A generalized linear mixed model association tool for biobank-scale data

Compared with linear mixed model-based genome-wide association (GWA) methods, generalized linear mixed model (GLMM)-based methods have better statistical properties when applied to binary traits but are computationally much slower. In the present study, leveraging efficient sparse matrix-based algor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature genetics Ročník 53; číslo 11; s. 1616 - 1621
Hlavní autoři: Jiang, Longda, Zheng, Zhili, Fang, Hailing, Yang, Jian
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Nature Publishing Group US 01.11.2021
Nature Publishing Group
Témata:
ISSN:1061-4036, 1546-1718, 1546-1718
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Compared with linear mixed model-based genome-wide association (GWA) methods, generalized linear mixed model (GLMM)-based methods have better statistical properties when applied to binary traits but are computationally much slower. In the present study, leveraging efficient sparse matrix-based algorithms, we developed a GLMM-based GWA tool, fastGWA-GLMM, that is severalfold to orders of magnitude faster than the state-of-the-art tools when applied to the UK Biobank (UKB) data and scalable to cohorts with millions of individuals. We show by simulation that the fastGWA-GLMM test statistics of both common and rare variants are well calibrated under the null, even for traits with extreme case–control ratios. We applied fastGWA-GLMM to the UKB data of 456,348 individuals, 11,842,647 variants and 2,989 binary traits (full summary statistics available at http://fastgwa.info/ukbimpbin ), and identified 259 rare variants associated with 75 traits, demonstrating the use of imputed genotype data in a large cohort to discover rare variants for binary complex traits. FastGWA-GLMM is a fast, scalable generalized linear mixed model method for genetic association testing for binary traits in large cohorts that is robust to variant frequency and case–control imbalance.
AbstractList Compared with linear mixed model-based genome-wide association (GWA) methods, generalized linear mixed model (GLMM)-based methods have better statistical properties when applied to binary traits but are computationally much slower. In the present study, leveraging efficient sparse matrix-based algorithms, we developed a GLMM-based GWA tool, fastGWA-GLMM, that is severalfold to orders of magnitude faster than the state-of-the-art tools when applied to the UK Biobank (UKB) data and scalable to cohorts with millions of individuals. We show by simulation that the fastGWA-GLMM test statistics of both common and rare variants are well calibrated under the null, even for traits with extreme case-control ratios. We applied fastGWA-GLMM to the UKB data of 456,348 individuals, 11,842,647 variants and 2,989 binary traits (full summary statistics available at http://fastgwa.info/ukbimpbin), and identified 259 rare variants associated with 75 traits, demonstrating the use of imputed genotype data in a large cohort to discover rare variants for binary complex traits.
Compared with linear mixed model-based genome-wide association (GWA) methods, generalized linear mixed model (GLMM)-based methods have better statistical properties when applied to binary traits but are computationally much slower. In the present study, leveraging efficient sparse matrix-based algorithms, we developed a GLMM-based GWA tool, fastGWA-GLMM, that is severalfold to orders of magnitude faster than the state-of-the-art tools when applied to the UK Biobank (UKB) data and scalable to cohorts with millions of individuals. We show by simulation that the fastGWA-GLMM test statistics of both common and rare variants are well calibrated under the null, even for traits with extreme case–control ratios. We applied fastGWA-GLMM to the UKB data of 456,348 individuals, 11,842,647 variants and 2,989 binary traits (full summary statistics available at http://fastgwa.info/ukbimpbin ), and identified 259 rare variants associated with 75 traits, demonstrating the use of imputed genotype data in a large cohort to discover rare variants for binary complex traits. FastGWA-GLMM is a fast, scalable generalized linear mixed model method for genetic association testing for binary traits in large cohorts that is robust to variant frequency and case–control imbalance.
Compared with linear mixed model-based genome-wide association (GWA) methods, generalized linear mixed model (GLMM)-based methods have better statistical properties when applied to binary traits but are computationally much slower. In the present study, leveraging efficient sparse matrix-based algorithms, we developed a GLMM-based GWA tool, fastGWA-GLMM, that is severalfold to orders of magnitude faster than the state-of-the-art tools when applied to the UK Biobank (UKB) data and scalable to cohorts with millions of individuals. We show by simulation that the fastGWA-GLMM test statistics of both common and rare variants are well calibrated under the null, even for traits with extreme case-control ratios. We applied fastGWA-GLMM to the UKB data of 456,348 individuals, 11,842,647 variants and 2,989 binary traits (full summary statistics available at FastGWA-GLMM is a fast, scalable generalized linear mixed model method for genetic association testing for binary traits in large cohorts that is robust to variant frequency and case-control imbalance.
Compared with linear mixed model-based genome-wide association (GWA) methods, generalized linear mixed model (GLMM)-based methods have better statistical properties when applied to binary traits but are computationally much slower. In the present study, leveraging efficient sparse matrix-based algorithms, we developed a GLMM-based GWA tool, fastGWA-GLMM, that is severalfold to orders of magnitude faster than the state-of-the-art tools when applied to the UK Biobank (UKB) data and scalable to cohorts with millions of individuals. We show by simulation that the fastGWA-GLMM test statistics of both common and rare variants are well calibrated under the null, even for traits with extreme case-control ratios. We applied fastGWA-GLMM to the UKB data of 456,348 individuals, 11,842,647 variants and 2,989 binary traits (full summary statistics available at http://fastgwa.info/ukbimpbin ), and identified 259 rare variants associated with 75 traits, demonstrating the use of imputed genotype data in a large cohort to discover rare variants for binary complex traits.Compared with linear mixed model-based genome-wide association (GWA) methods, generalized linear mixed model (GLMM)-based methods have better statistical properties when applied to binary traits but are computationally much slower. In the present study, leveraging efficient sparse matrix-based algorithms, we developed a GLMM-based GWA tool, fastGWA-GLMM, that is severalfold to orders of magnitude faster than the state-of-the-art tools when applied to the UK Biobank (UKB) data and scalable to cohorts with millions of individuals. We show by simulation that the fastGWA-GLMM test statistics of both common and rare variants are well calibrated under the null, even for traits with extreme case-control ratios. We applied fastGWA-GLMM to the UKB data of 456,348 individuals, 11,842,647 variants and 2,989 binary traits (full summary statistics available at http://fastgwa.info/ukbimpbin ), and identified 259 rare variants associated with 75 traits, demonstrating the use of imputed genotype data in a large cohort to discover rare variants for binary complex traits.
Audience Academic
Author Fang, Hailing
Yang, Jian
Zheng, Zhili
Jiang, Longda
Author_xml – sequence: 1
  givenname: Longda
  surname: Jiang
  fullname: Jiang, Longda
  organization: Institute for Molecular Bioscience, University of Queensland, School of Life Sciences, Westlake University
– sequence: 2
  givenname: Zhili
  surname: Zheng
  fullname: Zheng, Zhili
  organization: Institute for Molecular Bioscience, University of Queensland
– sequence: 3
  givenname: Hailing
  surname: Fang
  fullname: Fang, Hailing
  organization: School of Life Sciences, Westlake University, Westlake Laboratory of Life Sciences and Biomedicine
– sequence: 4
  givenname: Jian
  orcidid: 0000-0003-2001-2474
  surname: Yang
  fullname: Yang, Jian
  email: jian.yang@westlake.edu.cn
  organization: Institute for Molecular Bioscience, University of Queensland, School of Life Sciences, Westlake University, Westlake Laboratory of Life Sciences and Biomedicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34737426$$D View this record in MEDLINE/PubMed
BookMark eNqNkltrHSEUhaWkNJf2D_ShDPSlfTBVxxn18RDaJhAI9PYqju45mDqa6gyk_fX1nJMQTiih-OCFby32dq9jdBBTBIReU3JKSSs_FE47KTFhFBOiOo75M3REO95jKqg8qGfSU8xJ2x-i41KuCaGcE_kCHbZctIKz_gidr5o1RMgm-D_gmuAjmNxM_rZepuQgNKaUZL2ZfYrNnFJoxpSbwafBxJ-4WBOgcWY2L9Hz0YQCr-72E_T908dvZ-f48urzxdnqEtuOkhlLOlChnJWs7ZQRShJhLFNDZ3tG2NgK0TtmpeoHZ52AlnIggihBiXADdGN7gt7tfG9y-rVAmfXki4UQTIS0FM06xZlitbuKvn2EXqclx1rdlhK0Yv0Dta6taB_HNGdjN6Z61UvKGRFs43X6D6ouB5O3dS6jr-97gvd7gsrMcDuvzVKKvvj65f_Zqx_77Ju7ppZhAqdvsp9M_q3vR1oBuQNsTqVkGLX183Z8tWIfNCV6kx69S4-u6dHb9GhepeyR9N79SVG7E5UKxzXkh19-QvUXjUnQ5A
CitedBy_id crossref_primary_10_1186_s12993_025_00278_x
crossref_primary_10_1002_advs_202506032
crossref_primary_10_3389_fmicb_2024_1310444
crossref_primary_10_3389_fneur_2024_1413015
crossref_primary_10_3389_fnut_2024_1430280
crossref_primary_10_1016_j_ebiom_2025_105821
crossref_primary_10_12998_wjcc_v12_i14_2359
crossref_primary_10_1007_s11469_024_01315_y
crossref_primary_10_3389_fcvm_2023_1030257
crossref_primary_10_1186_s13027_025_00693_9
crossref_primary_10_3389_fmicb_2023_1181328
crossref_primary_10_1038_s41467_022_34932_z
crossref_primary_10_1038_s41598_025_12369_w
crossref_primary_10_3390_healthcare13091085
crossref_primary_10_3389_fendo_2024_1338465
crossref_primary_10_1186_s12876_024_03386_6
crossref_primary_10_1186_s12916_024_03352_9
crossref_primary_10_3389_fmed_2024_1439344
crossref_primary_10_3389_fnut_2024_1433545
crossref_primary_10_1016_j_leukres_2025_107723
crossref_primary_10_1371_journal_pone_0300500
crossref_primary_10_1038_s41467_023_36678_8
crossref_primary_10_1016_j_cyto_2023_156470
crossref_primary_10_1007_s12029_025_01173_4
crossref_primary_10_1186_s12859_023_05468_w
crossref_primary_10_1038_s41562_024_02076_3
crossref_primary_10_3389_fimmu_2024_1454263
crossref_primary_10_3389_fmed_2023_1108358
crossref_primary_10_1093_nsr_nwaf048
crossref_primary_10_1111_1756_185X_70158
crossref_primary_10_1186_s12933_023_02086_x
crossref_primary_10_1002_alz_14121
crossref_primary_10_1038_s41588_025_02329_5
crossref_primary_10_1007_s10519_022_10131_w
crossref_primary_10_1016_j_molp_2022_02_012
crossref_primary_10_1016_j_xops_2025_100819
crossref_primary_10_1038_s41598_024_83795_5
crossref_primary_10_3389_fendo_2024_1275699
crossref_primary_10_1016_j_micpath_2025_107329
crossref_primary_10_3390_ijms25094667
crossref_primary_10_1186_s12884_024_06376_4
crossref_primary_10_3389_fimmu_2024_1335675
crossref_primary_10_1002_ijgo_16029
crossref_primary_10_1016_j_ajhg_2022_08_003
crossref_primary_10_1111_jocd_70211
crossref_primary_10_1111_liv_15455
crossref_primary_10_1016_j_xplc_2025_101385
crossref_primary_10_1038_s41467_024_55706_9
crossref_primary_10_1007_s00335_025_10153_9
crossref_primary_10_1007_s00438_025_02284_0
crossref_primary_10_1186_s12967_025_06670_5
crossref_primary_10_1016_j_jad_2024_01_196
crossref_primary_10_1038_s42003_024_06096_7
crossref_primary_10_2147_CCID_S456126
crossref_primary_10_1007_s12020_023_03584_4
crossref_primary_10_1038_s41562_023_01792_6
crossref_primary_10_1038_s41586_023_06893_w
crossref_primary_10_1136_gutjnl_2023_330364
crossref_primary_10_1111_liv_15905
crossref_primary_10_1186_s13578_024_01214_8
crossref_primary_10_1007_s12672_025_02367_9
crossref_primary_10_1007_s10620_025_08854_x
crossref_primary_10_1159_000538058
crossref_primary_10_1039_D4FO05696E
crossref_primary_10_3390_genes14101962
crossref_primary_10_1111_liv_15466
crossref_primary_10_1007_s12672_025_02415_4
crossref_primary_10_3389_fnagi_2023_1253791
crossref_primary_10_3389_fpsyt_2023_1196055
crossref_primary_10_1016_j_heliyon_2024_e35649
crossref_primary_10_1038_s41586_023_06250_x
crossref_primary_10_3389_fonc_2024_1381803
crossref_primary_10_3390_biomedicines12122828
crossref_primary_10_1038_s41525_025_00509_0
crossref_primary_10_1080_09286586_2025_2546322
crossref_primary_10_1097_MD_0000000000041757
crossref_primary_10_1371_journal_pmed_1004247
crossref_primary_10_3389_fimmu_2023_1249017
crossref_primary_10_3389_fnut_2022_1021942
crossref_primary_10_1038_s41598_024_68205_0
crossref_primary_10_1007_s12672_025_02250_7
crossref_primary_10_1111_srt_13905
crossref_primary_10_1038_s41531_024_00861_5
crossref_primary_10_1371_journal_pone_0290389
crossref_primary_10_3390_biom13111592
crossref_primary_10_1186_s12885_024_12525_x
crossref_primary_10_1038_s41588_022_01225_6
crossref_primary_10_1016_j_joca_2024_12_006
crossref_primary_10_1016_j_compbiomed_2024_108346
crossref_primary_10_1136_gutjnl_2022_329307
crossref_primary_10_1186_s40001_023_01236_x
crossref_primary_10_3390_genes14101871
crossref_primary_10_1002_ijc_34690
crossref_primary_10_1055_s_0044_1790259
crossref_primary_10_1186_s13073_024_01397_2
crossref_primary_10_1186_s12905_024_03234_5
crossref_primary_10_1186_s12967_024_05478_z
crossref_primary_10_3389_fneur_2024_1425327
crossref_primary_10_1007_s00335_025_10154_8
crossref_primary_10_1111_jcmm_18559
crossref_primary_10_1186_s13018_024_05031_0
crossref_primary_10_1016_j_jmoldx_2023_07_005
crossref_primary_10_3390_genes15040413
crossref_primary_10_1186_s13098_025_01672_1
crossref_primary_10_1016_j_medj_2024_07_013
crossref_primary_10_1097_MD_0000000000040876
crossref_primary_10_1186_s12885_025_14327_1
crossref_primary_10_1038_s41588_022_01251_4
crossref_primary_10_1186_s13148_024_01732_9
crossref_primary_10_1136_gutjnl_2024_331904
crossref_primary_10_1159_000545550
crossref_primary_10_1109_ACCESS_2024_3384309
crossref_primary_10_1007_s10067_025_07590_x
crossref_primary_10_3389_fgene_2023_1256833
crossref_primary_10_1002_brb3_70696
crossref_primary_10_1093_bib_bbaf123
crossref_primary_10_1136_ard_2023_224420
crossref_primary_10_1186_s12884_024_07077_8
crossref_primary_10_3389_fendo_2024_1413777
crossref_primary_10_1016_j_ejim_2023_10_018
crossref_primary_10_1371_journal_pcbi_1010172
crossref_primary_10_3389_fmed_2024_1422267
crossref_primary_10_1093_nargab_lqae015
crossref_primary_10_3390_ijms24043925
crossref_primary_10_3389_fgene_2024_1404215
crossref_primary_10_3389_fnins_2024_1398412
crossref_primary_10_1080_0886022X_2024_2386146
crossref_primary_10_1097_MD_0000000000043916
crossref_primary_10_3389_fgene_2023_1098616
crossref_primary_10_1089_cmb_2022_0067
crossref_primary_10_1167_tvst_14_5_15
crossref_primary_10_1002_wics_1617
crossref_primary_10_1016_j_heliyon_2023_e22999
crossref_primary_10_1186_s12944_024_02337_0
crossref_primary_10_3389_fimmu_2023_1285106
crossref_primary_10_4251_wjgo_v17_i7_108455
crossref_primary_10_3389_fpls_2023_1116214
crossref_primary_10_1186_s12985_024_02480_1
crossref_primary_10_1080_16078454_2025_2541447
crossref_primary_10_1093_bfgp_elad025
crossref_primary_10_1097_MD_0000000000039628
crossref_primary_10_1016_j_nut_2025_112738
crossref_primary_10_1038_s42003_025_07860_z
crossref_primary_10_1016_j_apjo_2024_100068
crossref_primary_10_1038_s41598_024_79821_1
crossref_primary_10_1093_bib_bbaf032
crossref_primary_10_1093_nar_gkad939
crossref_primary_10_1007_s00404_024_07482_6
crossref_primary_10_1038_s41467_025_62826_3
crossref_primary_10_1007_s00403_025_04256_1
crossref_primary_10_1016_j_cels_2022_08_001
crossref_primary_10_1371_journal_pgen_1010584
crossref_primary_10_1038_s41398_024_03121_5
crossref_primary_10_1007_s00431_025_06287_2
crossref_primary_10_1097_JS9_0000000000001514
crossref_primary_10_3390_genes14030653
crossref_primary_10_3389_fmed_2024_1380938
crossref_primary_10_1038_s41467_023_42897_w
crossref_primary_10_1038_s43587_024_00762_5
crossref_primary_10_1080_10641963_2025_2539180
crossref_primary_10_1186_s13148_024_01720_z
crossref_primary_10_1007_s10067_024_07094_0
crossref_primary_10_3389_fpls_2023_1196754
crossref_primary_10_1038_s41562_022_01438_z
crossref_primary_10_1038_s41467_023_42532_8
crossref_primary_10_1007_s00439_022_02514_0
crossref_primary_10_3390_biology14070777
crossref_primary_10_1093_bib_bbae290
crossref_primary_10_1093_nar_gkad1080
crossref_primary_10_1134_S1022795424700418
crossref_primary_10_1186_s12967_024_05077_y
crossref_primary_10_3389_fgene_2022_765502
crossref_primary_10_1002_cam4_7300
crossref_primary_10_1093_bib_bbac547
crossref_primary_10_1007_s43657_024_00159_9
crossref_primary_10_1021_acs_jproteome_5c00527
crossref_primary_10_3390_genes16091085
crossref_primary_10_1177_10760296251328011
crossref_primary_10_1016_j_jad_2025_05_024
crossref_primary_10_1038_s41551_025_01412_w
crossref_primary_10_1186_s40001_022_00900_y
crossref_primary_10_1038_s41467_023_36491_3
crossref_primary_10_2147_NSS_S458491
crossref_primary_10_1002_alz_70277
crossref_primary_10_1038_s42003_024_06299_y
crossref_primary_10_1007_s00198_023_07013_0
crossref_primary_10_1016_j_ebiom_2024_104977
crossref_primary_10_1038_s41588_024_02044_7
crossref_primary_10_1038_s41420_023_01777_4
crossref_primary_10_1016_j_diabres_2024_111679
crossref_primary_10_1002_brb3_70545
crossref_primary_10_1038_s41467_025_62945_x
crossref_primary_10_1159_000533413
crossref_primary_10_1038_s41598_025_92153_y
crossref_primary_10_1080_07420528_2025_2479098
crossref_primary_10_1371_journal_pcbi_1009948
crossref_primary_10_1002_hsr2_1413
crossref_primary_10_1080_07853890_2023_2281658
crossref_primary_10_1186_s10194_024_01820_4
crossref_primary_10_1186_s12885_024_12906_2
crossref_primary_10_1002_jmv_28585
crossref_primary_10_1007_s12672_024_01061_6
crossref_primary_10_1038_s41467_025_62338_0
crossref_primary_10_1038_s41598_023_43320_6
crossref_primary_10_1038_s41598_025_87651_y
crossref_primary_10_1097_MD_0000000000041802
crossref_primary_10_3389_fpls_2023_1247181
crossref_primary_10_1038_s41467_024_47505_z
crossref_primary_10_1371_journal_pone_0328811
crossref_primary_10_1016_j_heliyon_2024_e24109
crossref_primary_10_1371_journal_pone_0298998
crossref_primary_10_3389_fnins_2023_1321246
crossref_primary_10_3390_ijms24055019
crossref_primary_10_3389_fendo_2024_1417896
crossref_primary_10_1016_j_heliyon_2024_e33085
crossref_primary_10_1016_j_jia_2024_08_011
crossref_primary_10_1007_s00394_025_03743_5
crossref_primary_10_1161_JAHA_123_031377
crossref_primary_10_3389_fonc_2023_1203685
crossref_primary_10_3389_fnut_2024_1395801
crossref_primary_10_1093_bjd_ljaf277
crossref_primary_10_1097_MD_0000000000042593
crossref_primary_10_1016_j_jaci_2025_06_032
crossref_primary_10_1038_s41598_025_90104_1
crossref_primary_10_3389_fnins_2023_1186312
crossref_primary_10_1186_s40246_024_00583_y
crossref_primary_10_1007_s12029_025_01226_8
crossref_primary_10_1080_09603123_2025_2490187
crossref_primary_10_1136_jmg_2024_110467
crossref_primary_10_3389_fmicb_2023_1288525
crossref_primary_10_1038_s44220_024_00272_8
crossref_primary_10_1080_0886022X_2025_2479177
crossref_primary_10_3389_fendo_2024_1436823
crossref_primary_10_1038_s41467_025_62459_6
crossref_primary_10_1038_s41588_023_01626_1
crossref_primary_10_1097_MD_0000000000041815
crossref_primary_10_3389_fgene_2025_1556907
crossref_primary_10_1038_s41386_024_01833_2
crossref_primary_10_3389_fnut_2024_1435435
crossref_primary_10_2174_0115672026380807250530112524
crossref_primary_10_3390_biom14111467
crossref_primary_10_1016_j_ijcrp_2025_200426
crossref_primary_10_1186_s10020_024_00999_1
crossref_primary_10_3390_ijms26136201
crossref_primary_10_3390_ijms26136441
crossref_primary_10_1210_clinem_dgae166
crossref_primary_10_1016_j_identj_2024_09_015
crossref_primary_10_1038_s41598_024_66535_7
crossref_primary_10_12998_wjcc_v12_i5_891
crossref_primary_10_3389_fgene_2022_897210
crossref_primary_10_3389_fpubh_2024_1454185
crossref_primary_10_1162_imag_a_00346
crossref_primary_10_3389_fnut_2024_1408647
crossref_primary_10_1186_s13098_024_01424_7
crossref_primary_10_3389_fcvm_2024_1304986
crossref_primary_10_3389_fendo_2024_1377755
crossref_primary_10_1038_s41467_024_50612_6
crossref_primary_10_3389_fmicb_2024_1447729
crossref_primary_10_1016_j_xhgg_2025_100465
crossref_primary_10_1186_s12876_024_03576_2
crossref_primary_10_1038_s41467_024_49430_7
crossref_primary_10_1038_s41467_025_63236_1
crossref_primary_10_1038_s43856_024_00473_3
crossref_primary_10_1128_spectrum_02263_24
crossref_primary_10_1186_s12903_024_05407_y
crossref_primary_10_1038_s41598_025_07989_1
crossref_primary_10_1016_j_arbres_2024_10_003
crossref_primary_10_3390_ijms26094152
crossref_primary_10_1016_j_jad_2025_119989
crossref_primary_10_1038_s42003_025_07767_9
crossref_primary_10_1038_s41467_025_58684_8
crossref_primary_10_1038_s41598_024_69543_9
crossref_primary_10_1186_s12890_025_03641_w
crossref_primary_10_3389_fendo_2025_1416993
crossref_primary_10_1093_genetics_iyaf019
crossref_primary_10_1016_j_exger_2025_112860
crossref_primary_10_1038_s41398_024_03056_x
crossref_primary_10_1007_s00438_024_02214_6
crossref_primary_10_1007_s12672_025_03367_5
crossref_primary_10_1002_cam4_6829
crossref_primary_10_1055_a_2308_2290
crossref_primary_10_1186_s12929_022_00822_1
crossref_primary_10_1016_j_heliyon_2024_e36023
crossref_primary_10_1016_j_jaci_2025_03_012
crossref_primary_10_3389_fendo_2023_1251167
crossref_primary_10_1016_j_metabol_2023_155611
crossref_primary_10_1016_j_tvjl_2024_106251
crossref_primary_10_1002_art_42918
crossref_primary_10_1111_dom_14877
crossref_primary_10_1186_s13098_024_01519_1
crossref_primary_10_1038_s41588_023_01409_8
crossref_primary_10_1177_13872877251340078
crossref_primary_10_1038_s41598_024_52471_z
crossref_primary_10_1002_ggn2_202300192
crossref_primary_10_1007_s00520_024_08682_1
crossref_primary_10_1007_s00784_025_06359_5
crossref_primary_10_1038_s41588_023_01342_w
crossref_primary_10_1038_s41598_025_92083_9
crossref_primary_10_1097_MD_0000000000041323
crossref_primary_10_2147_ITT_S456326
crossref_primary_10_1038_s41467_025_56669_1
crossref_primary_10_1016_j_jia_2025_09_008
crossref_primary_10_5004_dwt_2023_29682
crossref_primary_10_1016_j_ajhg_2022_12_011
crossref_primary_10_3390_jcm12031106
crossref_primary_10_1136_jech_2024_222158
crossref_primary_10_18632_aging_206293
crossref_primary_10_1016_j_athplu_2024_11_002
crossref_primary_10_1111_1440_1681_13905
crossref_primary_10_1186_s13075_023_03129_0
crossref_primary_10_3390_jcm13082247
crossref_primary_10_1038_s41598_025_85338_y
crossref_primary_10_1007_s00198_023_06996_0
crossref_primary_10_1186_s12969_024_00986_0
crossref_primary_10_1001_jamadermatol_2023_2217
crossref_primary_10_1186_s12903_023_03575_x
crossref_primary_10_1097_MD_0000000000040122
crossref_primary_10_1126_science_add8655
crossref_primary_10_1038_s41467_024_55147_4
crossref_primary_10_1097_QAD_0000000000003647
crossref_primary_10_1016_j_clnu_2023_04_026
crossref_primary_10_1016_j_jri_2024_104319
crossref_primary_10_1134_S1022795424701126
crossref_primary_10_1186_s12967_022_03817_6
crossref_primary_10_1007_s12020_024_03933_x
crossref_primary_10_3389_fmicb_2024_1434117
crossref_primary_10_3389_fcell_2023_1125233
crossref_primary_10_1016_j_isci_2023_108150
crossref_primary_10_12688_wellcomeopenres_24365_1
crossref_primary_10_1097_PR9_0000000000001218
crossref_primary_10_1038_s41698_025_00895_9
crossref_primary_10_1161_JAHA_125_042081
crossref_primary_10_3389_fimmu_2024_1416562
crossref_primary_10_3389_fmicb_2024_1447877
crossref_primary_10_1016_j_arbres_2024_11_016
crossref_primary_10_1038_s43856_025_01077_1
crossref_primary_10_1111_jcmm_18255
crossref_primary_10_3389_fmicb_2023_1276046
crossref_primary_10_3390_jcm13247670
crossref_primary_10_1038_s41467_024_51824_6
crossref_primary_10_1038_s41598_025_00483_8
crossref_primary_10_1016_j_chom_2025_08_004
crossref_primary_10_1016_j_tjpad_2025_100129
crossref_primary_10_1097_MD_0000000000042199
crossref_primary_10_3390_nu14163274
crossref_primary_10_1093_bib_bbac038
crossref_primary_10_1038_s41598_023_47555_1
crossref_primary_10_1007_s10048_024_00792_6
crossref_primary_10_3389_fmed_2024_1382836
crossref_primary_10_1007_s00592_024_02414_x
crossref_primary_10_1111_pcn_13731
crossref_primary_10_1080_13510002_2025_2534745
crossref_primary_10_1038_s41598_025_86222_5
crossref_primary_10_3390_biomedicines12040866
crossref_primary_10_1161_JAHA_124_035936
crossref_primary_10_1097_MD_0000000000044395
crossref_primary_10_1016_j_exger_2025_112825
crossref_primary_10_1007_s13258_023_01446_x
crossref_primary_10_1186_s12883_025_04079_7
crossref_primary_10_1016_j_isci_2023_107958
crossref_primary_10_1016_j_wneu_2025_124015
crossref_primary_10_1016_j_jaut_2024_103355
crossref_primary_10_3390_ijms25115981
crossref_primary_10_3389_fimmu_2024_1395580
crossref_primary_10_1038_s41467_025_57760_3
crossref_primary_10_3168_jds_2022_22392
crossref_primary_10_3389_fimmu_2024_1374787
crossref_primary_10_3389_fimmu_2024_1452743
crossref_primary_10_3389_fmicb_2024_1342653
crossref_primary_10_4251_wjgo_v16_i4_1319
crossref_primary_10_1007_s12672_025_02777_9
crossref_primary_10_1038_s41591_024_02858_2
crossref_primary_10_1111_pcmr_13183
Cites_doi 10.1158/1055-9965.EPI-12-0495
10.1534/genetics.117.300360
10.1164/rccm.200607-909OC
10.1093/biomet/82.1.81
10.1056/NEJMoa1110000
10.1038/s41467-019-12653-0
10.1038/ng1702
10.1002/gepi.22032
10.1186/s13059-017-1216-0
10.1016/j.ajhg.2016.02.012
10.1186/s13742-015-0047-8
10.1038/ng.2310
10.1038/ncomms10162
10.1016/j.ajhg.2010.11.011
10.1016/j.ajhg.2017.05.014
10.2196/14325
10.1038/ng.887
10.1016/j.eururo.2012.07.027
10.1038/ng.3643
10.1534/genetics.107.080101
10.1093/biomet/86.4.929
10.1038/s41588-018-0144-6
10.1038/s41586-018-0579-z
10.1093/bioinformatics/btx299
10.1038/ng.3190
10.1038/s41588-018-0184-y
10.1016/j.molmed.2004.08.004
10.1038/ng.3622
10.1016/j.cell.2016.10.042
10.1038/ng.2876
10.1038/ng.548
10.1038/ng.3874
10.1038/ng.546
10.1038/ng.3949
10.1214/12-AOAS586
10.1038/s41588-019-0556-y
10.1016/j.ajhg.2019.01.002
10.1038/s41588-020-0621-6
10.1038/ng.2410
10.1038/nature14962
10.1038/s41588-018-0090-3
10.1038/s41588-019-0530-8
10.5281/zenodo.5501110
10.1101/308296
10.1093/ije/dyx204
10.2307/2533274
10.1038/s41588-021-00870-7
10.5281/zenodo.5226943
10.2307/2530744
10.1016/j.biopsych.2021.04.018
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
COPYRIGHT 2021 Nature Publishing Group
Copyright Nature Publishing Group Nov 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
– notice: 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: Copyright Nature Publishing Group Nov 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QL
7QP
7QR
7SS
7T7
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
DOI 10.1038/s41588-021-00954-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Research Library Prep

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Statistics
EISSN 1546-1718
EndPage 1621
ExternalDocumentID A681420722
34737426
10_1038_s41588_021_00954_4
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom
Australia
GeographicLocations_xml – name: United Kingdom
– name: Australia
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_PC_17228
– fundername: Medical Research Council
  grantid: MC_QA137853
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AAHBH
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABTAH
ABUWG
ACBWK
ACGFO
ACGFS
ACIWK
ACMJI
ACNCT
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IH2
IHR
INH
INR
IOV
ISR
ITC
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M7P
MVM
N9A
NADUK
NNMJJ
NXXTH
ODYON
P2P
PKN
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
UKHRP
VQA
X7M
XJT
XOL
Y6R
YHZ
ZGI
ZXP
ZY4
~8M
~KM
AAYXX
ABFSG
ACSTC
AETEA
AEZWR
AFANA
AFFHD
AFHIU
AGSTI
AHWEU
AIEIU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7QL
7QP
7QR
7SS
7T7
7TK
7TM
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c510t-81b179dc82359a79807ac29b5c6202f3776d2c896bdcd7e314e07097107dbe5f3
IEDL.DBID M7P
ISICitedReferencesCount 433
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000731665900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1061-4036
1546-1718
IngestDate Wed Oct 01 14:27:41 EDT 2025
Mon Oct 06 17:16:19 EDT 2025
Sat Nov 29 13:15:16 EST 2025
Sat Nov 29 10:20:13 EST 2025
Wed Nov 26 10:43:19 EST 2025
Wed Nov 26 10:43:52 EST 2025
Mon Jul 21 06:03:18 EDT 2025
Sat Nov 29 03:07:11 EST 2025
Tue Nov 18 21:54:34 EST 2025
Fri Feb 21 02:39:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c510t-81b179dc82359a79807ac29b5c6202f3776d2c896bdcd7e314e07097107dbe5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2001-2474
PMID 34737426
PQID 2594719276
PQPubID 33429
PageCount 6
ParticipantIDs proquest_miscellaneous_2594292742
proquest_journals_2594719276
gale_infotracmisc_A681420722
gale_infotracacademiconefile_A681420722
gale_incontextgauss_ISR_A681420722
gale_incontextgauss_IOV_A681420722
pubmed_primary_34737426
crossref_citationtrail_10_1038_s41588_021_00954_4
crossref_primary_10_1038_s41588_021_00954_4
springer_journals_10_1038_s41588_021_00954_4
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature genetics
PublicationTitleAbbrev Nat Genet
PublicationTitleAlternate Nat Genet
PublicationYear 2021
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Bycroft (CR1) 2018; 562
Astle (CR2) 2016; 167
Breslow, Lin (CR43) 1995; 82
Wu (CR20) 2019; 7
Loh, Kichaev, Gazal, Schoech, Price (CR9) 2018; 50
Wray (CR4) 2018; 50
(CR46) 2015; 526
Zhou, Stephens (CR38) 2012; 44
Van Rheenen (CR12) 2016; 48
Hirota (CR23) 2011; 43
Karlsson (CR30) 2014; 65
Yang, Zaitlen, Goddard, Visscher, Price (CR31) 2014; 46
Chatila (CR21) 2004; 10
Ewing (CR29) 2012; 366
CR5
Wu, Zheng, Visscher, Yang (CR33) 2017; 18
Canela-Xandri, Law, Gray, Woolliams, Tenesa (CR8) 2015; 6
CR49
CR48
Craig (CR6) 2020; 52
CR42
Yu (CR34) 2006; 38
Lloyd-Jones (CR24) 2019; 10
Pulit, de With, de Bakker (CR32) 2017; 41
Kang (CR36) 2010; 42
Svishcheva, Axenovich, Belonogova, van Duijn, Aulchenko (CR39) 2012; 44
Howson (CR13) 2017; 49
Yang, Lee, Goddard, Visscher (CR15) 2011; 88
Lloyd-Jones, Robinson, Yang, Visscher (CR26) 2018; 208
CR18
CR17
McCarthy (CR45) 2016; 48
Wenzel (CR22) 2007; 175
Kemp (CR3) 2017; 49
CR52
CR51
CR50
Zhang (CR37) 2010; 42
Pirinen, Donnelly, Spencer (CR11) 2013; 7
Jiang (CR10) 2019; 51
Chang (CR7) 2015; 4
Zhou (CR14) 2018; 50
Breyer, Avritt, McReynolds, Dupont, Smith (CR28) 2012; 21
Abraham, Qiu, Inouye (CR47) 2017; 33
Loh (CR40) 2015; 47
Chen (CR41) 2016; 98
Dey, Schmidt, Abecasis, Lee (CR27) 2017; 101
CR25
Kuonen (CR44) 1999; 86
Liu (CR16) 2019; 104
Zhou (CR19) 2020; 52
Kang (CR35) 2008; 178
HM Kang (954_CR35) 2008; 178
UK10K consortium. (954_CR46) 2015; 526
SE Wenzel (954_CR22) 2007; 175
PR Loh (954_CR40) 2015; 47
954_CR42
954_CR49
954_CR48
W Zhou (954_CR14) 2018; 50
PR Loh (954_CR9) 2018; 50
Y Liu (954_CR16) 2019; 104
Z Zhang (954_CR37) 2010; 42
LR Lloyd-Jones (954_CR24) 2019; 10
S McCarthy (954_CR45) 2016; 48
D Kuonen (954_CR44) 1999; 86
JE Craig (954_CR6) 2020; 52
LR Lloyd-Jones (954_CR26) 2018; 208
J Yang (954_CR31) 2014; 46
JP Breyer (954_CR28) 2012; 21
GR Svishcheva (954_CR39) 2012; 44
L Jiang (954_CR10) 2019; 51
R Karlsson (954_CR30) 2014; 65
C Bycroft (954_CR1) 2018; 562
G Abraham (954_CR47) 2017; 33
R Dey (954_CR27) 2017; 101
W Zhou (954_CR19) 2020; 52
P Wu (954_CR20) 2019; 7
JM Howson (954_CR13) 2017; 49
954_CR5
NE Breslow (954_CR43) 1995; 82
TA Chatila (954_CR21) 2004; 10
NR Wray (954_CR4) 2018; 50
CM Ewing (954_CR29) 2012; 366
M Pirinen (954_CR11) 2013; 7
W Van Rheenen (954_CR12) 2016; 48
T Hirota (954_CR23) 2011; 43
H Chen (954_CR41) 2016; 98
954_CR25
X Zhou (954_CR38) 2012; 44
J Yu (954_CR34) 2006; 38
SL Pulit (954_CR32) 2017; 41
O Canela-Xandri (954_CR8) 2015; 6
WJ Astle (954_CR2) 2016; 167
CC Chang (954_CR7) 2015; 4
JP Kemp (954_CR3) 2017; 49
J Yang (954_CR15) 2011; 88
954_CR52
954_CR51
954_CR50
954_CR18
Y Wu (954_CR33) 2017; 18
HM Kang (954_CR36) 2010; 42
954_CR17
References_xml – ident: CR49
– volume: 21
  start-page: 1348
  year: 2012
  end-page: 1353
  ident: CR28
  article-title: Confirmation of the HOXB13 G84E germline mutation in familial prostate cancer
  publication-title: Cancer Epidemiol. Prev. Biomark.
  doi: 10.1158/1055-9965.EPI-12-0495
– ident: CR51
– volume: 208
  start-page: 1397
  year: 2018
  end-page: 1408
  ident: CR26
  article-title: Transformation of summary statistics from linear mixed model association on all-or-none traits to odds ratio
  publication-title: Genetics
  doi: 10.1534/genetics.117.300360
– volume: 175
  start-page: 570
  year: 2007
  end-page: 576
  ident: CR22
  article-title: IL4Rα mutations are associated with asthma exacerbations and mast cell/IgE expression
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.200607-909OC
– ident: CR25
– volume: 82
  start-page: 81
  year: 1995
  end-page: 91
  ident: CR43
  article-title: Bias correction in generalised linear mixed models with a single component of dispersion
  publication-title: Biometrika
  doi: 10.1093/biomet/82.1.81
– volume: 366
  start-page: 141
  year: 2012
  end-page: 149
  ident: CR29
  article-title: Germline mutations in HOXB13 and prostate-cancer risk
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1110000
– ident: CR42
– volume: 10
  start-page: 5086
  year: 2019
  ident: CR24
  article-title: Improved polygenic prediction by Bayesian multiple regression on summary statistics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12653-0
– volume: 38
  start-page: 203
  year: 2006
  end-page: 208
  ident: CR34
  article-title: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness
  publication-title: Nat. Genet.
  doi: 10.1038/ng1702
– volume: 41
  start-page: 145
  year: 2017
  end-page: 151
  ident: CR32
  article-title: Resetting the bar: statistical significance in whole‐genome sequencing‐based association studies of global populations
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.22032
– volume: 18
  year: 2017
  ident: CR33
  article-title: Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1216-0
– volume: 98
  start-page: 653
  year: 2016
  end-page: 666
  ident: CR41
  article-title: Control for population structure and relatedness for binary traits in genetic association studies via logistic mixed models
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2016.02.012
– volume: 4
  year: 2015
  ident: CR7
  article-title: Second-generation PLINK: rising to the challenge of larger and richer datasets
  publication-title: GigaScience
  doi: 10.1186/s13742-015-0047-8
– ident: CR50
– volume: 44
  start-page: 821
  year: 2012
  end-page: 824
  ident: CR38
  article-title: Genome-wide efficient mixed-model analysis for association studies
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2310
– volume: 6
  year: 2015
  ident: CR8
  article-title: A new tool called DISSECT for analysing large genomic data sets using a Big Data approach
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10162
– volume: 88
  start-page: 76
  year: 2011
  end-page: 82
  ident: CR15
  article-title: GCTA: a tool for genome-wide complex trait analysis
  publication-title: Am. J. Hum. Genet
  doi: 10.1016/j.ajhg.2010.11.011
– ident: CR5
– volume: 101
  start-page: 37
  year: 2017
  end-page: 49
  ident: CR27
  article-title: A fast and accurate algorithm to test for binary phenotypes and its application to PheWAS
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2017.05.014
– volume: 7
  start-page: e14325
  year: 2019
  ident: CR20
  article-title: Mapping ICD-10 and ICD-10-CM codes to phecodes: workflow development and initial evaluation
  publication-title: JMIR Med. Inform.
  doi: 10.2196/14325
– volume: 43
  start-page: 893
  year: 2011
  end-page: 896
  ident: CR23
  article-title: Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population
  publication-title: Nat. Genet.
  doi: 10.1038/ng.887
– volume: 65
  start-page: 169
  year: 2014
  end-page: 176
  ident: CR30
  article-title: A population-based assessment of germline HOXB13 G84E mutation and prostate cancer risk
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2012.07.027
– volume: 48
  start-page: 1279
  year: 2016
  end-page: 1283
  ident: CR45
  article-title: A reference panel of 64,976 haplotypes for genotype imputation
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3643
– ident: CR18
– volume: 178
  start-page: 1709
  year: 2008
  end-page: 1723
  ident: CR35
  article-title: Efficient control of population structure in model organism association mapping
  publication-title: Genetics
  doi: 10.1534/genetics.107.080101
– volume: 86
  start-page: 929
  year: 1999
  end-page: 935
  ident: CR44
  article-title: Miscellanea. Saddlepoint approximations for distributions of quadratic forms in normal variables
  publication-title: Biometrika
  doi: 10.1093/biomet/86.4.929
– volume: 50
  start-page: 906
  year: 2018
  end-page: 908
  ident: CR9
  article-title: Mixed-model association for biobank-scale datasets
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0144-6
– volume: 562
  start-page: 203
  year: 2018
  end-page: 209
  ident: CR1
  article-title: The UK Biobank resource with deep phenotyping and genomic data
  publication-title: Nature
  doi: 10.1038/s41586-018-0579-z
– volume: 33
  start-page: 2776
  year: 2017
  end-page: 2778
  ident: CR47
  article-title: FlashPCA2: principal component analysis of biobank-scale genotype datasets
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx299
– volume: 47
  start-page: 284
  year: 2015
  end-page: 290
  ident: CR40
  article-title: Efficient Bayesian mixed-model analysis increases association power in large cohorts
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3190
– volume: 50
  start-page: 1335
  year: 2018
  end-page: 1341
  ident: CR14
  article-title: Efficiently controlling for case–control imbalance and sample relatedness in large-scale genetic association studies
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0184-y
– volume: 10
  start-page: 493
  year: 2004
  end-page: 499
  ident: CR21
  article-title: Interleukin-4 receptor signaling pathways in asthma pathogenesis
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2004.08.004
– ident: CR48
– volume: 48
  start-page: 1043
  year: 2016
  end-page: 1048
  ident: CR12
  article-title: Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3622
– volume: 167
  start-page: 1415
  year: 2016
  end-page: 1429.e19
  ident: CR2
  article-title: The allelic landscape of human blood cell trait variation and links to common complex disease
  publication-title: Cell
  doi: 10.1016/j.cell.2016.10.042
– ident: CR52
– ident: CR17
– volume: 46
  start-page: 100
  year: 2014
  end-page: 106
  ident: CR31
  article-title: Advantages and pitfalls in the application of mixed-model association methods
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2876
– volume: 42
  start-page: 348
  year: 2010
  end-page: 354
  ident: CR36
  article-title: Variance component model to account for sample structure in genome-wide association studies
  publication-title: Nat. Genet.
  doi: 10.1038/ng.548
– volume: 49
  start-page: 1113
  year: 2017
  ident: CR13
  article-title: Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3874
– volume: 42
  start-page: 355
  year: 2010
  end-page: 360
  ident: CR37
  article-title: Mixed linear model approach adapted for genome-wide association studies
  publication-title: Nat. Genet.
  doi: 10.1038/ng.546
– volume: 49
  start-page: 1468
  year: 2017
  ident: CR3
  article-title: Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3949
– volume: 7
  start-page: 369
  year: 2013
  end-page: 390
  ident: CR11
  article-title: Efficient computation with a linear mixed model on large-scale data sets with applications to genetic studies
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/12-AOAS586
– volume: 52
  start-page: 160
  year: 2020
  end-page: 166
  ident: CR6
  article-title: Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0556-y
– volume: 104
  start-page: 410
  year: 2019
  end-page: 421
  ident: CR16
  article-title: Acat: a fast and powerful p value combination method for rare-variant analysis in sequencing studies
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2019.01.002
– volume: 52
  start-page: 634
  year: 2020
  end-page: 639
  ident: CR19
  article-title: Scalable generalized linear mixed model for region-based association tests in large biobanks and cohorts
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-0621-6
– volume: 44
  start-page: 1166
  year: 2012
  end-page: 1170
  ident: CR39
  article-title: Rapid variance components-based method for whole-genome association analysis
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2410
– volume: 526
  start-page: 82
  year: 2015
  end-page: 90
  ident: CR46
  article-title: The UK10K project identifies rare variants in health and disease
  publication-title: Nature
  doi: 10.1038/nature14962
– volume: 50
  start-page: 668
  year: 2018
  end-page: 681
  ident: CR4
  article-title: Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0090-3
– volume: 51
  start-page: 1749
  year: 2019
  end-page: 1755
  ident: CR10
  article-title: A resource-efficient tool for mixed model association analysis of large-scale data
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0530-8
– volume: 52
  start-page: 634
  year: 2020
  ident: 954_CR19
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-0621-6
– volume: 47
  start-page: 284
  year: 2015
  ident: 954_CR40
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3190
– ident: 954_CR52
  doi: 10.5281/zenodo.5501110
– volume: 104
  start-page: 410
  year: 2019
  ident: 954_CR16
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2019.01.002
– volume: 4
  year: 2015
  ident: 954_CR7
  publication-title: GigaScience
  doi: 10.1186/s13742-015-0047-8
– volume: 49
  start-page: 1468
  year: 2017
  ident: 954_CR3
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3949
– volume: 6
  year: 2015
  ident: 954_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10162
– ident: 954_CR17
  doi: 10.1101/308296
– volume: 18
  year: 2017
  ident: 954_CR33
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1216-0
– ident: 954_CR48
  doi: 10.1093/ije/dyx204
– volume: 42
  start-page: 355
  year: 2010
  ident: 954_CR37
  publication-title: Nat. Genet.
  doi: 10.1038/ng.546
– volume: 562
  start-page: 203
  year: 2018
  ident: 954_CR1
  publication-title: Nature
  doi: 10.1038/s41586-018-0579-z
– ident: 954_CR5
– volume: 44
  start-page: 1166
  year: 2012
  ident: 954_CR39
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2410
– volume: 41
  start-page: 145
  year: 2017
  ident: 954_CR32
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.22032
– volume: 167
  start-page: 1415
  year: 2016
  ident: 954_CR2
  publication-title: Cell
  doi: 10.1016/j.cell.2016.10.042
– volume: 49
  start-page: 1113
  year: 2017
  ident: 954_CR13
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3874
– volume: 42
  start-page: 348
  year: 2010
  ident: 954_CR36
  publication-title: Nat. Genet.
  doi: 10.1038/ng.548
– volume: 50
  start-page: 906
  year: 2018
  ident: 954_CR9
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0144-6
– volume: 43
  start-page: 893
  year: 2011
  ident: 954_CR23
  publication-title: Nat. Genet.
  doi: 10.1038/ng.887
– volume: 82
  start-page: 81
  year: 1995
  ident: 954_CR43
  publication-title: Biometrika
  doi: 10.1093/biomet/82.1.81
– ident: 954_CR42
  doi: 10.2307/2533274
– ident: 954_CR18
  doi: 10.1038/s41588-021-00870-7
– volume: 51
  start-page: 1749
  year: 2019
  ident: 954_CR10
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0530-8
– volume: 208
  start-page: 1397
  year: 2018
  ident: 954_CR26
  publication-title: Genetics
  doi: 10.1534/genetics.117.300360
– volume: 178
  start-page: 1709
  year: 2008
  ident: 954_CR35
  publication-title: Genetics
  doi: 10.1534/genetics.107.080101
– volume: 65
  start-page: 169
  year: 2014
  ident: 954_CR30
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2012.07.027
– volume: 46
  start-page: 100
  year: 2014
  ident: 954_CR31
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2876
– volume: 10
  start-page: 493
  year: 2004
  ident: 954_CR21
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2004.08.004
– volume: 526
  start-page: 82
  year: 2015
  ident: 954_CR46
  publication-title: Nature
  doi: 10.1038/nature14962
– volume: 98
  start-page: 653
  year: 2016
  ident: 954_CR41
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2016.02.012
– volume: 175
  start-page: 570
  year: 2007
  ident: 954_CR22
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.200607-909OC
– volume: 48
  start-page: 1043
  year: 2016
  ident: 954_CR12
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3622
– ident: 954_CR49
– volume: 88
  start-page: 76
  year: 2011
  ident: 954_CR15
  publication-title: Am. J. Hum. Genet
  doi: 10.1016/j.ajhg.2010.11.011
– volume: 44
  start-page: 821
  year: 2012
  ident: 954_CR38
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2310
– volume: 50
  start-page: 1335
  year: 2018
  ident: 954_CR14
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0184-y
– volume: 38
  start-page: 203
  year: 2006
  ident: 954_CR34
  publication-title: Nat. Genet.
  doi: 10.1038/ng1702
– volume: 50
  start-page: 668
  year: 2018
  ident: 954_CR4
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0090-3
– volume: 52
  start-page: 160
  year: 2020
  ident: 954_CR6
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0556-y
– volume: 10
  start-page: 5086
  year: 2019
  ident: 954_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12653-0
– volume: 366
  start-page: 141
  year: 2012
  ident: 954_CR29
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1110000
– volume: 86
  start-page: 929
  year: 1999
  ident: 954_CR44
  publication-title: Biometrika
  doi: 10.1093/biomet/86.4.929
– volume: 33
  start-page: 2776
  year: 2017
  ident: 954_CR47
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx299
– ident: 954_CR51
  doi: 10.5281/zenodo.5226943
– volume: 7
  start-page: e14325
  year: 2019
  ident: 954_CR20
  publication-title: JMIR Med. Inform.
  doi: 10.2196/14325
– volume: 21
  start-page: 1348
  year: 2012
  ident: 954_CR28
  publication-title: Cancer Epidemiol. Prev. Biomark.
  doi: 10.1158/1055-9965.EPI-12-0495
– ident: 954_CR50
  doi: 10.2307/2530744
– volume: 7
  start-page: 369
  year: 2013
  ident: 954_CR11
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/12-AOAS586
– volume: 48
  start-page: 1279
  year: 2016
  ident: 954_CR45
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3643
– ident: 954_CR25
  doi: 10.1016/j.biopsych.2021.04.018
– volume: 101
  start-page: 37
  year: 2017
  ident: 954_CR27
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2017.05.014
SSID ssj0014408
Score 2.7310104
Snippet Compared with linear mixed model-based genome-wide association (GWA) methods, generalized linear mixed model (GLMM)-based methods have better statistical...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1616
SubjectTerms 631/114/794
631/208/205/2138
Adult
Aged
Agriculture
Algorithms
Animal Genetics and Genomics
Approximation
Biobanks
Biological Specimen Banks - statistics & numerical data
Biomedical and Life Sciences
Biomedicine
Cancer Research
Case-Control Studies
Gene Function
Genetic research
Genetic Variation
Genome-wide association studies
Genome-Wide Association Study - statistics & numerical data
Genomes
Genotype
Genotype & phenotype
Genotypes
Human Genetics
Humans
Identification and classification
Linear Models
Middle Aged
Models, Genetic
Parameter estimation
Phenotype
Regression analysis
Simulation
Sparse matrices
Sparsity
Statistical methods
Statistical models
Statistical tests
Statistics
technical-report
Technology application
United Kingdom
Title A generalized linear mixed model association tool for biobank-scale data
URI https://link.springer.com/article/10.1038/s41588-021-00954-4
https://www.ncbi.nlm.nih.gov/pubmed/34737426
https://www.proquest.com/docview/2594719276
https://www.proquest.com/docview/2594292742
Volume 53
WOSCitedRecordID wos000731665900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1061-4036
  databaseCode: M7P
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1061-4036
  databaseCode: 7X7
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1061-4036
  databaseCode: BENPR
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1061-4036
  databaseCode: 8C1
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1061-4036
  databaseCode: M2O
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBtJe-BgMOkZlEBIPYC2xndh-QmXaNCToqvGhvlmJ40wVIxlNi4C_njsnbemk7YUXS5HPUeL7-iV3viPkJWAADl9dgplSOCYTF7E8446BbymlEA6GUMT1gxoO9XhsRt0Pt6ZLq1zYxGCoi9rhP_IDgOlgRw1X6dvLHwy7RmF0tWuhsUG2sEqCCKl7o2UUAbsph2hnit9JGKbca4-Z64MGHBfICCYoIMqQTK45pqvm-R__dCVgGvzQ8b3_fYP75G6HQOmgFZkH5Javdsidtifl7x2yjfCzrd78kJwM6Hlbl3ryxxcUIWk2pd8nv-Ai9NCh2Yq9dFbXFxRAMM0nYCWqb6wBAfAUk1AfkS_HR58PT1jXe4E50NIZAzQLqlo4zUViMmV0pDLHTZ64lEe8FEqlBXfapHnhCuVFLD0YDwN4RRW5T0qxSzaruvJPCAULUpiojE2hEumVzg3PSumi1HCd8TzvkXix8dZ1hcmxP8aFDQFyoW3LLAvMsoFZVvbI6-Way7Ysx43UL5CfFutdVJhQc57Nm8a-P_1qB6mOJY8U59cRfTpbI3rVEZU1PKPLukMM8KZYR2uNcn-NErTWrU8vhMR2VqOxKwnpkefLaVyJmXCVr-ctDTcYYO-Rx61MLndASCVgAla_WQjp6ubXb8_ezc_ylGxz1JNwAHOfbM6mc_-M3HY_QRinfbKhxiqMGkZ9GPfJ1ruj4egMrj7y037QyL8RrC-n
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAqIXHuWVUmBBIA5g1dndeL0HhCKgStQQKiiot8Ver6uIYpc4AcqP4jcy40eCK7W3HrhEinbWstffzHzrmZ0BeIIcgOOuS3g6FdaTPet7ccSth74llUJY_CmLuI7UeBzu7-vdFfjTnIWhtMrGJpaGOsktfSPfQpqOdlRzFbw6-u5R1yiKrjYtNCpY7Ljjn7hlK14O3-D7fcr59tu91wOv7irgWcTfzEOehiBMbMhFT0dKh76KLNdxzwbc56lQKki4DXUQJzZRTnSlQ7XQ6IlVErteKvC6F-Ai0ggelqmCu4uoBXVvLqOrAe3LKCy6UR1rD7cKdJSISUqIIFYjPdlyhCfdwT_-8ESAtvR729f-txW7Dldrhs36lUrcgBWXrcPlqufm8TqsEb2uqlPfhEGfHVR1tye_XcKIckdT9m3yC_-UPYJYtIQvm-X5IUOSz-IJWsHsq1cgwB2jJNtb8Olcnuk2rGZ55u4CQwuZaD_t6kT1pFNhrHmUSusHmocRj-MOdJsXbWxdeJ36fxyaMgFAhKYCh0FwmBIcRnbg-WLOUVV25Ezpx4QfQ_U8MkoYOojmRWGG7z-bfhB2JfcV56cJffzQEnpWC6U53qON6kMa-KRUJ6wludmSRKtk28MNKE1tFQuzRGQHHi2GaSZl-mUun1cyXFMCQQfuVDqwWAEhlcABnP2iUYrlxU9fno2z7-UhXBnsvRuZ0XC8cw_WOOloedh0E1Zn07m7D5fsDwTm9EGp7Qy-nLey_AVLyoWc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4a46K9cBm3jgEGgXiAqKmdxvEDQtVGtWpTmbhpbyZxnKliJKNpgfHT-HWcEyctmbS97YGXSJGPrdj-zsXxuQA8QxuA46lLeCoTxgv6xveSmBsPdUsWCGHwUSVx3ZPjcXRwoPZX4E8TC0NulY1MrAR1Whj6R95FMx3lqOIy7Ga1W8T-9vDN8XePKkjRTWtTTsNBZNee_MTjW_l6tI17_Zzz4duPWzteXWHAM4jFmYc2GwIyNREXfRVLFfkyNlwlfRNyn2dCyjDlJlJhkppUWtELLLKIQq0s08T2M4HjXoLLUiCKKUp9a-FeQnemLgwvpDMaXZFuuBD3qFui0kR8knMEWTiBF7SU4mnV8I9uPHVZW-nA4Y3_efVuwvXa8mYDxyq3YMXm63DV1eI8WYc1Mrtd1urbsDNghy4f9-S3TRmZ4vGUfZv8wpeqdhCLl7Bms6I4Ymj8s2SC0jH_6pUIfMvI-fYOfLqQOd2F1bzI7X1gKDlT5Wc9lcp-YGWUKB5ngfFDxaOYJ0kHes2ma1MnZKe6IEe6cgwQkXZA0QgUXQFFBx14uehz7NKRnEv9lLCkKc9HTnt-GM_LUo_efdaDMOoF3Jecn0X04X2L6EVNlBX4jSaugzdwppQ_rEW52aJEaWXazQ1AdS0tS71EZweeLJqpJ3kA5raYOxquyLGgA_ccPyxWQARSYAP2ftUwyHLws5dn4_xveQzXkEf03mi8-wDWOLFrFYO6Cauz6dw-hCvmB-Jy-qhifAZfLppX_gLuK44S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalized+linear+mixed+model+association+tool+for+biobank-scale+data&rft.jtitle=Nature+genetics&rft.au=Jiang%2C+Longda&rft.au=Zheng%2C+Zhili&rft.au=Fang%2C+Hailing&rft.au=Yang%2C+Jian&rft.date=2021-11-01&rft.eissn=1546-1718&rft.volume=53&rft.issue=11&rft.spage=1616&rft_id=info:doi/10.1038%2Fs41588-021-00954-4&rft_id=info%3Apmid%2F34737426&rft.externalDocID=34737426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-4036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-4036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-4036&client=summon