Data-driven optimization of mixed-integer bi-level multi-follower integrated planning and scheduling problems under demand uncertainty

•We present a data-driven algorithm for the solution of integrated planning and scheduling problems under uncertainty.•The proposed algorithm is based upon the recently developed DOMINO framework for the solution of single-follower bi-level problems, which is here extended for the solution of bi-lev...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & chemical engineering Ročník 156; číslo C; s. 107551
Hlavní autori: Beykal, Burcu, Avraamidou, Styliani, Pistikopoulos, Efstratios N.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Elsevier Ltd 01.01.2022
Elsevier
Predmet:
ISSN:0098-1354, 1873-4375
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •We present a data-driven algorithm for the solution of integrated planning and scheduling problems under uncertainty.•The proposed algorithm is based upon the recently developed DOMINO framework for the solution of single-follower bi-level problems, which is here extended for the solution of bi-level multi-follower stochastic optimization problems.•Computational studies to show the applicability of the proposed approach are presented through the solution of three planning and scheduling case studies. The coordination of interconnected elements across the different layers of the supply chain is essential for all industrial processes and the key to optimal decision-making. Yet, the modeling and optimization of such interdependent systems are still burdensome. In this paper, we address the simultaneous modeling and optimization of medium-term planning and short-term scheduling problems under demand uncertainty using mixed-integer bi-level multi-follower programming and data-driven optimization. Bi-level multi-follower programs model the natural hierarchy between different layers of supply chain management holistically, while scenario analysis and data-driven optimization allow us to retrieve the guaranteed feasible solutions of the integrated formulation under various demand considerations. We address the data-driven optimization of this challenging class of problems using the DOMINO framework, which was initially developed to solve single-leader single-follower bi-level optimization problems to guaranteed feasibility. This framework is extended to solve single-leader multi-follower stochastic formulations and its performance is characterized by well-known single and multi-product process scheduling case studies. Through our data-driven algorithmic approach, we present guaranteed feasible solutions to linear and nonlinear mixed-integer bi-level formulations of simultaneous planning and scheduling problems and further characterize the effects of the scheduling level complexity on the solution performance, which spans over several hundred continuous and binary variables, and thousands of constraints.
AbstractList The coordination of interconnected elements across the different layers of the supply chain is essential for all industrial processes and the key to optimal decision-making. Yet, the modeling and optimization of such interdependent systems are still burdensome. In this paper, we address the simultaneous modeling and optimization of medium-term planning and short-term scheduling problems under demand uncertainty using mixed-integer bi-level multi-follower programming and data-driven optimization. Bi-level multi-follower programs model the natural hierarchy between different layers of supply chain management holistically, while scenario analysis and data-driven optimization allow us to retrieve the guaranteed feasible solutions of the integrated formulation under various demand considerations. We address the data-driven optimization of this challenging class of problems using the DOMINO framework, which was initially developed to solve single-leader single-follower bi-level optimization problems to guaranteed feasibility. This framework is extended to solve single-leader multi-follower stochastic formulations and its performance is characterized by well-known single and multi-product process scheduling case studies. Through our data-driven algorithmic approach, we present guaranteed feasible solutions to linear and nonlinear mixed-integer bi-level formulations of simultaneous planning and scheduling problems and further characterize the effects of the scheduling level complexity on the solution performance, which spans over several hundred continuous and binary variables, and thousands of constraints.The coordination of interconnected elements across the different layers of the supply chain is essential for all industrial processes and the key to optimal decision-making. Yet, the modeling and optimization of such interdependent systems are still burdensome. In this paper, we address the simultaneous modeling and optimization of medium-term planning and short-term scheduling problems under demand uncertainty using mixed-integer bi-level multi-follower programming and data-driven optimization. Bi-level multi-follower programs model the natural hierarchy between different layers of supply chain management holistically, while scenario analysis and data-driven optimization allow us to retrieve the guaranteed feasible solutions of the integrated formulation under various demand considerations. We address the data-driven optimization of this challenging class of problems using the DOMINO framework, which was initially developed to solve single-leader single-follower bi-level optimization problems to guaranteed feasibility. This framework is extended to solve single-leader multi-follower stochastic formulations and its performance is characterized by well-known single and multi-product process scheduling case studies. Through our data-driven algorithmic approach, we present guaranteed feasible solutions to linear and nonlinear mixed-integer bi-level formulations of simultaneous planning and scheduling problems and further characterize the effects of the scheduling level complexity on the solution performance, which spans over several hundred continuous and binary variables, and thousands of constraints.
•We present a data-driven algorithm for the solution of integrated planning and scheduling problems under uncertainty.•The proposed algorithm is based upon the recently developed DOMINO framework for the solution of single-follower bi-level problems, which is here extended for the solution of bi-level multi-follower stochastic optimization problems.•Computational studies to show the applicability of the proposed approach are presented through the solution of three planning and scheduling case studies. The coordination of interconnected elements across the different layers of the supply chain is essential for all industrial processes and the key to optimal decision-making. Yet, the modeling and optimization of such interdependent systems are still burdensome. In this paper, we address the simultaneous modeling and optimization of medium-term planning and short-term scheduling problems under demand uncertainty using mixed-integer bi-level multi-follower programming and data-driven optimization. Bi-level multi-follower programs model the natural hierarchy between different layers of supply chain management holistically, while scenario analysis and data-driven optimization allow us to retrieve the guaranteed feasible solutions of the integrated formulation under various demand considerations. We address the data-driven optimization of this challenging class of problems using the DOMINO framework, which was initially developed to solve single-leader single-follower bi-level optimization problems to guaranteed feasibility. This framework is extended to solve single-leader multi-follower stochastic formulations and its performance is characterized by well-known single and multi-product process scheduling case studies. Through our data-driven algorithmic approach, we present guaranteed feasible solutions to linear and nonlinear mixed-integer bi-level formulations of simultaneous planning and scheduling problems and further characterize the effects of the scheduling level complexity on the solution performance, which spans over several hundred continuous and binary variables, and thousands of constraints.
The coordination of interconnected elements across the different layers of the supply chain is essential for all industrial processes and the key to optimal decision-making. Yet, the modeling and optimization of such interdependent systems are still burdensome. In this paper, we address the simultaneous modeling and optimization of medium-term planning and short-term scheduling problems under demand uncertainty using mixed-integer bi-level multi-follower programming and data-driven optimization. Bi-level multi-follower programs model the natural hierarchy between different layers of supply chain management holistically, while scenario analysis and data-driven optimization allow us to retrieve the guaranteed feasible solutions of the integrated formulation under various demand considerations. We address the data-driven optimization of this challenging class of problems using the DOMINO framework, which was initially developed to solve single-leader single-follower bi-level optimization problems to guaranteed feasibility. This framework is extended to solve single-leader multi-follower stochastic formulations and its performance is characterized by well-known single and multi-product process scheduling case studies. Through our data-driven algorithmic approach, we present guaranteed feasible solutions to linear and nonlinear mixed-integer bi-level formulations of simultaneous planning and scheduling problems and further characterize the effects of the scheduling level complexity on the solution performance, which spans over several hundred continuous and binary variables, and thousands of constraints.
The coordination of interconnected elements across the different layers of the supply chain is essential for all industrial processes and the key to optimal decision-making. Yet, the modeling and optimization of such interdependent systems are still burdensome. Here we address the simultaneous modeling and optimization of medium-term planning and short-term scheduling problems under demand uncertainty using mixed-integer bi-level multi-follower programming and data-driven optimization. Bi-level multi-follower programs model the natural hierarchy between different layers of supply chain management holistically, while scenario analysis and data-driven optimization allow us to retrieve the guaranteed feasible solutions of the integrated formulation under various demand considerations. We address the data-driven optimization of this challenging class of problems using the DOMINO framework, which was initially developed to solve single-leader single-follower bi-level optimization problems to guaranteed feasibility. This framework is extended to solve single-leader multi-follower stochastic formulations and its performance is characterized by well-known single and multi-product process scheduling case studies. Through our data-driven algorithmic approach, we present guaranteed feasible solutions to linear and nonlinear mixed-integer bi-level formulations of simultaneous planning and scheduling problems and further characterize the effects of the scheduling level complexity on the solution performance, which spans over several hundred continuous and binary variables, and thousands of constraints.
ArticleNumber 107551
Author Pistikopoulos, Efstratios N.
Beykal, Burcu
Avraamidou, Styliani
AuthorAffiliation a Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
c Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
e Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
d Texas A&M Energy Institute, Texas A&M University, College Station, TX 77843, USA
b Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA
AuthorAffiliation_xml – name: d Texas A&M Energy Institute, Texas A&M University, College Station, TX 77843, USA
– name: e Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
– name: c Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
– name: b Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA
– name: a Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
Author_xml – sequence: 1
  givenname: Burcu
  surname: Beykal
  fullname: Beykal, Burcu
  organization: Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
– sequence: 2
  givenname: Styliani
  surname: Avraamidou
  fullname: Avraamidou, Styliani
  organization: Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
– sequence: 3
  givenname: Efstratios N.
  surname: Pistikopoulos
  fullname: Pistikopoulos, Efstratios N.
  email: stratos@tamu.edu
  organization: Texas A&M Energy Institute, Texas A&M University, College Station, TX 77843, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34720250$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1977011$$D View this record in Osti.gov
BookMark eNqNUstu1DAUtVARfcAvoMCKTQY_4nGyAVXDU6rEBtaWY9_MeOTYwXYGygfw3TidFhVWXVnX955zH-ecoxMfPCD0guAVwWT9er_SYZz0Dkbw2xXFlJR_wTl5hM5IK1jdMMFP0BnGXVsTxptTdJ7SHmNMm7Z9gk5ZIwqK4zP0-53KqjbRHsBXYcp2tL9UtqEEQzXan2Bq6zNsIVa9rR0cwFXj7LKth-Bc-FH-b_JRZTDV5JT31m8r5U2VyoBmdks4xdA7GFM1e1MQBsalYPYaYlYFf_0UPR6US_Ds9r1A3z68_7r5VF99-fh5c3lVa05wrlu21r02vaBqTRVjPRdEd8AEiIGSng2UD8NgtNFcCKabnirdtRraTpG2bQi7QG-OvNPcj2A0-ByVk1O0o4rXMigr_814u5PbcJAt5wwTUQheHglCylYmbTPonQ7eg86SdEJgsnR5ddslhu8zpCxHmzS4ch0Ic5KUd4SW89OF7_n9gf5OcqdQKXh7LNAxpBRhkKXnjUJlPuskwXLxhNzLe56Qiyfk0ROFofuP4a7JQ7CbIxaKKAcLcVkZim7GxmVjE-wDWP4AxlrdjQ
CitedBy_id crossref_primary_10_1016_j_agwat_2024_109061
crossref_primary_10_1515_revce_2024_0064
crossref_primary_10_1007_s40747_024_01517_w
crossref_primary_10_1016_j_fbp_2023_10_005
crossref_primary_10_1016_j_ijepes_2023_109237
crossref_primary_10_1016_j_compchemeng_2025_109087
crossref_primary_10_1016_j_ces_2023_119086
crossref_primary_10_1016_j_eswa_2024_125728
crossref_primary_10_1016_j_compchemeng_2025_109160
crossref_primary_10_1007_s11081_024_09886_4
crossref_primary_10_1007_s40314_025_03081_6
crossref_primary_10_1016_j_compchemeng_2022_108043
crossref_primary_10_1016_j_compchemeng_2022_108033
crossref_primary_10_3390_land12040901
crossref_primary_10_1108_JM2_10_2023_0246
crossref_primary_10_1016_j_compchemeng_2022_107830
crossref_primary_10_1016_j_compchemeng_2024_108726
crossref_primary_10_1016_j_compchemeng_2024_108725
crossref_primary_10_1016_j_compchemeng_2022_107711
crossref_primary_10_1002_aic_18268
crossref_primary_10_1016_j_compchemeng_2022_107866
crossref_primary_10_1016_j_ejor_2024_11_039
crossref_primary_10_1016_j_swevo_2025_101851
crossref_primary_10_1016_j_compchemeng_2022_107989
Cites_doi 10.1016/j.compchemeng.2014.06.004
10.1007/s10898-006-9098-9
10.1016/j.ifacol.2017.08.1766
10.1007/s10898-007-9144-2
10.1007/s10898-008-9291-0
10.1016/j.cor.2013.07.010
10.1016/j.cej.2018.07.031
10.1007/s10898-009-9479-y
10.1137/070692662
10.1007/s11081-019-09459-w
10.1016/j.compchemeng.2012.06.038
10.1016/B978-0-12-818597-1.50003-5
10.1016/j.compchemeng.2020.106847
10.1016/j.compchemeng.2009.06.014
10.1007/s10898-020-00890-3
10.1016/j.compchemeng.2007.03.019
10.1016/j.ins.2005.04.010
10.1016/B978-0-444-64241-7.50309-8
10.1002/aic.11167
10.1007/s10287-007-0062-z
10.1007/s11590-016-1028-2
10.1016/j.compchemeng.2014.02.023
10.1016/B978-0-323-88506-5.50265-5
10.1016/j.compchemeng.2009.06.007
10.1109/TSMCC.2004.841906
10.1016/j.compchemeng.2018.02.017
10.1002/aic.10617
10.1002/aic.11845
10.1007/s10287-005-0025-1
10.1016/j.ces.2009.04.047
10.1021/ie050778z
10.1021/acs.iecr.0c02657
10.1016/j.compchemeng.2018.01.005
10.1023/A:1008306431147
10.1287/ijoc.2020.0993
10.1002/aic.16657
10.1002/aic.14418
10.1021/ie970927g
10.1021/ie901842k
10.1016/j.compchemeng.2018.07.007
10.1016/j.compchemeng.2019.01.021
10.1016/j.compchemeng.2020.106801
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
CorporateAuthor Univ. of California, Los Angeles, CA (United States)
Texas A & M Univ., College Station, TX (United States)
CorporateAuthor_xml – name: Univ. of California, Los Angeles, CA (United States)
– name: Texas A & M Univ., College Station, TX (United States)
DBID AAYXX
CITATION
NPM
7X8
OIOZB
OTOTI
5PM
DOI 10.1016/j.compchemeng.2021.107551
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4375
ExternalDocumentID PMC8553017
1977011
34720250
10_1016_j_compchemeng_2021_107551
S009813542100329X
Genre Journal Article
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: P42 ES027704
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSH
SST
SSZ
T5K
VH1
WUQ
ZY4
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
NPM
7X8
AAIAV
ABPIF
ABPTK
ABYKQ
AFKWA
AJOXV
AMFUW
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c510t-836cbcdb72a62a33b571c9e37e7f21b3f25fffdcdc5773c4b2ac98ce89a188413
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000708661000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-1354
IngestDate Tue Sep 30 17:17:30 EDT 2025
Mon Oct 23 05:15:44 EDT 2023
Sun Sep 28 01:46:28 EDT 2025
Thu Apr 03 06:53:25 EDT 2025
Sat Nov 29 07:23:00 EST 2025
Tue Nov 18 21:48:56 EST 2025
Sun Apr 06 06:53:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Stochastic analysis
Feasibility
Integrated planning and scheduling
Bi-level programming
Data-driven optimization
Demand uncertainty
Bi-level Programming
Data-driven Optimization
Integrated Planning and Scheduling
Demand Uncertainty
Stochastic Analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c510t-836cbcdb72a62a33b571c9e37e7f21b3f25fffdcdc5773c4b2ac98ce89a188413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
National Science Foundation (NSF)
Texas A&M University
National Institutes of Health (NIH)
EE0007613; EE0007888; P42-ES027704; 1739977
University of Connecticut
Efstratios N. Pistikopoulos: Conceptualization, Resources, Supervision, Project administration, Funding acquisition, Writing - Review & Editing.
Burcu Beykal: Methodology, Software, Investigation, Visualization, Formal analysis, Writing - original draft, Project administration.
CRediT author statement
Styliani Avraamidou: Conceptualization, Methodology, Investigation, Validation, Writing - original draft.
OpenAccessLink https://www.osti.gov/servlets/purl/1977011
PMID 34720250
PQID 2591225027
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8553017
osti_scitechconnect_1977011
proquest_miscellaneous_2591225027
pubmed_primary_34720250
crossref_citationtrail_10_1016_j_compchemeng_2021_107551
crossref_primary_10_1016_j_compchemeng_2021_107551
elsevier_sciencedirect_doi_10_1016_j_compchemeng_2021_107551
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: United States
PublicationTitle Computers & chemical engineering
PublicationTitleAlternate Comput Chem Eng
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Avraamidou, Pistikopoulos (bib0005) 2019; 122
Beykal, Onel, Onel, Pistikopoulos (bib0012) 2020; 66
Grossmann (bib0021) 2005; 51
Avraamidou, Pistikopoulos (bib0003) 2017; 50
Ierapetritou, Floudas (bib0024) 1998; 37
Sung, Maravelias (bib0045) 2007; 53
Janak, Floudas (bib0025) 2008; 32
Sung, Maravelias (bib0046) 2009; 55
Katz, Pappas, Avraamidou, Pistikopoulos (bib0027) 2020; 136
Audet, Dennis Jr (bib0001) 2009; 20
Chu, You, Wassick, Agarwal (bib0016) 2015; 72
Avraamidou, Beykal, Pistikopoulos, Pistikopoulos (bib0002) 2018; 44
Faísca, Saraiva, Rustem, Pistikopoulos (bib0020) 2009; 6
Lu, Shi, Zhang (bib0033) 2006; 176
Cozad, Sahinidis, Miller (bib0017) 2014; 60
Beykal, Boukouvala, Floudas, Sorek, Zalavadia, Gildin (bib0011) 2018; 114
Dogan, Grossmann (bib0019) 2006; 45
Runarsson, Yao (bib0040) 2005; 35
Grossmann (bib0022) 2012; 47
Saharidis, Ierapetritou (bib0041) 2009; 44
Avraamidou, Pistikopoulos (bib0007) 2019; 125
Calvete, Galé (bib0015) 2007; 39
Beykal, Boukouvala, Floudas, Pistikopoulos (bib0010) 2018; 116
Li, Floudas (bib0031) 2010; 49
Lu, Shi, Zhang, Dillon (bib0034) 2007; 38
Dias, Ierapetritou (bib0018) 2019; 20
Jones, Schonlau, Welch (bib0026) 1998; 13
Kondili (bib0030) 1987
Kim, Boukouvala (bib0028) 2020; 140
Mistry, Letsios, Krennrich, Lee, Misener (bib0036) 2020; 33
Shi, Zhou, Lu, Zhang, Zhang (bib0043) 2007; 188
Bi, Beykal, Avraamidou, Pappas, Pistikopoulos, Qiu (bib0013) 2020; 59
Kleniati, Adjiman (bib0029) 2015; 72
Maravelias, Sung (bib0035) 2009; 33
Avraamidou, Pistikopoulos (bib0006) 2019; 47
Boukouvala, Floudas (bib0014) 2017; 11
Avraamidou, Pistikopoulos (bib0004) 2018
Powell (bib0039) 1994
Papageorgiou (bib0038) 2009; 33
Mitsos (bib0037) 2010; 47
Sinha, Malo, Frantsev, Deb (bib0044) 2014; 41
Beykal, Avraamidou, Pistikopoulos (bib0008) 2021; 50
Schweidtmann, Clayton, Holmes, Bradford, Bourne, Lapkin (bib0042) 2018; 352
Li, Ierapetritou (bib0032) 2009; 64
Beykal, Avraamidou, Pistikopoulos, Onel, Pistikopoulos (bib0009) 2020; 78
Gümüş, Floudas (bib0023) 2005; 2
Bi (10.1016/j.compchemeng.2021.107551_bib0013) 2020; 59
Avraamidou (10.1016/j.compchemeng.2021.107551_bib0007) 2019; 125
Dogan (10.1016/j.compchemeng.2021.107551_bib0019) 2006; 45
Janak (10.1016/j.compchemeng.2021.107551_bib0025) 2008; 32
Sinha (10.1016/j.compchemeng.2021.107551_bib0044) 2014; 41
Beykal (10.1016/j.compchemeng.2021.107551_bib0009) 2020; 78
Beykal (10.1016/j.compchemeng.2021.107551_bib0010) 2018; 116
Mistry (10.1016/j.compchemeng.2021.107551_bib0036) 2020; 33
Mitsos (10.1016/j.compchemeng.2021.107551_bib0037) 2010; 47
Lu (10.1016/j.compchemeng.2021.107551_bib0033) 2006; 176
Grossmann (10.1016/j.compchemeng.2021.107551_bib0021) 2005; 51
Dias (10.1016/j.compchemeng.2021.107551_bib0018) 2019; 20
Boukouvala (10.1016/j.compchemeng.2021.107551_bib0014) 2017; 11
Beykal (10.1016/j.compchemeng.2021.107551_bib0012) 2020; 66
Avraamidou (10.1016/j.compchemeng.2021.107551_bib0006) 2019; 47
Grossmann (10.1016/j.compchemeng.2021.107551_bib0022) 2012; 47
Gümüş (10.1016/j.compchemeng.2021.107551_bib0023) 2005; 2
Beykal (10.1016/j.compchemeng.2021.107551_bib0011) 2018; 114
Audet (10.1016/j.compchemeng.2021.107551_bib0001) 2009; 20
Runarsson (10.1016/j.compchemeng.2021.107551_bib0040) 2005; 35
Li (10.1016/j.compchemeng.2021.107551_bib0032) 2009; 64
Papageorgiou (10.1016/j.compchemeng.2021.107551_bib0038) 2009; 33
Kondili (10.1016/j.compchemeng.2021.107551_bib0030) 1987
Sung (10.1016/j.compchemeng.2021.107551_bib0046) 2009; 55
Avraamidou (10.1016/j.compchemeng.2021.107551_bib0005) 2019; 122
Kleniati (10.1016/j.compchemeng.2021.107551_bib0029) 2015; 72
Avraamidou (10.1016/j.compchemeng.2021.107551_bib0004) 2018
Calvete (10.1016/j.compchemeng.2021.107551_bib0015) 2007; 39
Faísca (10.1016/j.compchemeng.2021.107551_bib0020) 2009; 6
Jones (10.1016/j.compchemeng.2021.107551_bib0026) 1998; 13
Ierapetritou (10.1016/j.compchemeng.2021.107551_bib0024) 1998; 37
Li (10.1016/j.compchemeng.2021.107551_bib0031) 2010; 49
Sung (10.1016/j.compchemeng.2021.107551_bib0045) 2007; 53
Katz (10.1016/j.compchemeng.2021.107551_bib0027) 2020; 136
Powell (10.1016/j.compchemeng.2021.107551_bib0039) 1994
Chu (10.1016/j.compchemeng.2021.107551_bib0016) 2015; 72
Cozad (10.1016/j.compchemeng.2021.107551_bib0017) 2014; 60
Lu (10.1016/j.compchemeng.2021.107551_bib0034) 2007; 38
Beykal (10.1016/j.compchemeng.2021.107551_bib0008) 2021; 50
Shi (10.1016/j.compchemeng.2021.107551_bib0043) 2007; 188
Schweidtmann (10.1016/j.compchemeng.2021.107551_bib0042) 2018; 352
Avraamidou (10.1016/j.compchemeng.2021.107551_sbref0003) 2017; 50
Kim (10.1016/j.compchemeng.2021.107551_bib0028) 2020; 140
Maravelias (10.1016/j.compchemeng.2021.107551_bib0035) 2009; 33
Saharidis (10.1016/j.compchemeng.2021.107551_bib0041) 2009; 44
Avraamidou (10.1016/j.compchemeng.2021.107551_bib0002) 2018; 44
References_xml – volume: 78
  start-page: 1
  year: 2020
  end-page: 36
  ident: bib0009
  article-title: DOMINO: data-driven optimization of bi-level mixed-integer nonlinear problems
  publication-title: J. Global Optim.
– volume: 45
  start-page: 299
  year: 2006
  end-page: 315
  ident: bib0019
  article-title: A decomposition method for the simultaneous planning and scheduling of single-stage continuous multiproduct plants
  publication-title: Ind. Eng. Chem. Res.
– volume: 114
  start-page: 99
  year: 2018
  end-page: 110
  ident: bib0011
  article-title: Global optimization of grey-box computational systems using surrogate functions and application to highly constrained oil-field operations
  publication-title: Comput. Chem. Eng.
– volume: 37
  start-page: 4341
  year: 1998
  end-page: 4359
  ident: bib0024
  article-title: Effective continuous-time formulation for short-term scheduling. 1. Multipurpose batch processes
  publication-title: Ind. Eng. Chem. Res.
– volume: 13
  start-page: 455
  year: 1998
  end-page: 492
  ident: bib0026
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Global Optim.
– volume: 6
  start-page: 377
  year: 2009
  end-page: 397
  ident: bib0020
  article-title: A multi-parametric programming approach for multilevel hierarchical and decentralised optimisation problems
  publication-title: Comput. Manag. Sci.
– volume: 33
  start-page: 1931
  year: 2009
  end-page: 1938
  ident: bib0038
  article-title: Supply chain optimisation for the process industries: advances and opportunities
  publication-title: Comput. Chem. Eng.
– start-page: 1056
  year: 2018
  end-page: 1061
  ident: bib0004
  article-title: A novel algorithm for the global solution of mixed-integer bi-level multi-follower problems and its application to planning scheduling integration
  publication-title: 2018 European Control Conference (ECC)
– year: 1987
  ident: bib0030
  publication-title: Optimal Scheduling of Batch Chemical Processes
– volume: 72
  start-page: 373
  year: 2015
  end-page: 386
  ident: bib0029
  article-title: A generalization of the branch-and-sandwich algorithm: from continuous to mixed-integer nonlinear bilevel problems
  publication-title: Comput. Chem. Eng.
– volume: 60
  start-page: 2211
  year: 2014
  end-page: 2227
  ident: bib0017
  article-title: Learning surrogate models for simulation-based optimization
  publication-title: AlChE J.
– volume: 47
  start-page: 2
  year: 2012
  end-page: 18
  ident: bib0022
  article-title: Advances in mathematical programming models for enterprise-wide optimization
  publication-title: Comput. Chem. Eng.
– volume: 72
  start-page: 255
  year: 2015
  end-page: 272
  ident: bib0016
  article-title: Integrated planning and scheduling under production uncertainties: bi-level model formulation and hybrid solution method
  publication-title: Comput. Chem. Eng.
– volume: 55
  start-page: 2614
  year: 2009
  end-page: 2630
  ident: bib0046
  article-title: A projection-based method for production planning of multiproduct facilities
  publication-title: AlChE J.
– volume: 47
  start-page: 557
  year: 2010
  end-page: 582
  ident: bib0037
  article-title: Global solution of nonlinear mixed-integer bilevel programs
  publication-title: J. Global Optim.
– volume: 35
  start-page: 233
  year: 2005
  end-page: 243
  ident: bib0040
  article-title: Search biases in constrained evolutionary optimization
  publication-title: IEEE Trans. Syst., Man, Cybern., Part C
– volume: 53
  start-page: 1298
  year: 2007
  end-page: 1315
  ident: bib0045
  article-title: An attainable region approach for production planning of multiproduct processes
  publication-title: AlChE J.
– volume: 352
  start-page: 277
  year: 2018
  end-page: 282
  ident: bib0042
  article-title: Machine learning meets continuous flow chemistry: automated optimization towards the Pareto front of multiple objectives
  publication-title: Chem. Eng. J.
– volume: 47
  start-page: 17
  year: 2019
  end-page: 22
  ident: bib0006
  article-title: A bi-level formulation and solution method for the integration of process design and scheduling
  publication-title: Computer Aided Chemical Engineering
– volume: 50
  start-page: 1707
  year: 2021
  end-page: 1713
  ident: bib0008
  article-title: Bi-level mixed-integer data-driven optimization of integrated planning and scheduling problems
  publication-title: Computer Aided Chemical Engineering
– volume: 64
  start-page: 3585
  year: 2009
  end-page: 3597
  ident: bib0032
  article-title: Integrated production planning and scheduling using a decomposition framework
  publication-title: Chem. Eng. Sci.
– volume: 33
  start-page: 1919
  year: 2009
  end-page: 1930
  ident: bib0035
  article-title: Integration of production planning and scheduling: overview, challenges and opportunities
  publication-title: Comput. Chem. Eng.
– volume: 125
  start-page: 98
  year: 2019
  end-page: 113
  ident: bib0007
  article-title: A multi-parametric optimization approach for bilevel mixed-integer linear and quadratic programming problems
  publication-title: Comput. Chem. Eng.
– volume: 136
  start-page: 106801
  year: 2020
  ident: bib0027
  article-title: Integrating deep learning models and multiparametric programming
  publication-title: Comput. Chem. Eng.
– volume: 44
  start-page: 1885
  year: 2018
  end-page: 1890
  ident: bib0002
  article-title: A hierarchical food-energy-water nexus (few-n) decision-making approach for land use optimization
  publication-title: Computer Aided Chemical Engineering
– volume: 32
  start-page: 913
  year: 2008
  end-page: 955
  ident: bib0025
  article-title: Improving unit-specific event based continuous-time approaches for batch processes: integrality gap and task splitting
  publication-title: Comput. Chem. Eng.
– volume: 50
  start-page: 10178
  year: 2017
  end-page: 10183
  ident: bib0003
  article-title: A multiparametric mixed-integer bi-level optimization strategy for supply chain planning under demand uncertainty
  publication-title: IFAC-PapersOnLine
– volume: 41
  start-page: 374
  year: 2014
  end-page: 385
  ident: bib0044
  article-title: Finding optimal strategies in a multi-period multi-leader–follower Stackelberg game using an evolutionary algorithm
  publication-title: Comput. Oper. Res.
– volume: 188
  start-page: 1686
  year: 2007
  end-page: 1698
  ident: bib0043
  article-title: The Kth-best approach for linear bilevel multifollower programming with partial shared variables among followers
  publication-title: Appl. Math. Comput.
– volume: 51
  start-page: 1846
  year: 2005
  end-page: 1857
  ident: bib0021
  article-title: Enterprise-wide optimization: a new frontier in process systems engineering
  publication-title: AlChE J.
– volume: 176
  start-page: 1607
  year: 2006
  end-page: 1627
  ident: bib0033
  article-title: On bilevel multi-follower decision making: general framework and solutions
  publication-title: Inf. Sci.
– volume: 66
  start-page: e16657
  year: 2020
  ident: bib0012
  article-title: A data-driven optimization algorithm for differential algebraic equations with numerical infeasibilities
  publication-title: AlChE J.
– volume: 122
  start-page: 193
  year: 2019
  end-page: 202
  ident: bib0005
  article-title: B-POP: bi-level parametric optimization toolbox
  publication-title: Comput. Chem. Eng.
– volume: 116
  start-page: 488
  year: 2018
  end-page: 502
  ident: bib0010
  article-title: Optimal design of energy systems using constrained grey-box multi-objective optimization
  publication-title: Comput. Chem. Eng.
– volume: 49
  start-page: 7446
  year: 2010
  end-page: 7469
  ident: bib0031
  article-title: Optimal event point determination for short-term scheduling of multipurpose batch plants via unit-specific event-based continuous-time approaches
  publication-title: Ind. Eng. Chem. Res.
– volume: 2
  start-page: 181
  year: 2005
  end-page: 212
  ident: bib0023
  article-title: Global optimization of mixed-integer bilevel programming problems
  publication-title: Comput. Manag. Sci.
– volume: 20
  start-page: 1029
  year: 2019
  end-page: 1066
  ident: bib0018
  article-title: Data-driven feasibility analysis for the integration of planning and scheduling problems
  publication-title: Optim. Eng.
– volume: 39
  start-page: 409
  year: 2007
  end-page: 417
  ident: bib0015
  article-title: Linear bilevel multi-follower programming with independent followers
  publication-title: J. Global Optim.
– volume: 38
  start-page: 597
  year: 2007
  end-page: 608
  ident: bib0034
  article-title: Model and extended Kuhn–Tucker approach for bilevel multi-follower decision making in a referential-uncooperative situation
  publication-title: J. Global Optim.
– start-page: 51
  year: 1994
  end-page: 67
  ident: bib0039
  article-title: A direct search optimization method that models the objective and constraint functions by linear interpolation
  publication-title: Advances in Optimization and Numerical Analysis
– volume: 44
  start-page: 29
  year: 2009
  end-page: 51
  ident: bib0041
  article-title: Resolution method for mixed integer bi-level linear problems based on decomposition technique
  publication-title: J. Global Optim.
– volume: 59
  start-page: 16357
  year: 2020
  end-page: 16367
  ident: bib0013
  article-title: Integrated modeling of transfer learning and intelligent heuristic optimization for a steam cracking process
  publication-title: Ind. Eng. Chem. Res.
– volume: 33
  start-page: 1103
  year: 2020
  end-page: 1119
  ident: bib0036
  article-title: Mixed-integer convex nonlinear optimization with gradient-boosted trees embedded
  publication-title: INFORMS J. Comput.
– volume: 20
  start-page: 445
  year: 2009
  end-page: 472
  ident: bib0001
  article-title: A progressive barrier for derivative-free nonlinear programming
  publication-title: SIAM J. Optim.
– volume: 11
  start-page: 895
  year: 2017
  end-page: 913
  ident: bib0014
  article-title: ARGONAUT: algorithms for global optimization of constrained grey-box computational problems
  publication-title: Optim. Lett.
– volume: 140
  start-page: 106847
  year: 2020
  ident: bib0028
  article-title: Surrogate-based optimization for mixed-integer nonlinear problems
  publication-title: Comput. Chem. Eng.
– volume: 72
  start-page: 373
  year: 2015
  ident: 10.1016/j.compchemeng.2021.107551_bib0029
  article-title: A generalization of the branch-and-sandwich algorithm: from continuous to mixed-integer nonlinear bilevel problems
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2014.06.004
– volume: 38
  start-page: 597
  issue: 4
  year: 2007
  ident: 10.1016/j.compchemeng.2021.107551_bib0034
  article-title: Model and extended Kuhn–Tucker approach for bilevel multi-follower decision making in a referential-uncooperative situation
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-006-9098-9
– start-page: 1056
  year: 2018
  ident: 10.1016/j.compchemeng.2021.107551_bib0004
  article-title: A novel algorithm for the global solution of mixed-integer bi-level multi-follower problems and its application to planning scheduling integration
– volume: 50
  start-page: 10178
  issue: 1
  year: 2017
  ident: 10.1016/j.compchemeng.2021.107551_sbref0003
  article-title: A multiparametric mixed-integer bi-level optimization strategy for supply chain planning under demand uncertainty
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2017.08.1766
– volume: 39
  start-page: 409
  issue: 3
  year: 2007
  ident: 10.1016/j.compchemeng.2021.107551_bib0015
  article-title: Linear bilevel multi-follower programming with independent followers
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-007-9144-2
– volume: 44
  start-page: 29
  issue: 1
  year: 2009
  ident: 10.1016/j.compchemeng.2021.107551_bib0041
  article-title: Resolution method for mixed integer bi-level linear problems based on decomposition technique
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-008-9291-0
– volume: 41
  start-page: 374
  year: 2014
  ident: 10.1016/j.compchemeng.2021.107551_bib0044
  article-title: Finding optimal strategies in a multi-period multi-leader–follower Stackelberg game using an evolutionary algorithm
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2013.07.010
– volume: 352
  start-page: 277
  year: 2018
  ident: 10.1016/j.compchemeng.2021.107551_bib0042
  article-title: Machine learning meets continuous flow chemistry: automated optimization towards the Pareto front of multiple objectives
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.07.031
– volume: 47
  start-page: 557
  issue: 4
  year: 2010
  ident: 10.1016/j.compchemeng.2021.107551_bib0037
  article-title: Global solution of nonlinear mixed-integer bilevel programs
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-009-9479-y
– volume: 20
  start-page: 445
  issue: 1
  year: 2009
  ident: 10.1016/j.compchemeng.2021.107551_bib0001
  article-title: A progressive barrier for derivative-free nonlinear programming
  publication-title: SIAM J. Optim.
  doi: 10.1137/070692662
– volume: 20
  start-page: 1029
  issue: 4
  year: 2019
  ident: 10.1016/j.compchemeng.2021.107551_bib0018
  article-title: Data-driven feasibility analysis for the integration of planning and scheduling problems
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-019-09459-w
– volume: 47
  start-page: 2
  year: 2012
  ident: 10.1016/j.compchemeng.2021.107551_bib0022
  article-title: Advances in mathematical programming models for enterprise-wide optimization
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2012.06.038
– volume: 47
  start-page: 17
  year: 2019
  ident: 10.1016/j.compchemeng.2021.107551_bib0006
  article-title: A bi-level formulation and solution method for the integration of process design and scheduling
  doi: 10.1016/B978-0-12-818597-1.50003-5
– volume: 140
  start-page: 106847
  year: 2020
  ident: 10.1016/j.compchemeng.2021.107551_bib0028
  article-title: Surrogate-based optimization for mixed-integer nonlinear problems
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106847
– volume: 33
  start-page: 1931
  issue: 12
  year: 2009
  ident: 10.1016/j.compchemeng.2021.107551_bib0038
  article-title: Supply chain optimisation for the process industries: advances and opportunities
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2009.06.014
– volume: 78
  start-page: 1
  year: 2020
  ident: 10.1016/j.compchemeng.2021.107551_bib0009
  article-title: DOMINO: data-driven optimization of bi-level mixed-integer nonlinear problems
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-020-00890-3
– volume: 32
  start-page: 913
  issue: 4–5
  year: 2008
  ident: 10.1016/j.compchemeng.2021.107551_bib0025
  article-title: Improving unit-specific event based continuous-time approaches for batch processes: integrality gap and task splitting
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2007.03.019
– year: 1987
  ident: 10.1016/j.compchemeng.2021.107551_bib0030
– volume: 176
  start-page: 1607
  issue: 11
  year: 2006
  ident: 10.1016/j.compchemeng.2021.107551_bib0033
  article-title: On bilevel multi-follower decision making: general framework and solutions
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2005.04.010
– volume: 44
  start-page: 1885
  year: 2018
  ident: 10.1016/j.compchemeng.2021.107551_bib0002
  article-title: A hierarchical food-energy-water nexus (few-n) decision-making approach for land use optimization
  doi: 10.1016/B978-0-444-64241-7.50309-8
– volume: 53
  start-page: 1298
  issue: 5
  year: 2007
  ident: 10.1016/j.compchemeng.2021.107551_bib0045
  article-title: An attainable region approach for production planning of multiproduct processes
  publication-title: AlChE J.
  doi: 10.1002/aic.11167
– volume: 6
  start-page: 377
  issue: 4
  year: 2009
  ident: 10.1016/j.compchemeng.2021.107551_bib0020
  article-title: A multi-parametric programming approach for multilevel hierarchical and decentralised optimisation problems
  publication-title: Comput. Manag. Sci.
  doi: 10.1007/s10287-007-0062-z
– volume: 11
  start-page: 895
  issue: 5
  year: 2017
  ident: 10.1016/j.compchemeng.2021.107551_bib0014
  article-title: ARGONAUT: algorithms for global optimization of constrained grey-box computational problems
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-016-1028-2
– volume: 72
  start-page: 255
  year: 2015
  ident: 10.1016/j.compchemeng.2021.107551_bib0016
  article-title: Integrated planning and scheduling under production uncertainties: bi-level model formulation and hybrid solution method
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2014.02.023
– volume: 50
  start-page: 1707
  year: 2021
  ident: 10.1016/j.compchemeng.2021.107551_bib0008
  article-title: Bi-level mixed-integer data-driven optimization of integrated planning and scheduling problems
  doi: 10.1016/B978-0-323-88506-5.50265-5
– volume: 33
  start-page: 1919
  issue: 12
  year: 2009
  ident: 10.1016/j.compchemeng.2021.107551_bib0035
  article-title: Integration of production planning and scheduling: overview, challenges and opportunities
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2009.06.007
– volume: 35
  start-page: 233
  issue: 2
  year: 2005
  ident: 10.1016/j.compchemeng.2021.107551_bib0040
  article-title: Search biases in constrained evolutionary optimization
  publication-title: IEEE Trans. Syst., Man, Cybern., Part C
  doi: 10.1109/TSMCC.2004.841906
– volume: 116
  start-page: 488
  year: 2018
  ident: 10.1016/j.compchemeng.2021.107551_bib0010
  article-title: Optimal design of energy systems using constrained grey-box multi-objective optimization
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2018.02.017
– volume: 51
  start-page: 1846
  issue: 7
  year: 2005
  ident: 10.1016/j.compchemeng.2021.107551_bib0021
  article-title: Enterprise-wide optimization: a new frontier in process systems engineering
  publication-title: AlChE J.
  doi: 10.1002/aic.10617
– volume: 55
  start-page: 2614
  issue: 10
  year: 2009
  ident: 10.1016/j.compchemeng.2021.107551_bib0046
  article-title: A projection-based method for production planning of multiproduct facilities
  publication-title: AlChE J.
  doi: 10.1002/aic.11845
– volume: 188
  start-page: 1686
  issue: 2
  year: 2007
  ident: 10.1016/j.compchemeng.2021.107551_bib0043
  article-title: The Kth-best approach for linear bilevel multifollower programming with partial shared variables among followers
  publication-title: Appl. Math. Comput.
– volume: 2
  start-page: 181
  issue: 3
  year: 2005
  ident: 10.1016/j.compchemeng.2021.107551_bib0023
  article-title: Global optimization of mixed-integer bilevel programming problems
  publication-title: Comput. Manag. Sci.
  doi: 10.1007/s10287-005-0025-1
– volume: 64
  start-page: 3585
  issue: 16
  year: 2009
  ident: 10.1016/j.compchemeng.2021.107551_bib0032
  article-title: Integrated production planning and scheduling using a decomposition framework
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2009.04.047
– volume: 45
  start-page: 299
  issue: 1
  year: 2006
  ident: 10.1016/j.compchemeng.2021.107551_bib0019
  article-title: A decomposition method for the simultaneous planning and scheduling of single-stage continuous multiproduct plants
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie050778z
– volume: 59
  start-page: 16357
  issue: 37
  year: 2020
  ident: 10.1016/j.compchemeng.2021.107551_bib0013
  article-title: Integrated modeling of transfer learning and intelligent heuristic optimization for a steam cracking process
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c02657
– volume: 114
  start-page: 99
  year: 2018
  ident: 10.1016/j.compchemeng.2021.107551_bib0011
  article-title: Global optimization of grey-box computational systems using surrogate functions and application to highly constrained oil-field operations
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2018.01.005
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 10.1016/j.compchemeng.2021.107551_bib0026
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008306431147
– volume: 33
  start-page: 1103
  issue: 3
  year: 2020
  ident: 10.1016/j.compchemeng.2021.107551_bib0036
  article-title: Mixed-integer convex nonlinear optimization with gradient-boosted trees embedded
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2020.0993
– volume: 66
  start-page: e16657
  issue: 10
  year: 2020
  ident: 10.1016/j.compchemeng.2021.107551_bib0012
  article-title: A data-driven optimization algorithm for differential algebraic equations with numerical infeasibilities
  publication-title: AlChE J.
  doi: 10.1002/aic.16657
– volume: 60
  start-page: 2211
  issue: 6
  year: 2014
  ident: 10.1016/j.compchemeng.2021.107551_bib0017
  article-title: Learning surrogate models for simulation-based optimization
  publication-title: AlChE J.
  doi: 10.1002/aic.14418
– volume: 37
  start-page: 4341
  issue: 11
  year: 1998
  ident: 10.1016/j.compchemeng.2021.107551_bib0024
  article-title: Effective continuous-time formulation for short-term scheduling. 1. Multipurpose batch processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie970927g
– volume: 49
  start-page: 7446
  issue: 16
  year: 2010
  ident: 10.1016/j.compchemeng.2021.107551_bib0031
  article-title: Optimal event point determination for short-term scheduling of multipurpose batch plants via unit-specific event-based continuous-time approaches
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie901842k
– volume: 122
  start-page: 193
  year: 2019
  ident: 10.1016/j.compchemeng.2021.107551_bib0005
  article-title: B-POP: bi-level parametric optimization toolbox
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2018.07.007
– start-page: 51
  year: 1994
  ident: 10.1016/j.compchemeng.2021.107551_bib0039
  article-title: A direct search optimization method that models the objective and constraint functions by linear interpolation
– volume: 125
  start-page: 98
  year: 2019
  ident: 10.1016/j.compchemeng.2021.107551_bib0007
  article-title: A multi-parametric optimization approach for bilevel mixed-integer linear and quadratic programming problems
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.01.021
– volume: 136
  start-page: 106801
  year: 2020
  ident: 10.1016/j.compchemeng.2021.107551_bib0027
  article-title: Integrating deep learning models and multiparametric programming
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106801
SSID ssj0002488
Score 2.5260155
Snippet •We present a data-driven algorithm for the solution of integrated planning and scheduling problems under uncertainty.•The proposed algorithm is based upon the...
The coordination of interconnected elements across the different layers of the supply chain is essential for all industrial processes and the key to optimal...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107551
SubjectTerms Bi-level programming
Data-driven optimization
Demand uncertainty
ENGINEERING
Feasibility
Integrated planning and scheduling
MATHEMATICS AND COMPUTING
Stochastic analysis
Title Data-driven optimization of mixed-integer bi-level multi-follower integrated planning and scheduling problems under demand uncertainty
URI https://dx.doi.org/10.1016/j.compchemeng.2021.107551
https://www.ncbi.nlm.nih.gov/pubmed/34720250
https://www.proquest.com/docview/2591225027
https://www.osti.gov/servlets/purl/1977011
https://pubmed.ncbi.nlm.nih.gov/PMC8553017
Volume 156
WOSCitedRecordID wos000708661000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: AIEXJ
  dateStart: 19950611
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DiF4QNwpg8mTeJsyNc7FjsTLBEWA0ITEkPoWOb5o3dqkSpuq-wP8BH4vx3Gug0lFiJeoSnySOufLOT728XcQehNyoQWVicOgheMLVzmRlIETyLEMhRsJKUp2_S_07IxNp9HXweBnvRdmM6dpyrbbaPlfVQ3nQNlm6-xfqLu5KZyA36B0OILa4biT4t_zNXdkbqzYcQYGYVHttCxX0mdbJZ2SIkLlx8nMmZucIZtV6GiAhKmZ1lJISFNkuqxpVK4xQCAMjqnav17WoVmVZXRNjfGFaQA-0mYYrHuLxXXliFWJM1FTFKiWCrGZFFDXV9yugxS5KBo0bnLOFzOZFTYx7drMzcwaq27M1FW2zIq5zRmc6IoMGGz4SXdag5Ab0xrNfps2uam03xHEvJ6lnW7st2Um_80X2GmJS6PKpeka9OoEnuTCFRpULLd9qu1v5v7m9hAHjz0STffQPqFBBAZ___TTZPq58fHEZ6xmYzUCd9FRmzl4ywNvG_kMM3hLfwpwbubpdgY-5w_RgypiwacWaY_QQKWP0f0Oj-UT9KODOdzFHM407mEO15jDfczhFnO4xhwGSOEWc7jGHC4xhy3mcAdzT9H3D5Pzdx-dqsCHI8AVrB3mhSIRMqGEh4R7XhJQV0TKo4pq4iaeJoHWWoK9CCj1hJ8QLiImFIu4yxgMv56hYZql6gXCHk80H2svdEPia-5yX_njBMIXzYNQhmyEWP3yY1Gx35siLPO4TnO8jDt6i43eYqu3ESKN6NJSwOwi9LbWcFyNZe0YNQZ47iJ-YFBhRA2XszBJbyDrQrQGDnmEjmqwxOANzBIfT1VWrGICYAUPPSZ0hJ5b8DT_2fMpMRHPCNEerJoGhmm-fyWdXZSM88wUF3Ppy3_r1AG6137pr9BwnRfqNbojNuvZKj9Ee3TKDqsP7RcFKwrQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+optimization+of+mixed-integer+bi-level+multi-follower+integrated+planning+and+scheduling+problems+under+demand+uncertainty&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Beykal%2C+Burcu&rft.au=Avraamidou%2C+Styliani&rft.au=Pistikopoulos%2C+Efstratios+N.&rft.date=2022-01-01&rft.pub=Elsevier+Ltd&rft.issn=0098-1354&rft.volume=156&rft_id=info:doi/10.1016%2Fj.compchemeng.2021.107551&rft.externalDocID=S009813542100329X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon