A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update

Most current electroencephalography (EEG)-based brain-computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately ten years after this review publication, ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering Jg. 15; H. 3; S. 031005
Hauptverfasser: Lotte, F, Bougrain, L, Cichocki, A, Clerc, M, Congedo, M, Rakotomamonjy, A, Yger, F
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 01.06.2018
ISSN:1741-2552, 1741-2552
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Most current electroencephalography (EEG)-based brain-computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately ten years after this review publication, many new algorithms have been developed and tested to classify EEG signals in BCIs. The time is therefore ripe for an updated review of EEG classification algorithms for BCIs. We surveyed the BCI and machine learning literature from 2007 to 2017 to identify the new classification approaches that have been investigated to design BCIs. We synthesize these studies in order to present such algorithms, to report how they were used for BCIs, what were the outcomes, and to identify their pros and cons. We found that the recently designed classification algorithms for EEG-based BCIs can be divided into four main categories: adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning, plus a few other miscellaneous classifiers. Among these, adaptive classifiers were demonstrated to be generally superior to static ones, even with unsupervised adaptation. Transfer learning can also prove useful although the benefits of transfer learning remain unpredictable. Riemannian geometry-based methods have reached state-of-the-art performances on multiple BCI problems and deserve to be explored more thoroughly, along with tensor-based methods. Shrinkage linear discriminant analysis and random forests also appear particularly useful for small training samples settings. On the other hand, deep learning methods have not yet shown convincing improvement over state-of-the-art BCI methods. This paper provides a comprehensive overview of the modern classification algorithms used in EEG-based BCIs, presents the principles of these methods and guidelines on when and how to use them. It also identifies a number of challenges to further advance EEG classification in BCI.
AbstractList Most current electroencephalography (EEG)-based brain-computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately ten years after this review publication, many new algorithms have been developed and tested to classify EEG signals in BCIs. The time is therefore ripe for an updated review of EEG classification algorithms for BCIs. We surveyed the BCI and machine learning literature from 2007 to 2017 to identify the new classification approaches that have been investigated to design BCIs. We synthesize these studies in order to present such algorithms, to report how they were used for BCIs, what were the outcomes, and to identify their pros and cons. We found that the recently designed classification algorithms for EEG-based BCIs can be divided into four main categories: adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning, plus a few other miscellaneous classifiers. Among these, adaptive classifiers were demonstrated to be generally superior to static ones, even with unsupervised adaptation. Transfer learning can also prove useful although the benefits of transfer learning remain unpredictable. Riemannian geometry-based methods have reached state-of-the-art performances on multiple BCI problems and deserve to be explored more thoroughly, along with tensor-based methods. Shrinkage linear discriminant analysis and random forests also appear particularly useful for small training samples settings. On the other hand, deep learning methods have not yet shown convincing improvement over state-of-the-art BCI methods. This paper provides a comprehensive overview of the modern classification algorithms used in EEG-based BCIs, presents the principles of these methods and guidelines on when and how to use them. It also identifies a number of challenges to further advance EEG classification in BCI.
Most current electroencephalography (EEG)-based brain-computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately ten years after this review publication, many new algorithms have been developed and tested to classify EEG signals in BCIs. The time is therefore ripe for an updated review of EEG classification algorithms for BCIs.OBJECTIVEMost current electroencephalography (EEG)-based brain-computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately ten years after this review publication, many new algorithms have been developed and tested to classify EEG signals in BCIs. The time is therefore ripe for an updated review of EEG classification algorithms for BCIs.We surveyed the BCI and machine learning literature from 2007 to 2017 to identify the new classification approaches that have been investigated to design BCIs. We synthesize these studies in order to present such algorithms, to report how they were used for BCIs, what were the outcomes, and to identify their pros and cons.APPROACHWe surveyed the BCI and machine learning literature from 2007 to 2017 to identify the new classification approaches that have been investigated to design BCIs. We synthesize these studies in order to present such algorithms, to report how they were used for BCIs, what were the outcomes, and to identify their pros and cons.We found that the recently designed classification algorithms for EEG-based BCIs can be divided into four main categories: adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning, plus a few other miscellaneous classifiers. Among these, adaptive classifiers were demonstrated to be generally superior to static ones, even with unsupervised adaptation. Transfer learning can also prove useful although the benefits of transfer learning remain unpredictable. Riemannian geometry-based methods have reached state-of-the-art performances on multiple BCI problems and deserve to be explored more thoroughly, along with tensor-based methods. Shrinkage linear discriminant analysis and random forests also appear particularly useful for small training samples settings. On the other hand, deep learning methods have not yet shown convincing improvement over state-of-the-art BCI methods.MAIN RESULTSWe found that the recently designed classification algorithms for EEG-based BCIs can be divided into four main categories: adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning, plus a few other miscellaneous classifiers. Among these, adaptive classifiers were demonstrated to be generally superior to static ones, even with unsupervised adaptation. Transfer learning can also prove useful although the benefits of transfer learning remain unpredictable. Riemannian geometry-based methods have reached state-of-the-art performances on multiple BCI problems and deserve to be explored more thoroughly, along with tensor-based methods. Shrinkage linear discriminant analysis and random forests also appear particularly useful for small training samples settings. On the other hand, deep learning methods have not yet shown convincing improvement over state-of-the-art BCI methods.This paper provides a comprehensive overview of the modern classification algorithms used in EEG-based BCIs, presents the principles of these methods and guidelines on when and how to use them. It also identifies a number of challenges to further advance EEG classification in BCI.SIGNIFICANCEThis paper provides a comprehensive overview of the modern classification algorithms used in EEG-based BCIs, presents the principles of these methods and guidelines on when and how to use them. It also identifies a number of challenges to further advance EEG classification in BCI.
Author Lotte, F
Bougrain, L
Clerc, M
Cichocki, A
Rakotomamonjy, A
Yger, F
Congedo, M
Author_xml – sequence: 1
  givenname: F
  surname: Lotte
  fullname: Lotte, F
  organization: Inria, LaBRI (CNRS/Univ. Bordeaux /INP), Talence, France. RIKEN Brain Science Insitute, Wakoshi, Japan
– sequence: 2
  givenname: L
  surname: Bougrain
  fullname: Bougrain, L
– sequence: 3
  givenname: A
  surname: Cichocki
  fullname: Cichocki, A
– sequence: 4
  givenname: M
  surname: Clerc
  fullname: Clerc, M
– sequence: 5
  givenname: M
  surname: Congedo
  fullname: Congedo, M
– sequence: 6
  givenname: A
  surname: Rakotomamonjy
  fullname: Rakotomamonjy, A
– sequence: 7
  givenname: F
  surname: Yger
  fullname: Yger, F
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29488902$$D View this record in MEDLINE/PubMed
BookMark eNpNUEtLAzEYDFKxD717khy9rE2y2Ze3UmoVCl56X74kXzSyu1mTXaX_vgWryMDMMAxzmDmZdL5DQm45e-CsLJe8kDwRWSaWAEpYcUFmf9Hkn5-SeYwfjKW8qNgVmYpKlmXFxIzUKxrwy-E39ZbqBmJ01mkYnO8oNG8-uOG9jdT6QDebbaIgoqEqgOsS7dt-HDBQ153Ygsb4SIFyRg8IgY69gQGvyaWFJuLNWRdk_7TZr5-T3ev2Zb3aJTrjbEgg5VpK0JrnRgrFOOfalIxJlRuFXKYFMp0VNs0zXVlV2MrIIjcZFiJNFYoFuf-Z7YP_HDEOdeuixqaBDv0Ya8FYJXh2wql6d66OqkVT98G1EA717yfiCI5WZV4
CitedBy_id crossref_primary_10_1088_1741_2552_abe357
crossref_primary_10_1155_2022_4003245
crossref_primary_10_3389_fnins_2024_1367932
crossref_primary_10_1016_j_asoc_2021_108359
crossref_primary_10_3390_s23041932
crossref_primary_10_1109_ACCESS_2022_3161489
crossref_primary_10_1186_s12984_024_01342_9
crossref_primary_10_1109_JIOT_2021_3105647
crossref_primary_10_1515_bmt_2020_0038
crossref_primary_10_1007_s13534_024_00431_x
crossref_primary_10_1111_exsy_13530
crossref_primary_10_3389_fnins_2024_1329411
crossref_primary_10_3390_s20174749
crossref_primary_10_1016_j_schres_2023_09_010
crossref_primary_10_3389_fnhum_2018_00439
crossref_primary_10_1088_1741_2552_ada0e3
crossref_primary_10_3389_fnhum_2023_1248824
crossref_primary_10_1016_j_autcon_2024_105670
crossref_primary_10_1080_01621459_2023_2200522
crossref_primary_10_1080_10255842_2023_2207705
crossref_primary_10_1109_JIOT_2021_3057474
crossref_primary_10_1109_TNSRE_2019_2936411
crossref_primary_10_1080_10447318_2024_2443268
crossref_primary_10_1109_ACCESS_2021_3136774
crossref_primary_10_3103_S1060992X19020097
crossref_primary_10_1016_j_neucom_2021_03_038
crossref_primary_10_3233_IDT_230715
crossref_primary_10_1109_JSEN_2020_3017491
crossref_primary_10_1051_itmconf_20224702013
crossref_primary_10_3389_fnhum_2025_1599960
crossref_primary_10_1007_s11517_024_03193_x
crossref_primary_10_3390_app10051619
crossref_primary_10_1016_j_neunet_2025_107578
crossref_primary_10_1109_TNSRE_2021_3106897
crossref_primary_10_1109_TNSRE_2021_3126264
crossref_primary_10_1007_s11063_023_11353_7
crossref_primary_10_1088_1741_2552_ac96a5
crossref_primary_10_3390_brainsci15010027
crossref_primary_10_1088_1741_2552_abc8d8
crossref_primary_10_1088_1741_2552_ad4f18
crossref_primary_10_1177_15459683221138751
crossref_primary_10_3390_e21121199
crossref_primary_10_1088_1741_2552_abc8d5
crossref_primary_10_1007_s12530_025_09696_8
crossref_primary_10_1016_j_brainresbull_2024_110902
crossref_primary_10_3389_fnhum_2023_1223307
crossref_primary_10_1080_23311983_2024_2416759
crossref_primary_10_1109_TSMC_2022_3156861
crossref_primary_10_3389_fnhum_2021_645952
crossref_primary_10_1155_2019_4259369
crossref_primary_10_1109_TETCI_2023_3301385
crossref_primary_10_1016_j_bspc_2022_104183
crossref_primary_10_1109_TNSRE_2019_2934496
crossref_primary_10_1088_1742_6596_1907_1_012045
crossref_primary_10_1016_j_physrep_2021_03_002
crossref_primary_10_1016_j_sigpro_2020_107942
crossref_primary_10_1002_ima_22626
crossref_primary_10_1007_s40860_020_00117_y
crossref_primary_10_3389_fnins_2023_1167719
crossref_primary_10_1016_j_bandl_2021_104968
crossref_primary_10_1109_TNSRE_2019_2962708
crossref_primary_10_3390_bioengineering11080782
crossref_primary_10_1038_s41598_025_87414_9
crossref_primary_10_1088_1741_2552_abd007
crossref_primary_10_1007_s13534_024_00357_4
crossref_primary_10_1111_cogs_13454
crossref_primary_10_3389_fnhum_2018_00440
crossref_primary_10_1088_1741_2552_acbfdf
crossref_primary_10_1088_1741_2552_adf010
crossref_primary_10_1109_TNSRE_2021_3106876
crossref_primary_10_1109_TVCG_2024_3456147
crossref_primary_10_3389_fninf_2022_997068
crossref_primary_10_1109_TNSRE_2022_3199363
crossref_primary_10_3389_fnbot_2025_1628968
crossref_primary_10_3390_s23115051
crossref_primary_10_1109_TBME_2023_3333327
crossref_primary_10_3390_electronics8111273
crossref_primary_10_1088_1741_2552_acbfe0
crossref_primary_10_3389_fnins_2020_00593
crossref_primary_10_1109_TNSRE_2021_3125386
crossref_primary_10_3390_s20061620
crossref_primary_10_1038_s41598_024_55413_x
crossref_primary_10_1016_j_bspc_2018_06_008
crossref_primary_10_1109_TBCAS_2021_3089132
crossref_primary_10_3390_app132413350
crossref_primary_10_1007_s11517_024_03103_1
crossref_primary_10_3389_fnrgo_2025_1535799
crossref_primary_10_1007_s11760_022_02399_6
crossref_primary_10_1109_TNSRE_2022_3198041
crossref_primary_10_3389_fninf_2019_00055
crossref_primary_10_1109_JBHI_2022_3218453
crossref_primary_10_1007_s11517_021_02449_0
crossref_primary_10_1080_10447318_2024_2388368
crossref_primary_10_1016_j_bspc_2025_108381
crossref_primary_10_1049_ell2_12275
crossref_primary_10_1016_j_neuroimage_2019_05_054
crossref_primary_10_1109_ACCESS_2023_3322294
crossref_primary_10_1088_1741_2552_abd684
crossref_primary_10_1109_ACCESS_2019_2918251
crossref_primary_10_1109_TNSRE_2024_3435460
crossref_primary_10_1109_TASE_2019_2956110
crossref_primary_10_1016_j_bspc_2022_104379
crossref_primary_10_3390_s24030877
crossref_primary_10_1016_j_cmpb_2020_105464
crossref_primary_10_3390_electronics13142770
crossref_primary_10_1088_1741_2552_ac6a7d
crossref_primary_10_1145_3699732
crossref_primary_10_3389_fnins_2024_1434444
crossref_primary_10_3389_fninf_2024_1345425
crossref_primary_10_1016_j_bspc_2023_105537
crossref_primary_10_1016_j_bspc_2023_105779
crossref_primary_10_1109_TNSRE_2020_2979464
crossref_primary_10_3390_electronics13224542
crossref_primary_10_1080_21681163_2023_2192831
crossref_primary_10_1109_JETCAS_2020_3031698
crossref_primary_10_1088_2057_1976_ab54ad
crossref_primary_10_1007_s00521_024_10917_5
crossref_primary_10_1109_TBME_2023_3308371
crossref_primary_10_3389_fninf_2019_00074
crossref_primary_10_3390_s23073593
crossref_primary_10_1088_1741_2552_ab6a67
crossref_primary_10_1016_j_bspc_2024_106912
crossref_primary_10_1088_1361_6579_acd51b
crossref_primary_10_3390_brainsci13040656
crossref_primary_10_1109_ACCESS_2018_2860633
crossref_primary_10_1016_j_eswa_2023_121986
crossref_primary_10_3390_app15116021
crossref_primary_10_1088_1741_2552_ac41ac
crossref_primary_10_1016_j_bbr_2024_115100
crossref_primary_10_1371_journal_pone_0222276
crossref_primary_10_3390_life12030374
crossref_primary_10_3390_bioengineering12070775
crossref_primary_10_1109_TNSRE_2023_3327907
crossref_primary_10_3389_fninf_2021_750839
crossref_primary_10_1016_j_expneurol_2020_113274
crossref_primary_10_1016_j_compbiomed_2025_110062
crossref_primary_10_1016_j_bspc_2022_104554
crossref_primary_10_3390_electronics13030565
crossref_primary_10_1016_j_pneurobio_2023_102490
crossref_primary_10_3917_rindu1_213_0016
crossref_primary_10_1007_s10015_024_01002_0
crossref_primary_10_1016_j_measurement_2019_07_070
crossref_primary_10_1080_2326263X_2023_2233368
crossref_primary_10_1109_TCDS_2024_3460750
crossref_primary_10_1088_1741_2552_ac9338
crossref_primary_10_1520_JTE20220223
crossref_primary_10_1080_25742442_2018_1561099
crossref_primary_10_1016_j_compbiomed_2024_109483
crossref_primary_10_1038_s41598_025_01488_z
crossref_primary_10_3390_s22093331
crossref_primary_10_3233_THC_181538
crossref_primary_10_1016_j_bspc_2025_108505
crossref_primary_10_1109_TCYB_2021_3110732
crossref_primary_10_3389_fnins_2020_589107
crossref_primary_10_1088_1741_2552_adbfbd
crossref_primary_10_1051_itmconf_20245904001
crossref_primary_10_1051_matecconf_201929201024
crossref_primary_10_1007_s11517_020_02310_w
crossref_primary_10_1371_journal_pone_0309706
crossref_primary_10_3389_fnbot_2022_995552
crossref_primary_10_1007_s11571_022_09832_z
crossref_primary_10_3390_s24186004
crossref_primary_10_3389_fnbot_2019_00097
crossref_primary_10_1109_JBHI_2020_3025865
crossref_primary_10_1016_j_cmpb_2023_107641
crossref_primary_10_1186_s12984_025_01617_9
crossref_primary_10_1016_j_neunet_2020_05_032
crossref_primary_10_1177_1478077119832465
crossref_primary_10_1016_j_compbiomed_2024_109260
crossref_primary_10_1109_TETCI_2023_3332549
crossref_primary_10_1109_TBME_2020_3033446
crossref_primary_10_1016_j_neucom_2021_02_051
crossref_primary_10_3389_fnhum_2025_1633910
crossref_primary_10_1109_ACCESS_2020_3046604
crossref_primary_10_1007_s11517_024_03036_9
crossref_primary_10_1093_nsr_nwad048
crossref_primary_10_1007_s11831_023_09920_1
crossref_primary_10_1088_1741_2552_ad0f3d
crossref_primary_10_3390_electronics13214310
crossref_primary_10_1016_j_ins_2019_06_008
crossref_primary_10_1371_journal_pone_0303390
crossref_primary_10_1088_1741_2552_abf0d7
crossref_primary_10_3390_s25103178
crossref_primary_10_1109_TNSRE_2024_3357863
crossref_primary_10_1109_TNSRE_2022_3162029
crossref_primary_10_1109_TNSRE_2018_2848222
crossref_primary_10_3389_fnhum_2021_643386
crossref_primary_10_1109_ACCESS_2020_2995302
crossref_primary_10_1016_j_neunet_2025_107511
crossref_primary_10_3390_s19061324
crossref_primary_10_1007_s11042_024_18365_y
crossref_primary_10_1109_TNSRE_2021_3049998
crossref_primary_10_3390_s19132854
crossref_primary_10_1007_s11571_022_09919_7
crossref_primary_10_1007_s11517_025_03386_y
crossref_primary_10_3390_s25072305
crossref_primary_10_1007_s13246_019_00793_y
crossref_primary_10_1088_1741_2552_abf2e4
crossref_primary_10_1016_j_neuroimage_2020_117021
crossref_primary_10_3389_fnins_2025_1557287
crossref_primary_10_1016_j_procs_2018_11_062
crossref_primary_10_1088_1741_2552_ac7d73
crossref_primary_10_1038_s41598_020_72051_1
crossref_primary_10_1016_j_patcog_2019_107017
crossref_primary_10_1016_j_ijhcs_2024_103433
crossref_primary_10_1007_s11517_025_03295_0
crossref_primary_10_1016_j_neucom_2020_09_017
crossref_primary_10_1088_1741_2552_ad5ec0
crossref_primary_10_1016_j_neulet_2021_136250
crossref_primary_10_3389_fnins_2022_1009878
crossref_primary_10_3390_neurolint14040084
crossref_primary_10_3390_brainsci13121706
crossref_primary_10_1016_j_neulet_2021_136012
crossref_primary_10_1038_s41598_024_73755_4
crossref_primary_10_1088_1741_2552_abfaac
crossref_primary_10_14412_2074_2711_2025_2_93_99
crossref_primary_10_3390_s20185283
crossref_primary_10_1109_TNSRE_2024_3379451
crossref_primary_10_1038_s41598_024_74475_5
crossref_primary_10_1109_ACCESS_2019_2917327
crossref_primary_10_1016_j_artmed_2023_102738
crossref_primary_10_1088_1741_2552_abd82b
crossref_primary_10_3389_fninf_2022_961089
crossref_primary_10_1007_s10015_025_01025_1
crossref_primary_10_1016_j_neucom_2021_10_078
crossref_primary_10_1016_j_neuroimage_2020_117249
crossref_primary_10_1016_j_compbiomed_2021_105048
crossref_primary_10_3389_fnhum_2023_1182319
crossref_primary_10_1088_1741_2552_ad628c
crossref_primary_10_1088_1538_3873_acc7ca
crossref_primary_10_1016_j_asoc_2023_110656
crossref_primary_10_1109_JLT_2023_3250827
crossref_primary_10_1080_10447318_2023_2275088
crossref_primary_10_3389_fncom_2019_00043
crossref_primary_10_1109_ACCESS_2020_2996685
crossref_primary_10_1109_ACCESS_2023_3341419
crossref_primary_10_1016_j_ipm_2022_103001
crossref_primary_10_1088_1741_2552_abc760
crossref_primary_10_3389_fnins_2023_1194554
crossref_primary_10_1007_s10489_023_05134_x
crossref_primary_10_1371_journal_pone_0268880
crossref_primary_10_1063_1_5142343
crossref_primary_10_1109_ACCESS_2025_3577996
crossref_primary_10_1007_s00221_025_07153_1
crossref_primary_10_3390_brainsci13060886
crossref_primary_10_3390_math12193079
crossref_primary_10_1109_MCI_2020_2998231
crossref_primary_10_1134_S0362119723600479
crossref_primary_10_1016_j_irbm_2021_07_001
crossref_primary_10_1016_j_matpr_2020_08_730
crossref_primary_10_1109_ACCESS_2019_2908851
crossref_primary_10_3389_fnins_2023_1345961
crossref_primary_10_1016_j_eswa_2024_123975
crossref_primary_10_1007_s00521_025_11201_w
crossref_primary_10_1088_1741_2552_ab882e
crossref_primary_10_1109_TNSRE_2023_3257319
crossref_primary_10_1186_s12984_018_0438_z
crossref_primary_10_1016_j_neucom_2019_10_049
crossref_primary_10_3389_fnins_2022_796290
crossref_primary_10_1002_INMD_20250003
crossref_primary_10_1109_TNNLS_2020_3027773
crossref_primary_10_1109_TBME_2021_3115799
crossref_primary_10_1016_j_inffus_2025_102982
crossref_primary_10_1016_j_compbiomed_2025_110696
crossref_primary_10_3390_s18124253
crossref_primary_10_3390_s22155507
crossref_primary_10_3390_s23146546
crossref_primary_10_1016_j_ifacol_2023_10_1458
crossref_primary_10_1088_1741_2552_ac23c0
crossref_primary_10_1007_s11760_025_04124_5
crossref_primary_10_1109_ACCESS_2019_2936434
crossref_primary_10_1109_JBHI_2024_3462991
crossref_primary_10_1002_mus_26828
crossref_primary_10_1038_s41597_023_02445_z
crossref_primary_10_1016_j_compbiomed_2022_106220
crossref_primary_10_3390_technologies7020046
crossref_primary_10_1186_s40708_021_00133_5
crossref_primary_10_1016_j_compbiomed_2024_109097
crossref_primary_10_1002_ecj_12280
crossref_primary_10_1016_j_eswa_2024_123993
crossref_primary_10_1155_2020_4137283
crossref_primary_10_1186_s12984_024_01349_2
crossref_primary_10_1109_ACCESS_2025_3604528
crossref_primary_10_1109_TBME_2020_3010854
crossref_primary_10_1109_LSENS_2024_3427355
crossref_primary_10_1155_2021_3928470
crossref_primary_10_1109_JBHI_2025_3545856
crossref_primary_10_1016_j_bspc_2022_103515
crossref_primary_10_1002_sdtp_17197
crossref_primary_10_1002_jdn_10166
crossref_primary_10_1016_j_eswa_2023_121253
crossref_primary_10_1155_2018_4089021
crossref_primary_10_1097_JS9_0000000000002022
crossref_primary_10_1145_3450449
crossref_primary_10_1016_j_neuroimage_2022_119774
crossref_primary_10_3389_fnins_2024_1381572
crossref_primary_10_1016_j_biopsycho_2022_108287
crossref_primary_10_1155_2020_6929546
crossref_primary_10_3389_fnhum_2021_635777
crossref_primary_10_1007_s11831_021_09684_6
crossref_primary_10_1109_ACCESS_2020_2988057
crossref_primary_10_1109_ACCESS_2019_2956018
crossref_primary_10_1007_s11042_023_17111_0
crossref_primary_10_1088_1741_2552_ad01de
crossref_primary_10_3389_fnins_2023_1116721
crossref_primary_10_1016_j_ibmed_2025_100291
crossref_primary_10_3390_math10091588
crossref_primary_10_1109_ACCESS_2024_3360328
crossref_primary_10_3389_fninf_2021_642766
crossref_primary_10_32604_cmc_2022_021119
crossref_primary_10_1002_admt_202000233
crossref_primary_10_1109_TCSS_2022_3184818
crossref_primary_10_1016_j_irbm_2021_04_004
crossref_primary_10_3390_s19030551
crossref_primary_10_1162_imag_a_00040
crossref_primary_10_1109_ACCESS_2025_3525996
crossref_primary_10_1038_s41598_025_00670_7
crossref_primary_10_3389_fnins_2021_824759
crossref_primary_10_1088_1741_2552_ad3eb5
crossref_primary_10_3389_fnhum_2024_1416683
crossref_primary_10_1109_TBME_2023_3295769
crossref_primary_10_3389_fnins_2025_1546559
crossref_primary_10_1109_TBME_2023_3339892
crossref_primary_10_3389_fncom_2022_1006763
crossref_primary_10_3389_fninf_2018_00065
crossref_primary_10_1088_2516_1091_ad8530
crossref_primary_10_1109_JSEN_2024_3468951
crossref_primary_10_1016_j_neucom_2025_130254
crossref_primary_10_1080_2326263X_2020_1741072
crossref_primary_10_1088_1741_2552_ac01a0
crossref_primary_10_1016_j_bspc_2024_106148
crossref_primary_10_1016_j_bspc_2021_102554
crossref_primary_10_1088_2057_1976_acdbd0
crossref_primary_10_3390_s25072259
crossref_primary_10_1080_2326263X_2019_1651570
crossref_primary_10_1038_s41467_022_28451_0
crossref_primary_10_3390_brainsci14030196
crossref_primary_10_1088_1741_2552_ade1f9
crossref_primary_10_14789_jmj_JMJ23_0011_R
crossref_primary_10_3390_buildings14040879
crossref_primary_10_1109_TNNLS_2022_3214225
crossref_primary_10_1109_ACCESS_2019_2944067
crossref_primary_10_3389_frobt_2020_558531
crossref_primary_10_1109_TAFFC_2025_3554534
crossref_primary_10_1016_j_expneurol_2021_113612
crossref_primary_10_3389_fnhum_2023_1126938
crossref_primary_10_3389_fnhum_2021_595723
crossref_primary_10_1038_s41598_022_25049_w
crossref_primary_10_1109_ACCESS_2022_3195513
crossref_primary_10_3389_fnins_2021_732165
crossref_primary_10_1016_j_bspc_2020_102026
crossref_primary_10_1007_s11071_022_08118_7
crossref_primary_10_1007_s13246_020_00893_0
crossref_primary_10_1016_j_neucom_2024_128889
crossref_primary_10_1007_s10489_022_04226_4
crossref_primary_10_3389_fnhum_2023_1070404
crossref_primary_10_1007_s13755_021_00142_y
crossref_primary_10_1088_1741_2552_abc902
crossref_primary_10_1145_3229093
crossref_primary_10_1016_j_bbr_2023_114760
crossref_primary_10_1088_1741_2552_ac49a6
crossref_primary_10_3390_s21082750
crossref_primary_10_1109_TOH_2023_3270666
crossref_primary_10_1016_j_infsof_2021_106563
crossref_primary_10_1109_TNSRE_2020_3028966
crossref_primary_10_1016_j_measurement_2024_115167
crossref_primary_10_1109_TNSRE_2022_3150007
crossref_primary_10_3389_fnins_2021_663101
crossref_primary_10_1016_j_bspc_2024_107218
crossref_primary_10_1109_TNNLS_2021_3053576
crossref_primary_10_1007_s11571_022_09906_y
crossref_primary_10_1109_TCDS_2022_3209801
crossref_primary_10_3389_fnhum_2020_613254
crossref_primary_10_1088_1741_2552_ad9957
crossref_primary_10_1109_TETCI_2018_2848289
crossref_primary_10_3389_fnins_2023_1251677
crossref_primary_10_1016_j_jneumeth_2021_109378
crossref_primary_10_3389_fnhum_2024_1354143
crossref_primary_10_3389_fbioe_2021_706229
crossref_primary_10_1016_j_neucom_2021_08_003
crossref_primary_10_1109_RBME_2019_2950897
crossref_primary_10_1007_s11055_023_01552_z
crossref_primary_10_1109_ACCESS_2020_2969720
crossref_primary_10_1002_ima_23104
crossref_primary_10_1016_j_patrec_2019_03_017
crossref_primary_10_3390_s23239351
crossref_primary_10_1186_s12938_023_01129_4
crossref_primary_10_1016_j_neuroimage_2020_116778
crossref_primary_10_1016_j_engappai_2024_109642
crossref_primary_10_1016_j_ijpsycho_2025_112611
crossref_primary_10_1109_TNSRE_2021_3137340
crossref_primary_10_1007_s41233_019_0025_5
crossref_primary_10_1038_s44222_024_00185_2
crossref_primary_10_1016_j_nicl_2020_102417
crossref_primary_10_1109_ACCESS_2023_3326720
crossref_primary_10_1080_00038628_2021_2008300
crossref_primary_10_1016_j_neuroimage_2020_116999
crossref_primary_10_1109_THMS_2022_3225633
crossref_primary_10_1016_j_ifacol_2021_12_019
crossref_primary_10_1063_5_0167372
crossref_primary_10_1016_j_jobe_2023_106776
crossref_primary_10_1002_aisy_202300094
crossref_primary_10_3390_math11081921
crossref_primary_10_1109_ACCESS_2022_3171906
crossref_primary_10_1016_j_asoc_2022_108811
crossref_primary_10_1016_j_bbe_2025_03_005
crossref_primary_10_1109_TNSRE_2020_3048106
crossref_primary_10_1109_TIM_2024_3376685
crossref_primary_10_3389_fnhum_2021_765525
crossref_primary_10_1155_2019_2361282
crossref_primary_10_1145_3524499
crossref_primary_10_20965_jrm_2020_p0724
crossref_primary_10_1016_j_adhoc_2020_102178
crossref_primary_10_1080_2326263X_2024_2409463
crossref_primary_10_3390_s21175746
crossref_primary_10_1016_j_neures_2021_09_002
crossref_primary_10_1109_TNSRE_2022_3167262
crossref_primary_10_3390_s21175740
crossref_primary_10_1080_09540091_2024_2426812
crossref_primary_10_1186_s12984_023_01272_y
crossref_primary_10_1016_j_patcog_2023_109751
crossref_primary_10_1186_s40708_021_00151_3
crossref_primary_10_3389_fnhum_2021_648275
crossref_primary_10_1371_journal_pone_0234178
crossref_primary_10_1109_TASE_2020_3021456
crossref_primary_10_1109_JIOT_2021_3079461
crossref_primary_10_1007_s12021_020_09501_8
crossref_primary_10_1109_TBME_2018_2889705
crossref_primary_10_1109_TCYB_2019_2904052
crossref_primary_10_3389_frvir_2024_1433082
crossref_primary_10_3389_fnhum_2023_1111645
crossref_primary_10_3389_fnhum_2020_593883
crossref_primary_10_3390_make3040042
crossref_primary_10_1007_s11571_023_09967_7
crossref_primary_10_1088_1361_6501_ac6cc8
crossref_primary_10_1109_TNNLS_2022_3172108
crossref_primary_10_1007_s11055_023_01478_6
crossref_primary_10_1080_2326263X_2019_1697163
crossref_primary_10_1016_j_jneumeth_2022_109489
crossref_primary_10_3389_fnhum_2023_1096814
crossref_primary_10_1016_j_procs_2019_09_256
crossref_primary_10_1109_ACCESS_2024_3393413
crossref_primary_10_1109_ACCESS_2020_2971600
crossref_primary_10_3390_s21062084
crossref_primary_10_1109_TNSRE_2022_3149654
crossref_primary_10_1109_ACCESS_2020_3016700
crossref_primary_10_1080_13658816_2024_2309188
crossref_primary_10_3390_fi13050103
crossref_primary_10_1017_S0263574721000382
crossref_primary_10_1007_s13246_025_01619_w
crossref_primary_10_1007_s12559_021_09971_1
crossref_primary_10_3389_fnins_2020_587520
crossref_primary_10_3390_s22135000
crossref_primary_10_1007_s41870_022_00866_4
crossref_primary_10_1109_ACCESS_2020_3000187
crossref_primary_10_1007_s13755_019_0076_2
crossref_primary_10_3389_fnhum_2020_00103
crossref_primary_10_1007_s12559_022_10033_3
crossref_primary_10_3389_fnhum_2023_1281446
crossref_primary_10_1016_j_compbiomed_2023_107254
crossref_primary_10_1007_s11571_024_10097_x
crossref_primary_10_1016_j_chb_2023_107789
crossref_primary_10_3233_IDT_200005
crossref_primary_10_1016_j_neucom_2021_08_067
crossref_primary_10_1088_1741_2552_aca1e2
crossref_primary_10_3390_brainsci11111393
crossref_primary_10_1007_s10489_025_06612_0
crossref_primary_10_1109_TBME_2022_3168570
crossref_primary_10_1109_THMS_2025_3548943
crossref_primary_10_1088_1741_2552_acabe9
crossref_primary_10_1016_j_eswa_2022_117354
crossref_primary_10_3390_jcm11041043
crossref_primary_10_1080_2326263X_2019_1697143
crossref_primary_10_1016_j_bspc_2021_102747
crossref_primary_10_1007_s11517_019_02075_x
crossref_primary_10_1016_j_cirp_2025_04_058
crossref_primary_10_3390_app112110388
crossref_primary_10_1016_j_asoc_2021_107453
crossref_primary_10_1016_j_bbe_2022_05_002
crossref_primary_10_1016_j_neuroimage_2019_116500
crossref_primary_10_1155_2021_6662074
crossref_primary_10_3390_app10051804
crossref_primary_10_1515_itit_2022_0035
crossref_primary_10_3389_fnhum_2022_949224
crossref_primary_10_1016_j_bspc_2023_105138
crossref_primary_10_1088_1741_2552_ac7908
crossref_primary_10_3390_informatics9010026
crossref_primary_10_3390_info12020080
crossref_primary_10_3389_fnhum_2020_580105
crossref_primary_10_1038_s41598_019_55166_y
crossref_primary_10_1109_TNSRE_2023_3299355
crossref_primary_10_1371_journal_pone_0262417
crossref_primary_10_1088_1741_2552_ab260c
crossref_primary_10_1109_TNSRE_2023_3321640
crossref_primary_10_3390_s21051792
crossref_primary_10_1088_2057_1976_adabeb
crossref_primary_10_3389_fncom_2023_1108889
crossref_primary_10_1007_s10479_020_03921_0
crossref_primary_10_1186_s12915_021_01073_6
crossref_primary_10_1007_s00521_021_06352_5
crossref_primary_10_3389_fnhum_2018_00312
crossref_primary_10_1109_TSMC_2021_3114145
crossref_primary_10_3390_mi12121521
crossref_primary_10_1007_s11571_020_09569_7
crossref_primary_10_1016_j_displa_2023_102538
crossref_primary_10_1088_1741_2552_ab839e
crossref_primary_10_3389_fninf_2024_1459970
crossref_primary_10_1016_j_autcon_2023_105011
crossref_primary_10_1016_j_jneumeth_2020_108855
crossref_primary_10_1088_1741_2552_ad8ef7
crossref_primary_10_1109_TNSRE_2024_3380595
crossref_primary_10_3389_fnhum_2024_1362135
crossref_primary_10_1016_j_brainres_2024_149423
crossref_primary_10_3389_fninf_2024_1494970
crossref_primary_10_3389_fnins_2020_568104
crossref_primary_10_3389_fnins_2021_725384
crossref_primary_10_1016_j_bspc_2023_105867
crossref_primary_10_1016_j_neucom_2023_01_087
crossref_primary_10_1088_1741_2552_ac84ac
crossref_primary_10_1016_j_jneumeth_2020_108885
crossref_primary_10_1016_j_jneumeth_2018_11_007
crossref_primary_10_1016_j_bspc_2020_101899
crossref_primary_10_1109_TNSRE_2023_3309543
crossref_primary_10_3390_brainsci15070685
crossref_primary_10_3389_fnins_2020_00417
crossref_primary_10_1007_s11571_023_10053_1
crossref_primary_10_1088_1741_2552_ad2214
crossref_primary_10_1109_TNSRE_2025_3603979
crossref_primary_10_3390_brainsci12070926
crossref_primary_10_3389_fnhum_2022_917909
crossref_primary_10_1109_ACCESS_2022_3228164
crossref_primary_10_7717_peerj_cs_374
crossref_primary_10_1109_JBHI_2023_3243698
crossref_primary_10_3390_s22124447
crossref_primary_10_3390_brainsci14080836
crossref_primary_10_3390_s21165309
crossref_primary_10_1109_TSMC_2020_3041382
crossref_primary_10_3390_computers8040087
crossref_primary_10_3390_s20216321
crossref_primary_10_1088_1741_2552_abaa9d
crossref_primary_10_1055_a_1135_3782
crossref_primary_10_1016_j_eswa_2021_114701
crossref_primary_10_3390_app13106283
crossref_primary_10_1515_teme_2021_0030
crossref_primary_10_1109_TIM_2024_3381720
crossref_primary_10_1088_1741_2552_abe20f
crossref_primary_10_1088_1741_2552_ac9c98
crossref_primary_10_3389_frvir_2021_694567
crossref_primary_10_3389_fnbot_2022_958052
crossref_primary_10_1155_2021_4073739
crossref_primary_10_1109_ACCESS_2020_2997681
crossref_primary_10_1109_TCYB_2021_3052813
crossref_primary_10_1007_s11517_024_03137_5
crossref_primary_10_4018_IJAMC_292500
crossref_primary_10_1109_TBME_2024_3432934
crossref_primary_10_1109_TNSRE_2025_3591254
crossref_primary_10_1007_s13042_020_01209_0
crossref_primary_10_1109_TNNLS_2020_3029198
crossref_primary_10_1088_1741_2552_abca17
crossref_primary_10_3389_fnins_2023_1152563
crossref_primary_10_1002_per_2303
crossref_primary_10_1016_j_ijpsycho_2021_06_012
crossref_primary_10_1088_1741_2552_abca18
crossref_primary_10_1016_j_autcon_2021_103556
crossref_primary_10_1109_TNSRE_2023_3242771
crossref_primary_10_1016_j_eswa_2023_122968
crossref_primary_10_1109_TNSRE_2021_3087506
crossref_primary_10_1109_TBME_2018_2889512
crossref_primary_10_1109_TCDS_2024_3462452
crossref_primary_10_1016_j_fnhli_2024_100026
crossref_primary_10_3390_s22072703
crossref_primary_10_1080_2326263X_2019_1614770
crossref_primary_10_3390_brainsci11040450
crossref_primary_10_1088_1741_2552_addb7c
crossref_primary_10_1145_3579356
crossref_primary_10_3389_fninf_2023_1272791
crossref_primary_10_1109_THMS_2021_3138677
crossref_primary_10_3390_s22166042
crossref_primary_10_3390_s22197623
crossref_primary_10_7554_eLife_64812
crossref_primary_10_1080_2326263X_2021_2014678
crossref_primary_10_1016_j_bspc_2020_101884
crossref_primary_10_3389_fnhum_2021_772837
crossref_primary_10_35234_fumbd_1616265
crossref_primary_10_1016_j_psep_2022_06_039
crossref_primary_10_1109_COMST_2022_3232576
crossref_primary_10_1155_2020_1683013
crossref_primary_10_3389_fnhum_2023_1075666
crossref_primary_10_1109_ACCESS_2023_3313260
crossref_primary_10_3389_fnins_2021_638638
crossref_primary_10_1088_1741_2552_ab8345
crossref_primary_10_3389_fnhum_2021_653659
crossref_primary_10_1109_TNSRE_2022_3209155
crossref_primary_10_1007_s00530_021_00786_6
crossref_primary_10_3389_fnhum_2024_1486167
crossref_primary_10_1109_TSP_2023_3272159
crossref_primary_10_3389_fnins_2021_704603
crossref_primary_10_3389_fnbot_2020_00025
crossref_primary_10_1016_j_bspc_2023_104573
crossref_primary_10_1109_TNSRE_2021_3071140
crossref_primary_10_1088_1741_2552_ac9a01
crossref_primary_10_1007_s11517_023_02967_z
crossref_primary_10_1088_1741_2552_abce70
crossref_primary_10_1049_htl2_12016
crossref_primary_10_1016_j_eswa_2023_121612
crossref_primary_10_1177_15330338211039125
crossref_primary_10_5057_isase_2025_C000020
crossref_primary_10_1371_journal_pone_0227613
crossref_primary_10_3390_s25113284
crossref_primary_10_1016_j_neuroimage_2022_119056
crossref_primary_10_1088_1741_2552_acec14
crossref_primary_10_1016_j_compbiomed_2019_103442
crossref_primary_10_1111_ejn_14936
crossref_primary_10_1038_s41598_025_07427_2
crossref_primary_10_1109_TNSRE_2022_3165060
crossref_primary_10_3390_app12115762
crossref_primary_10_1109_ACCESS_2023_3339857
crossref_primary_10_1016_j_bbe_2021_06_006
crossref_primary_10_1016_j_eswa_2022_119488
crossref_primary_10_1007_s00422_024_00984_1
crossref_primary_10_1109_TCBB_2021_3052811
crossref_primary_10_1109_THMS_2022_3189576
crossref_primary_10_1016_j_dib_2023_109933
crossref_primary_10_1109_TNSRE_2024_3454088
crossref_primary_10_1016_j_medengphy_2023_104041
crossref_primary_10_1515_bams_2019_0020
crossref_primary_10_1088_1741_2552_aba7cd
crossref_primary_10_3390_app10155323
crossref_primary_10_1007_s11517_021_02396_w
crossref_primary_10_1109_TNSRE_2022_3215695
crossref_primary_10_1088_1741_2552_ac8b38
crossref_primary_10_1016_j_eswa_2023_120348
crossref_primary_10_1109_ACCESS_2025_3529357
crossref_primary_10_3390_electronics14132670
crossref_primary_10_1007_s10055_023_00818_8
crossref_primary_10_1007_s11517_025_03298_x
crossref_primary_10_1007_s13246_025_01578_2
crossref_primary_10_1016_j_heliyon_2023_e13745
crossref_primary_10_1038_s41597_023_02787_8
crossref_primary_10_3389_fnhum_2022_930291
crossref_primary_10_3389_fnhum_2019_00362
crossref_primary_10_1088_1741_2552_add8bd
crossref_primary_10_1016_j_bspc_2020_101845
crossref_primary_10_1016_j_compbiomed_2025_111023
crossref_primary_10_1016_j_jobe_2022_104540
crossref_primary_10_1109_ACCESS_2023_3329678
crossref_primary_10_1088_1742_6596_2078_1_012044
crossref_primary_10_1007_s41870_022_01066_w
crossref_primary_10_1002_jum_16081
crossref_primary_10_1016_j_ibror_2020_10_006
crossref_primary_10_1088_1741_2552_acee1f
crossref_primary_10_1109_ACCESS_2025_3582805
crossref_primary_10_3389_fneur_2019_00628
crossref_primary_10_1016_j_bspc_2022_104435
crossref_primary_10_1007_s10586_024_04492_6
crossref_primary_10_1016_j_bspc_2023_104937
crossref_primary_10_1016_j_displa_2024_102886
crossref_primary_10_1088_1741_2552_ac42b6
crossref_primary_10_1016_j_compeleceng_2022_108091
crossref_primary_10_1007_s13755_023_00226_x
crossref_primary_10_3390_a16090429
crossref_primary_10_1007_s12204_021_2387_0
crossref_primary_10_1038_s41598_022_06805_4
crossref_primary_10_1016_j_compbiomed_2024_109132
crossref_primary_10_1088_1757_899X_981_3_032019
crossref_primary_10_3390_s24186125
crossref_primary_10_1007_s12204_022_2488_4
crossref_primary_10_1088_2632_2153_ad9135
crossref_primary_10_1109_JSEN_2025_3560349
crossref_primary_10_1038_s41598_024_59263_5
crossref_primary_10_1080_2326263X_2021_1968633
crossref_primary_10_1109_TBCAS_2021_3137290
crossref_primary_10_1088_1741_2552_ab57c0
crossref_primary_10_3389_fnhum_2019_00141
crossref_primary_10_3390_app13042703
crossref_primary_10_3390_electronics8121387
crossref_primary_10_1109_ACCESS_2021_3054670
crossref_primary_10_3389_fnhum_2021_711279
crossref_primary_10_1016_j_bspc_2022_104221
crossref_primary_10_3390_app10041525
crossref_primary_10_1016_j_heliyon_2024_e27198
crossref_primary_10_3390_s20092498
crossref_primary_10_1088_1741_2552_abbd50
crossref_primary_10_1109_ACCESS_2020_2984538
crossref_primary_10_3389_frobt_2020_00088
crossref_primary_10_1186_s40537_025_01238_y
crossref_primary_10_1111_jep_13527
crossref_primary_10_1007_s12553_020_00458_x
crossref_primary_10_1109_ACCESS_2025_3564328
crossref_primary_10_1002_pchj_688
crossref_primary_10_1038_s41598_020_70569_y
crossref_primary_10_3390_s20185163
crossref_primary_10_1109_TNSRE_2021_3083548
crossref_primary_10_3390_s22155771
crossref_primary_10_3389_fnbot_2024_1491721
crossref_primary_10_1016_j_bspc_2021_103023
crossref_primary_10_1109_TNSRE_2019_2893113
crossref_primary_10_1016_j_ijhcs_2021_102603
crossref_primary_10_1109_TNSRE_2019_2922553
crossref_primary_10_1088_1741_2552_abbd21
crossref_primary_10_1109_ACCESS_2023_3339665
crossref_primary_10_1088_1741_2552_adc48d
crossref_primary_10_3390_app122312253
crossref_primary_10_1016_j_bspc_2025_108421
crossref_primary_10_1088_1741_2552_ad88a2
crossref_primary_10_1109_JSEN_2020_3016402
crossref_primary_10_3390_s24186110
crossref_primary_10_1038_s41598_023_41326_8
crossref_primary_10_1088_1741_2552_ad171a
crossref_primary_10_3390_math11071570
crossref_primary_10_3390_s25010182
crossref_primary_10_1088_1741_2552_ad6189
crossref_primary_10_32604_jnm_2022_027040
crossref_primary_10_3389_fnins_2019_00901
crossref_primary_10_1109_JBHI_2022_3225019
crossref_primary_10_1007_s11517_019_02047_1
crossref_primary_10_1109_TNSRE_2023_3236251
crossref_primary_10_3390_electronics12051234
crossref_primary_10_1016_j_ijhcs_2023_103009
crossref_primary_10_3233_JIFS_222656
crossref_primary_10_1088_1757_899X_1070_1_012083
crossref_primary_10_1038_s41598_024_59278_y
crossref_primary_10_1080_2326263X_2020_1801112
crossref_primary_10_3389_fnins_2022_1000716
crossref_primary_10_3390_bios12121134
crossref_primary_10_3389_fncom_2022_1046310
crossref_primary_10_3390_bioengineering10050553
crossref_primary_10_1007_s11571_025_10296_0
crossref_primary_10_1109_TETCI_2018_2881229
crossref_primary_10_1016_j_ifacsc_2024_100251
crossref_primary_10_1109_TNSRE_2020_3035786
crossref_primary_10_1016_j_bspc_2019_101837
crossref_primary_10_3390_s25154657
crossref_primary_10_1371_journal_pone_0230184
crossref_primary_10_1093_brain_awz114
crossref_primary_10_3390_s25030805
crossref_primary_10_2217_3dp_2021_0007
crossref_primary_10_1016_j_measurement_2025_116836
crossref_primary_10_1109_TNSRE_2020_2974056
crossref_primary_10_1109_TASE_2024_3441055
crossref_primary_10_1007_s00521_020_05624_w
crossref_primary_10_1016_j_bspc_2021_103032
crossref_primary_10_1016_j_neucom_2021_01_102
crossref_primary_10_1063_5_0047237
crossref_primary_10_1016_j_artmed_2021_102039
crossref_primary_10_1080_2326263X_2022_2140467
crossref_primary_10_1093_cercor_bhab479
crossref_primary_10_3390_math10152819
crossref_primary_10_3390_s23146434
crossref_primary_10_1016_j_bspc_2021_103101
crossref_primary_10_1109_ACCESS_2019_2933268
crossref_primary_10_3390_brainsci15090954
crossref_primary_10_1016_j_neuroscience_2025_08_058
crossref_primary_10_1038_s41598_020_63303_1
crossref_primary_10_1177_09287329241302740
crossref_primary_10_1016_j_bspc_2022_103857
crossref_primary_10_1016_j_brs_2025_09_001
crossref_primary_10_3390_brainsci12050659
crossref_primary_10_1007_s42600_023_00333_4
crossref_primary_10_1016_j_bspc_2022_103618
crossref_primary_10_1109_ACCESS_2025_3606802
crossref_primary_10_3389_fnhum_2024_1371631
crossref_primary_10_1016_j_encep_2019_02_001
crossref_primary_10_1016_j_neunet_2022_06_008
crossref_primary_10_1109_TBME_2021_3049853
crossref_primary_10_1155_2020_5762149
crossref_primary_10_1007_s10015_023_00893_9
crossref_primary_10_1016_j_bspc_2024_106465
crossref_primary_10_1016_j_bspc_2021_102485
crossref_primary_10_3389_fnhum_2024_1403677
crossref_primary_10_3390_app9081526
crossref_primary_10_1080_21507740_2019_1665134
crossref_primary_10_3389_fnhum_2023_1286895
crossref_primary_10_1016_j_ijhcs_2024_103229
crossref_primary_10_1016_j_tics_2021_04_003
crossref_primary_10_1016_j_medengphy_2021_08_006
crossref_primary_10_1016_j_measurement_2023_113673
crossref_primary_10_1109_TBME_2022_3154885
crossref_primary_10_1145_3766067
crossref_primary_10_1088_1748_0221_18_06_P06017
crossref_primary_10_3390_app122010385
crossref_primary_10_1109_TIM_2024_3417598
crossref_primary_10_3390_biomimetics10030187
crossref_primary_10_3389_fncom_2020_587702
crossref_primary_10_1016_j_neucom_2024_127628
crossref_primary_10_1109_TSMC_2021_3051136
crossref_primary_10_1016_j_bspc_2022_103634
crossref_primary_10_1109_MSP_2021_3075932
crossref_primary_10_1109_TCDS_2024_3401717
crossref_primary_10_3390_app9112331
crossref_primary_10_3390_e20010007
crossref_primary_10_1038_s41597_025_05767_2
crossref_primary_10_3389_fnhum_2020_604639
crossref_primary_10_1109_JBHI_2018_2883458
crossref_primary_10_1016_j_bbr_2023_114827
crossref_primary_10_1109_JPROC_2025_3600389
crossref_primary_10_1016_j_bspc_2024_106448
crossref_primary_10_1016_j_cogsys_2023_101152
crossref_primary_10_1111_ene_15166
crossref_primary_10_3389_fnhum_2021_635653
crossref_primary_10_1016_j_aei_2024_102864
crossref_primary_10_1088_1742_6596_1973_1_012056
crossref_primary_10_1016_j_cmpb_2020_105808
crossref_primary_10_1002_widm_70040
crossref_primary_10_1007_s11432_022_3548_2
crossref_primary_10_3390_technologies12060080
crossref_primary_10_1016_j_irbm_2022_100751
crossref_primary_10_1007_s11042_023_15653_x
crossref_primary_10_1109_ACCESS_2024_3519699
crossref_primary_10_1016_j_neuroimage_2025_121123
crossref_primary_10_3389_fnins_2020_00918
crossref_primary_10_1016_j_neuroimage_2022_118994
crossref_primary_10_1007_s00521_021_06761_6
crossref_primary_10_1016_j_bspc_2024_107345
crossref_primary_10_1016_j_heliyon_2024_e28235
crossref_primary_10_1088_1741_2552_abc0b4
crossref_primary_10_1016_j_aei_2024_102434
crossref_primary_10_1007_s13534_023_00309_4
crossref_primary_10_3389_fncom_2024_1431815
crossref_primary_10_1016_j_bspc_2020_102171
crossref_primary_10_1016_j_jneumeth_2024_110110
crossref_primary_10_1080_21681163_2020_1727775
crossref_primary_10_3233_THC_220363
crossref_primary_10_1109_TNSRE_2024_3355750
crossref_primary_10_3390_app12031695
crossref_primary_10_1088_1741_2552_abffe6
crossref_primary_10_1016_j_compbiomed_2019_02_023
crossref_primary_10_3390_app13169356
crossref_primary_10_1016_j_ifacol_2019_12_716
crossref_primary_10_3390_brainsci15050449
crossref_primary_10_1007_s13534_025_00469_5
crossref_primary_10_1109_JBHI_2024_3357995
crossref_primary_10_2478_bhk_2024_0022
crossref_primary_10_1007_s13311_018_00692_2
crossref_primary_10_1038_s41586_025_09255_w
crossref_primary_10_1088_1361_6501_adc6a5
crossref_primary_10_1088_1741_2552_ac59a0
crossref_primary_10_3389_fnins_2025_1567146
crossref_primary_10_1080_2326263X_2019_1671040
crossref_primary_10_32604_cmc_2021_016893
crossref_primary_10_3389_fnhum_2019_00331
crossref_primary_10_3389_fnhum_2023_1205881
crossref_primary_10_1007_s11517_024_03032_z
crossref_primary_10_1109_TNSRE_2023_3249831
crossref_primary_10_31083_j_jin2004083
crossref_primary_10_1109_TNSRE_2023_3323325
crossref_primary_10_1016_j_eswa_2022_118722
crossref_primary_10_1016_j_cmpb_2021_106150
crossref_primary_10_1016_j_neucom_2019_01_017
crossref_primary_10_1155_2020_3287589
crossref_primary_10_1088_1741_2552_acb73b
crossref_primary_10_3390_bios14080396
crossref_primary_10_1162_imag_a_00148
crossref_primary_10_1109_TCSVT_2021_3061719
crossref_primary_10_1109_TCYB_2019_2963709
crossref_primary_10_1080_2326263X_2021_2009654
crossref_primary_10_1016_j_patcog_2020_107390
crossref_primary_10_1109_TIM_2023_3280529
crossref_primary_10_1007_s11517_022_02557_5
crossref_primary_10_1016_j_neucom_2025_130353
crossref_primary_10_3390_robotics9040100
crossref_primary_10_3389_fnins_2020_588357
crossref_primary_10_1109_TNSRE_2023_3246588
crossref_primary_10_1162_imag_a_00391
crossref_primary_10_1109_TNSRE_2024_3451010
crossref_primary_10_3389_fnrgo_2025_1582724
crossref_primary_10_1080_10255842_2024_2414069
crossref_primary_10_1088_1741_2552_abfa71
crossref_primary_10_34248_bsengineering_1583759
crossref_primary_10_3390_technologies10040079
crossref_primary_10_1088_1741_2552_acb96f
crossref_primary_10_1007_s42835_024_01953_1
crossref_primary_10_3390_brainsci13020268
crossref_primary_10_1007_s42600_021_00196_7
crossref_primary_10_1016_j_bspc_2023_105488
crossref_primary_10_1088_1741_2552_ac697d
crossref_primary_10_1109_TNSRE_2020_2985996
crossref_primary_10_1088_1741_2552_ad6793
crossref_primary_10_1186_s13040_023_00336_y
crossref_primary_10_3390_app15010392
crossref_primary_10_1016_j_neuroimage_2020_116893
crossref_primary_10_1109_TCSS_2022_3188891
crossref_primary_10_1007_s11571_021_09776_w
crossref_primary_10_1109_ACCESS_2021_3091399
crossref_primary_10_1145_3582272
crossref_primary_10_1016_j_bspc_2025_108068
crossref_primary_10_1016_j_future_2022_10_034
crossref_primary_10_1016_j_neunet_2020_01_027
crossref_primary_10_1109_TNSRE_2021_3073134
crossref_primary_10_1109_TCDS_2020_3007453
crossref_primary_10_1088_1741_2552_adae35
crossref_primary_10_1109_MSP_2023_3278074
crossref_primary_10_1016_j_jneumeth_2024_110323
crossref_primary_10_1145_3603621
crossref_primary_10_3390_computers11050061
crossref_primary_10_3390_signals4010004
crossref_primary_10_1007_s40745_025_00596_x
crossref_primary_10_1088_1361_6560_adcafa
crossref_primary_10_1109_LRA_2025_3560825
crossref_primary_10_3389_frai_2022_992732
crossref_primary_10_1088_1741_2552_adb994
crossref_primary_10_1007_s42979_024_03310_5
crossref_primary_10_3389_fnhum_2024_1525139
crossref_primary_10_1007_s11517_019_02065_z
crossref_primary_10_1109_TG_2020_3042900
crossref_primary_10_1007_s11571_020_09577_7
crossref_primary_10_3389_fnins_2023_1122661
crossref_primary_10_1109_ACCESS_2019_2919143
crossref_primary_10_1109_TNSRE_2018_2873061
crossref_primary_10_1038_s41598_020_60932_4
crossref_primary_10_1016_j_bspc_2020_102101
crossref_primary_10_3389_fnhum_2024_1461505
crossref_primary_10_1016_j_aei_2024_102697
crossref_primary_10_3390_app12042161
crossref_primary_10_1007_s42452_020_2378_z
crossref_primary_10_3390_app15148036
crossref_primary_10_3389_fnsys_2021_578875
crossref_primary_10_1088_1741_2552_ad17f2
crossref_primary_10_1080_2326263X_2024_2372863
crossref_primary_10_1109_TNSRE_2023_3254551
crossref_primary_10_1007_s11760_023_02920_5
crossref_primary_10_1109_TNSRE_2024_3456591
crossref_primary_10_3389_fnins_2021_619591
crossref_primary_10_1016_j_rcim_2023_102610
crossref_primary_10_1016_j_bspc_2024_106837
crossref_primary_10_3389_fnins_2024_1402154
crossref_primary_10_1016_j_compbiomed_2023_107595
crossref_primary_10_3390_s21062173
crossref_primary_10_1016_j_neucom_2024_127243
crossref_primary_10_1016_j_neucom_2025_130303
crossref_primary_10_1109_LSP_2021_3087099
crossref_primary_10_1186_s40708_022_00171_7
crossref_primary_10_1016_j_neuroscience_2023_05_033
crossref_primary_10_3390_s24175813
crossref_primary_10_1109_TNNLS_2023_3307470
crossref_primary_10_1109_ACCESS_2019_2946301
crossref_primary_10_1016_j_neunet_2025_108073
crossref_primary_10_1093_sleep_zsab027
crossref_primary_10_3390_brainsci13020221
crossref_primary_10_1109_OJCS_2025_3587014
crossref_primary_10_1109_TNSRE_2022_3230250
crossref_primary_10_1016_j_eplepsyres_2025_107582
crossref_primary_10_1038_s41598_024_68978_4
crossref_primary_10_3390_sym13091746
crossref_primary_10_3390_life13020391
crossref_primary_10_1007_s11571_022_09923_x
crossref_primary_10_1145_3712259
crossref_primary_10_1109_TNSRE_2019_2905894
crossref_primary_10_1109_TNSRE_2024_3395133
crossref_primary_10_1007_s40120_022_00333_z
crossref_primary_10_1109_ACCESS_2020_3037995
crossref_primary_10_1109_TBME_2019_2908099
crossref_primary_10_1097_JOM_0000000000003080
crossref_primary_10_1155_2019_9374802
crossref_primary_10_1109_TNSRE_2022_3208312
crossref_primary_10_1109_TCDS_2023_3314351
crossref_primary_10_1016_j_bspc_2020_102100
crossref_primary_10_1016_j_compbiomed_2025_110937
crossref_primary_10_3390_s22239051
crossref_primary_10_1109_TFUZZ_2021_3092824
crossref_primary_10_1016_j_neucom_2024_128354
crossref_primary_10_1007_s12559_023_10142_7
crossref_primary_10_3390_s21062193
crossref_primary_10_1109_TIM_2025_3542109
crossref_primary_10_3390_s21062197
crossref_primary_10_1103_PRXQuantum_4_010325
crossref_primary_10_1016_j_yebeh_2024_109732
crossref_primary_10_1007_s11673_023_10256_5
crossref_primary_10_1016_j_neucom_2022_08_024
crossref_primary_10_3389_frvir_2025_1616442
crossref_primary_10_1088_1741_2552_ac0b52
crossref_primary_10_3390_s22166093
crossref_primary_10_3390_s25123592
crossref_primary_10_1016_j_cobme_2021_100354
crossref_primary_10_1145_3459745
crossref_primary_10_1016_j_patrec_2020_11_013
crossref_primary_10_3390_s21124035
crossref_primary_10_3390_s21134293
crossref_primary_10_1088_1741_2552_adeec8
crossref_primary_10_1109_TIM_2020_2988744
crossref_primary_10_1049_sil2_12222
crossref_primary_10_3390_agronomy15092068
crossref_primary_10_3389_fnhum_2018_00529
crossref_primary_10_1088_1741_2552_abf473
crossref_primary_10_1016_j_neucom_2020_10_104
crossref_primary_10_1007_s00521_018_3735_3
crossref_primary_10_1109_TCDS_2022_3205168
crossref_primary_10_1088_1741_2552_ad19ea
crossref_primary_10_1016_j_neunet_2024_106847
crossref_primary_10_3389_fnins_2020_00066
crossref_primary_10_1371_journal_pone_0319487
crossref_primary_10_1016_j_cej_2023_145393
crossref_primary_10_1186_s40708_023_00204_9
crossref_primary_10_1088_1741_2552_abed81
crossref_primary_10_1109_ACCESS_2024_3509275
ContentType Journal Article
DBID NPM
7X8
DOI 10.1088/1741-2552/aab2f2
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 29488902
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
02O
1JI
1WK
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AERVB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ARNYC
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HAK
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NPM
NT-
NT.
P2P
PJBAE
Q02
RIN
RNS
RO9
ROL
RPA
S3P
SY9
W28
XPP
7X8
ADEQX
AEINN
ID FETCH-LOGICAL-c510t-a31c44acc16d42b0111cd8004b6dbe1437e0c57f365c9fb7f9d476d5e7233be2
IEDL.DBID 7X8
ISICitedReferencesCount 1086
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430324400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1741-2552
IngestDate Thu Sep 04 20:36:25 EDT 2025
Wed Feb 19 02:36:00 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c510t-a31c44acc16d42b0111cd8004b6dbe1437e0c57f365c9fb7f9d476d5e7233be2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://inria.hal.science/hal-01846433
PMID 29488902
PQID 2009215151
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2009215151
pubmed_primary_29488902
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAlternate J Neural Eng
PublicationYear 2018
SSID ssj0031790
Score 2.6914349
SecondaryResourceType review_article
Snippet Most current electroencephalography (EEG)-based brain-computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 031005
Title A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update
URI https://www.ncbi.nlm.nih.gov/pubmed/29488902
https://www.proquest.com/docview/2009215151
Volume 15
WOSCitedRecordID wos000430324400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7UevDiVpe6MYJ4G9qZLJN4kSKtHrT0UKS3MKsKNqlNK_Tf-2aS6kkQvOQQMiHM27689-Z9CF0FHaEMYwmRkjMCEVqCH0wk0YGgJk5MJPy0z-dHPhgk43E6rBNuZd1WufKJ3lHrQrkcedtPB3LRl95OP4hjjXLV1ZpCYx01AoAyrqWLj7-rCIGbPlUdiKQEoDOry5RgWO3ve20hJLPsd4DpA01_57-fuIu2a4iJu5VO7KE1k--jZjeH3-vJEl9j3_Tps-lNlHVxdXgFFxYrh6Rd65CXFhbvL_D2-eukxIBsca93T1zM01g6Wgmiaj4I7CZOzKxr7brBAtMOXoL14MXU5RIO0KjfG909kJpzgSiwzjkRAVVhKJSisQ6ZdEz0SgOoDGWspQFwxU1HRdwGcaRSK7lNdchjHRnOgkAadog28iI3xwgLKyIpY3g44mFquQip0CnIRIOLsFS00OVqFzNQaVenELkpFmX2s48tdFSJIptWszcyloLHSTvs5A-rT9EWwJukauw6Qw0LBm3O0ab6nL-VswuvK3AdDJ--AKbgyNY
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+classification+algorithms+for+EEG-based+brain-computer+interfaces%3A+a+10+year+update&rft.jtitle=Journal+of+neural+engineering&rft.au=Lotte%2C+F&rft.au=Bougrain%2C+L&rft.au=Cichocki%2C+A&rft.au=Clerc%2C+M&rft.date=2018-06-01&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=15&rft.issue=3&rft.spage=031005&rft_id=info:doi/10.1088%2F1741-2552%2Faab2f2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2552&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2552&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2552&client=summon