Using the gravitational energy of water to generate power by separation of charge at interfaces

When a fluid comes into contact with a solid surface, charge separates at the interface. This study describes a method that harvests the gravitational energy of water—available in abundance naturally, such as in rain and rivers—through the separation of charge at the interface. Essentially, it is fo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Chemical science (Cambridge) Ročník 6; číslo 6; s. 3347 - 3353
Hlavní autori: Sun, Yajuan, Huang, Xu, Soh, Siowling
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Royal Society of Chemistry 01.06.2015
Predmet:
ISSN:2041-6520, 2041-6539
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract When a fluid comes into contact with a solid surface, charge separates at the interface. This study describes a method that harvests the gravitational energy of water—available in abundance naturally, such as in rain and rivers—through the separation of charge at the interface. Essentially, it is found that water can be charged by flowing it across a solid surface under its own weight; thus, a continuous flow of water can produce a constant supply of power. After optimizing the system, a power of up to ∼170 μW (per Teflon tube of 2 mm in diameter) can be generated. The efficiency, defined as the energy generated by the system over the gravitational energy that the water losses, can reach up to ∼3–4%. In order to generate a continuous stream of positively-charged water, there should also be a constant production of negatively-charged species in the system. Experimental results suggest that the negative charge transfers constantly to the atmosphere due to dielectric breakdown of air. With regards to applications related to high electrical potential of water droplets, the amount of charge generated in a single water droplet is found to be equivalent to that produced by charging the water droplet with a high-voltage power supply operated at ∼5 kV. In general, the energy generated is clean, renewable, and technically simple and inexpensive to produce.
AbstractList When a fluid comes into contact with a solid surface, charge separates at the interface. This study describes a method that harvests the gravitational energy of water-available in abundance naturally, such as in rain and rivers-through the separation of charge at the interface. Essentially, it is found that water can be charged by flowing it across a solid surface under its own weight; thus, a continuous flow of water can produce a constant supply of power. After optimizing the system, a power of up to ∼170 μW (per Teflon tube of 2 mm in diameter) can be generated. The efficiency, defined as the energy generated by the system over the gravitational energy that the water losses, can reach up to ∼3-4%. In order to generate a continuous stream of positively-charged water, there should also be a constant production of negatively-charged species in the system. Experimental results suggest that the negative charge transfers constantly to the atmosphere due to dielectric breakdown of air. With regards to applications related to high electrical potential of water droplets, the amount of charge generated in a single water droplet is found to be equivalent to that produced by charging the water droplet with a high-voltage power supply operated at ∼5 kV. In general, the energy generated is clean, renewable, and technically simple and inexpensive to produce.
When a fluid comes into contact with a solid surface, charge separates at the interface. This study describes a method that harvests the gravitational energy of water-available in abundance naturally, such as in rain and rivers-through the separation of charge at the interface. Essentially, it is found that water can be charged by flowing it across a solid surface under its own weight; thus, a continuous flow of water can produce a constant supply of power. After optimizing the system, a power of up to similar to 170 mu W (per Teflon tube of 2 mm in diameter) can be generated. The efficiency, defined as the energy generated by the system over the gravitational energy that the water losses, can reach up to similar to 3-4%. In order to generate a continuous stream of positively-charged water, there should also be a constant production of negatively-charged species in the system. Experimental results suggest that the negative charge transfers constantly to the atmosphere due to dielectric breakdown of air. With regards to applications related to high electrical potential of water droplets, the amount of charge generated in a single water droplet is found to be equivalent to that produced by charging the water droplet with a high-voltage power supply operated at similar to 5 kV. In general, the energy generated is clean, renewable, and technically simple and inexpensive to produce.
When water droplets (e.g., from rain) flow down a solid surface due to gravity, they can generate power. When a fluid comes into contact with a solid surface, charge separates at the interface. This study describes a method that harvests the gravitational energy of water—available in abundance naturally, such as in rain and rivers—through the separation of charge at the interface. Essentially, it is found that water can be charged by flowing it across a solid surface under its own weight; thus, a continuous flow of water can produce a constant supply of power. After optimizing the system, a power of up to ∼170 μW (per Teflon tube of 2 mm in diameter) can be generated. The efficiency, defined as the energy generated by the system over the gravitational energy that the water losses, can reach up to ∼3–4%. In order to generate a continuous stream of positively-charged water, there should also be a constant production of negatively-charged species in the system. Experimental results suggest that the negative charge transfers constantly to the atmosphere due to dielectric breakdown of air. With regards to applications related to high electrical potential of water droplets, the amount of charge generated in a single water droplet is found to be equivalent to that produced by charging the water droplet with a high-voltage power supply operated at ∼5 kV. In general, the energy generated is clean, renewable, and technically simple and inexpensive to produce.
When a fluid comes into contact with a solid surface, charge separates at the interface. This study describes a method that harvests the gravitational energy of water-available in abundance naturally, such as in rain and rivers-through the separation of charge at the interface. Essentially, it is found that water can be charged by flowing it across a solid surface under its own weight; thus, a continuous flow of water can produce a constant supply of power. After optimizing the system, a power of up to ∼170 μW (per Teflon tube of 2 mm in diameter) can be generated. The efficiency, defined as the energy generated by the system over the gravitational energy that the water losses, can reach up to ∼3-4%. In order to generate a continuous stream of positively-charged water, there should also be a constant production of negatively-charged species in the system. Experimental results suggest that the negative charge transfers constantly to the atmosphere due to dielectric breakdown of air. With regards to applications related to high electrical potential of water droplets, the amount of charge generated in a single water droplet is found to be equivalent to that produced by charging the water droplet with a high-voltage power supply operated at ∼5 kV. In general, the energy generated is clean, renewable, and technically simple and inexpensive to produce.When a fluid comes into contact with a solid surface, charge separates at the interface. This study describes a method that harvests the gravitational energy of water-available in abundance naturally, such as in rain and rivers-through the separation of charge at the interface. Essentially, it is found that water can be charged by flowing it across a solid surface under its own weight; thus, a continuous flow of water can produce a constant supply of power. After optimizing the system, a power of up to ∼170 μW (per Teflon tube of 2 mm in diameter) can be generated. The efficiency, defined as the energy generated by the system over the gravitational energy that the water losses, can reach up to ∼3-4%. In order to generate a continuous stream of positively-charged water, there should also be a constant production of negatively-charged species in the system. Experimental results suggest that the negative charge transfers constantly to the atmosphere due to dielectric breakdown of air. With regards to applications related to high electrical potential of water droplets, the amount of charge generated in a single water droplet is found to be equivalent to that produced by charging the water droplet with a high-voltage power supply operated at ∼5 kV. In general, the energy generated is clean, renewable, and technically simple and inexpensive to produce.
Author Huang, Xu
Sun, Yajuan
Soh, Siowling
AuthorAffiliation a Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore . Email: chessl@nus.edu.sg
AuthorAffiliation_xml – name: a Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore . Email: chessl@nus.edu.sg
Author_xml – sequence: 1
  givenname: Yajuan
  surname: Sun
  fullname: Sun, Yajuan
  organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
– sequence: 2
  givenname: Xu
  surname: Huang
  fullname: Huang, Xu
  organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
– sequence: 3
  givenname: Siowling
  surname: Soh
  fullname: Soh, Siowling
  organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28706699$$D View this record in MEDLINE/PubMed
BookMark eNqNUstuHCEQRJGt2HF8yQdEHKNIGzePGWYukaKVnYcs-ZD4jBi2mSWahQ2wtvbvw9pr56FIMRfooqpE0f2CHIQYkJBXDN4xEP3ZvPk6B5BKfHlGjjlINmsb0R88njkckdOcv0NdQrCGq-fkiHcK2rbvj4m-zj6MtCyRjsnc-GKKj8FMFAOmcUujo7emYKIl0nGH1YKu421Fhi3NuDbpTrEj2qVJI1JTqA9V4ozF_JIcOjNlPN3vJ-T64vzb_NPs8urj5_mHy5ltGJSZG6x1YgGtHVgnJQyt7NoaxLgBF7zrOwlgrHLCKM6YGyrKVAOsU1baDoU4Ie_vfdebYYULi6EkM-l18iuTtjoar_-8CX6px3ijG9nXj2qqwZu9QYo_NpiLXvlscZpMwLjJmvUcODAJ8v9U1bWsxoInuCquah-U3CV4_XuCx6c_9KoS4J5gU8w5odN2364ayE-agd5NhP41EVXy9i_Jg-s_yD8BlBC2GA
CitedBy_id crossref_primary_10_1002_adma_201802405
crossref_primary_10_1016_j_nanoen_2020_104476
crossref_primary_10_1016_j_nanoen_2020_105204
crossref_primary_10_1002_admt_201600190
crossref_primary_10_1016_j_elstat_2016_03_006
crossref_primary_10_1016_j_enconman_2020_112791
crossref_primary_10_1088_1361_665X_ab2624
crossref_primary_10_1016_j_nanoen_2017_12_025
crossref_primary_10_1063_1_5110343
crossref_primary_10_1016_j_nanoen_2016_01_017
crossref_primary_10_1088_1361_6528_ad5684
crossref_primary_10_1016_j_jmst_2019_05_038
crossref_primary_10_1073_pnas_2322425121
crossref_primary_10_1021_acscentsci_4c02110
crossref_primary_10_1088_1361_6439_ab3182
crossref_primary_10_1016_j_coelec_2022_100964
crossref_primary_10_1021_jacs_0c06000
crossref_primary_10_1038_s41567_022_01563_6
crossref_primary_10_1016_j_mtphys_2023_101105
crossref_primary_10_1016_j_nanoen_2016_02_059
crossref_primary_10_1002_aenm_202201383
crossref_primary_10_1016_j_nanoen_2020_105713
crossref_primary_10_1002_er_7900
crossref_primary_10_1016_j_nanoen_2019_104269
crossref_primary_10_1016_j_nanoen_2019_01_002
crossref_primary_10_1016_j_nanoen_2019_104278
crossref_primary_10_1016_j_nanoen_2019_01_083
crossref_primary_10_1088_0964_1726_25_4_045007
crossref_primary_10_1016_j_flatc_2019_100090
crossref_primary_10_1088_1361_665X_ad5bcf
crossref_primary_10_1016_j_nanoen_2020_104809
crossref_primary_10_1039_D1NR05386H
crossref_primary_10_1103_PhysRevLett_134_104002
crossref_primary_10_1021_jacs_3c09950
crossref_primary_10_1016_j_isci_2024_109291
crossref_primary_10_1016_j_nanoen_2020_105144
crossref_primary_10_1016_j_energy_2016_12_097
crossref_primary_10_1016_j_rser_2019_109366
crossref_primary_10_1002_anie_201604378
crossref_primary_10_1063_1_4929745
crossref_primary_10_1038_s41598_024_60595_5
crossref_primary_10_1002_aesr_202000087
crossref_primary_10_1002_smll_202301568
crossref_primary_10_1016_j_seppur_2025_133912
crossref_primary_10_1002_ange_201604378
crossref_primary_10_1088_1757_899X_1203_2_022076
crossref_primary_10_1038_s41598_022_04838_3
crossref_primary_10_1016_j_nanoen_2019_104407
crossref_primary_10_1016_j_nanoen_2020_105370
crossref_primary_10_1016_j_apenergy_2021_117394
crossref_primary_10_1016_j_nanoen_2016_12_013
Cites_doi 10.1021/nn404614z
10.1021/nl070194h
10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2
10.1002/adfm.200902312
10.1021/ja506830p
10.1021/nl303573d
10.1002/adma.201400373
10.1021/ja503692z
10.1021/ja309268n
10.1002/anie.201307249
10.1103/PhysRevLett.95.116104
10.1038/nmat2160
10.1063/1.2645078
10.1038/nnano.2014.56
10.1002/anie.200701812
10.1126/science.1079080
10.1126/science.1201512
10.1002/anie.201101203
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry 2015 2015
Copyright_xml – notice: This journal is © The Royal Society of Chemistry 2015 2015
DBID AAYXX
CITATION
NPM
7QH
7UA
C1K
F1W
H96
L.G
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/C5SC00473J
DatabaseName CrossRef
PubMed
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aqualine
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database

CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 3353
ExternalDocumentID PMC5490415
28706699
10_1039_C5SC00473J
Genre Journal Article
GroupedDBID 0-7
0R~
53G
705
7~J
AAEMU
AAFBY
AAFWJ
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABIQK
ABPDG
ABXOH
ACGFS
ACIWK
ACRPL
ADBBV
ADMRA
ADNMO
AEFDR
AENEX
AESAV
AETIL
AFLYV
AFPKN
AFRZK
AFVBQ
AGEGJ
AGMRB
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ANBJS
ANLMG
ANUXI
AOIJS
APEMP
ASPBG
AUDPV
AVWKF
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CAG
CITATION
COF
D0L
ECGLT
EE0
EF-
F5P
FEDTE
GROUPED_DOAJ
H13
HVGLF
HYE
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
ROL
RPM
RPMJG
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
-JG
AGSTE
NPM
SMJ
7QH
7UA
C1K
F1W
H96
L.G
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c510t-fbccf3d06cb18440b6486653afbed2898400ac7f3a7211fbbed1750187c4c8e33
IEDL.DBID RRC
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000354815600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-6520
IngestDate Tue Nov 04 01:48:56 EST 2025
Wed Oct 01 14:48:44 EDT 2025
Thu Oct 02 12:04:34 EDT 2025
Tue Oct 07 09:34:21 EDT 2025
Thu Jan 02 22:22:45 EST 2025
Sat Nov 29 05:53:39 EST 2025
Tue Nov 18 21:39:57 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c510t-fbccf3d06cb18440b6486653afbed2898400ac7f3a7211fbbed1750187c4c8e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1039/c5sc00473j
PMID 28706699
PQID 1727699743
PQPubID 23462
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5490415
proquest_miscellaneous_1920201404
proquest_miscellaneous_1786151005
proquest_miscellaneous_1727699743
pubmed_primary_28706699
crossref_citationtrail_10_1039_C5SC00473J
crossref_primary_10_1039_C5SC00473J
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2015
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Lin (C5SC00473J-(cit13)/*[position()=1]) 2013; 52
van der Heyden (C5SC00473J-(cit9)/*[position()=1]) 2005; 95
Beard (C5SC00473J-(cit18)/*[position()=1]) 1976; 33
Wang (C5SC00473J-(cit8)/*[position()=1]) 2012; 12
Soh (C5SC00473J-(cit20)/*[position()=1]) 2014; 136
Gao (C5SC00473J-(cit17)/*[position()=1]) 2014; 136
Lin (C5SC00473J-(cit14)/*[position()=1]) 2014; 26
Baytekin (C5SC00473J-(cit2)/*[position()=1]) 2011; 333
Bailey (C5SC00473J-(cit23)/*[position()=1]) 1988
van der Heyden (C5SC00473J-(cit10)/*[position()=1]) 2007; 7
Ghosh (C5SC00473J-(cit11)/*[position()=1]) 2003; 299
Lee (C5SC00473J-(cit22)/*[position()=1]) 2007; 90
Kaltschmitt (C5SC00473J-(cit1)/*[position()=1]) 2007
Israelachvili (C5SC00473J-(cit15)/*[position()=1]) 2011
Liu (C5SC00473J-(cit6)/*[position()=1]) 2008; 7
Yin (C5SC00473J-(cit12)/*[position()=1]) 2014; 9
Soh (C5SC00473J-(cit4)/*[position()=1]) 2012; 134
Harper (C5SC00473J-(cit19)/*[position()=1]) 1967
McCarty (C5SC00473J-(cit3)/*[position()=1]) 2008; 47
(C5SC00473J-(cit21)/*[position()=1]) 2004
Wang (C5SC00473J-(cit7)/*[position()=1]) 2013; 7
Piperno (C5SC00473J-(cit5)/*[position()=1]) 2011; 50
Guo (C5SC00473J-(cit16)/*[position()=1]) 2010; 20
21557424 - Angew Chem Int Ed Engl. 2011 Jun 14;50(25):5654-7
23153329 - J Am Chem Soc. 2012 Dec 12;134(49):20151-9
18270989 - Angew Chem Int Ed Engl. 2008;47(12):2188-207
24079963 - ACS Nano. 2013 Nov 26;7(11):9533-57
24123530 - Angew Chem Int Ed Engl. 2013 Nov 25;52(48):12545-9
23130843 - Nano Lett. 2012 Dec 12;12(12):6339-46
24830874 - Adv Mater. 2014 Jul 16;26(27):4690-6
21700838 - Science. 2011 Jul 15;333(6040):308-12
25137214 - J Am Chem Soc. 2014 Sep 3;136(35):12265-72
18362908 - Nat Mater. 2008 Jun;7(6):505-9
17352506 - Nano Lett. 2007 Apr;7(4):1022-5
16197024 - Phys Rev Lett. 2005 Sep 9;95(11):116104
25171262 - J Am Chem Soc. 2014 Sep 24;136(38):13348-54
12532025 - Science. 2003 Feb 14;299(5609):1042-4
24705513 - Nat Nanotechnol. 2014 May;9(5):378-83
References_xml – volume-title: Contact and Frictional Electrification
  year: 1967
  ident: C5SC00473J-(cit19)/*[position()=1]
– volume-title: Renewable Energy: Technology, Economics and Environment
  year: 2007
  ident: C5SC00473J-(cit1)/*[position()=1]
– volume: 7
  start-page: 9533
  year: 2013
  ident: C5SC00473J-(cit7)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn404614z
– volume: 7
  start-page: 1022
  year: 2007
  ident: C5SC00473J-(cit10)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl070194h
– volume: 33
  start-page: 851
  year: 1976
  ident: C5SC00473J-(cit18)/*[position()=1]
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2
– volume: 20
  start-page: 1339
  year: 2010
  ident: C5SC00473J-(cit16)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200902312
– volume: 136
  start-page: 13348
  year: 2014
  ident: C5SC00473J-(cit20)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja506830p
– volume-title: CRC Handbook of Chemistry and Physics
  year: 2004
  ident: C5SC00473J-(cit21)/*[position()=1]
– volume: 12
  start-page: 6339
  year: 2012
  ident: C5SC00473J-(cit8)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl303573d
– volume: 26
  start-page: 4690
  year: 2014
  ident: C5SC00473J-(cit14)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400373
– volume: 136
  start-page: 12265
  year: 2014
  ident: C5SC00473J-(cit17)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja503692z
– volume-title: Electrostatic Spraying of Liquids
  year: 1988
  ident: C5SC00473J-(cit23)/*[position()=1]
– volume: 134
  start-page: 20151
  year: 2012
  ident: C5SC00473J-(cit4)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309268n
– volume: 52
  start-page: 12545
  year: 2013
  ident: C5SC00473J-(cit13)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201307249
– volume-title: Intermolecular and Surface Forces: Revised Third Edition
  year: 2011
  ident: C5SC00473J-(cit15)/*[position()=1]
– volume: 95
  start-page: 116104
  year: 2005
  ident: C5SC00473J-(cit9)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.116104
– volume: 7
  start-page: 505
  year: 2008
  ident: C5SC00473J-(cit6)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2160
– volume: 90
  start-page: 081905
  year: 2007
  ident: C5SC00473J-(cit22)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2645078
– volume: 9
  start-page: 378
  year: 2014
  ident: C5SC00473J-(cit12)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.56
– volume: 47
  start-page: 2188
  year: 2008
  ident: C5SC00473J-(cit3)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200701812
– volume: 299
  start-page: 1042
  year: 2003
  ident: C5SC00473J-(cit11)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1079080
– volume: 333
  start-page: 308
  year: 2011
  ident: C5SC00473J-(cit2)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1201512
– volume: 50
  start-page: 5654
  year: 2011
  ident: C5SC00473J-(cit5)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201101203
– reference: 24705513 - Nat Nanotechnol. 2014 May;9(5):378-83
– reference: 18270989 - Angew Chem Int Ed Engl. 2008;47(12):2188-207
– reference: 21700838 - Science. 2011 Jul 15;333(6040):308-12
– reference: 24123530 - Angew Chem Int Ed Engl. 2013 Nov 25;52(48):12545-9
– reference: 23130843 - Nano Lett. 2012 Dec 12;12(12):6339-46
– reference: 18362908 - Nat Mater. 2008 Jun;7(6):505-9
– reference: 23153329 - J Am Chem Soc. 2012 Dec 12;134(49):20151-9
– reference: 24079963 - ACS Nano. 2013 Nov 26;7(11):9533-57
– reference: 24830874 - Adv Mater. 2014 Jul 16;26(27):4690-6
– reference: 21557424 - Angew Chem Int Ed Engl. 2011 Jun 14;50(25):5654-7
– reference: 12532025 - Science. 2003 Feb 14;299(5609):1042-4
– reference: 17352506 - Nano Lett. 2007 Apr;7(4):1022-5
– reference: 25171262 - J Am Chem Soc. 2014 Sep 24;136(38):13348-54
– reference: 25137214 - J Am Chem Soc. 2014 Sep 3;136(35):12265-72
– reference: 16197024 - Phys Rev Lett. 2005 Sep 9;95(11):116104
SSID ssj0000331527
Score 2.4215178
Snippet When a fluid comes into contact with a solid surface, charge separates at the interface. This study describes a method that harvests the gravitational energy...
When water droplets (e.g., from rain) flow down a solid surface due to gravity, they can generate power. When a fluid comes into contact with a solid surface,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3347
SubjectTerms Charge
Charging
Chemistry
Constants
Droplets
Electric power generation
Energy management
Gravitation
Separation
Title Using the gravitational energy of water to generate power by separation of charge at interfaces
URI https://www.ncbi.nlm.nih.gov/pubmed/28706699
https://www.proquest.com/docview/1727699743
https://www.proquest.com/docview/1786151005
https://www.proquest.com/docview/1920201404
https://pubmed.ncbi.nlm.nih.gov/PMC5490415
Volume 6
WOSCitedRecordID wos000354815600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-6539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331527
  issn: 2041-6520
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAUL
  databaseName: HEAL-Link subscriptions: Royal Society of Chemistry
  customDbUrl:
  eissn: 2041-6539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331527
  issn: 2041-6520
  databaseCode: RRC
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://pubs.rsc.org/
  providerName: Royal Society of Chemistry
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UBL34fqyPJaIXD8XapGl7lKKIBxEfsLfSpIkK0i67VfHfO5N2V9cXXtsJzTvfZKbfB3AQIiqXxioPsaz1RCJjjxTgPREW0kqRS1EoJzYRXV7GvV5yNQUHv0TweXKUhjcpcRryC9poI0n6DNfX6fgixee8lWYNfHHsyTDwRzSkE6UnD55vaPJrUuSnU-Zs8X_1W4KFFkWyk2bYl2HKlCswl47E21Yhc6kADNEdI4Ghlogbixj3rx-rLHtFlDlgdcXuHfN0bVifFNOYemND0zCCVyUZOjIlw_KaEbfEwFIS1xrcnZ3epudeq6XgaVx1tWeV1pYXvtQKfTrhKymI6Y7nVpkCnS708_xcR5bn5BJahU8RWJBinxY6Npyvw0xZlWYTGLq0gY2IZ7CwIrA8UUWojBRSRaFQIunA4aijM922j_QunjIX8OZJ9tFlHdgf2_Ybeo0frfZG45VhP1JIIy9N9TzMCH7JBH0i_pdNTLANt5s_bJIAcTNRDXVgo5kH4_q4UDB-pAPRxAwZGxBD9-Sb8vHBMXWj800UCFv_auU2zGMVwiYPbQdm6sGz2YVZ_VI_DgddmI56cdddGXTdAngHcnz9DQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+the+gravitational+energy+of+water+to+generate+power+by+separation+of+charge+at+interfaces&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Sun%2C+Yajuan&rft.au=Huang%2C+Xu&rft.au=Soh%2C+Siowling&rft.date=2015-06-01&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=6&rft.issue=6&rft.spage=3347&rft.epage=3353&rft_id=info:doi/10.1039%2FC5SC00473J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C5SC00473J
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon