polymorphism |
| Title | Inferring past demographic changes from contemporary genetic data: A simulation‐based evaluation of the ABC methods implemented in diyabc |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1755-0998.12696 https://www.ncbi.nlm.nih.gov/pubmed/28654208 https://www.proquest.com/docview/1966020828 https://www.proquest.com/docview/1914287664 https://www.proquest.com/docview/2053864682 |
| Volume | 17 |
| WOSCitedRecordID | wos000415921900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1755-0998 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060974 issn: 1755-098X databaseCode: DRFUL dateStart: 20080101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEC5MouDF-HZNDCV48DJhp2eme9rbmuyiEBcRI3sb-jUwkJ0NmY2Qm3cv_kZ_iV09vZtECSJ4G5jqoR9VXV_3VH0F8EpwNUw1r5OMFTbJtXQJ-XFvV2VdSOtcGe50vxyJ6bSczeTHGE1IuTA9P8T6wo0sI-zXZOBKd1eM3Pu9IvH4ptxPGZd8A7Yotcqfv7YOP02Oj1bbMR_KQMUcxctZ5PehcJ7fPnHdNf2BN6_D1-B_Jtv_oef34V4EnzjqteUB3HLtQ7gzDsTVF4_g-3vK_qOLPjxV3RKtm_eE1o3BPkG4Q0pHQXOF0gq9BlIiJFKs6RscYdfMY0mwn99-kJO0eEkpjosaPeTE0dsD7ItXd9jMYwy7l2xatM2F0uYxHE_Gnw_eJbFYQ2I8ZuNJrT0y4oIPmRaaOetsxoaZcIorpnhqC5fxwuRSGC2sdkzlOTOiMHWZWytrmz2BzXbRumeAXBJHDRfSSJt7OaWzmptUOuJCs0IOYH-1TpWJTOZUUOOkWp1oaIYrmuEqzPAAXq8bnPYkHjeL7q4WvorW3FUpUZgyIvsbwMv1a2-H9HNFtW5xTjLEXSc4z2-WYX7HK_0YSjaAp71SrftDGcIU6uAHF3Tnbx2tPoyn4eH5vzbYgbuMsElIqNyFzeXZuXsBt83XZdOd7cGGmJV70Yh-AWBAGb8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BCioXnqUECiwSBy6u4rW9D26hJGpFmgNqUW7WvixZIk5Vp0i9cefCb-SXsLPehBRUISRuljxrrXdndj6PZ74BeM2ZGqSaVUlGC5vkWroE_bi3K1EV0jonQkz304RPp2I2k5u1MB0_xDrghpYRzms0cAxIb1i5d3xF4gGO2E8pk-wmbOUs46IHW-8_jk8nq_OYDWTgYo7iYhYJfjCf57dHXPVNfwDOq_g1OKDxvf8x9ftwN8JPMuz05QHccM1DuD0K1NWXj-DbEdb_YaiPnKl2Saybd5TWtSFdiXBLsCCFmA1SK-J1EEshCWabviVD0tbz2BTsx9fv6CYt-UUqThYV8aCTDN8dkK59dUvqecxi95J1Q2x9qbTZgdPx6OTgMIntGhLjURtLKu2xEeNsQDXX1FlnMzrIuFNMUcVSW7iMFSaX3GhutaMqz6nhhalEbq2sbPYYes2icU-AMIksNYxLI23u5ZTOKmZS6ZANzXLZh_3VRpUmcpljS43P5eqbBle4xBUuwwr34c16wFlH43G96N5q58toz22ZIokpRbq_Prxa3_aWiL9XVOMWFyiD7HWcsfx6GerPPOHfQdA-7HZatZ4P1ghjsoN_uaA8f5toeTyahoun_zrgJWwfnhxPysnR9MMzuEMRqYTyyj3oLc8v3HO4Zb4s6_b8RbSln6CpHMc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB5BFxAX3iyFBYzEgUtWjePYMbey24oVpUKIRb1FfkWKRNNq011pb9y58Bv5JXgct3RBK4TELVLGkR8zni_2zDcALwVXg1TzKslobhOmpUvQj3u7KqpcWueKcKb7eSKm02I2k9u5MB0_xObADS0j7Ndo4G5pqy0r944vTzzAKfZTyiW_Cjsslznrwc7hx_HxZL0f84EMXMxRvJhFgh-M5_ntExd90x-A8yJ-DQ5ofPt_dP0O3Irwkww7fbkLV1xzD66PAnX1-X34doT5f3jUR5aqXRHr5h2ldW1IlyLcEkxIIWaL1Ip4HcRUSILRpq_JkLT1PBYF-_H1O7pJS36RipNFRTzoJMM3B6QrX92Seh6j2L1k3RBbnyttHsDxePTp4G0SyzUkxqM2nlTaYyMu-IBqoamzzmZ0kAmnuKKKpzZ3Gc8Nk8JoYbWjijFqRG6qglkrK5s9hF6zaNwjIFwiSw0X0kjLvJzSWcVNKh2yoVkh-7C_XqjSRC5zLKnxpVz_0-AMlzjDZZjhPrzaNFh2NB6Xi-6tV76M9tyWKZKYUqT768OLzWtviXi9ohq3OEUZZK8TnLPLZajf8wo_hoL2YbfTqk1_MEcYgx384ILy_K2j5fvRNDw8_tcGz-HGh8NxOTmavnsCNykClZBduQe91cmpewrXzNmqbk-eRVP6Cf80HEI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferring+past+demographic+changes+from+contemporary+genetic+data%3A+A+simulation-based+evaluation+of+the+ABC+methods+implemented+in+diyabc&rft.jtitle=Molecular+ecology+resources&rft.au=Cabrera%2C+Andrea+A&rft.au=Palsb%C3%B8ll%2C+Per+J&rft.date=2017-11-01&rft.eissn=1755-0998&rft.volume=17&rft.issue=6&rft.spage=e94&rft_id=info:doi/10.1111%2F1755-0998.12696&rft_id=info%3Apmid%2F28654208&rft.externalDocID=28654208 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-098X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-098X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-098X&client=summon |