Data-driven optimization of mixed-integer bi-level multi-follower integrated planning and scheduling problems under demand uncertainty
•We present a data-driven algorithm for the solution of integrated planning and scheduling problems under uncertainty.•The proposed algorithm is based upon the recently developed DOMINO framework for the solution of single-follower bi-level problems, which is here extended for the solution of bi-lev...
Uložené v:
| Vydané v: | Computers & chemical engineering Ročník 156; číslo C; s. 107551 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Elsevier Ltd
01.01.2022
Elsevier |
| Predmet: | |
| ISSN: | 0098-1354, 1873-4375 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •We present a data-driven algorithm for the solution of integrated planning and scheduling problems under uncertainty.•The proposed algorithm is based upon the recently developed DOMINO framework for the solution of single-follower bi-level problems, which is here extended for the solution of bi-level multi-follower stochastic optimization problems.•Computational studies to show the applicability of the proposed approach are presented through the solution of three planning and scheduling case studies.
The coordination of interconnected elements across the different layers of the supply chain is essential for all industrial processes and the key to optimal decision-making. Yet, the modeling and optimization of such interdependent systems are still burdensome. In this paper, we address the simultaneous modeling and optimization of medium-term planning and short-term scheduling problems under demand uncertainty using mixed-integer bi-level multi-follower programming and data-driven optimization. Bi-level multi-follower programs model the natural hierarchy between different layers of supply chain management holistically, while scenario analysis and data-driven optimization allow us to retrieve the guaranteed feasible solutions of the integrated formulation under various demand considerations. We address the data-driven optimization of this challenging class of problems using the DOMINO framework, which was initially developed to solve single-leader single-follower bi-level optimization problems to guaranteed feasibility. This framework is extended to solve single-leader multi-follower stochastic formulations and its performance is characterized by well-known single and multi-product process scheduling case studies. Through our data-driven algorithmic approach, we present guaranteed feasible solutions to linear and nonlinear mixed-integer bi-level formulations of simultaneous planning and scheduling problems and further characterize the effects of the scheduling level complexity on the solution performance, which spans over several hundred continuous and binary variables, and thousands of constraints. |
|---|---|
| AbstractList | The coordination of interconnected elements across the different layers of the supply chain is essential for all industrial processes and the key to optimal decision-making. Yet, the modeling and optimization of such interdependent systems are still burdensome. In this paper, we address the simultaneous modeling and optimization of medium-term planning and short-term scheduling problems under demand uncertainty using mixed-integer bi-level multi-follower programming and data-driven optimization. Bi-level multi-follower programs model the natural hierarchy between different layers of supply chain management holistically, while scenario analysis and data-driven optimization allow us to retrieve the guaranteed feasible solutions of the integrated formulation under various demand considerations. We address the data-driven optimization of this challenging class of problems using the DOMINO framework, which was initially developed to solve single-leader single-follower bi-level optimization problems to guaranteed feasibility. This framework is extended to solve single-leader multi-follower stochastic formulations and its performance is characterized by well-known single and multi-product process scheduling case studies. Through our data-driven algorithmic approach, we present guaranteed feasible solutions to linear and nonlinear mixed-integer bi-level formulations of simultaneous planning and scheduling problems and further characterize the effects of the scheduling level complexity on the solution performance, which spans over several hundred continuous and binary variables, and thousands of constraints.The coordination of interconnected elements across the different layers of the supply chain is essential for all industrial processes and the key to optimal decision-making. Yet, the modeling and optimization of such interdependent systems are still burdensome. In this paper, we address the simultaneous modeling and optimization of medium-term planning and short-term scheduling problems under demand uncertainty using mixed-integer bi-level multi-follower programming and data-driven optimization. Bi-level multi-follower programs model the natural hierarchy between different layers of supply chain management holistically, while scenario analysis and data-driven optimization allow us to retrieve the guaranteed feasible solutions of the integrated formulation under various demand considerations. We address the data-driven optimization of this challenging class of problems using the DOMINO framework, which was initially developed to solve single-leader single-follower bi-level optimization problems to guaranteed feasibility. This framework is extended to solve single-leader multi-follower stochastic formulations and its performance is characterized by well-known single and multi-product process scheduling case studies. Through our data-driven algorithmic approach, we present guaranteed feasible solutions to linear and nonlinear mixed-integer bi-level formulations of simultaneous planning and scheduling problems and further characterize the effects of the scheduling level complexity on the solution performance, which spans over several hundred continuous and binary variables, and thousands of constraints. •We present a data-driven algorithm for the solution of integrated planning and scheduling problems under uncertainty.•The proposed algorithm is based upon the recently developed DOMINO framework for the solution of single-follower bi-level problems, which is here extended for the solution of bi-level multi-follower stochastic optimization problems.•Computational studies to show the applicability of the proposed approach are presented through the solution of three planning and scheduling case studies. The coordination of interconnected elements across the different layers of the supply chain is essential for all industrial processes and the key to optimal decision-making. Yet, the modeling and optimization of such interdependent systems are still burdensome. In this paper, we address the simultaneous modeling and optimization of medium-term planning and short-term scheduling problems under demand uncertainty using mixed-integer bi-level multi-follower programming and data-driven optimization. Bi-level multi-follower programs model the natural hierarchy between different layers of supply chain management holistically, while scenario analysis and data-driven optimization allow us to retrieve the guaranteed feasible solutions of the integrated formulation under various demand considerations. We address the data-driven optimization of this challenging class of problems using the DOMINO framework, which was initially developed to solve single-leader single-follower bi-level optimization problems to guaranteed feasibility. This framework is extended to solve single-leader multi-follower stochastic formulations and its performance is characterized by well-known single and multi-product process scheduling case studies. Through our data-driven algorithmic approach, we present guaranteed feasible solutions to linear and nonlinear mixed-integer bi-level formulations of simultaneous planning and scheduling problems and further characterize the effects of the scheduling level complexity on the solution performance, which spans over several hundred continuous and binary variables, and thousands of constraints. The coordination of interconnected elements across the different layers of the supply chain is essential for all industrial processes and the key to optimal decision-making. Yet, the modeling and optimization of such interdependent systems are still burdensome. In this paper, we address the simultaneous modeling and optimization of medium-term planning and short-term scheduling problems under demand uncertainty using mixed-integer bi-level multi-follower programming and data-driven optimization. Bi-level multi-follower programs model the natural hierarchy between different layers of supply chain management holistically, while scenario analysis and data-driven optimization allow us to retrieve the guaranteed feasible solutions of the integrated formulation under various demand considerations. We address the data-driven optimization of this challenging class of problems using the DOMINO framework, which was initially developed to solve single-leader single-follower bi-level optimization problems to guaranteed feasibility. This framework is extended to solve single-leader multi-follower stochastic formulations and its performance is characterized by well-known single and multi-product process scheduling case studies. Through our data-driven algorithmic approach, we present guaranteed feasible solutions to linear and nonlinear mixed-integer bi-level formulations of simultaneous planning and scheduling problems and further characterize the effects of the scheduling level complexity on the solution performance, which spans over several hundred continuous and binary variables, and thousands of constraints. The coordination of interconnected elements across the different layers of the supply chain is essential for all industrial processes and the key to optimal decision-making. Yet, the modeling and optimization of such interdependent systems are still burdensome. Here we address the simultaneous modeling and optimization of medium-term planning and short-term scheduling problems under demand uncertainty using mixed-integer bi-level multi-follower programming and data-driven optimization. Bi-level multi-follower programs model the natural hierarchy between different layers of supply chain management holistically, while scenario analysis and data-driven optimization allow us to retrieve the guaranteed feasible solutions of the integrated formulation under various demand considerations. We address the data-driven optimization of this challenging class of problems using the DOMINO framework, which was initially developed to solve single-leader single-follower bi-level optimization problems to guaranteed feasibility. This framework is extended to solve single-leader multi-follower stochastic formulations and its performance is characterized by well-known single and multi-product process scheduling case studies. Through our data-driven algorithmic approach, we present guaranteed feasible solutions to linear and nonlinear mixed-integer bi-level formulations of simultaneous planning and scheduling problems and further characterize the effects of the scheduling level complexity on the solution performance, which spans over several hundred continuous and binary variables, and thousands of constraints. |
| ArticleNumber | 107551 |
| Author | Pistikopoulos, Efstratios N. Beykal, Burcu Avraamidou, Styliani |
| AuthorAffiliation | a Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA c Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA e Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA d Texas A&M Energy Institute, Texas A&M University, College Station, TX 77843, USA b Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA |
| AuthorAffiliation_xml | – name: d Texas A&M Energy Institute, Texas A&M University, College Station, TX 77843, USA – name: e Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA – name: c Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA – name: b Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA – name: a Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA |
| Author_xml | – sequence: 1 givenname: Burcu surname: Beykal fullname: Beykal, Burcu organization: Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA – sequence: 2 givenname: Styliani surname: Avraamidou fullname: Avraamidou, Styliani organization: Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA – sequence: 3 givenname: Efstratios N. surname: Pistikopoulos fullname: Pistikopoulos, Efstratios N. email: stratos@tamu.edu organization: Texas A&M Energy Institute, Texas A&M University, College Station, TX 77843, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34720250$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1977011$$D View this record in Osti.gov |
| BookMark | eNqNUstu1DAUtVARfcAvoMCKTQY_4nGyAVXDU6rEBtaWY9_MeOTYwXYGygfw3TidFhVWXVnX955zH-ecoxMfPCD0guAVwWT9er_SYZz0Dkbw2xXFlJR_wTl5hM5IK1jdMMFP0BnGXVsTxptTdJ7SHmNMm7Z9gk5ZIwqK4zP0-53KqjbRHsBXYcp2tL9UtqEEQzXan2Bq6zNsIVa9rR0cwFXj7LKth-Bc-FH-b_JRZTDV5JT31m8r5U2VyoBmdks4xdA7GFM1e1MQBsalYPYaYlYFf_0UPR6US_Ds9r1A3z68_7r5VF99-fh5c3lVa05wrlu21r02vaBqTRVjPRdEd8AEiIGSng2UD8NgtNFcCKabnirdtRraTpG2bQi7QG-OvNPcj2A0-ByVk1O0o4rXMigr_814u5PbcJAt5wwTUQheHglCylYmbTPonQ7eg86SdEJgsnR5ddslhu8zpCxHmzS4ch0Ic5KUd4SW89OF7_n9gf5OcqdQKXh7LNAxpBRhkKXnjUJlPuskwXLxhNzLe56Qiyfk0ROFofuP4a7JQ7CbIxaKKAcLcVkZim7GxmVjE-wDWP4AxlrdjQ |
| CitedBy_id | crossref_primary_10_1016_j_agwat_2024_109061 crossref_primary_10_1515_revce_2024_0064 crossref_primary_10_1007_s40747_024_01517_w crossref_primary_10_1016_j_fbp_2023_10_005 crossref_primary_10_1016_j_ijepes_2023_109237 crossref_primary_10_1016_j_compchemeng_2025_109087 crossref_primary_10_1016_j_ces_2023_119086 crossref_primary_10_1016_j_eswa_2024_125728 crossref_primary_10_1016_j_compchemeng_2025_109160 crossref_primary_10_1007_s11081_024_09886_4 crossref_primary_10_1007_s40314_025_03081_6 crossref_primary_10_1016_j_compchemeng_2022_108043 crossref_primary_10_1016_j_compchemeng_2022_108033 crossref_primary_10_3390_land12040901 crossref_primary_10_1108_JM2_10_2023_0246 crossref_primary_10_1016_j_compchemeng_2022_107830 crossref_primary_10_1016_j_compchemeng_2024_108726 crossref_primary_10_1016_j_compchemeng_2024_108725 crossref_primary_10_1016_j_compchemeng_2022_107711 crossref_primary_10_1002_aic_18268 crossref_primary_10_1016_j_compchemeng_2022_107866 crossref_primary_10_1016_j_ejor_2024_11_039 crossref_primary_10_1016_j_swevo_2025_101851 crossref_primary_10_1016_j_compchemeng_2022_107989 |
| Cites_doi | 10.1016/j.compchemeng.2014.06.004 10.1007/s10898-006-9098-9 10.1016/j.ifacol.2017.08.1766 10.1007/s10898-007-9144-2 10.1007/s10898-008-9291-0 10.1016/j.cor.2013.07.010 10.1016/j.cej.2018.07.031 10.1007/s10898-009-9479-y 10.1137/070692662 10.1007/s11081-019-09459-w 10.1016/j.compchemeng.2012.06.038 10.1016/B978-0-12-818597-1.50003-5 10.1016/j.compchemeng.2020.106847 10.1016/j.compchemeng.2009.06.014 10.1007/s10898-020-00890-3 10.1016/j.compchemeng.2007.03.019 10.1016/j.ins.2005.04.010 10.1016/B978-0-444-64241-7.50309-8 10.1002/aic.11167 10.1007/s10287-007-0062-z 10.1007/s11590-016-1028-2 10.1016/j.compchemeng.2014.02.023 10.1016/B978-0-323-88506-5.50265-5 10.1016/j.compchemeng.2009.06.007 10.1109/TSMCC.2004.841906 10.1016/j.compchemeng.2018.02.017 10.1002/aic.10617 10.1002/aic.11845 10.1007/s10287-005-0025-1 10.1016/j.ces.2009.04.047 10.1021/ie050778z 10.1021/acs.iecr.0c02657 10.1016/j.compchemeng.2018.01.005 10.1023/A:1008306431147 10.1287/ijoc.2020.0993 10.1002/aic.16657 10.1002/aic.14418 10.1021/ie970927g 10.1021/ie901842k 10.1016/j.compchemeng.2018.07.007 10.1016/j.compchemeng.2019.01.021 10.1016/j.compchemeng.2020.106801 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| CorporateAuthor | Univ. of California, Los Angeles, CA (United States) Texas A & M Univ., College Station, TX (United States) |
| CorporateAuthor_xml | – name: Univ. of California, Los Angeles, CA (United States) – name: Texas A & M Univ., College Station, TX (United States) |
| DBID | AAYXX CITATION NPM 7X8 OIOZB OTOTI 5PM |
| DOI | 10.1016/j.compchemeng.2021.107551 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-4375 |
| ExternalDocumentID | PMC8553017 1977011 34720250 10_1016_j_compchemeng_2021_107551 S009813542100329X |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: P42 ES027704 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEWK ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSH SST SSZ T5K VH1 WUQ ZY4 ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD NPM 7X8 AAIAV ABPIF ABPTK ABYKQ AFKWA AJOXV AMFUW OIOZB OTOTI 5PM |
| ID | FETCH-LOGICAL-c510t-836cbcdb72a62a33b571c9e37e7f21b3f25fffdcdc5773c4b2ac98ce89a188413 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000708661000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-1354 |
| IngestDate | Tue Sep 30 17:17:30 EDT 2025 Mon Oct 23 05:15:44 EDT 2023 Sun Sep 28 01:46:28 EDT 2025 Thu Apr 03 06:53:25 EDT 2025 Sat Nov 29 07:23:00 EST 2025 Tue Nov 18 21:48:56 EST 2025 Sun Apr 06 06:53:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | C |
| Keywords | Stochastic analysis Feasibility Integrated planning and scheduling Bi-level programming Data-driven optimization Demand uncertainty Bi-level Programming Data-driven Optimization Integrated Planning and Scheduling Demand Uncertainty Stochastic Analysis |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c510t-836cbcdb72a62a33b571c9e37e7f21b3f25fffdcdc5773c4b2ac98ce89a188413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Energy Efficiency and Renewable Energy (EERE) National Science Foundation (NSF) Texas A&M University National Institutes of Health (NIH) EE0007613; EE0007888; P42-ES027704; 1739977 University of Connecticut Efstratios N. Pistikopoulos: Conceptualization, Resources, Supervision, Project administration, Funding acquisition, Writing - Review & Editing. Burcu Beykal: Methodology, Software, Investigation, Visualization, Formal analysis, Writing - original draft, Project administration. CRediT author statement Styliani Avraamidou: Conceptualization, Methodology, Investigation, Validation, Writing - original draft. |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1977011 |
| PMID | 34720250 |
| PQID | 2591225027 |
| PQPubID | 23479 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8553017 osti_scitechconnect_1977011 proquest_miscellaneous_2591225027 pubmed_primary_34720250 crossref_citationtrail_10_1016_j_compchemeng_2021_107551 crossref_primary_10_1016_j_compchemeng_2021_107551 elsevier_sciencedirect_doi_10_1016_j_compchemeng_2021_107551 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: United States |
| PublicationTitle | Computers & chemical engineering |
| PublicationTitleAlternate | Comput Chem Eng |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Avraamidou, Pistikopoulos (bib0005) 2019; 122 Beykal, Onel, Onel, Pistikopoulos (bib0012) 2020; 66 Grossmann (bib0021) 2005; 51 Avraamidou, Pistikopoulos (bib0003) 2017; 50 Ierapetritou, Floudas (bib0024) 1998; 37 Sung, Maravelias (bib0045) 2007; 53 Janak, Floudas (bib0025) 2008; 32 Sung, Maravelias (bib0046) 2009; 55 Katz, Pappas, Avraamidou, Pistikopoulos (bib0027) 2020; 136 Audet, Dennis Jr (bib0001) 2009; 20 Chu, You, Wassick, Agarwal (bib0016) 2015; 72 Avraamidou, Beykal, Pistikopoulos, Pistikopoulos (bib0002) 2018; 44 Faísca, Saraiva, Rustem, Pistikopoulos (bib0020) 2009; 6 Lu, Shi, Zhang (bib0033) 2006; 176 Cozad, Sahinidis, Miller (bib0017) 2014; 60 Beykal, Boukouvala, Floudas, Sorek, Zalavadia, Gildin (bib0011) 2018; 114 Dogan, Grossmann (bib0019) 2006; 45 Runarsson, Yao (bib0040) 2005; 35 Grossmann (bib0022) 2012; 47 Saharidis, Ierapetritou (bib0041) 2009; 44 Avraamidou, Pistikopoulos (bib0007) 2019; 125 Calvete, Galé (bib0015) 2007; 39 Beykal, Boukouvala, Floudas, Pistikopoulos (bib0010) 2018; 116 Li, Floudas (bib0031) 2010; 49 Lu, Shi, Zhang, Dillon (bib0034) 2007; 38 Dias, Ierapetritou (bib0018) 2019; 20 Jones, Schonlau, Welch (bib0026) 1998; 13 Kondili (bib0030) 1987 Kim, Boukouvala (bib0028) 2020; 140 Mistry, Letsios, Krennrich, Lee, Misener (bib0036) 2020; 33 Shi, Zhou, Lu, Zhang, Zhang (bib0043) 2007; 188 Bi, Beykal, Avraamidou, Pappas, Pistikopoulos, Qiu (bib0013) 2020; 59 Kleniati, Adjiman (bib0029) 2015; 72 Maravelias, Sung (bib0035) 2009; 33 Avraamidou, Pistikopoulos (bib0006) 2019; 47 Boukouvala, Floudas (bib0014) 2017; 11 Avraamidou, Pistikopoulos (bib0004) 2018 Powell (bib0039) 1994 Papageorgiou (bib0038) 2009; 33 Mitsos (bib0037) 2010; 47 Sinha, Malo, Frantsev, Deb (bib0044) 2014; 41 Beykal, Avraamidou, Pistikopoulos (bib0008) 2021; 50 Schweidtmann, Clayton, Holmes, Bradford, Bourne, Lapkin (bib0042) 2018; 352 Li, Ierapetritou (bib0032) 2009; 64 Beykal, Avraamidou, Pistikopoulos, Onel, Pistikopoulos (bib0009) 2020; 78 Gümüş, Floudas (bib0023) 2005; 2 Bi (10.1016/j.compchemeng.2021.107551_bib0013) 2020; 59 Avraamidou (10.1016/j.compchemeng.2021.107551_bib0007) 2019; 125 Dogan (10.1016/j.compchemeng.2021.107551_bib0019) 2006; 45 Janak (10.1016/j.compchemeng.2021.107551_bib0025) 2008; 32 Sinha (10.1016/j.compchemeng.2021.107551_bib0044) 2014; 41 Beykal (10.1016/j.compchemeng.2021.107551_bib0009) 2020; 78 Beykal (10.1016/j.compchemeng.2021.107551_bib0010) 2018; 116 Mistry (10.1016/j.compchemeng.2021.107551_bib0036) 2020; 33 Mitsos (10.1016/j.compchemeng.2021.107551_bib0037) 2010; 47 Lu (10.1016/j.compchemeng.2021.107551_bib0033) 2006; 176 Grossmann (10.1016/j.compchemeng.2021.107551_bib0021) 2005; 51 Dias (10.1016/j.compchemeng.2021.107551_bib0018) 2019; 20 Boukouvala (10.1016/j.compchemeng.2021.107551_bib0014) 2017; 11 Beykal (10.1016/j.compchemeng.2021.107551_bib0012) 2020; 66 Avraamidou (10.1016/j.compchemeng.2021.107551_bib0006) 2019; 47 Grossmann (10.1016/j.compchemeng.2021.107551_bib0022) 2012; 47 Gümüş (10.1016/j.compchemeng.2021.107551_bib0023) 2005; 2 Beykal (10.1016/j.compchemeng.2021.107551_bib0011) 2018; 114 Audet (10.1016/j.compchemeng.2021.107551_bib0001) 2009; 20 Runarsson (10.1016/j.compchemeng.2021.107551_bib0040) 2005; 35 Li (10.1016/j.compchemeng.2021.107551_bib0032) 2009; 64 Papageorgiou (10.1016/j.compchemeng.2021.107551_bib0038) 2009; 33 Kondili (10.1016/j.compchemeng.2021.107551_bib0030) 1987 Sung (10.1016/j.compchemeng.2021.107551_bib0046) 2009; 55 Avraamidou (10.1016/j.compchemeng.2021.107551_bib0005) 2019; 122 Kleniati (10.1016/j.compchemeng.2021.107551_bib0029) 2015; 72 Avraamidou (10.1016/j.compchemeng.2021.107551_bib0004) 2018 Calvete (10.1016/j.compchemeng.2021.107551_bib0015) 2007; 39 Faísca (10.1016/j.compchemeng.2021.107551_bib0020) 2009; 6 Jones (10.1016/j.compchemeng.2021.107551_bib0026) 1998; 13 Ierapetritou (10.1016/j.compchemeng.2021.107551_bib0024) 1998; 37 Li (10.1016/j.compchemeng.2021.107551_bib0031) 2010; 49 Sung (10.1016/j.compchemeng.2021.107551_bib0045) 2007; 53 Katz (10.1016/j.compchemeng.2021.107551_bib0027) 2020; 136 Powell (10.1016/j.compchemeng.2021.107551_bib0039) 1994 Chu (10.1016/j.compchemeng.2021.107551_bib0016) 2015; 72 Cozad (10.1016/j.compchemeng.2021.107551_bib0017) 2014; 60 Lu (10.1016/j.compchemeng.2021.107551_bib0034) 2007; 38 Beykal (10.1016/j.compchemeng.2021.107551_bib0008) 2021; 50 Shi (10.1016/j.compchemeng.2021.107551_bib0043) 2007; 188 Schweidtmann (10.1016/j.compchemeng.2021.107551_bib0042) 2018; 352 Avraamidou (10.1016/j.compchemeng.2021.107551_sbref0003) 2017; 50 Kim (10.1016/j.compchemeng.2021.107551_bib0028) 2020; 140 Maravelias (10.1016/j.compchemeng.2021.107551_bib0035) 2009; 33 Saharidis (10.1016/j.compchemeng.2021.107551_bib0041) 2009; 44 Avraamidou (10.1016/j.compchemeng.2021.107551_bib0002) 2018; 44 |
| References_xml | – volume: 78 start-page: 1 year: 2020 end-page: 36 ident: bib0009 article-title: DOMINO: data-driven optimization of bi-level mixed-integer nonlinear problems publication-title: J. Global Optim. – volume: 45 start-page: 299 year: 2006 end-page: 315 ident: bib0019 article-title: A decomposition method for the simultaneous planning and scheduling of single-stage continuous multiproduct plants publication-title: Ind. Eng. Chem. Res. – volume: 114 start-page: 99 year: 2018 end-page: 110 ident: bib0011 article-title: Global optimization of grey-box computational systems using surrogate functions and application to highly constrained oil-field operations publication-title: Comput. Chem. Eng. – volume: 37 start-page: 4341 year: 1998 end-page: 4359 ident: bib0024 article-title: Effective continuous-time formulation for short-term scheduling. 1. Multipurpose batch processes publication-title: Ind. Eng. Chem. Res. – volume: 13 start-page: 455 year: 1998 end-page: 492 ident: bib0026 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Global Optim. – volume: 6 start-page: 377 year: 2009 end-page: 397 ident: bib0020 article-title: A multi-parametric programming approach for multilevel hierarchical and decentralised optimisation problems publication-title: Comput. Manag. Sci. – volume: 33 start-page: 1931 year: 2009 end-page: 1938 ident: bib0038 article-title: Supply chain optimisation for the process industries: advances and opportunities publication-title: Comput. Chem. Eng. – start-page: 1056 year: 2018 end-page: 1061 ident: bib0004 article-title: A novel algorithm for the global solution of mixed-integer bi-level multi-follower problems and its application to planning scheduling integration publication-title: 2018 European Control Conference (ECC) – year: 1987 ident: bib0030 publication-title: Optimal Scheduling of Batch Chemical Processes – volume: 72 start-page: 373 year: 2015 end-page: 386 ident: bib0029 article-title: A generalization of the branch-and-sandwich algorithm: from continuous to mixed-integer nonlinear bilevel problems publication-title: Comput. Chem. Eng. – volume: 60 start-page: 2211 year: 2014 end-page: 2227 ident: bib0017 article-title: Learning surrogate models for simulation-based optimization publication-title: AlChE J. – volume: 47 start-page: 2 year: 2012 end-page: 18 ident: bib0022 article-title: Advances in mathematical programming models for enterprise-wide optimization publication-title: Comput. Chem. Eng. – volume: 72 start-page: 255 year: 2015 end-page: 272 ident: bib0016 article-title: Integrated planning and scheduling under production uncertainties: bi-level model formulation and hybrid solution method publication-title: Comput. Chem. Eng. – volume: 55 start-page: 2614 year: 2009 end-page: 2630 ident: bib0046 article-title: A projection-based method for production planning of multiproduct facilities publication-title: AlChE J. – volume: 47 start-page: 557 year: 2010 end-page: 582 ident: bib0037 article-title: Global solution of nonlinear mixed-integer bilevel programs publication-title: J. Global Optim. – volume: 35 start-page: 233 year: 2005 end-page: 243 ident: bib0040 article-title: Search biases in constrained evolutionary optimization publication-title: IEEE Trans. Syst., Man, Cybern., Part C – volume: 53 start-page: 1298 year: 2007 end-page: 1315 ident: bib0045 article-title: An attainable region approach for production planning of multiproduct processes publication-title: AlChE J. – volume: 352 start-page: 277 year: 2018 end-page: 282 ident: bib0042 article-title: Machine learning meets continuous flow chemistry: automated optimization towards the Pareto front of multiple objectives publication-title: Chem. Eng. J. – volume: 47 start-page: 17 year: 2019 end-page: 22 ident: bib0006 article-title: A bi-level formulation and solution method for the integration of process design and scheduling publication-title: Computer Aided Chemical Engineering – volume: 50 start-page: 1707 year: 2021 end-page: 1713 ident: bib0008 article-title: Bi-level mixed-integer data-driven optimization of integrated planning and scheduling problems publication-title: Computer Aided Chemical Engineering – volume: 64 start-page: 3585 year: 2009 end-page: 3597 ident: bib0032 article-title: Integrated production planning and scheduling using a decomposition framework publication-title: Chem. Eng. Sci. – volume: 33 start-page: 1919 year: 2009 end-page: 1930 ident: bib0035 article-title: Integration of production planning and scheduling: overview, challenges and opportunities publication-title: Comput. Chem. Eng. – volume: 125 start-page: 98 year: 2019 end-page: 113 ident: bib0007 article-title: A multi-parametric optimization approach for bilevel mixed-integer linear and quadratic programming problems publication-title: Comput. Chem. Eng. – volume: 136 start-page: 106801 year: 2020 ident: bib0027 article-title: Integrating deep learning models and multiparametric programming publication-title: Comput. Chem. Eng. – volume: 44 start-page: 1885 year: 2018 end-page: 1890 ident: bib0002 article-title: A hierarchical food-energy-water nexus (few-n) decision-making approach for land use optimization publication-title: Computer Aided Chemical Engineering – volume: 32 start-page: 913 year: 2008 end-page: 955 ident: bib0025 article-title: Improving unit-specific event based continuous-time approaches for batch processes: integrality gap and task splitting publication-title: Comput. Chem. Eng. – volume: 50 start-page: 10178 year: 2017 end-page: 10183 ident: bib0003 article-title: A multiparametric mixed-integer bi-level optimization strategy for supply chain planning under demand uncertainty publication-title: IFAC-PapersOnLine – volume: 41 start-page: 374 year: 2014 end-page: 385 ident: bib0044 article-title: Finding optimal strategies in a multi-period multi-leader–follower Stackelberg game using an evolutionary algorithm publication-title: Comput. Oper. Res. – volume: 188 start-page: 1686 year: 2007 end-page: 1698 ident: bib0043 article-title: The Kth-best approach for linear bilevel multifollower programming with partial shared variables among followers publication-title: Appl. Math. Comput. – volume: 51 start-page: 1846 year: 2005 end-page: 1857 ident: bib0021 article-title: Enterprise-wide optimization: a new frontier in process systems engineering publication-title: AlChE J. – volume: 176 start-page: 1607 year: 2006 end-page: 1627 ident: bib0033 article-title: On bilevel multi-follower decision making: general framework and solutions publication-title: Inf. Sci. – volume: 66 start-page: e16657 year: 2020 ident: bib0012 article-title: A data-driven optimization algorithm for differential algebraic equations with numerical infeasibilities publication-title: AlChE J. – volume: 122 start-page: 193 year: 2019 end-page: 202 ident: bib0005 article-title: B-POP: bi-level parametric optimization toolbox publication-title: Comput. Chem. Eng. – volume: 116 start-page: 488 year: 2018 end-page: 502 ident: bib0010 article-title: Optimal design of energy systems using constrained grey-box multi-objective optimization publication-title: Comput. Chem. Eng. – volume: 49 start-page: 7446 year: 2010 end-page: 7469 ident: bib0031 article-title: Optimal event point determination for short-term scheduling of multipurpose batch plants via unit-specific event-based continuous-time approaches publication-title: Ind. Eng. Chem. Res. – volume: 2 start-page: 181 year: 2005 end-page: 212 ident: bib0023 article-title: Global optimization of mixed-integer bilevel programming problems publication-title: Comput. Manag. Sci. – volume: 20 start-page: 1029 year: 2019 end-page: 1066 ident: bib0018 article-title: Data-driven feasibility analysis for the integration of planning and scheduling problems publication-title: Optim. Eng. – volume: 39 start-page: 409 year: 2007 end-page: 417 ident: bib0015 article-title: Linear bilevel multi-follower programming with independent followers publication-title: J. Global Optim. – volume: 38 start-page: 597 year: 2007 end-page: 608 ident: bib0034 article-title: Model and extended Kuhn–Tucker approach for bilevel multi-follower decision making in a referential-uncooperative situation publication-title: J. Global Optim. – start-page: 51 year: 1994 end-page: 67 ident: bib0039 article-title: A direct search optimization method that models the objective and constraint functions by linear interpolation publication-title: Advances in Optimization and Numerical Analysis – volume: 44 start-page: 29 year: 2009 end-page: 51 ident: bib0041 article-title: Resolution method for mixed integer bi-level linear problems based on decomposition technique publication-title: J. Global Optim. – volume: 59 start-page: 16357 year: 2020 end-page: 16367 ident: bib0013 article-title: Integrated modeling of transfer learning and intelligent heuristic optimization for a steam cracking process publication-title: Ind. Eng. Chem. Res. – volume: 33 start-page: 1103 year: 2020 end-page: 1119 ident: bib0036 article-title: Mixed-integer convex nonlinear optimization with gradient-boosted trees embedded publication-title: INFORMS J. Comput. – volume: 20 start-page: 445 year: 2009 end-page: 472 ident: bib0001 article-title: A progressive barrier for derivative-free nonlinear programming publication-title: SIAM J. Optim. – volume: 11 start-page: 895 year: 2017 end-page: 913 ident: bib0014 article-title: ARGONAUT: algorithms for global optimization of constrained grey-box computational problems publication-title: Optim. Lett. – volume: 140 start-page: 106847 year: 2020 ident: bib0028 article-title: Surrogate-based optimization for mixed-integer nonlinear problems publication-title: Comput. Chem. Eng. – volume: 72 start-page: 373 year: 2015 ident: 10.1016/j.compchemeng.2021.107551_bib0029 article-title: A generalization of the branch-and-sandwich algorithm: from continuous to mixed-integer nonlinear bilevel problems publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2014.06.004 – volume: 38 start-page: 597 issue: 4 year: 2007 ident: 10.1016/j.compchemeng.2021.107551_bib0034 article-title: Model and extended Kuhn–Tucker approach for bilevel multi-follower decision making in a referential-uncooperative situation publication-title: J. Global Optim. doi: 10.1007/s10898-006-9098-9 – start-page: 1056 year: 2018 ident: 10.1016/j.compchemeng.2021.107551_bib0004 article-title: A novel algorithm for the global solution of mixed-integer bi-level multi-follower problems and its application to planning scheduling integration – volume: 50 start-page: 10178 issue: 1 year: 2017 ident: 10.1016/j.compchemeng.2021.107551_sbref0003 article-title: A multiparametric mixed-integer bi-level optimization strategy for supply chain planning under demand uncertainty publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2017.08.1766 – volume: 39 start-page: 409 issue: 3 year: 2007 ident: 10.1016/j.compchemeng.2021.107551_bib0015 article-title: Linear bilevel multi-follower programming with independent followers publication-title: J. Global Optim. doi: 10.1007/s10898-007-9144-2 – volume: 44 start-page: 29 issue: 1 year: 2009 ident: 10.1016/j.compchemeng.2021.107551_bib0041 article-title: Resolution method for mixed integer bi-level linear problems based on decomposition technique publication-title: J. Global Optim. doi: 10.1007/s10898-008-9291-0 – volume: 41 start-page: 374 year: 2014 ident: 10.1016/j.compchemeng.2021.107551_bib0044 article-title: Finding optimal strategies in a multi-period multi-leader–follower Stackelberg game using an evolutionary algorithm publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2013.07.010 – volume: 352 start-page: 277 year: 2018 ident: 10.1016/j.compchemeng.2021.107551_bib0042 article-title: Machine learning meets continuous flow chemistry: automated optimization towards the Pareto front of multiple objectives publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.07.031 – volume: 47 start-page: 557 issue: 4 year: 2010 ident: 10.1016/j.compchemeng.2021.107551_bib0037 article-title: Global solution of nonlinear mixed-integer bilevel programs publication-title: J. Global Optim. doi: 10.1007/s10898-009-9479-y – volume: 20 start-page: 445 issue: 1 year: 2009 ident: 10.1016/j.compchemeng.2021.107551_bib0001 article-title: A progressive barrier for derivative-free nonlinear programming publication-title: SIAM J. Optim. doi: 10.1137/070692662 – volume: 20 start-page: 1029 issue: 4 year: 2019 ident: 10.1016/j.compchemeng.2021.107551_bib0018 article-title: Data-driven feasibility analysis for the integration of planning and scheduling problems publication-title: Optim. Eng. doi: 10.1007/s11081-019-09459-w – volume: 47 start-page: 2 year: 2012 ident: 10.1016/j.compchemeng.2021.107551_bib0022 article-title: Advances in mathematical programming models for enterprise-wide optimization publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2012.06.038 – volume: 47 start-page: 17 year: 2019 ident: 10.1016/j.compchemeng.2021.107551_bib0006 article-title: A bi-level formulation and solution method for the integration of process design and scheduling doi: 10.1016/B978-0-12-818597-1.50003-5 – volume: 140 start-page: 106847 year: 2020 ident: 10.1016/j.compchemeng.2021.107551_bib0028 article-title: Surrogate-based optimization for mixed-integer nonlinear problems publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106847 – volume: 33 start-page: 1931 issue: 12 year: 2009 ident: 10.1016/j.compchemeng.2021.107551_bib0038 article-title: Supply chain optimisation for the process industries: advances and opportunities publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2009.06.014 – volume: 78 start-page: 1 year: 2020 ident: 10.1016/j.compchemeng.2021.107551_bib0009 article-title: DOMINO: data-driven optimization of bi-level mixed-integer nonlinear problems publication-title: J. Global Optim. doi: 10.1007/s10898-020-00890-3 – volume: 32 start-page: 913 issue: 4–5 year: 2008 ident: 10.1016/j.compchemeng.2021.107551_bib0025 article-title: Improving unit-specific event based continuous-time approaches for batch processes: integrality gap and task splitting publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2007.03.019 – year: 1987 ident: 10.1016/j.compchemeng.2021.107551_bib0030 – volume: 176 start-page: 1607 issue: 11 year: 2006 ident: 10.1016/j.compchemeng.2021.107551_bib0033 article-title: On bilevel multi-follower decision making: general framework and solutions publication-title: Inf. Sci. doi: 10.1016/j.ins.2005.04.010 – volume: 44 start-page: 1885 year: 2018 ident: 10.1016/j.compchemeng.2021.107551_bib0002 article-title: A hierarchical food-energy-water nexus (few-n) decision-making approach for land use optimization doi: 10.1016/B978-0-444-64241-7.50309-8 – volume: 53 start-page: 1298 issue: 5 year: 2007 ident: 10.1016/j.compchemeng.2021.107551_bib0045 article-title: An attainable region approach for production planning of multiproduct processes publication-title: AlChE J. doi: 10.1002/aic.11167 – volume: 6 start-page: 377 issue: 4 year: 2009 ident: 10.1016/j.compchemeng.2021.107551_bib0020 article-title: A multi-parametric programming approach for multilevel hierarchical and decentralised optimisation problems publication-title: Comput. Manag. Sci. doi: 10.1007/s10287-007-0062-z – volume: 11 start-page: 895 issue: 5 year: 2017 ident: 10.1016/j.compchemeng.2021.107551_bib0014 article-title: ARGONAUT: algorithms for global optimization of constrained grey-box computational problems publication-title: Optim. Lett. doi: 10.1007/s11590-016-1028-2 – volume: 72 start-page: 255 year: 2015 ident: 10.1016/j.compchemeng.2021.107551_bib0016 article-title: Integrated planning and scheduling under production uncertainties: bi-level model formulation and hybrid solution method publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2014.02.023 – volume: 50 start-page: 1707 year: 2021 ident: 10.1016/j.compchemeng.2021.107551_bib0008 article-title: Bi-level mixed-integer data-driven optimization of integrated planning and scheduling problems doi: 10.1016/B978-0-323-88506-5.50265-5 – volume: 33 start-page: 1919 issue: 12 year: 2009 ident: 10.1016/j.compchemeng.2021.107551_bib0035 article-title: Integration of production planning and scheduling: overview, challenges and opportunities publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2009.06.007 – volume: 35 start-page: 233 issue: 2 year: 2005 ident: 10.1016/j.compchemeng.2021.107551_bib0040 article-title: Search biases in constrained evolutionary optimization publication-title: IEEE Trans. Syst., Man, Cybern., Part C doi: 10.1109/TSMCC.2004.841906 – volume: 116 start-page: 488 year: 2018 ident: 10.1016/j.compchemeng.2021.107551_bib0010 article-title: Optimal design of energy systems using constrained grey-box multi-objective optimization publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2018.02.017 – volume: 51 start-page: 1846 issue: 7 year: 2005 ident: 10.1016/j.compchemeng.2021.107551_bib0021 article-title: Enterprise-wide optimization: a new frontier in process systems engineering publication-title: AlChE J. doi: 10.1002/aic.10617 – volume: 55 start-page: 2614 issue: 10 year: 2009 ident: 10.1016/j.compchemeng.2021.107551_bib0046 article-title: A projection-based method for production planning of multiproduct facilities publication-title: AlChE J. doi: 10.1002/aic.11845 – volume: 188 start-page: 1686 issue: 2 year: 2007 ident: 10.1016/j.compchemeng.2021.107551_bib0043 article-title: The Kth-best approach for linear bilevel multifollower programming with partial shared variables among followers publication-title: Appl. Math. Comput. – volume: 2 start-page: 181 issue: 3 year: 2005 ident: 10.1016/j.compchemeng.2021.107551_bib0023 article-title: Global optimization of mixed-integer bilevel programming problems publication-title: Comput. Manag. Sci. doi: 10.1007/s10287-005-0025-1 – volume: 64 start-page: 3585 issue: 16 year: 2009 ident: 10.1016/j.compchemeng.2021.107551_bib0032 article-title: Integrated production planning and scheduling using a decomposition framework publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.04.047 – volume: 45 start-page: 299 issue: 1 year: 2006 ident: 10.1016/j.compchemeng.2021.107551_bib0019 article-title: A decomposition method for the simultaneous planning and scheduling of single-stage continuous multiproduct plants publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie050778z – volume: 59 start-page: 16357 issue: 37 year: 2020 ident: 10.1016/j.compchemeng.2021.107551_bib0013 article-title: Integrated modeling of transfer learning and intelligent heuristic optimization for a steam cracking process publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c02657 – volume: 114 start-page: 99 year: 2018 ident: 10.1016/j.compchemeng.2021.107551_bib0011 article-title: Global optimization of grey-box computational systems using surrogate functions and application to highly constrained oil-field operations publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2018.01.005 – volume: 13 start-page: 455 issue: 4 year: 1998 ident: 10.1016/j.compchemeng.2021.107551_bib0026 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Global Optim. doi: 10.1023/A:1008306431147 – volume: 33 start-page: 1103 issue: 3 year: 2020 ident: 10.1016/j.compchemeng.2021.107551_bib0036 article-title: Mixed-integer convex nonlinear optimization with gradient-boosted trees embedded publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2020.0993 – volume: 66 start-page: e16657 issue: 10 year: 2020 ident: 10.1016/j.compchemeng.2021.107551_bib0012 article-title: A data-driven optimization algorithm for differential algebraic equations with numerical infeasibilities publication-title: AlChE J. doi: 10.1002/aic.16657 – volume: 60 start-page: 2211 issue: 6 year: 2014 ident: 10.1016/j.compchemeng.2021.107551_bib0017 article-title: Learning surrogate models for simulation-based optimization publication-title: AlChE J. doi: 10.1002/aic.14418 – volume: 37 start-page: 4341 issue: 11 year: 1998 ident: 10.1016/j.compchemeng.2021.107551_bib0024 article-title: Effective continuous-time formulation for short-term scheduling. 1. Multipurpose batch processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie970927g – volume: 49 start-page: 7446 issue: 16 year: 2010 ident: 10.1016/j.compchemeng.2021.107551_bib0031 article-title: Optimal event point determination for short-term scheduling of multipurpose batch plants via unit-specific event-based continuous-time approaches publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie901842k – volume: 122 start-page: 193 year: 2019 ident: 10.1016/j.compchemeng.2021.107551_bib0005 article-title: B-POP: bi-level parametric optimization toolbox publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2018.07.007 – start-page: 51 year: 1994 ident: 10.1016/j.compchemeng.2021.107551_bib0039 article-title: A direct search optimization method that models the objective and constraint functions by linear interpolation – volume: 125 start-page: 98 year: 2019 ident: 10.1016/j.compchemeng.2021.107551_bib0007 article-title: A multi-parametric optimization approach for bilevel mixed-integer linear and quadratic programming problems publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.01.021 – volume: 136 start-page: 106801 year: 2020 ident: 10.1016/j.compchemeng.2021.107551_bib0027 article-title: Integrating deep learning models and multiparametric programming publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106801 |
| SSID | ssj0002488 |
| Score | 2.5260155 |
| Snippet | •We present a data-driven algorithm for the solution of integrated planning and scheduling problems under uncertainty.•The proposed algorithm is based upon the... The coordination of interconnected elements across the different layers of the supply chain is essential for all industrial processes and the key to optimal... |
| SourceID | pubmedcentral osti proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 107551 |
| SubjectTerms | Bi-level programming Data-driven optimization Demand uncertainty ENGINEERING Feasibility Integrated planning and scheduling MATHEMATICS AND COMPUTING Stochastic analysis |
| Title | Data-driven optimization of mixed-integer bi-level multi-follower integrated planning and scheduling problems under demand uncertainty |
| URI | https://dx.doi.org/10.1016/j.compchemeng.2021.107551 https://www.ncbi.nlm.nih.gov/pubmed/34720250 https://www.proquest.com/docview/2591225027 https://www.osti.gov/servlets/purl/1977011 https://pubmed.ncbi.nlm.nih.gov/PMC8553017 |
| Volume | 156 |
| WOSCitedRecordID | wos000708661000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002488 issn: 0098-1354 databaseCode: AIEXJ dateStart: 19950611 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DiF4QNwpg8mTeJsyNc7FjsTLBEWA0ITEkPoWOb5o3dqkSpuq-wP8BH4vx3Gug0lFiJeoSnySOufLOT728XcQehNyoQWVicOgheMLVzmRlIETyLEMhRsJKUp2_S_07IxNp9HXweBnvRdmM6dpyrbbaPlfVQ3nQNlm6-xfqLu5KZyA36B0OILa4biT4t_zNXdkbqzYcQYGYVHttCxX0mdbJZ2SIkLlx8nMmZucIZtV6GiAhKmZ1lJISFNkuqxpVK4xQCAMjqnav17WoVmVZXRNjfGFaQA-0mYYrHuLxXXliFWJM1FTFKiWCrGZFFDXV9yugxS5KBo0bnLOFzOZFTYx7drMzcwaq27M1FW2zIq5zRmc6IoMGGz4SXdag5Ab0xrNfps2uam03xHEvJ6lnW7st2Um_80X2GmJS6PKpeka9OoEnuTCFRpULLd9qu1v5v7m9hAHjz0STffQPqFBBAZ___TTZPq58fHEZ6xmYzUCd9FRmzl4ywNvG_kMM3hLfwpwbubpdgY-5w_RgypiwacWaY_QQKWP0f0Oj-UT9KODOdzFHM407mEO15jDfczhFnO4xhwGSOEWc7jGHC4xhy3mcAdzT9H3D5Pzdx-dqsCHI8AVrB3mhSIRMqGEh4R7XhJQV0TKo4pq4iaeJoHWWoK9CCj1hJ8QLiImFIu4yxgMv56hYZql6gXCHk80H2svdEPia-5yX_njBMIXzYNQhmyEWP3yY1Gx35siLPO4TnO8jDt6i43eYqu3ESKN6NJSwOwi9LbWcFyNZe0YNQZ47iJ-YFBhRA2XszBJbyDrQrQGDnmEjmqwxOANzBIfT1VWrGICYAUPPSZ0hJ5b8DT_2fMpMRHPCNEerJoGhmm-fyWdXZSM88wUF3Ppy3_r1AG6137pr9BwnRfqNbojNuvZKj9Ee3TKDqsP7RcFKwrQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+optimization+of+mixed-integer+bi-level+multi-follower+integrated+planning+and+scheduling+problems+under+demand+uncertainty&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Beykal%2C+Burcu&rft.au=Avraamidou%2C+Styliani&rft.au=Pistikopoulos%2C+Efstratios+N.&rft.date=2022-01-01&rft.pub=Elsevier+Ltd&rft.issn=0098-1354&rft.volume=156&rft_id=info:doi/10.1016%2Fj.compchemeng.2021.107551&rft.externalDocID=S009813542100329X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon |