Metabolic history and metabolic fitness as drivers of anabolic heterogeneity in isogenic microbial populations
Summary Microbial populations often display different degrees of heterogeneity in their substrate assimilation, that is, anabolic heterogeneity. It has been shown that nutrient limitations are a relevant trigger for this behaviour. Here we explore the dynamics of anabolic heterogeneity under nutrien...
Uloženo v:
| Vydáno v: | Environmental microbiology Ročník 23; číslo 11; s. 6764 - 6776 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, USA
John Wiley & Sons, Inc
01.11.2021
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 1462-2912, 1462-2920, 1462-2920 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Summary
Microbial populations often display different degrees of heterogeneity in their substrate assimilation, that is, anabolic heterogeneity. It has been shown that nutrient limitations are a relevant trigger for this behaviour. Here we explore the dynamics of anabolic heterogeneity under nutrient replete conditions. We applied time‐resolved stable isotope probing and nanoscale secondary ion mass spectrometry to quantify substrate assimilation by individual cells of Pseudomonas putida, P. stutzeri and Thauera aromatica. Acetate and benzoate at different concentrations were used as substrates. Anabolic heterogeneity was quantified by the cumulative differentiation tendency index. We observed two major, opposing trends of anabolic heterogeneity over time. Most often, microbial populations started as highly heterogeneous, with heterogeneity decreasing by various degrees over time. The second, less frequently observed trend, saw microbial populations starting at low or very low heterogeneity, and remaining largely stable over time. We explain these trends as an interplay of metabolic history (e.g. former growth substrate or other nutrient limitations) and metabolic fitness (i.e. the fine‐tuning of metabolic pathways to process a defined growth substrate). Our results offer a new viewpoint on the intra‐population functional diversification often encountered in the environment, and suggests that some microbial populations may be intrinsically heterogeneous. |
|---|---|
| AbstractList | Microbial populations often display different degrees of heterogeneity in their substrate assimilation, that is, anabolic heterogeneity. It has been shown that nutrient limitations are a relevant trigger for this behaviour. Here we explore the dynamics of anabolic heterogeneity under nutrient replete conditions. We applied time‐resolved stable isotope probing and nanoscale secondary ion mass spectrometry to quantify substrate assimilation by individual cells of Pseudomonas putida, P. stutzeri and Thauera aromatica. Acetate and benzoate at different concentrations were used as substrates. Anabolic heterogeneity was quantified by the cumulative differentiation tendency index. We observed two major, opposing trends of anabolic heterogeneity over time. Most often, microbial populations started as highly heterogeneous, with heterogeneity decreasing by various degrees over time. The second, less frequently observed trend, saw microbial populations starting at low or very low heterogeneity, and remaining largely stable over time. We explain these trends as an interplay of metabolic history (e.g. former growth substrate or other nutrient limitations) and metabolic fitness (i.e. the fine‐tuning of metabolic pathways to process a defined growth substrate). Our results offer a new viewpoint on the intra‐population functional diversification often encountered in the environment, and suggests that some microbial populations may be intrinsically heterogeneous. Summary Microbial populations often display different degrees of heterogeneity in their substrate assimilation, that is, anabolic heterogeneity. It has been shown that nutrient limitations are a relevant trigger for this behaviour. Here we explore the dynamics of anabolic heterogeneity under nutrient replete conditions. We applied time‐resolved stable isotope probing and nanoscale secondary ion mass spectrometry to quantify substrate assimilation by individual cells of Pseudomonas putida, P. stutzeri and Thauera aromatica. Acetate and benzoate at different concentrations were used as substrates. Anabolic heterogeneity was quantified by the cumulative differentiation tendency index. We observed two major, opposing trends of anabolic heterogeneity over time. Most often, microbial populations started as highly heterogeneous, with heterogeneity decreasing by various degrees over time. The second, less frequently observed trend, saw microbial populations starting at low or very low heterogeneity, and remaining largely stable over time. We explain these trends as an interplay of metabolic history (e.g. former growth substrate or other nutrient limitations) and metabolic fitness (i.e. the fine‐tuning of metabolic pathways to process a defined growth substrate). Our results offer a new viewpoint on the intra‐population functional diversification often encountered in the environment, and suggests that some microbial populations may be intrinsically heterogeneous. Microbial populations often display different degrees of heterogeneity in their substrate assimilation, that is, anabolic heterogeneity. It has been shown that nutrient limitations are a relevant trigger for this behaviour. Here we explore the dynamics of anabolic heterogeneity under nutrient replete conditions. We applied time-resolved stable isotope probing and nanoscale secondary ion mass spectrometry to quantify substrate assimilation by individual cells of Pseudomonas putida, P. stutzeri and Thauera aromatica. Acetate and benzoate at different concentrations were used as substrates. Anabolic heterogeneity was quantified by the cumulative differentiation tendency index. We observed two major, opposing trends of anabolic heterogeneity over time. Most often, microbial populations started as highly heterogeneous, with heterogeneity decreasing by various degrees over time. The second, less frequently observed trend, saw microbial populations starting at low or very low heterogeneity, and remaining largely stable over time. We explain these trends as an interplay of metabolic history (e.g. former growth substrate or other nutrient limitations) and metabolic fitness (i.e. the fine-tuning of metabolic pathways to process a defined growth substrate). Our results offer a new viewpoint on the intra-population functional diversification often encountered in the environment, and suggests that some microbial populations may be intrinsically heterogeneous.Microbial populations often display different degrees of heterogeneity in their substrate assimilation, that is, anabolic heterogeneity. It has been shown that nutrient limitations are a relevant trigger for this behaviour. Here we explore the dynamics of anabolic heterogeneity under nutrient replete conditions. We applied time-resolved stable isotope probing and nanoscale secondary ion mass spectrometry to quantify substrate assimilation by individual cells of Pseudomonas putida, P. stutzeri and Thauera aromatica. Acetate and benzoate at different concentrations were used as substrates. Anabolic heterogeneity was quantified by the cumulative differentiation tendency index. We observed two major, opposing trends of anabolic heterogeneity over time. Most often, microbial populations started as highly heterogeneous, with heterogeneity decreasing by various degrees over time. The second, less frequently observed trend, saw microbial populations starting at low or very low heterogeneity, and remaining largely stable over time. We explain these trends as an interplay of metabolic history (e.g. former growth substrate or other nutrient limitations) and metabolic fitness (i.e. the fine-tuning of metabolic pathways to process a defined growth substrate). Our results offer a new viewpoint on the intra-population functional diversification often encountered in the environment, and suggests that some microbial populations may be intrinsically heterogeneous. |
| Author | Musat, Florin Richnow, Hans H. Stryhanyuk, Hryhoriy Wick, Lukas Y. Schlömann, Michael Calabrese, Federica Musat, Niculina Moraru, Cristina |
| Author_xml | – sequence: 1 givenname: Federica surname: Calabrese fullname: Calabrese, Federica organization: Helmholtz Centre for Environmental Research‐UFZ – sequence: 2 givenname: Hryhoriy surname: Stryhanyuk fullname: Stryhanyuk, Hryhoriy organization: Helmholtz Centre for Environmental Research‐UFZ – sequence: 3 givenname: Cristina surname: Moraru fullname: Moraru, Cristina organization: Carl von Ossietzky University of Oldenburg – sequence: 4 givenname: Michael surname: Schlömann fullname: Schlömann, Michael organization: Institute of Biosciences – sequence: 5 givenname: Lukas Y. surname: Wick fullname: Wick, Lukas Y. organization: Helmholtz Centre for Environmental Research‐UFZ – sequence: 6 givenname: Hans H. surname: Richnow fullname: Richnow, Hans H. organization: Helmholtz Centre for Environmental Research‐UFZ – sequence: 7 givenname: Florin orcidid: 0000-0002-4240-3495 surname: Musat fullname: Musat, Florin organization: Helmholtz Centre for Environmental Research‐UFZ – sequence: 8 givenname: Niculina orcidid: 0000-0001-9539-189X surname: Musat fullname: Musat, Niculina email: niculina.musat@ufz.de organization: Helmholtz Centre for Environmental Research‐UFZ |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34472201$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkT1PBCEQhonR-F3bGRIbm1Nggb0tjTk_Ei82WhN2d1DMLpzAau7fy97pFTYHBTPD8w5h3iO067wDhM4ouaJ5XVMu2YRVLKeiFHIHHW4qu5uYsgN0FOMHIbQsSrKPDgrOS8YIPURuDknXvrMNfrcx-bDE2rW431SNTQ5ixDriNtgvCBF7k5k_ESQI_g0c2LTE1mEbxyzf9LYJvra6wwu_GDqdrHfxBO0Z3UU4_T2P0evd7OX2YfL0fP94e_M0aQSlcsKglXmbVlLN6ymVUhDNheBiWgHlQgqojKRUSFozU5u2KnhRtNo0JWuNoMUxulz3XQT_OUBMqrexga7TDvwQFZOF5IxVpNyOCjkV1VTKEb34h374Ibj8kdyQMJ5BVmXq_Jca6h5atQi212Gp_oaeges1kAcUYwCzQShRo61qNE6NJqqVrVkh_ikam1YTTUHbbrvu23aw3PaMms0f17ofRI-0FQ |
| CitedBy_id | crossref_primary_10_1002_smll_202400289 crossref_primary_10_1128_aem_00446_24 crossref_primary_10_1111_jam_15652 crossref_primary_10_1038_s41396_022_01324_6 |
| Cites_doi | 10.1038/s41586-019-1063-0 10.1128/JB.185.16.4920-4929.2003 10.1038/ismej.2014.144 10.1016/j.copbio.2019.11.018 10.1126/science.1178223 10.1080/00380768.1971.10432846 10.1128/MMBR.00047-05 10.1038/ismej.2012.159 10.1111/1758-2229.12616 10.1080/09296174.2011.583405 10.3389/fmicb.2018.02342 10.1111/gcbb.12623 10.1038/ismej.2015.181 10.1038/ismej.2011.20 10.1111/j.1462-2920.2011.02681.x 10.1002/bit.260270913 10.1111/j.1462-2920.2009.01917.x 10.1073/pnas.0809329105 10.1128/MMBR.49.3.270-297.1985 10.3389/fmicb.2019.02814 10.3389/fmicb.2015.00243 10.1111/j.1574-6968.1987.tb02478.x 10.1016/j.syapm.2014.02.002 10.1111/j.1574-6968.2006.00298.x 10.1073/pnas.1219247110 10.1007/BF00381782 10.1016/j.copbio.2016.06.007 10.1111/j.1462-2920.2009.01903.x 10.1002/biot.201600720 10.1128/MMBR.69.1.12-50.2005 10.1038/nchembio.436 10.1038/nature15512 10.1038/ismej.2007.44 10.1016/j.meteno.2016.03.005 10.1038/ismej.2011.200 10.1371/journal.pbio.1001325 10.1128/JB.180.4.767-772.1998 10.1038/nrmicro3238 10.1371/journal.pgen.1004556 10.1038/s41396-018-0285-8 10.1111/1462-2920.12752 10.1111/j.1432-1033.1995.921_a.x 10.1038/ismej.2015.10 10.1007/BF00414814 10.1016/S1001-0742(09)60112-1 10.1128/AEM.00191-08 10.1098/rstb.1995.0147 10.1126/science.1222700 10.1007/978-3-319-39782-5_32-1 10.1038/ismej.2010.53 10.1038/nmicrobiol.2016.163 10.1007/s10529-012-1038-9 10.1111/j.1574-6976.2011.00303.x 10.1099/00221287-148-7-2215 10.1111/j.1574-6941.2000.tb00698.x 10.1080/00380768.1984.10434682 10.1038/nprot.2018.030 10.1038/nmicrobiol.2016.55 10.1038/nature11338 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. published by Society for Applied Microbiology and John Wiley & Sons Ltd. 2021 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. published by Society for Applied Microbiology and John Wiley & Sons Ltd. – notice: 2021 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 7S9 L.6 |
| DOI | 10.1111/1462-2920.15756 |
| DatabaseName | Wiley Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aqualine Bacteriology Abstracts (Microbiology B) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oceanic Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Oceanic Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1462-2920 |
| EndPage | 6776 |
| ExternalDocumentID | 34472201 10_1111_1462_2920_15756 EMI15756 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: European Regional Development Funds – fundername: Helmholtz Centre for Environmental Research (UFZ) |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION O8X CGR CUY CVF ECM EIF NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c5116-2ed6d6dfd61a4b816650a4554589e14565e9f611561b2fbfd93433dafc72df513 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000693994000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1462-2912 1462-2920 |
| IngestDate | Fri Jul 11 18:22:54 EDT 2025 Thu Oct 02 10:46:22 EDT 2025 Fri Jul 25 12:25:40 EDT 2025 Mon Jul 21 05:55:32 EDT 2025 Sat Nov 29 07:01:30 EST 2025 Tue Nov 18 21:56:46 EST 2025 Wed Jan 22 16:26:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | Attribution 2021 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5116-2ed6d6dfd61a4b816650a4554589e14565e9f611561b2fbfd93433dafc72df513 |
| Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9539-189X 0000-0002-4240-3495 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.15756 |
| PMID | 34472201 |
| PQID | 2602468529 |
| PQPubID | 1066360 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2636422907 proquest_miscellaneous_2568598667 proquest_journals_2602468529 pubmed_primary_34472201 crossref_primary_10_1111_1462_2920_15756 crossref_citationtrail_10_1111_1462_2920_15756 wiley_primary_10_1111_1462_2920_15756_EMI15756 |
| PublicationCentury | 2000 |
| PublicationDate | November 2021 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: England – name: Oxford |
| PublicationTitle | Environmental microbiology |
| PublicationTitleAlternate | Environ Microbiol |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2006; 70 1987; 3 2019; 11 2020; 62 2019; 10 1987; 148 2019; 13 2008; 105 2008; 74 2019; 568 2012; 488 2013; 7 2012; 14 2011; 18 2012; 10 1985; 27 2005; 69 2009; 11 2010; 22 2018; 9 1971; 17 2016; 41 2002; 148 2013; 110 2007; 1 2010; 4 1995; 163 2012; 337 2014; 12 2010; 6 2014; 10 2009; 326 1998; 180 2015; 17 2015; 6 1982; 128 2015; 10 1995; 234 2015; 526 2012; 36 2015; 9 2012; 34 1995; 350 2011; 5 1985; 49 1984; 30 2016; 1 2016; 3 2000; 32 2017; 12 2014; 37 2017 2006; 260 2012; 6 2018; 10 2018; 13 2003; 185 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 Thayer J. (e_1_2_6_51_1) 1982; 128 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
| References_xml | – volume: 1 start-page: 354 year: 2007 end-page: 360 article-title: Carbon and nitrogen fixation and metabolite exchange in and between individual cells of publication-title: ISME J – volume: 148 start-page: 213 year: 1987 end-page: 217 article-title: Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads publication-title: Arch Microbiol – volume: 12 year: 2017 article-title: Experimental validation of in silico estimated biomass yields of KT2440 publication-title: Biotechnol J – volume: 128 start-page: 1749 year: 1982 end-page: 1753 article-title: Active transport of benzoate in publication-title: J Gen Microbiol – volume: 9 start-page: 485 year: 2015 end-page: 496 article-title: Revisiting N2 fixation in Guerrero Negro intertidal microbial mats with a functional single‐cell approach publication-title: ISME J – volume: 6 start-page: 705 year: 2010 end-page: 712 article-title: The role of physiological heterogeneity in microbial population behavior publication-title: Nat Chem Biol – volume: 1 start-page: 16163 year: 2016 article-title: The small unicellular diazotrophic symbiont, UCYN‐A, is a key player in the marine nitrogen cycle publication-title: Nat Microbiol – volume: 13 start-page: 1310 year: 2018 end-page: 1330 article-title: Establishing anaerobic hydrocarbon‐degrading enrichment cultures of microorganisms under strictly anoxic conditions publication-title: Nat Protoc – volume: 260 start-page: 36 year: 2006 end-page: 46 article-title: Acetyl‐CoA synthetase from U is the only acyl‐CoA activating enzyme induced by acetate in this bacterium publication-title: FEMS Microbiol Lett – volume: 10 year: 2014 article-title: Memory and fitness optimization of bacteria under fluctuating environments publication-title: PLoS Genet – volume: 6 start-page: 1427 year: 2012 end-page: 1439 article-title: Identification of a novel cyanobacterial group as active diazotrophs in a coastal microbial mat using NanoSIMS analysis publication-title: ISME J – volume: 3 start-page: 419 year: 1987 end-page: 432 article-title: Determination of the Monod substrate saturation constant for microbial growth publication-title: FEMS Microbiol Rev – volume: 22 start-page: 328 year: 2010 end-page: 337 article-title: Characteristics and distribution of low molecular weight organic acids in the sediment porewaters in Bosten Lake, China publication-title: J Environ Sci – volume: 185 start-page: 4920 year: 2003 end-page: 4929 article-title: Benzoate‐coenzyme a ligase from : an enzyme acting in anaerobic and aerobic pathways publication-title: J Bacteriol – volume: 10 start-page: 1274 year: 2015 end-page: 1279 article-title: In situ phenotypic heterogeneity among single cells of the filamentous bacterium Microthrix parvicella publication-title: ISME J – volume: 32 start-page: 53 year: 2000 end-page: 59 article-title: Characterization of 3‐chlorobenzoate degrading aerobic bacteria isolated under various environmental conditions publication-title: FEMS Microbiol Ecol – volume: 13 start-page: 651 year: 2019 end-page: 662 article-title: NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton publication-title: ISME J – volume: 30 start-page: 189 year: 1984 end-page: 198 article-title: Easily decomposable organic matter in paddy soil publication-title: Soil Sci Plant Nutr – volume: 36 start-page: 486 year: 2012 end-page: 511 article-title: Detecting metabolic activities in single cells, with emphasis on nanoSIMS publication-title: FEMS Microbiol Rev – volume: 1 start-page: 16055 year: 2016 article-title: Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments publication-title: Nat Microbiol – volume: 105 start-page: 17861 year: 2008 end-page: 17866 article-title: A single‐cell view on the ecophysiology of anaerobic phototrophic bacteria publication-title: Proc Natl Acad Sci U S A – volume: 9 year: 2018 end-page: 2342 article-title: Calculation of single cell assimilation rates from SIP‐NanoSIMS‐derived isotope ratios: a comprehensive approach publication-title: Front Microbiol – volume: 10 start-page: 2814 year: 2019 article-title: Quantitation and comparison of phenotypic heterogeneity among single cells of monoclonal microbial populations publication-title: Front Microbiol – volume: 11 start-page: 1945 year: 2009 end-page: 1958 article-title: Co‐occurrence of denitrification and nitrogen fixation in a meromictic lake, Lake Cadagno (Switzerland) publication-title: Environ Microbiol – volume: 49 start-page: 270 year: 1985 end-page: 297 article-title: Kinetics of nutrient‐limited transport and microbial growth publication-title: Microbiol Rev – volume: 526 start-page: 531 year: 2015 end-page: 535 article-title: Single cell activity reveals direct electron transfer in methanotrophic consortia publication-title: Nature – volume: 37 start-page: 267 year: 2014 end-page: 276 article-title: The effect of FISH and CARD‐FISH on the isotopic composition of 13C‐ and 15N‐labeled Pseudomonas putida cells measured by nanoSIMS publication-title: Syst Appl Microbiol – volume: 234 start-page: 921 year: 1995 end-page: 933 article-title: Benzoyl‐coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. ATP dependence of the reaction, purification and some properties of the enzyme from strain K172 publication-title: Eur J Biochem – volume: 5 start-page: 1549 year: 2011 end-page: 1558 article-title: Carbon, nitrogen and O2 fluxes associated with the cyanobacterium in the Baltic Sea publication-title: ISME J – volume: 180 start-page: 767 year: 1998 end-page: 772 article-title: Perturbation of anion balance during inhibition of growth of by weak acids publication-title: J Bacteriol – volume: 70 start-page: 510 year: 2006 end-page: 547 article-title: Biology of publication-title: Microbiol Mol Biol Rev – volume: 34 start-page: 2147 year: 2012 end-page: 2160 article-title: Metabolic shifts: a fitness perspective for microbial cell factories publication-title: Biotechnol Lett – volume: 14 start-page: 1009 year: 2012 end-page: 1023 article-title: Look@NanoSIMS – a tool for the analysis of nanoSIMS data in environmental microbiology publication-title: Environ Microbiol – volume: 350 start-page: 133 year: 1995 end-page: 141 article-title: The adaptive advantage of phenotypic memory in changing environments publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 69 start-page: 12 year: 2005 end-page: 50 article-title: The acetate switch publication-title: Microbiol Mol Biol Rev – volume: 41 start-page: 114 year: 2016 end-page: 121 article-title: Tracking microbial interactions with NanoSIMS publication-title: Curr Opin Biotechnol – start-page: 1 year: 2017 end-page: 49 – volume: 62 start-page: 202 year: 2020 end-page: 211 article-title: Environmental drivers of metabolic heterogeneity in clonal microbial populations publication-title: Curr Opin Biotechnol – volume: 337 start-page: 1546 year: 2012 end-page: 1550 article-title: Unicellular cyanobacterium symbiotic with a single‐celled eukaryotic alga publication-title: Science – volume: 163 start-page: 96 year: 1995 end-page: 103 article-title: Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria publication-title: Arch Microbiol – volume: 4 start-page: 1215 year: 2010 end-page: 1223 article-title: Carbon and nitrogen fluxes associated with the cyanobacterium sp. in the Baltic Sea publication-title: ISME J – volume: 74 start-page: 3143 year: 2008 end-page: 3150 article-title: Linking microbial phylogeny to metabolic activity at the single‐cell level by using enhanced element labeling‐catalyzed reporter deposition fluorescence in situ hybridization (EL‐FISH) and NanoSIMS publication-title: Appl Environ Microbiol – volume: 11 start-page: 1777 year: 2009 end-page: 1791 article-title: Patterns of 15N assimilation and growth of methanotrophic ANME‐2 archaea and sulfate‐reducing bacteria within structured syntrophic consortia revealed by FISH‐SIMS publication-title: Environ Microbiol – volume: 10 year: 2012 article-title: Bet hedging in yeast by heterogeneous, age‐correlated expression of a stress protectant publication-title: PLoS Biol – volume: 148 start-page: 2215 year: 2002 end-page: 2222 article-title: Inhibition of growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity publication-title: Microbiology (Reading) – volume: 568 start-page: 108 year: 2019 end-page: 111 article-title: Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep publication-title: Nature – volume: 12 start-page: 327 year: 2014 end-page: 340 article-title: Coordination of microbial metabolism publication-title: Nat Rev Microbiol – volume: 17 start-page: 2542 year: 2015 end-page: 2556 article-title: Heavy water and 15N labelling with NanoSIMS analysis reveals growth rate‐dependent metabolic heterogeneity in chemostats publication-title: Environ Microbiol – volume: 10 start-page: 179 year: 2018 end-page: 183 article-title: Substrate and electron donor limitation induce phenotypic heterogeneity in different metabolic activities in a green sulphur bacterium publication-title: Environ Microbiol Rep – volume: 110 start-page: 4720 year: 2013 end-page: 4725 article-title: Host‐compound foraging by intestinal microbiota revealed by single‐cell stable isotope probing publication-title: Proc Natl Acad Sci – volume: 17 start-page: 1 year: 1971 end-page: 8 article-title: Organic acids in a flooded soil receiving added rice straw and their effect on the growth of rice publication-title: Soil Sci Plant Nutr – volume: 3 start-page: 97 year: 2016 end-page: 110 article-title: Dynamics of benzoate metabolism in KT2440 publication-title: Metab Eng Commun – volume: 6 start-page: 243 year: 2015 article-title: Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS publication-title: Front Microbiol – volume: 488 start-page: 361 year: 2012 end-page: 364 article-title: Doubling of marine dinitrogen‐fixation rates based on direct measurements publication-title: Nature – volume: 9 start-page: 1966 year: 2015 end-page: 1978 article-title: Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments publication-title: ISME J – volume: 7 start-page: 885 year: 2013 end-page: 895 article-title: Anaerobic degradation of propane and butane by sulfate‐reducing bacteria enriched from marine hydrocarbon cold seeps publication-title: ISME J – volume: 18 start-page: 274 year: 2011 end-page: 289 article-title: Characteristic features of rank‐probability word distribution in scientific and belletristic literature publication-title: J Quant Linguist – volume: 11 start-page: 1159 year: 2019 end-page: 1172 article-title: Evaluation of small organic acids present in fast pyrolysis bio‐oil from lignocellulose as feedstocks for bacterial bioconversion publication-title: GCB Bioenergy – volume: 326 start-page: 422 year: 2009 end-page: 426 article-title: Deep‐sea archaea fix and share nitrogen in methane‐consuming microbial consortia publication-title: Science – volume: 27 start-page: 1362 year: 1985 end-page: 1366 article-title: Acetate inhibition of publication-title: Biotechnol Bioeng – ident: e_1_2_6_10_1 doi: 10.1038/s41586-019-1063-0 – ident: e_1_2_6_47_1 doi: 10.1128/JB.185.16.4920-4929.2003 – ident: e_1_2_6_57_1 doi: 10.1038/ismej.2014.144 – ident: e_1_2_6_45_1 doi: 10.1016/j.copbio.2019.11.018 – ident: e_1_2_6_12_1 doi: 10.1126/science.1178223 – ident: e_1_2_6_15_1 doi: 10.1080/00380768.1971.10432846 – ident: e_1_2_6_24_1 doi: 10.1128/MMBR.00047-05 – ident: e_1_2_6_21_1 doi: 10.1038/ismej.2012.159 – ident: e_1_2_6_60_1 doi: 10.1111/1758-2229.12616 – ident: e_1_2_6_55_1 doi: 10.1080/09296174.2011.583405 – ident: e_1_2_6_49_1 doi: 10.3389/fmicb.2018.02342 – ident: e_1_2_6_3_1 doi: 10.1111/gcbb.12623 – ident: e_1_2_6_48_1 doi: 10.1038/ismej.2015.181 – ident: e_1_2_6_38_1 doi: 10.1038/ismej.2011.20 – ident: e_1_2_6_40_1 doi: 10.1111/j.1462-2920.2011.02681.x – ident: e_1_2_6_13_1 doi: 10.1002/bit.260270913 – ident: e_1_2_6_17_1 doi: 10.1111/j.1462-2920.2009.01917.x – volume: 128 start-page: 1749 year: 1982 ident: e_1_2_6_51_1 article-title: Active transport of benzoate in Pseudomonas putida publication-title: J Gen Microbiol – ident: e_1_2_6_33_1 doi: 10.1073/pnas.0809329105 – ident: e_1_2_6_8_1 doi: 10.1128/MMBR.49.3.270-297.1985 – ident: e_1_2_6_9_1 doi: 10.3389/fmicb.2019.02814 – ident: e_1_2_6_61_1 doi: 10.3389/fmicb.2015.00243 – ident: e_1_2_6_37_1 doi: 10.1111/j.1574-6968.1987.tb02478.x – ident: e_1_2_6_34_1 doi: 10.1016/j.syapm.2014.02.002 – ident: e_1_2_6_2_1 doi: 10.1111/j.1574-6968.2006.00298.x – ident: e_1_2_6_5_1 doi: 10.1073/pnas.1219247110 – ident: e_1_2_6_42_1 doi: 10.1007/BF00381782 – ident: e_1_2_6_31_1 doi: 10.1016/j.copbio.2016.06.007 – ident: e_1_2_6_36_1 doi: 10.1111/j.1462-2920.2009.01903.x – ident: e_1_2_6_18_1 doi: 10.1002/biot.201600720 – ident: e_1_2_6_58_1 doi: 10.1128/MMBR.69.1.12-50.2005 – ident: e_1_2_6_28_1 doi: 10.1038/nchembio.436 – ident: e_1_2_6_30_1 doi: 10.1038/nature15512 – ident: e_1_2_6_41_1 doi: 10.1038/ismej.2007.44 – ident: e_1_2_6_50_1 doi: 10.1016/j.meteno.2016.03.005 – ident: e_1_2_6_56_1 doi: 10.1038/ismej.2011.200 – ident: e_1_2_6_27_1 doi: 10.1371/journal.pbio.1001325 – ident: e_1_2_6_44_1 doi: 10.1128/JB.180.4.767-772.1998 – ident: e_1_2_6_11_1 doi: 10.1038/nrmicro3238 – ident: e_1_2_6_25_1 doi: 10.1371/journal.pgen.1004556 – ident: e_1_2_6_6_1 doi: 10.1038/s41396-018-0285-8 – ident: e_1_2_6_22_1 doi: 10.1111/1462-2920.12752 – ident: e_1_2_6_7_1 doi: 10.1111/j.1432-1033.1995.921_a.x – ident: e_1_2_6_54_1 doi: 10.1038/ismej.2015.10 – ident: e_1_2_6_53_1 doi: 10.1007/BF00414814 – ident: e_1_2_6_59_1 doi: 10.1016/S1001-0742(09)60112-1 – ident: e_1_2_6_4_1 doi: 10.1128/AEM.00191-08 – ident: e_1_2_6_20_1 doi: 10.1098/rstb.1995.0147 – ident: e_1_2_6_52_1 doi: 10.1126/science.1222700 – ident: e_1_2_6_35_1 doi: 10.1007/978-3-319-39782-5_32-1 – ident: e_1_2_6_39_1 doi: 10.1038/ismej.2010.53 – ident: e_1_2_6_29_1 doi: 10.1038/nmicrobiol.2016.163 – ident: e_1_2_6_14_1 doi: 10.1007/s10529-012-1038-9 – ident: e_1_2_6_32_1 doi: 10.1111/j.1574-6976.2011.00303.x – ident: e_1_2_6_43_1 doi: 10.1099/00221287-148-7-2215 – ident: e_1_2_6_23_1 doi: 10.1111/j.1574-6941.2000.tb00698.x – ident: e_1_2_6_19_1 doi: 10.1080/00380768.1984.10434682 – ident: e_1_2_6_26_1 doi: 10.1038/nprot.2018.030 – ident: e_1_2_6_46_1 doi: 10.1038/nmicrobiol.2016.55 – ident: e_1_2_6_16_1 doi: 10.1038/nature11338 |
| SSID | ssj0017370 |
| Score | 2.3966622 |
| Snippet | Summary
Microbial populations often display different degrees of heterogeneity in their substrate assimilation, that is, anabolic heterogeneity. It has been... Microbial populations often display different degrees of heterogeneity in their substrate assimilation, that is, anabolic heterogeneity. It has been shown that... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6764 |
| SubjectTerms | Acetates Acetic acid Anabolism Assimilation Benzoates Benzoic acid Fitness Heterogeneity Isotopes Mass spectrometry Mass spectroscopy Metabolic Networks and Pathways Metabolic pathways Metabolism microbiology Microorganisms Mineral nutrients Nutrient dynamics Populations Pseudomonas putida Pseudomonas putida - genetics Secondary ion mass spectrometry Spectrometry, Mass, Secondary Ion Stable isotopes Substrates Thauera aromatica Trends |
| Title | Metabolic history and metabolic fitness as drivers of anabolic heterogeneity in isogenic microbial populations |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.15756 https://www.ncbi.nlm.nih.gov/pubmed/34472201 https://www.proquest.com/docview/2602468529 https://www.proquest.com/docview/2568598667 https://www.proquest.com/docview/2636422907 |
| Volume | 23 |
| WOSCitedRecordID | wos000693994000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1462-2920 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017370 issn: 1462-2912 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZp0kIvTfreJg0K5NCLw-pp61iaLDm0IZQE9mb0BEPiDetNIf--M7LXNCltKQSDsa2RLEsz0jfWaIaQQxWSj1apwihfFjLYUNgoUpGskQbmO57cNAebKM_OqvncnA_WhLgXpvcPMf5wQ8nI4zUKuHXdL0IOIs4LjLV0xABy6CdkizFRYfQGLs_HhYRS5HhxAzHjg3cfNOZ5UMD9iek3tHkfvObZZ7b9CPXeIS8G6Ek_97zykmzE9hV51gejvHtN2m9xBRxx1XjaOyG-o7YN9Hp8mpoVjovUdjQsszkHXSSgWWdCw5oF8GMEYE-bljYd3kHKdZO9PcG7b8ZwYd0bcjk7ufhyWgzRGAoPoEwXPAYNRwqaWelwuVFNrVS48GYiQ2AYTdIAMDVz0MMpGCGFCDb5koekmHhLNttFG98TimocMIl0zgvpmIMCnHHCmyoCvPRxQo7WXVH7wVU5Rsy4qtcqCzZijY1Y50ackE9jhpveS8efSffWfVsP4trVoNRxqSvFzYQcjMkgaLh6Ytu4uAUaBQSm0rr8C40WoM9xMwWadz3fjPVB14oc4BZ8XGaPf1W0BjnMFx_-N8Muec7R8ibvmNwjm6vlbfxInvofq6Zb7mf5gHM5r_bJ1vH32eXXnxUzD1s |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BAcGlvArdtoCROHBJtfEr6yNCVEW0Kw5F6i3yU4rUZqvNFqn_vjNONmpBgJCqXJJ47Dj2jOezPZ4B-KBC8tEqVRjlq0IGGwobRSqSNdKgvuPJTXOwiWo-n52emptnYXr_EOOCG0lGHq9JwGlB-oaUo4zzgoIt7ZeIOfR9eCBR1xCvc_l93EmoRA4YNxCXfHDvQ9Y8vxRwWzP9Bjdvo9esfg6e3kXFn8HmAD7Zp55bnsO92L6AR304yquX0B7HFfLEWeNZ74b4itk2sPPxbWpWNDIy27GwzAYdbJGQZp2JTGsWyJERoT1rWtZ09IQp503294TfvhgDhnVb8OPgy8nnw2KIx1B4hGW64DFovFLQpZWONhzV1EpFW28mlgQNo0kaIaYuHfZxCkZIIYJNvuIhqVK8go120cZtYDSRQzaRznkhXemwAGec8GYWEWD6OIH9dV_UfnBWTjEzzur1pIUasaZGrHMjTuDjmOGi99PxZ9K9defWg8B2NU7ruNQzxc0E3o_JKGq0f2LbuLhEGoUEZqZ19RcaLXBGx80UaV73jDPWh5wrcgRc-HOZP_5V0RolMd_s_G-Gd_D48OT4qD76Ov-2C0842eHk85N7sLFaXsY38ND_XDXd8m0WlmtrwhC- |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB_0quJL_ar22qor-OBLymW_cvso1kOxHiIW-hY2-wGBNndcrkL_-85scqFVVAqSl3zMbja7M7u_yczOALxVPrpglcqMckUmvfWZDSJm0RppcL3jsZqkZBPFfD49PTXX98J08SGGH24kGWm-JgEPSx-vSTnKOM8o2dJhjphD34UtSalkRrB19H12cjzYEgqRUsb15DnvA_yQP88vVdxcm34DnDfxa1qAZo_-R9Mfw3YPP9n7jl-ewJ3QPIX7XULKy2fQfA1r5Iqz2rEuEPEls41n58PdWK9pbmS2ZX6VXDrYIiLNphA51yyQJwOCe1Y3rG7pCp-c1yniE757OaQMa3fgZPbxx4dPWZ-RIXMIzHTGg9d4RK9zKysyOaqJlYqMbybkBA6DiRpBps4rHOXojZBCeBtdwX1UuXgOo2bRhF1gpMoho8iqckJWeYUVVKYSzkwDQkwXxnC4GYvS9eHKKWvGWblRW6gTS-rEMnXiGN4NBZZdpI4_kx5sBrfsRbYtUbHjUk8VN2N4MzxGYSMLim3C4gJpFBKYqdbFX2i0QJ2OmwnSvOgYZ2gPhVfkCLnw4xJ__KuhJcpiOtm7bYHX8ODb0aw8_jz_sg8POTnipA2UBzBary7CS7jnfq7rdvWql5Yr4wUR1A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+history+and+metabolic+fitness+as+drivers+of+anabolic+heterogeneity+in+isogenic+microbial+populations&rft.jtitle=Environmental+microbiology&rft.au=Calabrese%2C+Federica&rft.au=Stryhanyuk%2C+Hryhoriy&rft.au=Moraru%2C+Cristina&rft.au=Schl%C3%B6mann%2C+Michael&rft.date=2021-11-01&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=23&rft.issue=11&rft.spage=6764&rft.epage=6776&rft_id=info:doi/10.1111%2F1462-2920.15756&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1462_2920_15756 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |