Inferring past demographic changes from contemporary genetic data: A simulation‐based evaluation of the ABC methods implemented in diyabc

Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood‐based inference approaches severely restricts their applicability to large data sets or complex models...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology resources Jg. 17; H. 6; S. e94 - e110
Hauptverfasser: Cabrera, Andrea A., Palsbøll, Per J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Wiley Subscription Services, Inc 01.11.2017
Schlagworte:
ISSN:1755-098X, 1755-0998, 1755-0998
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood‐based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation (ABC) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC‐based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single‐population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., Neμ) compared to unscaled parameters (e.g., Ne and μ). We concluded that diyabc‐based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes.
AbstractList Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood-based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation (ABC) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC-based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single-population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., Ne μ) compared to unscaled parameters (e.g., Ne and μ). We concluded that diyabc-based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes.Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood-based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation (ABC) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC-based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single-population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., Ne μ) compared to unscaled parameters (e.g., Ne and μ). We concluded that diyabc-based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes.
Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood‐based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation (ABC) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC‐based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single‐population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., Nₑμ) compared to unscaled parameters (e.g., Nₑ and μ). We concluded that diyabc‐based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes.
Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood-based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation (ABC) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC-based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single-population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., Neµ) compared to unscaled parameters (e.g., Ne and µ). We concluded that diyabc-based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes.
Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood‐based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation (ABC) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC‐based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single‐population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., Neμ) compared to unscaled parameters (e.g., Ne and μ). We concluded that diyabc‐based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes.
Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood‐based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation ( ABC ) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC ‐based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single‐population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., N e μ) compared to unscaled parameters (e.g., N e and μ). We concluded that diyabc ‐based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes.
Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood-based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation (ABC) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC-based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single-population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., N μ) compared to unscaled parameters (e.g., N and μ). We concluded that diyabc-based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes.
Author Palsbøll, Per J.
Cabrera, Andrea A.
Author_xml – sequence: 1
  givenname: Andrea A.
  orcidid: 0000-0001-5385-1114
  surname: Cabrera
  fullname: Cabrera, Andrea A.
  email: andrea_ca_gt@yahoo.com
  organization: University of Groningen
– sequence: 2
  givenname: Per J.
  surname: Palsbøll
  fullname: Palsbøll, Per J.
  email: palsboll@gmail.com
  organization: University of Groningen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28654208$$D View this record in MEDLINE/PubMed
BookMark eNqFkT-PFCEYh4k54_3R2s6Q2NjsHbADw9jtbU695NRGE7sJA-_schlgBEaznb2Nn9FPIrt7bnHN0kDePL8XeJ9zdOKDB4ReUnJJy7qiNecz0jTykjLRiCfo7FA5OZzlt1N0ntI9IYI0dfUMnTIpeMWIPEO_b30PMVq_wqNKGRtwYRXVuLYa67XyK0i4j8FhHXwGN4ao4gavwEMuhFFZvcULnKybBpVt8H9__elUAoPhhxqmXQmHHuc14MX1EjvI62AStm4cwEFpabD12NiN6vRz9LRXQ4IXD_sF-vru5svyw-zu8_vb5eJupjmlYtZ3nHJRC8K6umNgwMwZmdeghGJKUMNhLriumlp3temAqapiuua6l5UxTW_mF-jNvu8Yw_cJUm6dTRqGQXkIU2oZ4XMpKiHZUZQ2tGKyFqIq6OtH6H2Yoi8fKZQoryWSyUK9eqCmzoFpx2hdmWj730gBrvaAjiGlCP0BoaTdOm-3Vtut4XbnvCT4o4S2eTf5HJUdjud-2gE2x65pP9582uf-AWzMwFo
CitedBy_id crossref_primary_10_1038_s41598_021_90325_0
crossref_primary_10_1186_s12862_020_01646_z
crossref_primary_10_3390_d15030425
crossref_primary_10_3390_d15091021
crossref_primary_10_1038_s41598_020_75044_2
crossref_primary_10_1007_s10530_020_02390_7
crossref_primary_10_1007_s11295_023_01590_1
crossref_primary_10_1186_s12862_019_1451_y
crossref_primary_10_1139_cjfas_2018_0416
crossref_primary_10_1111_1440_1703_70010
crossref_primary_10_3390_d14080617
crossref_primary_10_1002_ece3_5804
crossref_primary_10_1111_1755_0998_12758
crossref_primary_10_1371_journal_pone_0277298
crossref_primary_10_1093_forestry_cpz063
crossref_primary_10_1093_sysbio_syad073
crossref_primary_10_1017_qua_2018_150
crossref_primary_10_1186_s12711_021_00639_w
crossref_primary_10_1111_ibi_13107
crossref_primary_10_1111_eva_12779
crossref_primary_10_1371_journal_pone_0245604
crossref_primary_10_1007_s10682_021_10111_2
crossref_primary_10_1007_s12686_021_01237_0
crossref_primary_10_1038_s41598_021_85042_7
crossref_primary_10_1111_eva_13520
crossref_primary_10_1007_s10531_021_02321_5
crossref_primary_10_1093_jhered_esz047
crossref_primary_10_1111_ddi_13304
crossref_primary_10_3390_genes14122146
crossref_primary_10_1371_journal_pone_0300468
crossref_primary_10_1007_s10592_021_01399_2
crossref_primary_10_1002_ece3_4143
crossref_primary_10_1111_mec_15881
crossref_primary_10_1007_s10530_022_02787_6
crossref_primary_10_1111_mec_15521
crossref_primary_10_1111_jbi_13207
crossref_primary_10_3390_d14060439
crossref_primary_10_1002_ece3_4449
crossref_primary_10_7717_peerj_5198
crossref_primary_10_1111_ibi_13197
crossref_primary_10_3389_fmars_2024_1396411
crossref_primary_10_1007_s10531_018_1612_0
crossref_primary_10_1111_jse_12728
crossref_primary_10_1111_ibi_12864
crossref_primary_10_1007_s10592_022_01463_5
crossref_primary_10_1016_j_ympev_2019_106523
crossref_primary_10_1111_jbi_13192
Cites_doi 10.1534/genetics.103.024182
10.1111/eva.12110
10.1111/mec.13034
10.1111/1467-985X.00264
10.1007/BF00356155
10.1073/pnas.0611164104
10.1016/j.cognition.2010.10.004
10.1093/oxfordjournals.molbev.a026011
10.1029/96PA03934
10.1534/genetics.112.143164
10.1093/oxfordjournals.molbev.a026046
10.1111/j.1095-8312.1996.tb01434.x
10.1093/oxfordjournals.molbev.a025855
10.1111/j.1365-294X.2010.04690.x
10.1111/j.1365-294X.2005.02644.x
10.1186/1471-2148-7-214
10.1111/eva.12170
10.1111/mec.12258
10.1111/j.1420-9101.2011.02362.x
10.1093/genetics/153.4.2013
10.1111/j.1365-294X.2010.04825.x
10.1111/mec.12881
10.1093/bioinformatics/btk051
10.1007/PL00006487
10.1073/pnas.1201258109
10.1038/nrg1318
10.1111/j.1365-294X.2004.02132.x
10.1093/hmg/2.8.1123
10.1371/journal.pgen.1003345
10.1038/nature10574
10.1890/06-0795.1
10.1093/genetics/150.1.499
10.1093/bioinformatics/btt763
10.1002/ece3.374
10.1111/j.1471-8286.2006.01368.x
10.1016/j.cub.2009.06.030
10.1093/bioinformatics/btp487
10.1534/genetics.110.121764
10.1098/rstb.1994.0079
10.1093/bioinformatics/btq278
10.1046/j.1365-294x.2001.01190.x
10.1111/mec.12465
10.1093/aob/mcu197
10.1038/hdy.2013.104
10.1371/journal.pcbi.1002803
10.1038/35016000
10.1186/1471-2164-9-315
10.1093/bioinformatics/btn514
10.1111/j.2041-210X.2011.00179.x
10.1098/rspb.2014.1558
10.1093/genetics/162.4.2025
10.1111/j.1365-294X.2011.05248.x
10.1007/BF02101694
10.1080/01621459.1979.10481632
10.1371/journal.pgen.1002703
10.1111/mec.12394
10.1371/journal.pgen.1003942
10.1007/s11336-013-9381-x
10.1186/1471-2105-11-401
10.1162/neco.1992.4.1.1
10.1111/j.1365-294X.2011.05322.x
10.1214/13-EJS854
10.1016/j.pbi.2008.02.009
10.1016/j.tree.2010.04.001
10.1111/2041-210X.12050
10.1038/nrg1961
10.1111/mec.12722
10.1038/nrg3130
10.1139/f04-113
10.3897/natureconservation.5.5734
10.1111/j.1471-8286.2007.01997.x
10.1111/j.1365-294X.2006.02908.x
10.1186/1471-2105-11-116
10.1186/1471-2148-8-167
10.1046/j.1365-294X.2002.01576.x
10.1093/molbev/msu187
10.1126/science.1172873
10.1111/j.1365-294X.2011.05363.x
10.1073/pnas.1102900108
ContentType Journal Article
Copyright 2017 John Wiley & Sons Ltd
2017 John Wiley & Sons Ltd.
Copyright © 2017 John Wiley & Sons Ltd
Copyright_xml – notice: 2017 John Wiley & Sons Ltd
– notice: 2017 John Wiley & Sons Ltd.
– notice: Copyright © 2017 John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/1755-0998.12696
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
Entomology Abstracts

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 1755-0998
EndPage e110
ExternalDocumentID 28654208
10_1111_1755_0998_12696
MEN12696
Genre article
Journal Article
GrantInformation_xml – fundername: University of Groningen
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c5116-fb51567602b7b2eded32037ea6a2a61d5e365c497cb7dbe2a442c75cf84dd9fd3
IEDL.DBID DRFUL
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000415921900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1755-098X
1755-0998
IngestDate Fri Jul 11 18:35:24 EDT 2025
Thu Jul 10 21:55:19 EDT 2025
Sun Jul 13 05:22:33 EDT 2025
Mon Jul 21 05:42:04 EDT 2025
Sat Nov 29 02:35:27 EST 2025
Tue Nov 18 22:18:29 EST 2025
Wed Jan 22 16:31:42 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords model selection
population genetics
demographic inference
approximate Bayesian computation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5116-fb51567602b7b2eded32037ea6a2a61d5e365c497cb7dbe2a442c75cf84dd9fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5385-1114
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1755-0998.12696
PMID 28654208
PQID 1966020828
PQPubID 1096410
PageCount 17
ParticipantIDs proquest_miscellaneous_2053864682
proquest_miscellaneous_1914287664
proquest_journals_1966020828
pubmed_primary_28654208
crossref_primary_10_1111_1755_0998_12696
crossref_citationtrail_10_1111_1755_0998_12696
wiley_primary_10_1111_1755_0998_12696_MEN12696
PublicationCentury 2000
PublicationDate November 2017
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Molecular ecology resources
PublicationTitleAlternate Mol Ecol Resour
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 167
2011; 479
2010; 11
2007; 104
2004; 61
2013; 3
2013; 4
2011; 118
2013; 22
2010; 19
1999; 48
2002; 11
2008; 9
2004; 5
2008; 8
2013; 7
1985; 22
1979; 74
2012; 13
2013; 5
1993; 2
2014; 23
1998; 150
2013; 9
1994; 344
1998; 15
2010; 26
2010; 25
2006; 22
1999; 16
2000; 405
2011; 20
1987
2008; 24
2007; 7
2011; 24
2014; 281
2009; 19
2014; 7
2003; 166
1992; 3
2009; 325
1992; 4
2001; 10
2009; 25
2008; 18
2006; 7
2008
2004
2008; 11
1996; 58
2014; 114
2012; 109
2014; 112
2015; 24
2012; 3
2011; 108
1989; 123
2002; 162
1993; 10
2012; 192
2004; 13
1999; 153
2017
2014; 79
2014
2013
2014; 30
2011; 188
2012; 8
2014; 31
2005; 14
e_1_2_9_75_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
Beaumont M. A. (e_1_2_9_6_1) 2008
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
Gelman A. (e_1_2_9_31_1) 2014
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_60_1
e_1_2_9_2_1
Avise J. C. (e_1_2_9_4_1) 2004
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
R Development Core Team (e_1_2_9_68_1) 2013
Lippens C. (e_1_2_9_51_1) 2017
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 112
  start-page: 282
  year: 2014
  end-page: 290
  article-title: Phylogeographic and population genetic analyses reveal Pleistocene isolation followed by high gene flow in a wide ranging, but endangered, freshwater mussel
  publication-title: Heredity
– volume: 8
  start-page: e1002703
  year: 2012
  article-title: New insight into the history of domesticated apple: Secondary contribution of the European wild apple to the genome of cultivated varieties
  publication-title: Plos Genetics
– volume: 123
  start-page: 585
  year: 1989
  end-page: 595
  article-title: Statistical‐method for testing the neutral mutation hypothesis by DNA polymorphism
  publication-title: Genetics
– volume: 19
  start-page: 4554
  year: 2010
  end-page: 4571
  article-title: Lineage divergence and speciation in the Web‐toed Salamanders (Plethodontidae: Hydromantes) of the Sierra Nevada, California
  publication-title: Molecular Ecology
– volume: 24
  start-page: 2713
  year: 2008
  end-page: 2719
  article-title: Inferring population history with DIY ABC: A user‐friendly approach to approximate Bayesian computation
  publication-title: Bioinformatics
– volume: 22
  start-page: 3451
  year: 2013
  end-page: 3457
  article-title: More precisely biased: Increasing the number of markers is not a silver bullet in genetic bottleneck testing
  publication-title: Molecular Ecology
– volume: 9
  start-page: 315
  year: 2008
  article-title: The complete mitochondrial genome of the Antarctic springtail (Hexapoda: Collembola)
  publication-title: BMC Genomics
– volume: 325
  start-page: 710
  year: 2009
  end-page: 714
  article-title: The last glacial maximum
  publication-title: Science
– volume: 7
  start-page: 214
  year: 2007
  article-title: BEAST: Bayesian evolutionary analysis by sampling trees
  publication-title: BMC Evolutionary Biology
– volume: 23
  start-page: 3028
  year: 2014
  end-page: 3043
  article-title: Model choice for phylogeographic inference using a large set of models
  publication-title: Molecular Ecology
– volume: 344
  start-page: 403
  year: 1994
  end-page: 410
  article-title: Sampling theory for neutral alleles in a varying environment
  publication-title: Philosophical Transactions of the Royal Society of London Series B‐Biological Sciences
– volume: 118
  start-page: 2
  year: 2011
  end-page: 16
  article-title: Conceptual complexity and the bias/variance tradeoff
  publication-title: Cognition
– volume: 22
  start-page: 160
  year: 1985
  end-page: 174
  article-title: Dating of the human ape splitting by a molecular clock of mitochondrial‐DNA
  publication-title: Journal of Molecular Evolution
– volume: 18
  start-page: S56
  year: 2008
  end-page: S76
  article-title: Climate change and the molecular ecology of Arctic marine mammals
  publication-title: Ecological Applications
– volume: 7
  start-page: 759
  year: 2006
  end-page: 770
  article-title: Modern computational approaches for analysing molecular genetic variation data
  publication-title: Nature Reviews Genetics
– volume: 9
  start-page: e1003942
  year: 2013
  article-title: Demographic divergence history of pied flycatcher and collared flycatcher inferred from whole‐genome re‐sequencing data
  publication-title: Plos Genetics
– volume: 192
  start-page: 1027
  year: 2012
  end-page: 1047
  article-title: A novel approach for choosing summary statistics in approximate Bayesian computation
  publication-title: Genetics
– volume: 108
  start-page: 15112
  year: 2011
  end-page: 15117
  article-title: Lack of confidence in approximate Bayesian computation model choice
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 19
  start-page: R584
  year: 2009
  end-page: R594
  article-title: Ecological change, range fluctuations and population dynamics during the Pleistocene
  publication-title: Current Biology
– volume: 8
  start-page: 299
  year: 2008
  end-page: 301
  article-title: ONeSAMP: A program to estimate effective population size using approximate Bayesian computation
  publication-title: Molecular Ecology Resources
– year: 2014
– volume: 5
  start-page: 89
  year: 2013
  end-page: 94
  article-title: Generation length for mammals
  publication-title: Nature Conservation
– volume: 22
  start-page: 3444
  year: 2013
  end-page: 3450
  article-title: The number of markers and samples needed for detecting bottlenecks under realistic scenarios, with and without recovery: A simulation‐based study
  publication-title: Molecular Ecology
– volume: 7
  start-page: 195
  year: 2014
  end-page: 211
  article-title: History of the invasive African olive tree in Australia and Hawaii: Evidence for sequential bottlenecks and hybridization with the Mediterranean olive
  publication-title: Evolutionary Applications
– volume: 167
  start-page: 747
  year: 2004
  end-page: 760
  article-title: Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of a and
  publication-title: Genetics
– volume: 25
  start-page: 2747
  year: 2009
  end-page: 2749
  article-title: PopABC: A program to infer historical demographic parameters
  publication-title: Bioinformatics
– volume: 405
  start-page: 907
  year: 2000
  end-page: 913
  article-title: The genetic legacy of the Quaternary ice ages
  publication-title: Nature
– volume: 61
  start-page: 1807
  year: 2004
  end-page: 1816
  article-title: A fossil record of colonization and response of lacustrine fish populations to climate change
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– year: 2004
– volume: 20
  start-page: 5313
  year: 2011
  end-page: 5327
  article-title: Multiple lines of evidence for demographic and range expansion of a temperate species ( ) during the last glaciation
  publication-title: Molecular Ecology
– volume: 4
  start-page: 684
  year: 2013
  end-page: 687
  article-title: EasyABC: Performing efficient approximate Bayesian computation sampling schemes using R
  publication-title: Methods in Ecology and Evolution
– volume: 114
  start-page: 1687
  year: 2014
  end-page: 1700
  article-title: Evidence for cryptic northern refugia in the last glacial period in
  publication-title: Annals of Botany
– volume: 26
  start-page: 1797
  year: 2010
  end-page: 1799
  article-title: ABC‐SysBio‐approximate Bayesian computation in Python with GPU support
  publication-title: Bioinformatics
– volume: 79
  start-page: 185
  year: 2014
  end-page: 209
  article-title: Hierarchical approximate Bayesian computation
  publication-title: Psychometrika
– volume: 188
  start-page: 165
  year: 2011
  end-page: 179
  article-title: Inferring population decline and expansion from microsatellite data: A simulation‐based evaluation of the Msvar method
  publication-title: Genetics
– volume: 11
  start-page: 1591
  year: 2002
  end-page: 1604
  article-title: Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis
  publication-title: Molecular Ecology
– volume: 10
  start-page: 305
  year: 2001
  end-page: 318
  article-title: Detection of reduction in population size using data from microsatellite loci
  publication-title: Molecular Ecology
– volume: 20
  start-page: 3989
  year: 2011
  end-page: 4008
  article-title: Bayesian inference of a historical bottleneck in a heavily exploited marine mammal
  publication-title: Molecular Ecology
– volume: 3
  start-page: 475
  year: 2012
  end-page: 479
  article-title: abc: An R package for approximate Bayesian computation (ABC)
  publication-title: Methods in Ecology and Evolution
– volume: 22
  start-page: 5221
  year: 2013
  end-page: 5236
  article-title: Extinction and recolonization of maritime Antarctica in the limpet (Strebel, 1908) during the last glacial cycle: Toward a model of Quaternary biogeography in shallow Antarctic invertebrates
  publication-title: Molecular Ecology
– volume: 15
  start-page: 1269
  year: 1998
  end-page: 1274
  article-title: High mutation rate of a long microsatellite allele in provides evidence for allele‐specific mutation rates
  publication-title: Molecular Biology and Evolution
– volume: 15
  start-page: 957
  year: 1998
  end-page: 966
  article-title: Asymmetrical directional mutation pressure in the mitochondrial genome of mammals
  publication-title: Molecular Biology and Evolution
– volume: 48
  start-page: 427
  year: 1999
  end-page: 434
  article-title: Nucleotide substitution rate of mammalian mitochondrial genomes
  publication-title: Journal of Molecular Evolution
– volume: 11
  start-page: 103
  year: 2008
  end-page: 109
  article-title: Demographic processes shaping genetic variation
  publication-title: Current Opinion in Plant Biology
– volume: 58
  start-page: 247
  year: 1996
  end-page: 276
  article-title: Some genetic consequences of ice ages, and their role in divergence and speciation
  publication-title: Biological Journal of the Linnean Society
– year: 1987
– volume: 74
  start-page: 153
  year: 1979
  end-page: 160
  article-title: A predictive approach to model selection
  publication-title: Journal of the American Statistical Association
– volume: 104
  start-page: 2785
  year: 2007
  end-page: 2790
  article-title: Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 13
  start-page: 110
  year: 2012
  end-page: 122
  article-title: Computer simulations: Tools for population and evolutionary genetics
  publication-title: Nature Reviews Genetics
– volume: 7
  start-page: 663
  year: 2014
  end-page: 681
  article-title: Detecting past changes of effective population size
  publication-title: Evolutionary Applications
– volume: 9
  start-page: e1003345
  year: 2013
  article-title: Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution
  publication-title: Plos Genetics
– volume: 24
  start-page: 328
  year: 2015
  end-page: 345
  article-title: Demographic inferences using short‐read genomic data in an approximate Bayesian computation framework: In silico evaluation of power, biases and proof of concept in Atlantic walrus
  publication-title: Molecular Ecology
– volume: 162
  start-page: 2025
  year: 2002
  end-page: 2035
  article-title: Approximate Bayesian computation in population genetics
  publication-title: Genetics
– volume: 10
  start-page: 512
  year: 1993
  end-page: 526
  article-title: Estimation of the number of nucleotide substitutions in the control region of mitochondrial‐DNA in humans and chimpanzees
  publication-title: Molecular Biology and Evolution
– volume: 2
  start-page: 1123
  year: 1993
  end-page: 1128
  article-title: Mutation of human short tandem repeats
  publication-title: Human Molecular Genetics
– volume: 5
  start-page: 251
  year: 2004
  end-page: 261
  article-title: The Bayesian revolution in genetics
  publication-title: Nature Reviews Genetics
– volume: 166
  start-page: 155
  year: 2003
  end-page: 188
  article-title: Inferences from DNA data: Population histories, evolutionary processes and forensic match probabilities
  publication-title: Journal of the Royal Statistical Society Series a‐Statistics in Society
– volume: 109
  start-page: E2569
  year: 2012
  end-page: E2576
  article-title: History of expansion and anthropogenic collapse in a top marine predator of the Black Sea estimated from genetic data
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 24
  start-page: 2364
  year: 2011
  end-page: 2377
  article-title: Approximate Bayesian computation reveals the factors that influence genetic diversity and population structure of foxsnakes
  publication-title: Journal of Evolutionary Biology
– volume: 23
  start-page: 4458
  year: 2014
  end-page: 4471
  article-title: ABC inference of multi‐population divergence with admixture from unphased population genomic data
  publication-title: Molecular Ecology Notes
– volume: 9
  start-page: e1002803
  year: 2013
  article-title: Approximate Bayesian computation
  publication-title: PLoS Computational Biology
– start-page: 135
  year: 2008
  end-page: 154
– volume: 16
  start-page: 1357
  year: 1999
  end-page: 1368
  article-title: Substitution rate variation among sites in mitochondrial hypervariable region I of humans and chimpanzees
  publication-title: Molecular Biology and Evolution
– volume: 8
  start-page: 167
  year: 2008
  article-title: Mutation patterns of mtDNA: Empirical inferences for the coding region
  publication-title: BMC Evolutionary Biology
– volume: 20
  start-page: 4654
  year: 2011
  end-page: 4670
  article-title: Inferring the origin of populations introduced from a genetically structured native range by approximate Bayesian computation: Case study of the invasive ladybird
  publication-title: Molecular Ecology
– volume: 150
  start-page: 499
  year: 1998
  end-page: 510
  article-title: Genealogical inference from microsatellite data
  publication-title: Genetics
– volume: 281
  start-page: 20141558
  year: 2014
  article-title: Ecological opportunities and specializations shaped genetic divergence in a highly mobile marine top predator
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 30
  start-page: 1187
  year: 2014
  end-page: 1189
  article-title: DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data
  publication-title: Bioinformatics
– volume: 11
  start-page: 116
  year: 2010
  article-title: ABCtoolbox: A versatile toolkit for approximate Bayesian computations
  publication-title: BMC Bioinformatics
– volume: 153
  start-page: 2013
  year: 1999
  end-page: 2029
  article-title: Detecting population expansion and decline using microsatellites
  publication-title: Genetics
– volume: 14
  start-page: 2873
  year: 2005
  end-page: 2882
  article-title: Ancient DNA from pollen: A genetic record of population history in Scots pine
  publication-title: Molecular Ecology
– volume: 13
  start-page: 837
  year: 2004
  end-page: 851
  article-title: Evaluating the performance of likelihood methods for detecting population structure and migration
  publication-title: Molecular Ecology
– volume: 479
  start-page: 359
  year: 2011
  end-page: 364
  article-title: Species‐specific responses of Late Quaternary megafauna to climate and humans
  publication-title: Nature
– volume: 3
  start-page: 452
  year: 1992
  end-page: 456
  article-title: Estimation of microsatellite mutation‐rates in recombinant inbred strains of mouse
  publication-title: Mammalian Genome
– volume: 4
  start-page: 1
  year: 1992
  end-page: 58
  article-title: Neural networks and the bias/variance dilemma
  publication-title: Neural Computation
– volume: 31
  start-page: 2501
  year: 2014
  end-page: 2515
  article-title: Detecting concerted demographic response across community assemblages using hierarchical Approximate Bayesian Computation
  publication-title: Molecular Biology and Evolution
– volume: 22
  start-page: 768
  year: 2006
  end-page: 770
  article-title: LAMARC 2.0: Maximum likelihood and Bayesian estimation of population parameters
  publication-title: Bioinformatics
– start-page: 1
  year: 2017
  end-page: 12
  article-title: Genetic structure and invasion history of the house mouse ( ) in Senegal, West Africa: A legacy of colonial and contemporary times
  publication-title: Heredity
– volume: 25
  start-page: 410
  year: 2010
  end-page: 418
  article-title: Approximate Bayesian Computation (ABC) in practice
  publication-title: Trends in Ecology & Evolution
– volume: 3
  start-page: 18
  year: 2013
  end-page: 37
  article-title: Molecular insights into the historic demography of bowhead whales: Understanding the evolutionary basis of contemporary management practices
  publication-title: Ecology and Evolution
– volume: 19
  start-page: 2609
  year: 2010
  end-page: 2625
  article-title: ABC as a flexible framework to estimate demography over space and time: Some cons, many pros
  publication-title: Molecular Ecology
– volume: 11
  start-page: 401
  year: 2010
  article-title: Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0)
  publication-title: BMC Bioinformatics
– volume: 7
  start-page: 2595
  year: 2013
  end-page: 2602
  article-title: Two simple examples for understanding posterior p‐values whose distributions are far from uniform
  publication-title: Electronic Journal of Statistics
– year: 2013
– ident: e_1_2_9_39_1
  doi: 10.1534/genetics.103.024182
– ident: e_1_2_9_10_1
  doi: 10.1111/eva.12110
– ident: e_1_2_9_76_1
  doi: 10.1111/mec.13034
– ident: e_1_2_9_85_1
  doi: 10.1111/1467-985X.00264
– ident: e_1_2_9_23_1
  doi: 10.1007/BF00356155
– ident: e_1_2_9_40_1
  doi: 10.1073/pnas.0611164104
– ident: e_1_2_9_12_1
  doi: 10.1016/j.cognition.2010.10.004
– ident: e_1_2_9_69_1
  doi: 10.1093/oxfordjournals.molbev.a026011
– ident: e_1_2_9_80_1
  doi: 10.1029/96PA03934
– ident: e_1_2_9_3_1
  doi: 10.1534/genetics.112.143164
– ident: e_1_2_9_26_1
  doi: 10.1093/oxfordjournals.molbev.a026046
– ident: e_1_2_9_37_1
  doi: 10.1111/j.1095-8312.1996.tb01434.x
– ident: e_1_2_9_75_1
  doi: 10.1093/oxfordjournals.molbev.a025855
– ident: e_1_2_9_9_1
  doi: 10.1111/j.1365-294X.2010.04690.x
– ident: e_1_2_9_63_1
  doi: 10.1111/j.1365-294X.2005.02644.x
– ident: e_1_2_9_24_1
  doi: 10.1186/1471-2148-7-214
– ident: e_1_2_9_60_1
  doi: 10.1111/eva.12170
– ident: e_1_2_9_42_1
  doi: 10.1111/mec.12258
– ident: e_1_2_9_73_1
  doi: 10.1111/j.1420-9101.2011.02362.x
– ident: e_1_2_9_5_1
  doi: 10.1093/genetics/153.4.2013
– ident: e_1_2_9_72_1
  doi: 10.1111/j.1365-294X.2010.04825.x
– ident: e_1_2_9_71_1
  doi: 10.1111/mec.12881
– ident: e_1_2_9_48_1
  doi: 10.1093/bioinformatics/btk051
– ident: e_1_2_9_66_1
  doi: 10.1007/PL00006487
– ident: e_1_2_9_27_1
  doi: 10.1073/pnas.1201258109
– ident: e_1_2_9_7_1
  doi: 10.1038/nrg1318
– ident: e_1_2_9_2_1
  doi: 10.1111/j.1365-294X.2004.02132.x
– ident: e_1_2_9_82_1
  doi: 10.1093/hmg/2.8.1123
– ident: e_1_2_9_13_1
  doi: 10.1371/journal.pgen.1003345
– start-page: 1
  year: 2017
  ident: e_1_2_9_51_1
  article-title: Genetic structure and invasion history of the house mouse (Mus musculus domesticus) in Senegal, West Africa: A legacy of colonial and contemporary times
  publication-title: Heredity
– ident: e_1_2_9_54_1
  doi: 10.1038/nature10574
– ident: e_1_2_9_61_1
  doi: 10.1890/06-0795.1
– ident: e_1_2_9_84_1
  doi: 10.1093/genetics/150.1.499
– ident: e_1_2_9_18_1
  doi: 10.1093/bioinformatics/btt763
– ident: e_1_2_9_67_1
  doi: 10.1002/ece3.374
– ident: e_1_2_9_78_1
  doi: 10.1111/j.1471-8286.2006.01368.x
– ident: e_1_2_9_44_1
  doi: 10.1016/j.cub.2009.06.030
– ident: e_1_2_9_53_1
  doi: 10.1093/bioinformatics/btp487
– ident: e_1_2_9_33_1
  doi: 10.1534/genetics.110.121764
– ident: e_1_2_9_35_1
  doi: 10.1098/rstb.1994.0079
– ident: e_1_2_9_50_1
  doi: 10.1093/bioinformatics/btq278
– ident: e_1_2_9_28_1
  doi: 10.1046/j.1365-294x.2001.01190.x
– ident: e_1_2_9_34_1
  doi: 10.1111/mec.12465
– ident: e_1_2_9_47_1
  doi: 10.1093/aob/mcu197
– ident: e_1_2_9_45_1
  doi: 10.1038/hdy.2013.104
– ident: e_1_2_9_77_1
  doi: 10.1371/journal.pcbi.1002803
– ident: e_1_2_9_38_1
  doi: 10.1038/35016000
– ident: e_1_2_9_14_1
  doi: 10.1186/1471-2164-9-315
– ident: e_1_2_9_20_1
  doi: 10.1093/bioinformatics/btn514
– ident: e_1_2_9_22_1
  doi: 10.1111/j.2041-210X.2011.00179.x
– ident: e_1_2_9_55_1
  doi: 10.1098/rspb.2014.1558
– ident: e_1_2_9_8_1
  doi: 10.1093/genetics/162.4.2025
– ident: e_1_2_9_43_1
  doi: 10.1111/j.1365-294X.2011.05248.x
– ident: e_1_2_9_36_1
  doi: 10.1007/BF02101694
– ident: e_1_2_9_29_1
  doi: 10.1080/01621459.1979.10481632
– ident: e_1_2_9_17_1
  doi: 10.1371/journal.pgen.1002703
– volume-title: Molecular markers, natural history, and evolution
  year: 2004
  ident: e_1_2_9_4_1
– ident: e_1_2_9_64_1
  doi: 10.1111/mec.12394
– ident: e_1_2_9_57_1
  doi: 10.1371/journal.pgen.1003942
– ident: e_1_2_9_81_1
  doi: 10.1007/s11336-013-9381-x
– ident: e_1_2_9_19_1
  doi: 10.1186/1471-2105-11-401
– ident: e_1_2_9_32_1
  doi: 10.1162/neco.1992.4.1.1
– ident: e_1_2_9_52_1
  doi: 10.1111/j.1365-294X.2011.05322.x
– ident: e_1_2_9_30_1
  doi: 10.1214/13-EJS854
– ident: e_1_2_9_49_1
  doi: 10.1016/j.pbi.2008.02.009
– ident: e_1_2_9_21_1
  doi: 10.1016/j.tree.2010.04.001
– ident: e_1_2_9_46_1
  doi: 10.1111/2041-210X.12050
– ident: e_1_2_9_56_1
  doi: 10.1038/nrg1961
– start-page: 135
  volume-title: Simulation, genetics and human prehistory
  year: 2008
  ident: e_1_2_9_6_1
– ident: e_1_2_9_65_1
  doi: 10.1111/mec.12722
– ident: e_1_2_9_41_1
  doi: 10.1038/nrg3130
– ident: e_1_2_9_59_1
  doi: 10.1139/f04-113
– ident: e_1_2_9_62_1
  doi: 10.3897/natureconservation.5.5734
– volume-title: R: A language and environment for statistical computing
  year: 2013
  ident: e_1_2_9_68_1
– ident: e_1_2_9_79_1
  doi: 10.1111/j.1471-8286.2007.01997.x
– ident: e_1_2_9_58_1
  doi: 10.1111/j.1365-294X.2006.02908.x
– ident: e_1_2_9_83_1
  doi: 10.1186/1471-2105-11-116
– ident: e_1_2_9_74_1
  doi: 10.1186/1471-2148-8-167
– ident: e_1_2_9_25_1
  doi: 10.1046/j.1365-294X.2002.01576.x
– ident: e_1_2_9_15_1
  doi: 10.1093/molbev/msu187
– ident: e_1_2_9_16_1
  doi: 10.1126/science.1172873
– volume-title: Bayesian data analysis
  year: 2014
  ident: e_1_2_9_31_1
– ident: e_1_2_9_11_1
  doi: 10.1111/j.1365-294X.2011.05363.x
– ident: e_1_2_9_70_1
  doi: 10.1073/pnas.1102900108
SSID ssj0060974
Score 2.4482548
Snippet Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e94
SubjectTerms Accuracy
Adaptation
Animals
approximate Bayesian computation
Approximation
Bayesian analysis
Bayesian theory
Computer applications
Computer Simulation
computer software
data collection
Data recovery
Datasets
demographic inference
Demographics
Deoxyribonucleic acid
DNA
effective population size
Gene sequencing
Genetics, Population - methods
Genotype
Genotypes
Likelihood Functions
Mammals
Mathematical models
Microsatellite Repeats
Mitochondrial DNA
model selection
Models, Genetic
Nucleotide sequence
Polymorphism, Single Nucleotide
Population genetics
Population number
Populations
Sequence Analysis, DNA
Single-nucleotide polymorphism
Title Inferring past demographic changes from contemporary genetic data: A simulation‐based evaluation of the ABC methods implemented in diyabc
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1755-0998.12696
https://www.ncbi.nlm.nih.gov/pubmed/28654208
https://www.proquest.com/docview/1966020828
https://www.proquest.com/docview/1914287664
https://www.proquest.com/docview/2053864682
Volume 17
WOSCitedRecordID wos000415921900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1755-0998
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060974
  issn: 1755-098X
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEC5MouDF-HZNDCV48DJhp2eme9rbmuyiEBcRI3sb-jUwkJ0NmY2Qm3cv_kZ_iV09vZtECSJ4G5jqoR9VXV_3VH0F8EpwNUw1r5OMFTbJtXQJ-XFvV2VdSOtcGe50vxyJ6bSczeTHGE1IuTA9P8T6wo0sI-zXZOBKd1eM3Pu9IvH4ptxPGZd8A7Yotcqfv7YOP02Oj1bbMR_KQMUcxctZ5PehcJ7fPnHdNf2BN6_D1-B_Jtv_oef34V4EnzjqteUB3HLtQ7gzDsTVF4_g-3vK_qOLPjxV3RKtm_eE1o3BPkG4Q0pHQXOF0gq9BlIiJFKs6RscYdfMY0mwn99-kJO0eEkpjosaPeTE0dsD7ItXd9jMYwy7l2xatM2F0uYxHE_Gnw_eJbFYQ2I8ZuNJrT0y4oIPmRaaOetsxoaZcIorpnhqC5fxwuRSGC2sdkzlOTOiMHWZWytrmz2BzXbRumeAXBJHDRfSSJt7OaWzmptUOuJCs0IOYH-1TpWJTOZUUOOkWp1oaIYrmuEqzPAAXq8bnPYkHjeL7q4WvorW3FUpUZgyIvsbwMv1a2-H9HNFtW5xTjLEXSc4z2-WYX7HK_0YSjaAp71SrftDGcIU6uAHF3Tnbx2tPoyn4eH5vzbYgbuMsElIqNyFzeXZuXsBt83XZdOd7cGGmJV70Yh-AWBAGb8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BCioXnqUECiwSBy6u4rW9D26hJGpFmgNqUW7WvixZIk5Vp0i9cefCb-SXsLPehBRUISRuljxrrXdndj6PZ74BeM2ZGqSaVUlGC5vkWroE_bi3K1EV0jonQkz304RPp2I2k5u1MB0_xDrghpYRzms0cAxIb1i5d3xF4gGO2E8pk-wmbOUs46IHW-8_jk8nq_OYDWTgYo7iYhYJfjCf57dHXPVNfwDOq_g1OKDxvf8x9ftwN8JPMuz05QHccM1DuD0K1NWXj-DbEdb_YaiPnKl2Saybd5TWtSFdiXBLsCCFmA1SK-J1EEshCWabviVD0tbz2BTsx9fv6CYt-UUqThYV8aCTDN8dkK59dUvqecxi95J1Q2x9qbTZgdPx6OTgMIntGhLjURtLKu2xEeNsQDXX1FlnMzrIuFNMUcVSW7iMFSaX3GhutaMqz6nhhalEbq2sbPYYes2icU-AMIksNYxLI23u5ZTOKmZS6ZANzXLZh_3VRpUmcpljS43P5eqbBle4xBUuwwr34c16wFlH43G96N5q58toz22ZIokpRbq_Prxa3_aWiL9XVOMWFyiD7HWcsfx6GerPPOHfQdA-7HZatZ4P1ghjsoN_uaA8f5toeTyahoun_zrgJWwfnhxPysnR9MMzuEMRqYTyyj3oLc8v3HO4Zb4s6_b8RbSln6CpHMc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB5BFxAX3iyFBYzEgUtWjePYMbey24oVpUKIRb1FfkWKRNNq011pb9y58Bv5JXgct3RBK4TELVLGkR8zni_2zDcALwVXg1TzKslobhOmpUvQj3u7KqpcWueKcKb7eSKm02I2k9u5MB0_xObADS0j7Ndo4G5pqy0r944vTzzAKfZTyiW_Cjsslznrwc7hx_HxZL0f84EMXMxRvJhFgh-M5_ntExd90x-A8yJ-DQ5ofPt_dP0O3Irwkww7fbkLV1xzD66PAnX1-X34doT5f3jUR5aqXRHr5h2ldW1IlyLcEkxIIWaL1Ip4HcRUSILRpq_JkLT1PBYF-_H1O7pJS36RipNFRTzoJMM3B6QrX92Seh6j2L1k3RBbnyttHsDxePTp4G0SyzUkxqM2nlTaYyMu-IBqoamzzmZ0kAmnuKKKpzZ3Gc8Nk8JoYbWjijFqRG6qglkrK5s9hF6zaNwjIFwiSw0X0kjLvJzSWcVNKh2yoVkh-7C_XqjSRC5zLKnxpVz_0-AMlzjDZZjhPrzaNFh2NB6Xi-6tV76M9tyWKZKYUqT768OLzWtviXi9ohq3OEUZZK8TnLPLZajf8wo_hoL2YbfTqk1_MEcYgx384ILy_K2j5fvRNDw8_tcGz-HGh8NxOTmavnsCNykClZBduQe91cmpewrXzNmqbk-eRVP6Cf80HEI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferring+past+demographic+changes+from+contemporary+genetic+data%3A+A+simulation-based+evaluation+of+the+ABC+methods+implemented+in+diyabc&rft.jtitle=Molecular+ecology+resources&rft.au=Cabrera%2C+Andrea+A&rft.au=Palsb%C3%B8ll%2C+Per+J&rft.date=2017-11-01&rft.eissn=1755-0998&rft.volume=17&rft.issue=6&rft.spage=e94&rft_id=info:doi/10.1111%2F1755-0998.12696&rft_id=info%3Apmid%2F28654208&rft.externalDocID=28654208
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-098X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-098X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-098X&client=summon