A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update
Most current electroencephalography (EEG)-based brain-computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately ten years after this review publication, ma...
Gespeichert in:
| Veröffentlicht in: | Journal of neural engineering Jg. 15; H. 3; S. 031005 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
01.06.2018
|
| ISSN: | 1741-2552, 1741-2552 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Most current electroencephalography (EEG)-based brain-computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately ten years after this review publication, many new algorithms have been developed and tested to classify EEG signals in BCIs. The time is therefore ripe for an updated review of EEG classification algorithms for BCIs.
We surveyed the BCI and machine learning literature from 2007 to 2017 to identify the new classification approaches that have been investigated to design BCIs. We synthesize these studies in order to present such algorithms, to report how they were used for BCIs, what were the outcomes, and to identify their pros and cons.
We found that the recently designed classification algorithms for EEG-based BCIs can be divided into four main categories: adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning, plus a few other miscellaneous classifiers. Among these, adaptive classifiers were demonstrated to be generally superior to static ones, even with unsupervised adaptation. Transfer learning can also prove useful although the benefits of transfer learning remain unpredictable. Riemannian geometry-based methods have reached state-of-the-art performances on multiple BCI problems and deserve to be explored more thoroughly, along with tensor-based methods. Shrinkage linear discriminant analysis and random forests also appear particularly useful for small training samples settings. On the other hand, deep learning methods have not yet shown convincing improvement over state-of-the-art BCI methods.
This paper provides a comprehensive overview of the modern classification algorithms used in EEG-based BCIs, presents the principles of these methods and guidelines on when and how to use them. It also identifies a number of challenges to further advance EEG classification in BCI. |
|---|---|
| AbstractList | Most current electroencephalography (EEG)-based brain-computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately ten years after this review publication, many new algorithms have been developed and tested to classify EEG signals in BCIs. The time is therefore ripe for an updated review of EEG classification algorithms for BCIs.
We surveyed the BCI and machine learning literature from 2007 to 2017 to identify the new classification approaches that have been investigated to design BCIs. We synthesize these studies in order to present such algorithms, to report how they were used for BCIs, what were the outcomes, and to identify their pros and cons.
We found that the recently designed classification algorithms for EEG-based BCIs can be divided into four main categories: adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning, plus a few other miscellaneous classifiers. Among these, adaptive classifiers were demonstrated to be generally superior to static ones, even with unsupervised adaptation. Transfer learning can also prove useful although the benefits of transfer learning remain unpredictable. Riemannian geometry-based methods have reached state-of-the-art performances on multiple BCI problems and deserve to be explored more thoroughly, along with tensor-based methods. Shrinkage linear discriminant analysis and random forests also appear particularly useful for small training samples settings. On the other hand, deep learning methods have not yet shown convincing improvement over state-of-the-art BCI methods.
This paper provides a comprehensive overview of the modern classification algorithms used in EEG-based BCIs, presents the principles of these methods and guidelines on when and how to use them. It also identifies a number of challenges to further advance EEG classification in BCI. Most current electroencephalography (EEG)-based brain-computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately ten years after this review publication, many new algorithms have been developed and tested to classify EEG signals in BCIs. The time is therefore ripe for an updated review of EEG classification algorithms for BCIs.OBJECTIVEMost current electroencephalography (EEG)-based brain-computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately ten years after this review publication, many new algorithms have been developed and tested to classify EEG signals in BCIs. The time is therefore ripe for an updated review of EEG classification algorithms for BCIs.We surveyed the BCI and machine learning literature from 2007 to 2017 to identify the new classification approaches that have been investigated to design BCIs. We synthesize these studies in order to present such algorithms, to report how they were used for BCIs, what were the outcomes, and to identify their pros and cons.APPROACHWe surveyed the BCI and machine learning literature from 2007 to 2017 to identify the new classification approaches that have been investigated to design BCIs. We synthesize these studies in order to present such algorithms, to report how they were used for BCIs, what were the outcomes, and to identify their pros and cons.We found that the recently designed classification algorithms for EEG-based BCIs can be divided into four main categories: adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning, plus a few other miscellaneous classifiers. Among these, adaptive classifiers were demonstrated to be generally superior to static ones, even with unsupervised adaptation. Transfer learning can also prove useful although the benefits of transfer learning remain unpredictable. Riemannian geometry-based methods have reached state-of-the-art performances on multiple BCI problems and deserve to be explored more thoroughly, along with tensor-based methods. Shrinkage linear discriminant analysis and random forests also appear particularly useful for small training samples settings. On the other hand, deep learning methods have not yet shown convincing improvement over state-of-the-art BCI methods.MAIN RESULTSWe found that the recently designed classification algorithms for EEG-based BCIs can be divided into four main categories: adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning, plus a few other miscellaneous classifiers. Among these, adaptive classifiers were demonstrated to be generally superior to static ones, even with unsupervised adaptation. Transfer learning can also prove useful although the benefits of transfer learning remain unpredictable. Riemannian geometry-based methods have reached state-of-the-art performances on multiple BCI problems and deserve to be explored more thoroughly, along with tensor-based methods. Shrinkage linear discriminant analysis and random forests also appear particularly useful for small training samples settings. On the other hand, deep learning methods have not yet shown convincing improvement over state-of-the-art BCI methods.This paper provides a comprehensive overview of the modern classification algorithms used in EEG-based BCIs, presents the principles of these methods and guidelines on when and how to use them. It also identifies a number of challenges to further advance EEG classification in BCI.SIGNIFICANCEThis paper provides a comprehensive overview of the modern classification algorithms used in EEG-based BCIs, presents the principles of these methods and guidelines on when and how to use them. It also identifies a number of challenges to further advance EEG classification in BCI. |
| Author | Lotte, F Bougrain, L Clerc, M Cichocki, A Rakotomamonjy, A Yger, F Congedo, M |
| Author_xml | – sequence: 1 givenname: F surname: Lotte fullname: Lotte, F organization: Inria, LaBRI (CNRS/Univ. Bordeaux /INP), Talence, France. RIKEN Brain Science Insitute, Wakoshi, Japan – sequence: 2 givenname: L surname: Bougrain fullname: Bougrain, L – sequence: 3 givenname: A surname: Cichocki fullname: Cichocki, A – sequence: 4 givenname: M surname: Clerc fullname: Clerc, M – sequence: 5 givenname: M surname: Congedo fullname: Congedo, M – sequence: 6 givenname: A surname: Rakotomamonjy fullname: Rakotomamonjy, A – sequence: 7 givenname: F surname: Yger fullname: Yger, F |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29488902$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUEtLAzEYDFKxD717khy9rE2y2Ze3UmoVCl56X74kXzSyu1mTXaX_vgWryMDMMAxzmDmZdL5DQm45e-CsLJe8kDwRWSaWAEpYcUFmf9Hkn5-SeYwfjKW8qNgVmYpKlmXFxIzUKxrwy-E39ZbqBmJ01mkYnO8oNG8-uOG9jdT6QDebbaIgoqEqgOsS7dt-HDBQ153Ygsb4SIFyRg8IgY69gQGvyaWFJuLNWRdk_7TZr5-T3ev2Zb3aJTrjbEgg5VpK0JrnRgrFOOfalIxJlRuFXKYFMp0VNs0zXVlV2MrIIjcZFiJNFYoFuf-Z7YP_HDEOdeuixqaBDv0Ya8FYJXh2wql6d66OqkVT98G1EA717yfiCI5WZV4 |
| CitedBy_id | crossref_primary_10_1088_1741_2552_abe357 crossref_primary_10_1155_2022_4003245 crossref_primary_10_3389_fnins_2024_1367932 crossref_primary_10_1016_j_asoc_2021_108359 crossref_primary_10_3390_s23041932 crossref_primary_10_1109_ACCESS_2022_3161489 crossref_primary_10_1186_s12984_024_01342_9 crossref_primary_10_1109_JIOT_2021_3105647 crossref_primary_10_1515_bmt_2020_0038 crossref_primary_10_1007_s13534_024_00431_x crossref_primary_10_1111_exsy_13530 crossref_primary_10_3389_fnins_2024_1329411 crossref_primary_10_3390_s20174749 crossref_primary_10_1016_j_schres_2023_09_010 crossref_primary_10_3389_fnhum_2018_00439 crossref_primary_10_1088_1741_2552_ada0e3 crossref_primary_10_3389_fnhum_2023_1248824 crossref_primary_10_1016_j_autcon_2024_105670 crossref_primary_10_1080_01621459_2023_2200522 crossref_primary_10_1080_10255842_2023_2207705 crossref_primary_10_1109_JIOT_2021_3057474 crossref_primary_10_1109_TNSRE_2019_2936411 crossref_primary_10_1080_10447318_2024_2443268 crossref_primary_10_1109_ACCESS_2021_3136774 crossref_primary_10_3103_S1060992X19020097 crossref_primary_10_1016_j_neucom_2021_03_038 crossref_primary_10_3233_IDT_230715 crossref_primary_10_1109_JSEN_2020_3017491 crossref_primary_10_1051_itmconf_20224702013 crossref_primary_10_3389_fnhum_2025_1599960 crossref_primary_10_1007_s11517_024_03193_x crossref_primary_10_3390_app10051619 crossref_primary_10_1016_j_neunet_2025_107578 crossref_primary_10_1109_TNSRE_2021_3106897 crossref_primary_10_1109_TNSRE_2021_3126264 crossref_primary_10_1007_s11063_023_11353_7 crossref_primary_10_1088_1741_2552_ac96a5 crossref_primary_10_3390_brainsci15010027 crossref_primary_10_1088_1741_2552_abc8d8 crossref_primary_10_1088_1741_2552_ad4f18 crossref_primary_10_1177_15459683221138751 crossref_primary_10_3390_e21121199 crossref_primary_10_1088_1741_2552_abc8d5 crossref_primary_10_1007_s12530_025_09696_8 crossref_primary_10_1016_j_brainresbull_2024_110902 crossref_primary_10_3389_fnhum_2023_1223307 crossref_primary_10_1080_23311983_2024_2416759 crossref_primary_10_1109_TSMC_2022_3156861 crossref_primary_10_3389_fnhum_2021_645952 crossref_primary_10_1155_2019_4259369 crossref_primary_10_1109_TETCI_2023_3301385 crossref_primary_10_1016_j_bspc_2022_104183 crossref_primary_10_1109_TNSRE_2019_2934496 crossref_primary_10_1088_1742_6596_1907_1_012045 crossref_primary_10_1016_j_physrep_2021_03_002 crossref_primary_10_1016_j_sigpro_2020_107942 crossref_primary_10_1002_ima_22626 crossref_primary_10_1007_s40860_020_00117_y crossref_primary_10_3389_fnins_2023_1167719 crossref_primary_10_1016_j_bandl_2021_104968 crossref_primary_10_1109_TNSRE_2019_2962708 crossref_primary_10_3390_bioengineering11080782 crossref_primary_10_1038_s41598_025_87414_9 crossref_primary_10_1088_1741_2552_abd007 crossref_primary_10_1007_s13534_024_00357_4 crossref_primary_10_1111_cogs_13454 crossref_primary_10_3389_fnhum_2018_00440 crossref_primary_10_1088_1741_2552_acbfdf crossref_primary_10_1088_1741_2552_adf010 crossref_primary_10_1109_TNSRE_2021_3106876 crossref_primary_10_1109_TVCG_2024_3456147 crossref_primary_10_3389_fninf_2022_997068 crossref_primary_10_1109_TNSRE_2022_3199363 crossref_primary_10_3389_fnbot_2025_1628968 crossref_primary_10_3390_s23115051 crossref_primary_10_1109_TBME_2023_3333327 crossref_primary_10_3390_electronics8111273 crossref_primary_10_1088_1741_2552_acbfe0 crossref_primary_10_3389_fnins_2020_00593 crossref_primary_10_1109_TNSRE_2021_3125386 crossref_primary_10_3390_s20061620 crossref_primary_10_1038_s41598_024_55413_x crossref_primary_10_1016_j_bspc_2018_06_008 crossref_primary_10_1109_TBCAS_2021_3089132 crossref_primary_10_3390_app132413350 crossref_primary_10_1007_s11517_024_03103_1 crossref_primary_10_3389_fnrgo_2025_1535799 crossref_primary_10_1007_s11760_022_02399_6 crossref_primary_10_1109_TNSRE_2022_3198041 crossref_primary_10_3389_fninf_2019_00055 crossref_primary_10_1109_JBHI_2022_3218453 crossref_primary_10_1007_s11517_021_02449_0 crossref_primary_10_1080_10447318_2024_2388368 crossref_primary_10_1016_j_bspc_2025_108381 crossref_primary_10_1049_ell2_12275 crossref_primary_10_1016_j_neuroimage_2019_05_054 crossref_primary_10_1109_ACCESS_2023_3322294 crossref_primary_10_1088_1741_2552_abd684 crossref_primary_10_1109_ACCESS_2019_2918251 crossref_primary_10_1109_TNSRE_2024_3435460 crossref_primary_10_1109_TASE_2019_2956110 crossref_primary_10_1016_j_bspc_2022_104379 crossref_primary_10_3390_s24030877 crossref_primary_10_1016_j_cmpb_2020_105464 crossref_primary_10_3390_electronics13142770 crossref_primary_10_1088_1741_2552_ac6a7d crossref_primary_10_1145_3699732 crossref_primary_10_3389_fnins_2024_1434444 crossref_primary_10_3389_fninf_2024_1345425 crossref_primary_10_1016_j_bspc_2023_105537 crossref_primary_10_1016_j_bspc_2023_105779 crossref_primary_10_1109_TNSRE_2020_2979464 crossref_primary_10_3390_electronics13224542 crossref_primary_10_1080_21681163_2023_2192831 crossref_primary_10_1109_JETCAS_2020_3031698 crossref_primary_10_1088_2057_1976_ab54ad crossref_primary_10_1007_s00521_024_10917_5 crossref_primary_10_1109_TBME_2023_3308371 crossref_primary_10_3389_fninf_2019_00074 crossref_primary_10_3390_s23073593 crossref_primary_10_1088_1741_2552_ab6a67 crossref_primary_10_1016_j_bspc_2024_106912 crossref_primary_10_1088_1361_6579_acd51b crossref_primary_10_3390_brainsci13040656 crossref_primary_10_1109_ACCESS_2018_2860633 crossref_primary_10_1016_j_eswa_2023_121986 crossref_primary_10_3390_app15116021 crossref_primary_10_1088_1741_2552_ac41ac crossref_primary_10_1016_j_bbr_2024_115100 crossref_primary_10_1371_journal_pone_0222276 crossref_primary_10_3390_life12030374 crossref_primary_10_3390_bioengineering12070775 crossref_primary_10_1109_TNSRE_2023_3327907 crossref_primary_10_3389_fninf_2021_750839 crossref_primary_10_1016_j_expneurol_2020_113274 crossref_primary_10_1016_j_compbiomed_2025_110062 crossref_primary_10_1016_j_bspc_2022_104554 crossref_primary_10_3390_electronics13030565 crossref_primary_10_1016_j_pneurobio_2023_102490 crossref_primary_10_3917_rindu1_213_0016 crossref_primary_10_1007_s10015_024_01002_0 crossref_primary_10_1016_j_measurement_2019_07_070 crossref_primary_10_1080_2326263X_2023_2233368 crossref_primary_10_1109_TCDS_2024_3460750 crossref_primary_10_1088_1741_2552_ac9338 crossref_primary_10_1520_JTE20220223 crossref_primary_10_1080_25742442_2018_1561099 crossref_primary_10_1016_j_compbiomed_2024_109483 crossref_primary_10_1038_s41598_025_01488_z crossref_primary_10_3390_s22093331 crossref_primary_10_3233_THC_181538 crossref_primary_10_1016_j_bspc_2025_108505 crossref_primary_10_1109_TCYB_2021_3110732 crossref_primary_10_3389_fnins_2020_589107 crossref_primary_10_1088_1741_2552_adbfbd crossref_primary_10_1051_itmconf_20245904001 crossref_primary_10_1051_matecconf_201929201024 crossref_primary_10_1007_s11517_020_02310_w crossref_primary_10_1371_journal_pone_0309706 crossref_primary_10_3389_fnbot_2022_995552 crossref_primary_10_1007_s11571_022_09832_z crossref_primary_10_3390_s24186004 crossref_primary_10_3389_fnbot_2019_00097 crossref_primary_10_1109_JBHI_2020_3025865 crossref_primary_10_1016_j_cmpb_2023_107641 crossref_primary_10_1186_s12984_025_01617_9 crossref_primary_10_1016_j_neunet_2020_05_032 crossref_primary_10_1177_1478077119832465 crossref_primary_10_1016_j_compbiomed_2024_109260 crossref_primary_10_1109_TETCI_2023_3332549 crossref_primary_10_1109_TBME_2020_3033446 crossref_primary_10_1016_j_neucom_2021_02_051 crossref_primary_10_3389_fnhum_2025_1633910 crossref_primary_10_1109_ACCESS_2020_3046604 crossref_primary_10_1007_s11517_024_03036_9 crossref_primary_10_1093_nsr_nwad048 crossref_primary_10_1007_s11831_023_09920_1 crossref_primary_10_1088_1741_2552_ad0f3d crossref_primary_10_3390_electronics13214310 crossref_primary_10_1016_j_ins_2019_06_008 crossref_primary_10_1371_journal_pone_0303390 crossref_primary_10_1088_1741_2552_abf0d7 crossref_primary_10_3390_s25103178 crossref_primary_10_1109_TNSRE_2024_3357863 crossref_primary_10_1109_TNSRE_2022_3162029 crossref_primary_10_1109_TNSRE_2018_2848222 crossref_primary_10_3389_fnhum_2021_643386 crossref_primary_10_1109_ACCESS_2020_2995302 crossref_primary_10_1016_j_neunet_2025_107511 crossref_primary_10_3390_s19061324 crossref_primary_10_1007_s11042_024_18365_y crossref_primary_10_1109_TNSRE_2021_3049998 crossref_primary_10_3390_s19132854 crossref_primary_10_1007_s11571_022_09919_7 crossref_primary_10_1007_s11517_025_03386_y crossref_primary_10_3390_s25072305 crossref_primary_10_1007_s13246_019_00793_y crossref_primary_10_1088_1741_2552_abf2e4 crossref_primary_10_1016_j_neuroimage_2020_117021 crossref_primary_10_3389_fnins_2025_1557287 crossref_primary_10_1016_j_procs_2018_11_062 crossref_primary_10_1088_1741_2552_ac7d73 crossref_primary_10_1038_s41598_020_72051_1 crossref_primary_10_1016_j_patcog_2019_107017 crossref_primary_10_1016_j_ijhcs_2024_103433 crossref_primary_10_1007_s11517_025_03295_0 crossref_primary_10_1016_j_neucom_2020_09_017 crossref_primary_10_1088_1741_2552_ad5ec0 crossref_primary_10_1016_j_neulet_2021_136250 crossref_primary_10_3389_fnins_2022_1009878 crossref_primary_10_3390_neurolint14040084 crossref_primary_10_3390_brainsci13121706 crossref_primary_10_1016_j_neulet_2021_136012 crossref_primary_10_1038_s41598_024_73755_4 crossref_primary_10_1088_1741_2552_abfaac crossref_primary_10_14412_2074_2711_2025_2_93_99 crossref_primary_10_3390_s20185283 crossref_primary_10_1109_TNSRE_2024_3379451 crossref_primary_10_1038_s41598_024_74475_5 crossref_primary_10_1109_ACCESS_2019_2917327 crossref_primary_10_1016_j_artmed_2023_102738 crossref_primary_10_1088_1741_2552_abd82b crossref_primary_10_3389_fninf_2022_961089 crossref_primary_10_1007_s10015_025_01025_1 crossref_primary_10_1016_j_neucom_2021_10_078 crossref_primary_10_1016_j_neuroimage_2020_117249 crossref_primary_10_1016_j_compbiomed_2021_105048 crossref_primary_10_3389_fnhum_2023_1182319 crossref_primary_10_1088_1741_2552_ad628c crossref_primary_10_1088_1538_3873_acc7ca crossref_primary_10_1016_j_asoc_2023_110656 crossref_primary_10_1109_JLT_2023_3250827 crossref_primary_10_1080_10447318_2023_2275088 crossref_primary_10_3389_fncom_2019_00043 crossref_primary_10_1109_ACCESS_2020_2996685 crossref_primary_10_1109_ACCESS_2023_3341419 crossref_primary_10_1016_j_ipm_2022_103001 crossref_primary_10_1088_1741_2552_abc760 crossref_primary_10_3389_fnins_2023_1194554 crossref_primary_10_1007_s10489_023_05134_x crossref_primary_10_1371_journal_pone_0268880 crossref_primary_10_1063_1_5142343 crossref_primary_10_1109_ACCESS_2025_3577996 crossref_primary_10_1007_s00221_025_07153_1 crossref_primary_10_3390_brainsci13060886 crossref_primary_10_3390_math12193079 crossref_primary_10_1109_MCI_2020_2998231 crossref_primary_10_1134_S0362119723600479 crossref_primary_10_1016_j_irbm_2021_07_001 crossref_primary_10_1016_j_matpr_2020_08_730 crossref_primary_10_1109_ACCESS_2019_2908851 crossref_primary_10_3389_fnins_2023_1345961 crossref_primary_10_1016_j_eswa_2024_123975 crossref_primary_10_1007_s00521_025_11201_w crossref_primary_10_1088_1741_2552_ab882e crossref_primary_10_1109_TNSRE_2023_3257319 crossref_primary_10_1186_s12984_018_0438_z crossref_primary_10_1016_j_neucom_2019_10_049 crossref_primary_10_3389_fnins_2022_796290 crossref_primary_10_1002_INMD_20250003 crossref_primary_10_1109_TNNLS_2020_3027773 crossref_primary_10_1109_TBME_2021_3115799 crossref_primary_10_1016_j_inffus_2025_102982 crossref_primary_10_1016_j_compbiomed_2025_110696 crossref_primary_10_3390_s18124253 crossref_primary_10_3390_s22155507 crossref_primary_10_3390_s23146546 crossref_primary_10_1016_j_ifacol_2023_10_1458 crossref_primary_10_1088_1741_2552_ac23c0 crossref_primary_10_1007_s11760_025_04124_5 crossref_primary_10_1109_ACCESS_2019_2936434 crossref_primary_10_1109_JBHI_2024_3462991 crossref_primary_10_1002_mus_26828 crossref_primary_10_1038_s41597_023_02445_z crossref_primary_10_1016_j_compbiomed_2022_106220 crossref_primary_10_3390_technologies7020046 crossref_primary_10_1186_s40708_021_00133_5 crossref_primary_10_1016_j_compbiomed_2024_109097 crossref_primary_10_1002_ecj_12280 crossref_primary_10_1016_j_eswa_2024_123993 crossref_primary_10_1155_2020_4137283 crossref_primary_10_1186_s12984_024_01349_2 crossref_primary_10_1109_ACCESS_2025_3604528 crossref_primary_10_1109_TBME_2020_3010854 crossref_primary_10_1109_LSENS_2024_3427355 crossref_primary_10_1155_2021_3928470 crossref_primary_10_1109_JBHI_2025_3545856 crossref_primary_10_1016_j_bspc_2022_103515 crossref_primary_10_1002_sdtp_17197 crossref_primary_10_1002_jdn_10166 crossref_primary_10_1016_j_eswa_2023_121253 crossref_primary_10_1155_2018_4089021 crossref_primary_10_1097_JS9_0000000000002022 crossref_primary_10_1145_3450449 crossref_primary_10_1016_j_neuroimage_2022_119774 crossref_primary_10_3389_fnins_2024_1381572 crossref_primary_10_1016_j_biopsycho_2022_108287 crossref_primary_10_1155_2020_6929546 crossref_primary_10_3389_fnhum_2021_635777 crossref_primary_10_1007_s11831_021_09684_6 crossref_primary_10_1109_ACCESS_2020_2988057 crossref_primary_10_1109_ACCESS_2019_2956018 crossref_primary_10_1007_s11042_023_17111_0 crossref_primary_10_1088_1741_2552_ad01de crossref_primary_10_3389_fnins_2023_1116721 crossref_primary_10_1016_j_ibmed_2025_100291 crossref_primary_10_3390_math10091588 crossref_primary_10_1109_ACCESS_2024_3360328 crossref_primary_10_3389_fninf_2021_642766 crossref_primary_10_32604_cmc_2022_021119 crossref_primary_10_1002_admt_202000233 crossref_primary_10_1109_TCSS_2022_3184818 crossref_primary_10_1016_j_irbm_2021_04_004 crossref_primary_10_3390_s19030551 crossref_primary_10_1162_imag_a_00040 crossref_primary_10_1109_ACCESS_2025_3525996 crossref_primary_10_1038_s41598_025_00670_7 crossref_primary_10_3389_fnins_2021_824759 crossref_primary_10_1088_1741_2552_ad3eb5 crossref_primary_10_3389_fnhum_2024_1416683 crossref_primary_10_1109_TBME_2023_3295769 crossref_primary_10_3389_fnins_2025_1546559 crossref_primary_10_1109_TBME_2023_3339892 crossref_primary_10_3389_fncom_2022_1006763 crossref_primary_10_3389_fninf_2018_00065 crossref_primary_10_1088_2516_1091_ad8530 crossref_primary_10_1109_JSEN_2024_3468951 crossref_primary_10_1016_j_neucom_2025_130254 crossref_primary_10_1080_2326263X_2020_1741072 crossref_primary_10_1088_1741_2552_ac01a0 crossref_primary_10_1016_j_bspc_2024_106148 crossref_primary_10_1016_j_bspc_2021_102554 crossref_primary_10_1088_2057_1976_acdbd0 crossref_primary_10_3390_s25072259 crossref_primary_10_1080_2326263X_2019_1651570 crossref_primary_10_1038_s41467_022_28451_0 crossref_primary_10_3390_brainsci14030196 crossref_primary_10_1088_1741_2552_ade1f9 crossref_primary_10_14789_jmj_JMJ23_0011_R crossref_primary_10_3390_buildings14040879 crossref_primary_10_1109_TNNLS_2022_3214225 crossref_primary_10_1109_ACCESS_2019_2944067 crossref_primary_10_3389_frobt_2020_558531 crossref_primary_10_1109_TAFFC_2025_3554534 crossref_primary_10_1016_j_expneurol_2021_113612 crossref_primary_10_3389_fnhum_2023_1126938 crossref_primary_10_3389_fnhum_2021_595723 crossref_primary_10_1038_s41598_022_25049_w crossref_primary_10_1109_ACCESS_2022_3195513 crossref_primary_10_3389_fnins_2021_732165 crossref_primary_10_1016_j_bspc_2020_102026 crossref_primary_10_1007_s11071_022_08118_7 crossref_primary_10_1007_s13246_020_00893_0 crossref_primary_10_1016_j_neucom_2024_128889 crossref_primary_10_1007_s10489_022_04226_4 crossref_primary_10_3389_fnhum_2023_1070404 crossref_primary_10_1007_s13755_021_00142_y crossref_primary_10_1088_1741_2552_abc902 crossref_primary_10_1145_3229093 crossref_primary_10_1016_j_bbr_2023_114760 crossref_primary_10_1088_1741_2552_ac49a6 crossref_primary_10_3390_s21082750 crossref_primary_10_1109_TOH_2023_3270666 crossref_primary_10_1016_j_infsof_2021_106563 crossref_primary_10_1109_TNSRE_2020_3028966 crossref_primary_10_1016_j_measurement_2024_115167 crossref_primary_10_1109_TNSRE_2022_3150007 crossref_primary_10_3389_fnins_2021_663101 crossref_primary_10_1016_j_bspc_2024_107218 crossref_primary_10_1109_TNNLS_2021_3053576 crossref_primary_10_1007_s11571_022_09906_y crossref_primary_10_1109_TCDS_2022_3209801 crossref_primary_10_3389_fnhum_2020_613254 crossref_primary_10_1088_1741_2552_ad9957 crossref_primary_10_1109_TETCI_2018_2848289 crossref_primary_10_3389_fnins_2023_1251677 crossref_primary_10_1016_j_jneumeth_2021_109378 crossref_primary_10_3389_fnhum_2024_1354143 crossref_primary_10_3389_fbioe_2021_706229 crossref_primary_10_1016_j_neucom_2021_08_003 crossref_primary_10_1109_RBME_2019_2950897 crossref_primary_10_1007_s11055_023_01552_z crossref_primary_10_1109_ACCESS_2020_2969720 crossref_primary_10_1002_ima_23104 crossref_primary_10_1016_j_patrec_2019_03_017 crossref_primary_10_3390_s23239351 crossref_primary_10_1186_s12938_023_01129_4 crossref_primary_10_1016_j_neuroimage_2020_116778 crossref_primary_10_1016_j_engappai_2024_109642 crossref_primary_10_1016_j_ijpsycho_2025_112611 crossref_primary_10_1109_TNSRE_2021_3137340 crossref_primary_10_1007_s41233_019_0025_5 crossref_primary_10_1038_s44222_024_00185_2 crossref_primary_10_1016_j_nicl_2020_102417 crossref_primary_10_1109_ACCESS_2023_3326720 crossref_primary_10_1080_00038628_2021_2008300 crossref_primary_10_1016_j_neuroimage_2020_116999 crossref_primary_10_1109_THMS_2022_3225633 crossref_primary_10_1016_j_ifacol_2021_12_019 crossref_primary_10_1063_5_0167372 crossref_primary_10_1016_j_jobe_2023_106776 crossref_primary_10_1002_aisy_202300094 crossref_primary_10_3390_math11081921 crossref_primary_10_1109_ACCESS_2022_3171906 crossref_primary_10_1016_j_asoc_2022_108811 crossref_primary_10_1016_j_bbe_2025_03_005 crossref_primary_10_1109_TNSRE_2020_3048106 crossref_primary_10_1109_TIM_2024_3376685 crossref_primary_10_3389_fnhum_2021_765525 crossref_primary_10_1155_2019_2361282 crossref_primary_10_1145_3524499 crossref_primary_10_20965_jrm_2020_p0724 crossref_primary_10_1016_j_adhoc_2020_102178 crossref_primary_10_1080_2326263X_2024_2409463 crossref_primary_10_3390_s21175746 crossref_primary_10_1016_j_neures_2021_09_002 crossref_primary_10_1109_TNSRE_2022_3167262 crossref_primary_10_3390_s21175740 crossref_primary_10_1080_09540091_2024_2426812 crossref_primary_10_1186_s12984_023_01272_y crossref_primary_10_1016_j_patcog_2023_109751 crossref_primary_10_1186_s40708_021_00151_3 crossref_primary_10_3389_fnhum_2021_648275 crossref_primary_10_1371_journal_pone_0234178 crossref_primary_10_1109_TASE_2020_3021456 crossref_primary_10_1109_JIOT_2021_3079461 crossref_primary_10_1007_s12021_020_09501_8 crossref_primary_10_1109_TBME_2018_2889705 crossref_primary_10_1109_TCYB_2019_2904052 crossref_primary_10_3389_frvir_2024_1433082 crossref_primary_10_3389_fnhum_2023_1111645 crossref_primary_10_3389_fnhum_2020_593883 crossref_primary_10_3390_make3040042 crossref_primary_10_1007_s11571_023_09967_7 crossref_primary_10_1088_1361_6501_ac6cc8 crossref_primary_10_1109_TNNLS_2022_3172108 crossref_primary_10_1007_s11055_023_01478_6 crossref_primary_10_1080_2326263X_2019_1697163 crossref_primary_10_1016_j_jneumeth_2022_109489 crossref_primary_10_3389_fnhum_2023_1096814 crossref_primary_10_1016_j_procs_2019_09_256 crossref_primary_10_1109_ACCESS_2024_3393413 crossref_primary_10_1109_ACCESS_2020_2971600 crossref_primary_10_3390_s21062084 crossref_primary_10_1109_TNSRE_2022_3149654 crossref_primary_10_1109_ACCESS_2020_3016700 crossref_primary_10_1080_13658816_2024_2309188 crossref_primary_10_3390_fi13050103 crossref_primary_10_1017_S0263574721000382 crossref_primary_10_1007_s13246_025_01619_w crossref_primary_10_1007_s12559_021_09971_1 crossref_primary_10_3389_fnins_2020_587520 crossref_primary_10_3390_s22135000 crossref_primary_10_1007_s41870_022_00866_4 crossref_primary_10_1109_ACCESS_2020_3000187 crossref_primary_10_1007_s13755_019_0076_2 crossref_primary_10_3389_fnhum_2020_00103 crossref_primary_10_1007_s12559_022_10033_3 crossref_primary_10_3389_fnhum_2023_1281446 crossref_primary_10_1016_j_compbiomed_2023_107254 crossref_primary_10_1007_s11571_024_10097_x crossref_primary_10_1016_j_chb_2023_107789 crossref_primary_10_3233_IDT_200005 crossref_primary_10_1016_j_neucom_2021_08_067 crossref_primary_10_1088_1741_2552_aca1e2 crossref_primary_10_3390_brainsci11111393 crossref_primary_10_1007_s10489_025_06612_0 crossref_primary_10_1109_TBME_2022_3168570 crossref_primary_10_1109_THMS_2025_3548943 crossref_primary_10_1088_1741_2552_acabe9 crossref_primary_10_1016_j_eswa_2022_117354 crossref_primary_10_3390_jcm11041043 crossref_primary_10_1080_2326263X_2019_1697143 crossref_primary_10_1016_j_bspc_2021_102747 crossref_primary_10_1007_s11517_019_02075_x crossref_primary_10_1016_j_cirp_2025_04_058 crossref_primary_10_3390_app112110388 crossref_primary_10_1016_j_asoc_2021_107453 crossref_primary_10_1016_j_bbe_2022_05_002 crossref_primary_10_1016_j_neuroimage_2019_116500 crossref_primary_10_1155_2021_6662074 crossref_primary_10_3390_app10051804 crossref_primary_10_1515_itit_2022_0035 crossref_primary_10_3389_fnhum_2022_949224 crossref_primary_10_1016_j_bspc_2023_105138 crossref_primary_10_1088_1741_2552_ac7908 crossref_primary_10_3390_informatics9010026 crossref_primary_10_3390_info12020080 crossref_primary_10_3389_fnhum_2020_580105 crossref_primary_10_1038_s41598_019_55166_y crossref_primary_10_1109_TNSRE_2023_3299355 crossref_primary_10_1371_journal_pone_0262417 crossref_primary_10_1088_1741_2552_ab260c crossref_primary_10_1109_TNSRE_2023_3321640 crossref_primary_10_3390_s21051792 crossref_primary_10_1088_2057_1976_adabeb crossref_primary_10_3389_fncom_2023_1108889 crossref_primary_10_1007_s10479_020_03921_0 crossref_primary_10_1186_s12915_021_01073_6 crossref_primary_10_1007_s00521_021_06352_5 crossref_primary_10_3389_fnhum_2018_00312 crossref_primary_10_1109_TSMC_2021_3114145 crossref_primary_10_3390_mi12121521 crossref_primary_10_1007_s11571_020_09569_7 crossref_primary_10_1016_j_displa_2023_102538 crossref_primary_10_1088_1741_2552_ab839e crossref_primary_10_3389_fninf_2024_1459970 crossref_primary_10_1016_j_autcon_2023_105011 crossref_primary_10_1016_j_jneumeth_2020_108855 crossref_primary_10_1088_1741_2552_ad8ef7 crossref_primary_10_1109_TNSRE_2024_3380595 crossref_primary_10_3389_fnhum_2024_1362135 crossref_primary_10_1016_j_brainres_2024_149423 crossref_primary_10_3389_fninf_2024_1494970 crossref_primary_10_3389_fnins_2020_568104 crossref_primary_10_3389_fnins_2021_725384 crossref_primary_10_1016_j_bspc_2023_105867 crossref_primary_10_1016_j_neucom_2023_01_087 crossref_primary_10_1088_1741_2552_ac84ac crossref_primary_10_1016_j_jneumeth_2020_108885 crossref_primary_10_1016_j_jneumeth_2018_11_007 crossref_primary_10_1016_j_bspc_2020_101899 crossref_primary_10_1109_TNSRE_2023_3309543 crossref_primary_10_3390_brainsci15070685 crossref_primary_10_3389_fnins_2020_00417 crossref_primary_10_1007_s11571_023_10053_1 crossref_primary_10_1088_1741_2552_ad2214 crossref_primary_10_1109_TNSRE_2025_3603979 crossref_primary_10_3390_brainsci12070926 crossref_primary_10_3389_fnhum_2022_917909 crossref_primary_10_1109_ACCESS_2022_3228164 crossref_primary_10_7717_peerj_cs_374 crossref_primary_10_1109_JBHI_2023_3243698 crossref_primary_10_3390_s22124447 crossref_primary_10_3390_brainsci14080836 crossref_primary_10_3390_s21165309 crossref_primary_10_1109_TSMC_2020_3041382 crossref_primary_10_3390_computers8040087 crossref_primary_10_3390_s20216321 crossref_primary_10_1088_1741_2552_abaa9d crossref_primary_10_1055_a_1135_3782 crossref_primary_10_1016_j_eswa_2021_114701 crossref_primary_10_3390_app13106283 crossref_primary_10_1515_teme_2021_0030 crossref_primary_10_1109_TIM_2024_3381720 crossref_primary_10_1088_1741_2552_abe20f crossref_primary_10_1088_1741_2552_ac9c98 crossref_primary_10_3389_frvir_2021_694567 crossref_primary_10_3389_fnbot_2022_958052 crossref_primary_10_1155_2021_4073739 crossref_primary_10_1109_ACCESS_2020_2997681 crossref_primary_10_1109_TCYB_2021_3052813 crossref_primary_10_1007_s11517_024_03137_5 crossref_primary_10_4018_IJAMC_292500 crossref_primary_10_1109_TBME_2024_3432934 crossref_primary_10_1109_TNSRE_2025_3591254 crossref_primary_10_1007_s13042_020_01209_0 crossref_primary_10_1109_TNNLS_2020_3029198 crossref_primary_10_1088_1741_2552_abca17 crossref_primary_10_3389_fnins_2023_1152563 crossref_primary_10_1002_per_2303 crossref_primary_10_1016_j_ijpsycho_2021_06_012 crossref_primary_10_1088_1741_2552_abca18 crossref_primary_10_1016_j_autcon_2021_103556 crossref_primary_10_1109_TNSRE_2023_3242771 crossref_primary_10_1016_j_eswa_2023_122968 crossref_primary_10_1109_TNSRE_2021_3087506 crossref_primary_10_1109_TBME_2018_2889512 crossref_primary_10_1109_TCDS_2024_3462452 crossref_primary_10_1016_j_fnhli_2024_100026 crossref_primary_10_3390_s22072703 crossref_primary_10_1080_2326263X_2019_1614770 crossref_primary_10_3390_brainsci11040450 crossref_primary_10_1088_1741_2552_addb7c crossref_primary_10_1145_3579356 crossref_primary_10_3389_fninf_2023_1272791 crossref_primary_10_1109_THMS_2021_3138677 crossref_primary_10_3390_s22166042 crossref_primary_10_3390_s22197623 crossref_primary_10_7554_eLife_64812 crossref_primary_10_1080_2326263X_2021_2014678 crossref_primary_10_1016_j_bspc_2020_101884 crossref_primary_10_3389_fnhum_2021_772837 crossref_primary_10_35234_fumbd_1616265 crossref_primary_10_1016_j_psep_2022_06_039 crossref_primary_10_1109_COMST_2022_3232576 crossref_primary_10_1155_2020_1683013 crossref_primary_10_3389_fnhum_2023_1075666 crossref_primary_10_1109_ACCESS_2023_3313260 crossref_primary_10_3389_fnins_2021_638638 crossref_primary_10_1088_1741_2552_ab8345 crossref_primary_10_3389_fnhum_2021_653659 crossref_primary_10_1109_TNSRE_2022_3209155 crossref_primary_10_1007_s00530_021_00786_6 crossref_primary_10_3389_fnhum_2024_1486167 crossref_primary_10_1109_TSP_2023_3272159 crossref_primary_10_3389_fnins_2021_704603 crossref_primary_10_3389_fnbot_2020_00025 crossref_primary_10_1016_j_bspc_2023_104573 crossref_primary_10_1109_TNSRE_2021_3071140 crossref_primary_10_1088_1741_2552_ac9a01 crossref_primary_10_1007_s11517_023_02967_z crossref_primary_10_1088_1741_2552_abce70 crossref_primary_10_1049_htl2_12016 crossref_primary_10_1016_j_eswa_2023_121612 crossref_primary_10_1177_15330338211039125 crossref_primary_10_5057_isase_2025_C000020 crossref_primary_10_1371_journal_pone_0227613 crossref_primary_10_3390_s25113284 crossref_primary_10_1016_j_neuroimage_2022_119056 crossref_primary_10_1088_1741_2552_acec14 crossref_primary_10_1016_j_compbiomed_2019_103442 crossref_primary_10_1111_ejn_14936 crossref_primary_10_1038_s41598_025_07427_2 crossref_primary_10_1109_TNSRE_2022_3165060 crossref_primary_10_3390_app12115762 crossref_primary_10_1109_ACCESS_2023_3339857 crossref_primary_10_1016_j_bbe_2021_06_006 crossref_primary_10_1016_j_eswa_2022_119488 crossref_primary_10_1007_s00422_024_00984_1 crossref_primary_10_1109_TCBB_2021_3052811 crossref_primary_10_1109_THMS_2022_3189576 crossref_primary_10_1016_j_dib_2023_109933 crossref_primary_10_1109_TNSRE_2024_3454088 crossref_primary_10_1016_j_medengphy_2023_104041 crossref_primary_10_1515_bams_2019_0020 crossref_primary_10_1088_1741_2552_aba7cd crossref_primary_10_3390_app10155323 crossref_primary_10_1007_s11517_021_02396_w crossref_primary_10_1109_TNSRE_2022_3215695 crossref_primary_10_1088_1741_2552_ac8b38 crossref_primary_10_1016_j_eswa_2023_120348 crossref_primary_10_1109_ACCESS_2025_3529357 crossref_primary_10_3390_electronics14132670 crossref_primary_10_1007_s10055_023_00818_8 crossref_primary_10_1007_s11517_025_03298_x crossref_primary_10_1007_s13246_025_01578_2 crossref_primary_10_1016_j_heliyon_2023_e13745 crossref_primary_10_1038_s41597_023_02787_8 crossref_primary_10_3389_fnhum_2022_930291 crossref_primary_10_3389_fnhum_2019_00362 crossref_primary_10_1088_1741_2552_add8bd crossref_primary_10_1016_j_bspc_2020_101845 crossref_primary_10_1016_j_compbiomed_2025_111023 crossref_primary_10_1016_j_jobe_2022_104540 crossref_primary_10_1109_ACCESS_2023_3329678 crossref_primary_10_1088_1742_6596_2078_1_012044 crossref_primary_10_1007_s41870_022_01066_w crossref_primary_10_1002_jum_16081 crossref_primary_10_1016_j_ibror_2020_10_006 crossref_primary_10_1088_1741_2552_acee1f crossref_primary_10_1109_ACCESS_2025_3582805 crossref_primary_10_3389_fneur_2019_00628 crossref_primary_10_1016_j_bspc_2022_104435 crossref_primary_10_1007_s10586_024_04492_6 crossref_primary_10_1016_j_bspc_2023_104937 crossref_primary_10_1016_j_displa_2024_102886 crossref_primary_10_1088_1741_2552_ac42b6 crossref_primary_10_1016_j_compeleceng_2022_108091 crossref_primary_10_1007_s13755_023_00226_x crossref_primary_10_3390_a16090429 crossref_primary_10_1007_s12204_021_2387_0 crossref_primary_10_1038_s41598_022_06805_4 crossref_primary_10_1016_j_compbiomed_2024_109132 crossref_primary_10_1088_1757_899X_981_3_032019 crossref_primary_10_3390_s24186125 crossref_primary_10_1007_s12204_022_2488_4 crossref_primary_10_1088_2632_2153_ad9135 crossref_primary_10_1109_JSEN_2025_3560349 crossref_primary_10_1038_s41598_024_59263_5 crossref_primary_10_1080_2326263X_2021_1968633 crossref_primary_10_1109_TBCAS_2021_3137290 crossref_primary_10_1088_1741_2552_ab57c0 crossref_primary_10_3389_fnhum_2019_00141 crossref_primary_10_3390_app13042703 crossref_primary_10_3390_electronics8121387 crossref_primary_10_1109_ACCESS_2021_3054670 crossref_primary_10_3389_fnhum_2021_711279 crossref_primary_10_1016_j_bspc_2022_104221 crossref_primary_10_3390_app10041525 crossref_primary_10_1016_j_heliyon_2024_e27198 crossref_primary_10_3390_s20092498 crossref_primary_10_1088_1741_2552_abbd50 crossref_primary_10_1109_ACCESS_2020_2984538 crossref_primary_10_3389_frobt_2020_00088 crossref_primary_10_1186_s40537_025_01238_y crossref_primary_10_1111_jep_13527 crossref_primary_10_1007_s12553_020_00458_x crossref_primary_10_1109_ACCESS_2025_3564328 crossref_primary_10_1002_pchj_688 crossref_primary_10_1038_s41598_020_70569_y crossref_primary_10_3390_s20185163 crossref_primary_10_1109_TNSRE_2021_3083548 crossref_primary_10_3390_s22155771 crossref_primary_10_3389_fnbot_2024_1491721 crossref_primary_10_1016_j_bspc_2021_103023 crossref_primary_10_1109_TNSRE_2019_2893113 crossref_primary_10_1016_j_ijhcs_2021_102603 crossref_primary_10_1109_TNSRE_2019_2922553 crossref_primary_10_1088_1741_2552_abbd21 crossref_primary_10_1109_ACCESS_2023_3339665 crossref_primary_10_1088_1741_2552_adc48d crossref_primary_10_3390_app122312253 crossref_primary_10_1016_j_bspc_2025_108421 crossref_primary_10_1088_1741_2552_ad88a2 crossref_primary_10_1109_JSEN_2020_3016402 crossref_primary_10_3390_s24186110 crossref_primary_10_1038_s41598_023_41326_8 crossref_primary_10_1088_1741_2552_ad171a crossref_primary_10_3390_math11071570 crossref_primary_10_3390_s25010182 crossref_primary_10_1088_1741_2552_ad6189 crossref_primary_10_32604_jnm_2022_027040 crossref_primary_10_3389_fnins_2019_00901 crossref_primary_10_1109_JBHI_2022_3225019 crossref_primary_10_1007_s11517_019_02047_1 crossref_primary_10_1109_TNSRE_2023_3236251 crossref_primary_10_3390_electronics12051234 crossref_primary_10_1016_j_ijhcs_2023_103009 crossref_primary_10_3233_JIFS_222656 crossref_primary_10_1088_1757_899X_1070_1_012083 crossref_primary_10_1038_s41598_024_59278_y crossref_primary_10_1080_2326263X_2020_1801112 crossref_primary_10_3389_fnins_2022_1000716 crossref_primary_10_3390_bios12121134 crossref_primary_10_3389_fncom_2022_1046310 crossref_primary_10_3390_bioengineering10050553 crossref_primary_10_1007_s11571_025_10296_0 crossref_primary_10_1109_TETCI_2018_2881229 crossref_primary_10_1016_j_ifacsc_2024_100251 crossref_primary_10_1109_TNSRE_2020_3035786 crossref_primary_10_1016_j_bspc_2019_101837 crossref_primary_10_3390_s25154657 crossref_primary_10_1371_journal_pone_0230184 crossref_primary_10_1093_brain_awz114 crossref_primary_10_3390_s25030805 crossref_primary_10_2217_3dp_2021_0007 crossref_primary_10_1016_j_measurement_2025_116836 crossref_primary_10_1109_TNSRE_2020_2974056 crossref_primary_10_1109_TASE_2024_3441055 crossref_primary_10_1007_s00521_020_05624_w crossref_primary_10_1016_j_bspc_2021_103032 crossref_primary_10_1016_j_neucom_2021_01_102 crossref_primary_10_1063_5_0047237 crossref_primary_10_1016_j_artmed_2021_102039 crossref_primary_10_1080_2326263X_2022_2140467 crossref_primary_10_1093_cercor_bhab479 crossref_primary_10_3390_math10152819 crossref_primary_10_3390_s23146434 crossref_primary_10_1016_j_bspc_2021_103101 crossref_primary_10_1109_ACCESS_2019_2933268 crossref_primary_10_3390_brainsci15090954 crossref_primary_10_1016_j_neuroscience_2025_08_058 crossref_primary_10_1038_s41598_020_63303_1 crossref_primary_10_1177_09287329241302740 crossref_primary_10_1016_j_bspc_2022_103857 crossref_primary_10_1016_j_brs_2025_09_001 crossref_primary_10_3390_brainsci12050659 crossref_primary_10_1007_s42600_023_00333_4 crossref_primary_10_1016_j_bspc_2022_103618 crossref_primary_10_1109_ACCESS_2025_3606802 crossref_primary_10_3389_fnhum_2024_1371631 crossref_primary_10_1016_j_encep_2019_02_001 crossref_primary_10_1016_j_neunet_2022_06_008 crossref_primary_10_1109_TBME_2021_3049853 crossref_primary_10_1155_2020_5762149 crossref_primary_10_1007_s10015_023_00893_9 crossref_primary_10_1016_j_bspc_2024_106465 crossref_primary_10_1016_j_bspc_2021_102485 crossref_primary_10_3389_fnhum_2024_1403677 crossref_primary_10_3390_app9081526 crossref_primary_10_1080_21507740_2019_1665134 crossref_primary_10_3389_fnhum_2023_1286895 crossref_primary_10_1016_j_ijhcs_2024_103229 crossref_primary_10_1016_j_tics_2021_04_003 crossref_primary_10_1016_j_medengphy_2021_08_006 crossref_primary_10_1016_j_measurement_2023_113673 crossref_primary_10_1109_TBME_2022_3154885 crossref_primary_10_1145_3766067 crossref_primary_10_1088_1748_0221_18_06_P06017 crossref_primary_10_3390_app122010385 crossref_primary_10_1109_TIM_2024_3417598 crossref_primary_10_3390_biomimetics10030187 crossref_primary_10_3389_fncom_2020_587702 crossref_primary_10_1016_j_neucom_2024_127628 crossref_primary_10_1109_TSMC_2021_3051136 crossref_primary_10_1016_j_bspc_2022_103634 crossref_primary_10_1109_MSP_2021_3075932 crossref_primary_10_1109_TCDS_2024_3401717 crossref_primary_10_3390_app9112331 crossref_primary_10_3390_e20010007 crossref_primary_10_1038_s41597_025_05767_2 crossref_primary_10_3389_fnhum_2020_604639 crossref_primary_10_1109_JBHI_2018_2883458 crossref_primary_10_1016_j_bbr_2023_114827 crossref_primary_10_1109_JPROC_2025_3600389 crossref_primary_10_1016_j_bspc_2024_106448 crossref_primary_10_1016_j_cogsys_2023_101152 crossref_primary_10_1111_ene_15166 crossref_primary_10_3389_fnhum_2021_635653 crossref_primary_10_1016_j_aei_2024_102864 crossref_primary_10_1088_1742_6596_1973_1_012056 crossref_primary_10_1016_j_cmpb_2020_105808 crossref_primary_10_1002_widm_70040 crossref_primary_10_1007_s11432_022_3548_2 crossref_primary_10_3390_technologies12060080 crossref_primary_10_1016_j_irbm_2022_100751 crossref_primary_10_1007_s11042_023_15653_x crossref_primary_10_1109_ACCESS_2024_3519699 crossref_primary_10_1016_j_neuroimage_2025_121123 crossref_primary_10_3389_fnins_2020_00918 crossref_primary_10_1016_j_neuroimage_2022_118994 crossref_primary_10_1007_s00521_021_06761_6 crossref_primary_10_1016_j_bspc_2024_107345 crossref_primary_10_1016_j_heliyon_2024_e28235 crossref_primary_10_1088_1741_2552_abc0b4 crossref_primary_10_1016_j_aei_2024_102434 crossref_primary_10_1007_s13534_023_00309_4 crossref_primary_10_3389_fncom_2024_1431815 crossref_primary_10_1016_j_bspc_2020_102171 crossref_primary_10_1016_j_jneumeth_2024_110110 crossref_primary_10_1080_21681163_2020_1727775 crossref_primary_10_3233_THC_220363 crossref_primary_10_1109_TNSRE_2024_3355750 crossref_primary_10_3390_app12031695 crossref_primary_10_1088_1741_2552_abffe6 crossref_primary_10_1016_j_compbiomed_2019_02_023 crossref_primary_10_3390_app13169356 crossref_primary_10_1016_j_ifacol_2019_12_716 crossref_primary_10_3390_brainsci15050449 crossref_primary_10_1007_s13534_025_00469_5 crossref_primary_10_1109_JBHI_2024_3357995 crossref_primary_10_2478_bhk_2024_0022 crossref_primary_10_1007_s13311_018_00692_2 crossref_primary_10_1038_s41586_025_09255_w crossref_primary_10_1088_1361_6501_adc6a5 crossref_primary_10_1088_1741_2552_ac59a0 crossref_primary_10_3389_fnins_2025_1567146 crossref_primary_10_1080_2326263X_2019_1671040 crossref_primary_10_32604_cmc_2021_016893 crossref_primary_10_3389_fnhum_2019_00331 crossref_primary_10_3389_fnhum_2023_1205881 crossref_primary_10_1007_s11517_024_03032_z crossref_primary_10_1109_TNSRE_2023_3249831 crossref_primary_10_31083_j_jin2004083 crossref_primary_10_1109_TNSRE_2023_3323325 crossref_primary_10_1016_j_eswa_2022_118722 crossref_primary_10_1016_j_cmpb_2021_106150 crossref_primary_10_1016_j_neucom_2019_01_017 crossref_primary_10_1155_2020_3287589 crossref_primary_10_1088_1741_2552_acb73b crossref_primary_10_3390_bios14080396 crossref_primary_10_1162_imag_a_00148 crossref_primary_10_1109_TCSVT_2021_3061719 crossref_primary_10_1109_TCYB_2019_2963709 crossref_primary_10_1080_2326263X_2021_2009654 crossref_primary_10_1016_j_patcog_2020_107390 crossref_primary_10_1109_TIM_2023_3280529 crossref_primary_10_1007_s11517_022_02557_5 crossref_primary_10_1016_j_neucom_2025_130353 crossref_primary_10_3390_robotics9040100 crossref_primary_10_3389_fnins_2020_588357 crossref_primary_10_1109_TNSRE_2023_3246588 crossref_primary_10_1162_imag_a_00391 crossref_primary_10_1109_TNSRE_2024_3451010 crossref_primary_10_3389_fnrgo_2025_1582724 crossref_primary_10_1080_10255842_2024_2414069 crossref_primary_10_1088_1741_2552_abfa71 crossref_primary_10_34248_bsengineering_1583759 crossref_primary_10_3390_technologies10040079 crossref_primary_10_1088_1741_2552_acb96f crossref_primary_10_1007_s42835_024_01953_1 crossref_primary_10_3390_brainsci13020268 crossref_primary_10_1007_s42600_021_00196_7 crossref_primary_10_1016_j_bspc_2023_105488 crossref_primary_10_1088_1741_2552_ac697d crossref_primary_10_1109_TNSRE_2020_2985996 crossref_primary_10_1088_1741_2552_ad6793 crossref_primary_10_1186_s13040_023_00336_y crossref_primary_10_3390_app15010392 crossref_primary_10_1016_j_neuroimage_2020_116893 crossref_primary_10_1109_TCSS_2022_3188891 crossref_primary_10_1007_s11571_021_09776_w crossref_primary_10_1109_ACCESS_2021_3091399 crossref_primary_10_1145_3582272 crossref_primary_10_1016_j_bspc_2025_108068 crossref_primary_10_1016_j_future_2022_10_034 crossref_primary_10_1016_j_neunet_2020_01_027 crossref_primary_10_1109_TNSRE_2021_3073134 crossref_primary_10_1109_TCDS_2020_3007453 crossref_primary_10_1088_1741_2552_adae35 crossref_primary_10_1109_MSP_2023_3278074 crossref_primary_10_1016_j_jneumeth_2024_110323 crossref_primary_10_1145_3603621 crossref_primary_10_3390_computers11050061 crossref_primary_10_3390_signals4010004 crossref_primary_10_1007_s40745_025_00596_x crossref_primary_10_1088_1361_6560_adcafa crossref_primary_10_1109_LRA_2025_3560825 crossref_primary_10_3389_frai_2022_992732 crossref_primary_10_1088_1741_2552_adb994 crossref_primary_10_1007_s42979_024_03310_5 crossref_primary_10_3389_fnhum_2024_1525139 crossref_primary_10_1007_s11517_019_02065_z crossref_primary_10_1109_TG_2020_3042900 crossref_primary_10_1007_s11571_020_09577_7 crossref_primary_10_3389_fnins_2023_1122661 crossref_primary_10_1109_ACCESS_2019_2919143 crossref_primary_10_1109_TNSRE_2018_2873061 crossref_primary_10_1038_s41598_020_60932_4 crossref_primary_10_1016_j_bspc_2020_102101 crossref_primary_10_3389_fnhum_2024_1461505 crossref_primary_10_1016_j_aei_2024_102697 crossref_primary_10_3390_app12042161 crossref_primary_10_1007_s42452_020_2378_z crossref_primary_10_3390_app15148036 crossref_primary_10_3389_fnsys_2021_578875 crossref_primary_10_1088_1741_2552_ad17f2 crossref_primary_10_1080_2326263X_2024_2372863 crossref_primary_10_1109_TNSRE_2023_3254551 crossref_primary_10_1007_s11760_023_02920_5 crossref_primary_10_1109_TNSRE_2024_3456591 crossref_primary_10_3389_fnins_2021_619591 crossref_primary_10_1016_j_rcim_2023_102610 crossref_primary_10_1016_j_bspc_2024_106837 crossref_primary_10_3389_fnins_2024_1402154 crossref_primary_10_1016_j_compbiomed_2023_107595 crossref_primary_10_3390_s21062173 crossref_primary_10_1016_j_neucom_2024_127243 crossref_primary_10_1016_j_neucom_2025_130303 crossref_primary_10_1109_LSP_2021_3087099 crossref_primary_10_1186_s40708_022_00171_7 crossref_primary_10_1016_j_neuroscience_2023_05_033 crossref_primary_10_3390_s24175813 crossref_primary_10_1109_TNNLS_2023_3307470 crossref_primary_10_1109_ACCESS_2019_2946301 crossref_primary_10_1016_j_neunet_2025_108073 crossref_primary_10_1093_sleep_zsab027 crossref_primary_10_3390_brainsci13020221 crossref_primary_10_1109_OJCS_2025_3587014 crossref_primary_10_1109_TNSRE_2022_3230250 crossref_primary_10_1016_j_eplepsyres_2025_107582 crossref_primary_10_1038_s41598_024_68978_4 crossref_primary_10_3390_sym13091746 crossref_primary_10_3390_life13020391 crossref_primary_10_1007_s11571_022_09923_x crossref_primary_10_1145_3712259 crossref_primary_10_1109_TNSRE_2019_2905894 crossref_primary_10_1109_TNSRE_2024_3395133 crossref_primary_10_1007_s40120_022_00333_z crossref_primary_10_1109_ACCESS_2020_3037995 crossref_primary_10_1109_TBME_2019_2908099 crossref_primary_10_1097_JOM_0000000000003080 crossref_primary_10_1155_2019_9374802 crossref_primary_10_1109_TNSRE_2022_3208312 crossref_primary_10_1109_TCDS_2023_3314351 crossref_primary_10_1016_j_bspc_2020_102100 crossref_primary_10_1016_j_compbiomed_2025_110937 crossref_primary_10_3390_s22239051 crossref_primary_10_1109_TFUZZ_2021_3092824 crossref_primary_10_1016_j_neucom_2024_128354 crossref_primary_10_1007_s12559_023_10142_7 crossref_primary_10_3390_s21062193 crossref_primary_10_1109_TIM_2025_3542109 crossref_primary_10_3390_s21062197 crossref_primary_10_1103_PRXQuantum_4_010325 crossref_primary_10_1016_j_yebeh_2024_109732 crossref_primary_10_1007_s11673_023_10256_5 crossref_primary_10_1016_j_neucom_2022_08_024 crossref_primary_10_3389_frvir_2025_1616442 crossref_primary_10_1088_1741_2552_ac0b52 crossref_primary_10_3390_s22166093 crossref_primary_10_3390_s25123592 crossref_primary_10_1016_j_cobme_2021_100354 crossref_primary_10_1145_3459745 crossref_primary_10_1016_j_patrec_2020_11_013 crossref_primary_10_3390_s21124035 crossref_primary_10_3390_s21134293 crossref_primary_10_1088_1741_2552_adeec8 crossref_primary_10_1109_TIM_2020_2988744 crossref_primary_10_1049_sil2_12222 crossref_primary_10_3390_agronomy15092068 crossref_primary_10_3389_fnhum_2018_00529 crossref_primary_10_1088_1741_2552_abf473 crossref_primary_10_1016_j_neucom_2020_10_104 crossref_primary_10_1007_s00521_018_3735_3 crossref_primary_10_1109_TCDS_2022_3205168 crossref_primary_10_1088_1741_2552_ad19ea crossref_primary_10_1016_j_neunet_2024_106847 crossref_primary_10_3389_fnins_2020_00066 crossref_primary_10_1371_journal_pone_0319487 crossref_primary_10_1016_j_cej_2023_145393 crossref_primary_10_1186_s40708_023_00204_9 crossref_primary_10_1088_1741_2552_abed81 crossref_primary_10_1109_ACCESS_2024_3509275 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1088/1741-2552/aab2f2 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1741-2552 |
| ExternalDocumentID | 29488902 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 02O 1JI 1WK 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AERVB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ARNYC ASPBG ATQHT AVWKF AZFZN BBWZM CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P FEDTE HAK HVGLF IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L N9A NPM NT- NT. P2P PJBAE Q02 RIN RNS RO9 ROL RPA S3P SY9 W28 XPP 7X8 ADEQX AEINN |
| ID | FETCH-LOGICAL-c510t-a31c44acc16d42b0111cd8004b6dbe1437e0c57f365c9fb7f9d476d5e7233be2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 1086 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430324400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1741-2552 |
| IngestDate | Thu Sep 04 20:36:25 EDT 2025 Wed Feb 19 02:36:00 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c510t-a31c44acc16d42b0111cd8004b6dbe1437e0c57f365c9fb7f9d476d5e7233be2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://inria.hal.science/hal-01846433 |
| PMID | 29488902 |
| PQID | 2009215151 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2009215151 pubmed_primary_29488902 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-01 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of neural engineering |
| PublicationTitleAlternate | J Neural Eng |
| PublicationYear | 2018 |
| SSID | ssj0031790 |
| Score | 2.6914349 |
| SecondaryResourceType | review_article |
| Snippet | Most current electroencephalography (EEG)-based brain-computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 031005 |
| Title | A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29488902 https://www.proquest.com/docview/2009215151 |
| Volume | 15 |
| WOSCitedRecordID | wos000430324400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7UevDiVpe6MYJ4G9qZLJN4kSKtHrT0UKS3MKsKNqlNK_Tf-2aS6kkQvOQQMiHM27689-Z9CF0FHaEMYwmRkjMCEVqCH0wk0YGgJk5MJPy0z-dHPhgk43E6rBNuZd1WufKJ3lHrQrkcedtPB3LRl95OP4hjjXLV1ZpCYx01AoAyrqWLj7-rCIGbPlUdiKQEoDOry5RgWO3ve20hJLPsd4DpA01_57-fuIu2a4iJu5VO7KE1k--jZjeH3-vJEl9j3_Tps-lNlHVxdXgFFxYrh6Rd65CXFhbvL_D2-eukxIBsca93T1zM01g6Wgmiaj4I7CZOzKxr7brBAtMOXoL14MXU5RIO0KjfG909kJpzgSiwzjkRAVVhKJSisQ6ZdEz0SgOoDGWspQFwxU1HRdwGcaRSK7lNdchjHRnOgkAadog28iI3xwgLKyIpY3g44mFquQip0CnIRIOLsFS00OVqFzNQaVenELkpFmX2s48tdFSJIptWszcyloLHSTvs5A-rT9EWwJukauw6Qw0LBm3O0ab6nL-VswuvK3AdDJ--AKbgyNY |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+classification+algorithms+for+EEG-based+brain-computer+interfaces%3A+a+10+year+update&rft.jtitle=Journal+of+neural+engineering&rft.au=Lotte%2C+F&rft.au=Bougrain%2C+L&rft.au=Cichocki%2C+A&rft.au=Clerc%2C+M&rft.date=2018-06-01&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=15&rft.issue=3&rft.spage=031005&rft_id=info:doi/10.1088%2F1741-2552%2Faab2f2&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2552&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2552&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2552&client=summon |