Using the gravitational energy of water to generate power by separation of charge at interfaces
When a fluid comes into contact with a solid surface, charge separates at the interface. This study describes a method that harvests the gravitational energy of water—available in abundance naturally, such as in rain and rivers—through the separation of charge at the interface. Essentially, it is fo...
Uložené v:
| Vydané v: | Chemical science (Cambridge) Ročník 6; číslo 6; s. 3347 - 3353 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Royal Society of Chemistry
01.06.2015
|
| Predmet: | |
| ISSN: | 2041-6520, 2041-6539 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | When a fluid comes into contact with a solid surface, charge separates at the interface. This study describes a method that harvests the gravitational energy of water—available in abundance naturally, such as in rain and rivers—through the separation of charge at the interface. Essentially, it is found that water can be charged by flowing it across a solid surface under its own weight; thus, a continuous flow of water can produce a constant supply of power. After optimizing the system, a power of up to ∼170 μW (per Teflon tube of 2 mm in diameter) can be generated. The efficiency, defined as the energy generated by the system over the gravitational energy that the water losses, can reach up to ∼3–4%. In order to generate a continuous stream of positively-charged water, there should also be a constant production of negatively-charged species in the system. Experimental results suggest that the negative charge transfers constantly to the atmosphere due to dielectric breakdown of air. With regards to applications related to high electrical potential of water droplets, the amount of charge generated in a single water droplet is found to be equivalent to that produced by charging the water droplet with a high-voltage power supply operated at ∼5 kV. In general, the energy generated is clean, renewable, and technically simple and inexpensive to produce. |
|---|---|
| AbstractList | When a fluid comes into contact with a solid surface, charge separates at the interface. This study describes a method that harvests the gravitational energy of water-available in abundance naturally, such as in rain and rivers-through the separation of charge at the interface. Essentially, it is found that water can be charged by flowing it across a solid surface under its own weight; thus, a continuous flow of water can produce a constant supply of power. After optimizing the system, a power of up to ∼170 μW (per Teflon tube of 2 mm in diameter) can be generated. The efficiency, defined as the energy generated by the system over the gravitational energy that the water losses, can reach up to ∼3-4%. In order to generate a continuous stream of positively-charged water, there should also be a constant production of negatively-charged species in the system. Experimental results suggest that the negative charge transfers constantly to the atmosphere due to dielectric breakdown of air. With regards to applications related to high electrical potential of water droplets, the amount of charge generated in a single water droplet is found to be equivalent to that produced by charging the water droplet with a high-voltage power supply operated at ∼5 kV. In general, the energy generated is clean, renewable, and technically simple and inexpensive to produce. When a fluid comes into contact with a solid surface, charge separates at the interface. This study describes a method that harvests the gravitational energy of water-available in abundance naturally, such as in rain and rivers-through the separation of charge at the interface. Essentially, it is found that water can be charged by flowing it across a solid surface under its own weight; thus, a continuous flow of water can produce a constant supply of power. After optimizing the system, a power of up to similar to 170 mu W (per Teflon tube of 2 mm in diameter) can be generated. The efficiency, defined as the energy generated by the system over the gravitational energy that the water losses, can reach up to similar to 3-4%. In order to generate a continuous stream of positively-charged water, there should also be a constant production of negatively-charged species in the system. Experimental results suggest that the negative charge transfers constantly to the atmosphere due to dielectric breakdown of air. With regards to applications related to high electrical potential of water droplets, the amount of charge generated in a single water droplet is found to be equivalent to that produced by charging the water droplet with a high-voltage power supply operated at similar to 5 kV. In general, the energy generated is clean, renewable, and technically simple and inexpensive to produce. When water droplets (e.g., from rain) flow down a solid surface due to gravity, they can generate power. When a fluid comes into contact with a solid surface, charge separates at the interface. This study describes a method that harvests the gravitational energy of water—available in abundance naturally, such as in rain and rivers—through the separation of charge at the interface. Essentially, it is found that water can be charged by flowing it across a solid surface under its own weight; thus, a continuous flow of water can produce a constant supply of power. After optimizing the system, a power of up to ∼170 μW (per Teflon tube of 2 mm in diameter) can be generated. The efficiency, defined as the energy generated by the system over the gravitational energy that the water losses, can reach up to ∼3–4%. In order to generate a continuous stream of positively-charged water, there should also be a constant production of negatively-charged species in the system. Experimental results suggest that the negative charge transfers constantly to the atmosphere due to dielectric breakdown of air. With regards to applications related to high electrical potential of water droplets, the amount of charge generated in a single water droplet is found to be equivalent to that produced by charging the water droplet with a high-voltage power supply operated at ∼5 kV. In general, the energy generated is clean, renewable, and technically simple and inexpensive to produce. When a fluid comes into contact with a solid surface, charge separates at the interface. This study describes a method that harvests the gravitational energy of water-available in abundance naturally, such as in rain and rivers-through the separation of charge at the interface. Essentially, it is found that water can be charged by flowing it across a solid surface under its own weight; thus, a continuous flow of water can produce a constant supply of power. After optimizing the system, a power of up to ∼170 μW (per Teflon tube of 2 mm in diameter) can be generated. The efficiency, defined as the energy generated by the system over the gravitational energy that the water losses, can reach up to ∼3-4%. In order to generate a continuous stream of positively-charged water, there should also be a constant production of negatively-charged species in the system. Experimental results suggest that the negative charge transfers constantly to the atmosphere due to dielectric breakdown of air. With regards to applications related to high electrical potential of water droplets, the amount of charge generated in a single water droplet is found to be equivalent to that produced by charging the water droplet with a high-voltage power supply operated at ∼5 kV. In general, the energy generated is clean, renewable, and technically simple and inexpensive to produce.When a fluid comes into contact with a solid surface, charge separates at the interface. This study describes a method that harvests the gravitational energy of water-available in abundance naturally, such as in rain and rivers-through the separation of charge at the interface. Essentially, it is found that water can be charged by flowing it across a solid surface under its own weight; thus, a continuous flow of water can produce a constant supply of power. After optimizing the system, a power of up to ∼170 μW (per Teflon tube of 2 mm in diameter) can be generated. The efficiency, defined as the energy generated by the system over the gravitational energy that the water losses, can reach up to ∼3-4%. In order to generate a continuous stream of positively-charged water, there should also be a constant production of negatively-charged species in the system. Experimental results suggest that the negative charge transfers constantly to the atmosphere due to dielectric breakdown of air. With regards to applications related to high electrical potential of water droplets, the amount of charge generated in a single water droplet is found to be equivalent to that produced by charging the water droplet with a high-voltage power supply operated at ∼5 kV. In general, the energy generated is clean, renewable, and technically simple and inexpensive to produce. |
| Author | Huang, Xu Sun, Yajuan Soh, Siowling |
| AuthorAffiliation | a Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore . Email: chessl@nus.edu.sg |
| AuthorAffiliation_xml | – name: a Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore . Email: chessl@nus.edu.sg |
| Author_xml | – sequence: 1 givenname: Yajuan surname: Sun fullname: Sun, Yajuan organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore – sequence: 2 givenname: Xu surname: Huang fullname: Huang, Xu organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore – sequence: 3 givenname: Siowling surname: Soh fullname: Soh, Siowling organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28706699$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUstuHCEQRJGt2HF8yQdEHKNIGzePGWYukaKVnYcs-ZD4jBi2mSWahQ2wtvbvw9pr56FIMRfooqpE0f2CHIQYkJBXDN4xEP3ZvPk6B5BKfHlGjjlINmsb0R88njkckdOcv0NdQrCGq-fkiHcK2rbvj4m-zj6MtCyRjsnc-GKKj8FMFAOmcUujo7emYKIl0nGH1YKu421Fhi3NuDbpTrEj2qVJI1JTqA9V4ozF_JIcOjNlPN3vJ-T64vzb_NPs8urj5_mHy5ltGJSZG6x1YgGtHVgnJQyt7NoaxLgBF7zrOwlgrHLCKM6YGyrKVAOsU1baDoU4Ie_vfdebYYULi6EkM-l18iuTtjoar_-8CX6px3ijG9nXj2qqwZu9QYo_NpiLXvlscZpMwLjJmvUcODAJ8v9U1bWsxoInuCquah-U3CV4_XuCx6c_9KoS4J5gU8w5odN2364ayE-agd5NhP41EVXy9i_Jg-s_yD8BlBC2GA |
| CitedBy_id | crossref_primary_10_1002_adma_201802405 crossref_primary_10_1016_j_nanoen_2020_104476 crossref_primary_10_1016_j_nanoen_2020_105204 crossref_primary_10_1002_admt_201600190 crossref_primary_10_1016_j_elstat_2016_03_006 crossref_primary_10_1016_j_enconman_2020_112791 crossref_primary_10_1088_1361_665X_ab2624 crossref_primary_10_1016_j_nanoen_2017_12_025 crossref_primary_10_1063_1_5110343 crossref_primary_10_1016_j_nanoen_2016_01_017 crossref_primary_10_1088_1361_6528_ad5684 crossref_primary_10_1016_j_jmst_2019_05_038 crossref_primary_10_1073_pnas_2322425121 crossref_primary_10_1021_acscentsci_4c02110 crossref_primary_10_1088_1361_6439_ab3182 crossref_primary_10_1016_j_coelec_2022_100964 crossref_primary_10_1021_jacs_0c06000 crossref_primary_10_1038_s41567_022_01563_6 crossref_primary_10_1016_j_mtphys_2023_101105 crossref_primary_10_1016_j_nanoen_2016_02_059 crossref_primary_10_1002_aenm_202201383 crossref_primary_10_1016_j_nanoen_2020_105713 crossref_primary_10_1002_er_7900 crossref_primary_10_1016_j_nanoen_2019_104269 crossref_primary_10_1016_j_nanoen_2019_01_002 crossref_primary_10_1016_j_nanoen_2019_104278 crossref_primary_10_1016_j_nanoen_2019_01_083 crossref_primary_10_1088_0964_1726_25_4_045007 crossref_primary_10_1016_j_flatc_2019_100090 crossref_primary_10_1088_1361_665X_ad5bcf crossref_primary_10_1016_j_nanoen_2020_104809 crossref_primary_10_1039_D1NR05386H crossref_primary_10_1103_PhysRevLett_134_104002 crossref_primary_10_1021_jacs_3c09950 crossref_primary_10_1016_j_isci_2024_109291 crossref_primary_10_1016_j_nanoen_2020_105144 crossref_primary_10_1016_j_energy_2016_12_097 crossref_primary_10_1016_j_rser_2019_109366 crossref_primary_10_1002_anie_201604378 crossref_primary_10_1063_1_4929745 crossref_primary_10_1038_s41598_024_60595_5 crossref_primary_10_1002_aesr_202000087 crossref_primary_10_1002_smll_202301568 crossref_primary_10_1016_j_seppur_2025_133912 crossref_primary_10_1002_ange_201604378 crossref_primary_10_1088_1757_899X_1203_2_022076 crossref_primary_10_1038_s41598_022_04838_3 crossref_primary_10_1016_j_nanoen_2019_104407 crossref_primary_10_1016_j_nanoen_2020_105370 crossref_primary_10_1016_j_apenergy_2021_117394 crossref_primary_10_1016_j_nanoen_2016_12_013 |
| Cites_doi | 10.1021/nn404614z 10.1021/nl070194h 10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2 10.1002/adfm.200902312 10.1021/ja506830p 10.1021/nl303573d 10.1002/adma.201400373 10.1021/ja503692z 10.1021/ja309268n 10.1002/anie.201307249 10.1103/PhysRevLett.95.116104 10.1038/nmat2160 10.1063/1.2645078 10.1038/nnano.2014.56 10.1002/anie.200701812 10.1126/science.1079080 10.1126/science.1201512 10.1002/anie.201101203 |
| ContentType | Journal Article |
| Copyright | This journal is © The Royal Society of Chemistry 2015 2015 |
| Copyright_xml | – notice: This journal is © The Royal Society of Chemistry 2015 2015 |
| DBID | AAYXX CITATION NPM 7QH 7UA C1K F1W H96 L.G 7SR 8BQ 8FD JG9 7X8 5PM |
| DOI | 10.1039/C5SC00473J |
| DatabaseName | CrossRef PubMed Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aqualine ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | PubMed Materials Research Database CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2041-6539 |
| EndPage | 3353 |
| ExternalDocumentID | PMC5490415 28706699 10_1039_C5SC00473J |
| Genre | Journal Article |
| GroupedDBID | 0-7 0R~ 53G 705 7~J AAEMU AAFBY AAFWJ AAIWI AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABIQK ABPDG ABXOH ACGFS ACIWK ACRPL ADBBV ADMRA ADNMO AEFDR AENEX AESAV AETIL AFLYV AFPKN AFRZK AFVBQ AGEGJ AGMRB AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI AOIJS APEMP ASPBG AUDPV AVWKF AZFZN BCNDV BLAPV BSQNT C6K CAG CITATION COF D0L ECGLT EE0 EF- F5P FEDTE GROUPED_DOAJ H13 HVGLF HYE HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS ROL RPM RPMJG RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH -JG AGSTE NPM SMJ 7QH 7UA C1K F1W H96 L.G 7SR 8BQ 8FD JG9 7X8 5PM |
| ID | FETCH-LOGICAL-c510t-fbccf3d06cb18440b6486653afbed2898400ac7f3a7211fbbed1750187c4c8e33 |
| IEDL.DBID | RRC |
| ISICitedReferencesCount | 75 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000354815600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-6520 |
| IngestDate | Tue Nov 04 01:48:56 EST 2025 Wed Oct 01 14:48:44 EDT 2025 Thu Oct 02 12:04:34 EDT 2025 Tue Oct 07 09:34:21 EDT 2025 Thu Jan 02 22:22:45 EST 2025 Sat Nov 29 05:53:39 EST 2025 Tue Nov 18 21:39:57 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c510t-fbccf3d06cb18440b6486653afbed2898400ac7f3a7211fbbed1750187c4c8e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://dx.doi.org/10.1039/c5sc00473j |
| PMID | 28706699 |
| PQID | 1727699743 |
| PQPubID | 23462 |
| PageCount | 7 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5490415 proquest_miscellaneous_1920201404 proquest_miscellaneous_1786151005 proquest_miscellaneous_1727699743 pubmed_primary_28706699 crossref_citationtrail_10_1039_C5SC00473J crossref_primary_10_1039_C5SC00473J |
| PublicationCentury | 2000 |
| PublicationDate | 2015-06-01 |
| PublicationDateYYYYMMDD | 2015-06-01 |
| PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Chemical science (Cambridge) |
| PublicationTitleAlternate | Chem Sci |
| PublicationYear | 2015 |
| Publisher | Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry |
| References | Lin (C5SC00473J-(cit13)/*[position()=1]) 2013; 52 van der Heyden (C5SC00473J-(cit9)/*[position()=1]) 2005; 95 Beard (C5SC00473J-(cit18)/*[position()=1]) 1976; 33 Wang (C5SC00473J-(cit8)/*[position()=1]) 2012; 12 Soh (C5SC00473J-(cit20)/*[position()=1]) 2014; 136 Gao (C5SC00473J-(cit17)/*[position()=1]) 2014; 136 Lin (C5SC00473J-(cit14)/*[position()=1]) 2014; 26 Baytekin (C5SC00473J-(cit2)/*[position()=1]) 2011; 333 Bailey (C5SC00473J-(cit23)/*[position()=1]) 1988 van der Heyden (C5SC00473J-(cit10)/*[position()=1]) 2007; 7 Ghosh (C5SC00473J-(cit11)/*[position()=1]) 2003; 299 Lee (C5SC00473J-(cit22)/*[position()=1]) 2007; 90 Kaltschmitt (C5SC00473J-(cit1)/*[position()=1]) 2007 Israelachvili (C5SC00473J-(cit15)/*[position()=1]) 2011 Liu (C5SC00473J-(cit6)/*[position()=1]) 2008; 7 Yin (C5SC00473J-(cit12)/*[position()=1]) 2014; 9 Soh (C5SC00473J-(cit4)/*[position()=1]) 2012; 134 Harper (C5SC00473J-(cit19)/*[position()=1]) 1967 McCarty (C5SC00473J-(cit3)/*[position()=1]) 2008; 47 (C5SC00473J-(cit21)/*[position()=1]) 2004 Wang (C5SC00473J-(cit7)/*[position()=1]) 2013; 7 Piperno (C5SC00473J-(cit5)/*[position()=1]) 2011; 50 Guo (C5SC00473J-(cit16)/*[position()=1]) 2010; 20 21557424 - Angew Chem Int Ed Engl. 2011 Jun 14;50(25):5654-7 23153329 - J Am Chem Soc. 2012 Dec 12;134(49):20151-9 18270989 - Angew Chem Int Ed Engl. 2008;47(12):2188-207 24079963 - ACS Nano. 2013 Nov 26;7(11):9533-57 24123530 - Angew Chem Int Ed Engl. 2013 Nov 25;52(48):12545-9 23130843 - Nano Lett. 2012 Dec 12;12(12):6339-46 24830874 - Adv Mater. 2014 Jul 16;26(27):4690-6 21700838 - Science. 2011 Jul 15;333(6040):308-12 25137214 - J Am Chem Soc. 2014 Sep 3;136(35):12265-72 18362908 - Nat Mater. 2008 Jun;7(6):505-9 17352506 - Nano Lett. 2007 Apr;7(4):1022-5 16197024 - Phys Rev Lett. 2005 Sep 9;95(11):116104 25171262 - J Am Chem Soc. 2014 Sep 24;136(38):13348-54 12532025 - Science. 2003 Feb 14;299(5609):1042-4 24705513 - Nat Nanotechnol. 2014 May;9(5):378-83 |
| References_xml | – volume-title: Contact and Frictional Electrification year: 1967 ident: C5SC00473J-(cit19)/*[position()=1] – volume-title: Renewable Energy: Technology, Economics and Environment year: 2007 ident: C5SC00473J-(cit1)/*[position()=1] – volume: 7 start-page: 9533 year: 2013 ident: C5SC00473J-(cit7)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn404614z – volume: 7 start-page: 1022 year: 2007 ident: C5SC00473J-(cit10)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl070194h – volume: 33 start-page: 851 year: 1976 ident: C5SC00473J-(cit18)/*[position()=1] publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2 – volume: 20 start-page: 1339 year: 2010 ident: C5SC00473J-(cit16)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200902312 – volume: 136 start-page: 13348 year: 2014 ident: C5SC00473J-(cit20)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja506830p – volume-title: CRC Handbook of Chemistry and Physics year: 2004 ident: C5SC00473J-(cit21)/*[position()=1] – volume: 12 start-page: 6339 year: 2012 ident: C5SC00473J-(cit8)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl303573d – volume: 26 start-page: 4690 year: 2014 ident: C5SC00473J-(cit14)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201400373 – volume: 136 start-page: 12265 year: 2014 ident: C5SC00473J-(cit17)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja503692z – volume-title: Electrostatic Spraying of Liquids year: 1988 ident: C5SC00473J-(cit23)/*[position()=1] – volume: 134 start-page: 20151 year: 2012 ident: C5SC00473J-(cit4)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309268n – volume: 52 start-page: 12545 year: 2013 ident: C5SC00473J-(cit13)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201307249 – volume-title: Intermolecular and Surface Forces: Revised Third Edition year: 2011 ident: C5SC00473J-(cit15)/*[position()=1] – volume: 95 start-page: 116104 year: 2005 ident: C5SC00473J-(cit9)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.116104 – volume: 7 start-page: 505 year: 2008 ident: C5SC00473J-(cit6)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2160 – volume: 90 start-page: 081905 year: 2007 ident: C5SC00473J-(cit22)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2645078 – volume: 9 start-page: 378 year: 2014 ident: C5SC00473J-(cit12)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.56 – volume: 47 start-page: 2188 year: 2008 ident: C5SC00473J-(cit3)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200701812 – volume: 299 start-page: 1042 year: 2003 ident: C5SC00473J-(cit11)/*[position()=1] publication-title: Science doi: 10.1126/science.1079080 – volume: 333 start-page: 308 year: 2011 ident: C5SC00473J-(cit2)/*[position()=1] publication-title: Science doi: 10.1126/science.1201512 – volume: 50 start-page: 5654 year: 2011 ident: C5SC00473J-(cit5)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201101203 – reference: 24705513 - Nat Nanotechnol. 2014 May;9(5):378-83 – reference: 18270989 - Angew Chem Int Ed Engl. 2008;47(12):2188-207 – reference: 21700838 - Science. 2011 Jul 15;333(6040):308-12 – reference: 24123530 - Angew Chem Int Ed Engl. 2013 Nov 25;52(48):12545-9 – reference: 23130843 - Nano Lett. 2012 Dec 12;12(12):6339-46 – reference: 18362908 - Nat Mater. 2008 Jun;7(6):505-9 – reference: 23153329 - J Am Chem Soc. 2012 Dec 12;134(49):20151-9 – reference: 24079963 - ACS Nano. 2013 Nov 26;7(11):9533-57 – reference: 24830874 - Adv Mater. 2014 Jul 16;26(27):4690-6 – reference: 21557424 - Angew Chem Int Ed Engl. 2011 Jun 14;50(25):5654-7 – reference: 12532025 - Science. 2003 Feb 14;299(5609):1042-4 – reference: 17352506 - Nano Lett. 2007 Apr;7(4):1022-5 – reference: 25171262 - J Am Chem Soc. 2014 Sep 24;136(38):13348-54 – reference: 25137214 - J Am Chem Soc. 2014 Sep 3;136(35):12265-72 – reference: 16197024 - Phys Rev Lett. 2005 Sep 9;95(11):116104 |
| SSID | ssj0000331527 |
| Score | 2.4215178 |
| Snippet | When a fluid comes into contact with a solid surface, charge separates at the interface. This study describes a method that harvests the gravitational energy... When water droplets (e.g., from rain) flow down a solid surface due to gravity, they can generate power. When a fluid comes into contact with a solid surface,... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 3347 |
| SubjectTerms | Charge Charging Chemistry Constants Droplets Electric power generation Energy management Gravitation Separation |
| Title | Using the gravitational energy of water to generate power by separation of charge at interfaces |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28706699 https://www.proquest.com/docview/1727699743 https://www.proquest.com/docview/1786151005 https://www.proquest.com/docview/1920201404 https://pubmed.ncbi.nlm.nih.gov/PMC5490415 |
| Volume | 6 |
| WOSCitedRecordID | wos000354815600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAUL databaseName: HEAL-Link subscriptions: Royal Society of Chemistry customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: RRC dateStart: 20100101 isFulltext: true titleUrlDefault: https://pubs.rsc.org/ providerName: Royal Society of Chemistry |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UBL34fqyPJaIXD8XapGl7lKKIBxEfsLfSpIkK0i67VfHfO5N2V9cXXtsJzTvfZKbfB3AQIiqXxioPsaz1RCJjjxTgPREW0kqRS1EoJzYRXV7GvV5yNQUHv0TweXKUhjcpcRryC9poI0n6DNfX6fgixee8lWYNfHHsyTDwRzSkE6UnD55vaPJrUuSnU-Zs8X_1W4KFFkWyk2bYl2HKlCswl47E21Yhc6kADNEdI4Ghlogbixj3rx-rLHtFlDlgdcXuHfN0bVifFNOYemND0zCCVyUZOjIlw_KaEbfEwFIS1xrcnZ3epudeq6XgaVx1tWeV1pYXvtQKfTrhKymI6Y7nVpkCnS708_xcR5bn5BJahU8RWJBinxY6Npyvw0xZlWYTGLq0gY2IZ7CwIrA8UUWojBRSRaFQIunA4aijM922j_QunjIX8OZJ9tFlHdgf2_Ybeo0frfZG45VhP1JIIy9N9TzMCH7JBH0i_pdNTLANt5s_bJIAcTNRDXVgo5kH4_q4UDB-pAPRxAwZGxBD9-Sb8vHBMXWj800UCFv_auU2zGMVwiYPbQdm6sGz2YVZ_VI_DgddmI56cdddGXTdAngHcnz9DQ |
| linkProvider | Royal Society of Chemistry |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+the+gravitational+energy+of+water+to+generate+power+by+separation+of+charge+at+interfaces&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Sun%2C+Yajuan&rft.au=Huang%2C+Xu&rft.au=Soh%2C+Siowling&rft.date=2015-06-01&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=6&rft.issue=6&rft.spage=3347&rft.epage=3353&rft_id=info:doi/10.1039%2FC5SC00473J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C5SC00473J |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |