DRONE: Dual-Domain Residual-based Optimization NEtwork for Sparse-View CT Reconstruction
Deep learning has attracted rapidly increasing attention in the field of tomographic image reconstruction, especially for CT, MRI, PET/SPECT, ultrasound and optical imaging. Among various topics, sparse-view CT remains a challenge which targets a decent image reconstruction from very few projections...
Uložené v:
| Vydané v: | IEEE transactions on medical imaging Ročník 40; číslo 11; s. 3002 - 3014 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0278-0062, 1558-254X, 1558-254X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Deep learning has attracted rapidly increasing attention in the field of tomographic image reconstruction, especially for CT, MRI, PET/SPECT, ultrasound and optical imaging. Among various topics, sparse-view CT remains a challenge which targets a decent image reconstruction from very few projections. To address this challenge, in this article we propose a Dual-domain Residual-based Optimization NEtwork (DRONE). DRONE consists of three modules respectively for embedding, refinement, and awareness. In the embedding module, a sparse sinogram is first extended. Then, sparse-view artifacts are effectively suppressed in the image domain. After that, the refinement module recovers image details in the residual data and image domains synergistically. Finally, the results from the embedding and refinement modules in the data and image domains are regularized for optimized image quality in the awareness module, which ensures the consistency between measurements and images with the kernel awareness of compressed sensing. The DRONE network is trained, validated, and tested on preclinical and clinical datasets, demonstrating its merits in edge preservation, feature recovery, and reconstruction accuracy. |
|---|---|
| AbstractList | Deep learning has attracted rapidly increasing attention in the field of tomographic image reconstruction, especially for CT, MRI, PET/SPECT, ultrasound and optical imaging. Among various topics, sparse-view CT remains a challenge which targets a decent image reconstruction from ultra-sparse projections. To address this challenge, in this article we propose a Dual-domain Residual-based Optimization NEtwork (DRONE). DRONE consists of three modules respectively for embedding, refinement, and awareness. In the embedding module, a sparse sinogram is first extended. Then, sparse-view artifacts are effectively suppressed by the image domain networks. After that, the refinement module focuses on the recovery of image details in the residual data and image domains synergistically. Finally, the results from embedding and refinement components in the data and image domains are regularized for optimized image quality in the awareness module, which ensures the consistency between measurements and images with the kernel awareness of compressed sensing. The DRONE network is trained, validated, and tested on preclinical and clinical datasets, demonstrating its merits in edge preservation, feature recovery, and reconstruction accuracy. Deep learning has attracted rapidly increasing attention in the field of tomographic image reconstruction, especially for CT, MRI, PET/SPECT, ultrasound and optical imaging. Among various topics, sparse-view CT remains a challenge which targets a decent image reconstruction from very few projections. To address this challenge, in this article we propose a Dual-domain Residual-based Optimization NEtwork (DRONE). DRONE consists of three modules respectively for embedding, refinement, and awareness. In the embedding module, a sparse sinogram is first extended. Then, sparse-view artifacts are effectively suppressed in the image domain. After that, the refinement module recovers image details in the residual data and image domains synergistically. Finally, the results from the embedding and refinement modules in the data and image domains are regularized for optimized image quality in the awareness module, which ensures the consistency between measurements and images with the kernel awareness of compressed sensing. The DRONE network is trained, validated, and tested on preclinical and clinical datasets, demonstrating its merits in edge preservation, feature recovery, and reconstruction accuracy. Deep learning has attracted rapidly increasing attention in the field of tomographic image reconstruction, especially for CT, MRI, PET/SPECT, ultrasound and optical imaging. Among various topics, sparse-view CT remains a challenge which targets a decent image reconstruction from very few projections. To address this challenge, in this article we propose a Dual-domain Residual-based Optimization NEtwork (DRONE). DRONE consists of three modules respectively for embedding, refinement, and awareness. In the embedding module, a sparse sinogram is first extended. Then, sparse-view artifacts are effectively suppressed in the image domain. After that, the refinement module recovers image details in the residual data and image domains synergistically. Finally, the results from the embedding and refinement modules in the data and image domains are regularized for optimized image quality in the awareness module, which ensures the consistency between measurements and images with the kernel awareness of compressed sensing. The DRONE network is trained, validated, and tested on preclinical and clinical datasets, demonstrating its merits in edge preservation, feature recovery, and reconstruction accuracy.Deep learning has attracted rapidly increasing attention in the field of tomographic image reconstruction, especially for CT, MRI, PET/SPECT, ultrasound and optical imaging. Among various topics, sparse-view CT remains a challenge which targets a decent image reconstruction from very few projections. To address this challenge, in this article we propose a Dual-domain Residual-based Optimization NEtwork (DRONE). DRONE consists of three modules respectively for embedding, refinement, and awareness. In the embedding module, a sparse sinogram is first extended. Then, sparse-view artifacts are effectively suppressed in the image domain. After that, the refinement module recovers image details in the residual data and image domains synergistically. Finally, the results from the embedding and refinement modules in the data and image domains are regularized for optimized image quality in the awareness module, which ensures the consistency between measurements and images with the kernel awareness of compressed sensing. The DRONE network is trained, validated, and tested on preclinical and clinical datasets, demonstrating its merits in edge preservation, feature recovery, and reconstruction accuracy. |
| Author | Vardhanabhuti, Varut Wang, Ge Wu, Weiwen Hu, Dianlin Niu, Chuang Yu, Hengyong |
| Author_xml | – sequence: 1 givenname: Weiwen orcidid: 0000-0002-8295-5104 surname: Wu fullname: Wu, Weiwen email: weiwenwu12@gmail.com organization: Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong – sequence: 2 givenname: Dianlin orcidid: 0000-0003-4857-9878 surname: Hu fullname: Hu, Dianlin email: 220171616@seu.edu.cn organization: Laboratory of Image Science and Technology, Southeast University, Nanjing, China – sequence: 3 givenname: Chuang orcidid: 0000-0002-3310-7803 surname: Niu fullname: Niu, Chuang email: niuc@rpi.edu organization: Department of Biomedical Engineering, Biomedical Imaging Center, School of Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA – sequence: 4 givenname: Hengyong orcidid: 0000-0002-5852-0813 surname: Yu fullname: Yu, Hengyong email: hengyong-yu@ieee.org organization: Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, USA – sequence: 5 givenname: Varut orcidid: 0000-0001-6677-3194 surname: Vardhanabhuti fullname: Vardhanabhuti, Varut email: varv@hku.hk organization: Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong – sequence: 6 givenname: Ge orcidid: 0000-0002-2656-7705 surname: Wang fullname: Wang, Ge email: wangg6@rpi.edu organization: Department of Biomedical Engineering, Biomedical Imaging Center, School of Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33956627$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kcFrFDEUxoNU7Lb1Lggy4MXLbF-SSTLxUJDdVQu1C3WV3kImk9HUmcmazLTUv95sd1u0h54e4f2-jy_vO0B7ve8tQq8wTDEGebz6cjolQPCUgiiBi2doghkrc8KKyz00ASLKHICTfXQQ4xUALhjIF2ifUsk4J2KCLucXy_PF-2w-6jaf-067Pruw0dWbd6WjrbPlenCd-6MH5_vsfDHc-PAra3zIvq51iDb_7uxNNlslmfF9HMJoNuQRet7oNtqXu3mIvn1crGaf87Plp9PZh7PcMAxDTi2UWggDhgstqWZVU2BZGLBYFKWwNamrhjW1AMYShHGKTW2lOQVJSw30EJ1sfddj1dna2H4IulXr4DodbpXXTv2_6d1P9cNfq5JJzClNBu92BsH_Hm0cVOeisW2re-vHqAgjBWVUcpbQt4_QKz-GPn0vUSVPhpLiRL35N9FDlPujJ4BvARN8jME2yrjh7rwpoGsVBrVpV6V21aZdtWs3CeGR8N77CcnrrcRZax9wWZCC45L-BXrnrqE |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1109_TCI_2023_3240078 crossref_primary_10_1109_TCI_2024_3430469 crossref_primary_10_1016_j_eswa_2025_128109 crossref_primary_10_1002_mp_16157 crossref_primary_10_1002_mp_16552 crossref_primary_10_1016_j_bspc_2024_106853 crossref_primary_10_1088_1361_6560_ad1d6b crossref_primary_10_3233_XST_230184 crossref_primary_10_1016_j_neunet_2021_08_026 crossref_primary_10_1109_TCI_2021_3098922 crossref_primary_10_1109_TRPMS_2023_3309474 crossref_primary_10_1109_TRPMS_2024_3420742 crossref_primary_10_1088_1361_6560_ac1d20 crossref_primary_10_1088_1361_6560_ad229f crossref_primary_10_1109_TMI_2024_3420411 crossref_primary_10_1007_s41365_023_01258_4 crossref_primary_10_3390_e26020101 crossref_primary_10_1109_TRPMS_2024_3452683 crossref_primary_10_1088_1361_6560_ad69f7 crossref_primary_10_1016_j_compbiomed_2025_109900 crossref_primary_10_1007_s11263_025_02426_2 crossref_primary_10_1016_j_cmpb_2024_108010 crossref_primary_10_1080_10589759_2024_2305329 crossref_primary_10_1007_s10762_021_00806_6 crossref_primary_10_1016_j_cmpb_2024_108376 crossref_primary_10_1016_j_compbiomed_2024_108837 crossref_primary_10_1109_TIM_2025_3554318 crossref_primary_10_1109_JBHI_2022_3225697 crossref_primary_10_1016_j_compbiomed_2023_106888 crossref_primary_10_1109_TRPMS_2023_3316349 crossref_primary_10_1088_1361_6560_ad9dac crossref_primary_10_3390_bioengineering10040470 crossref_primary_10_1109_TIM_2023_3306830 crossref_primary_10_1109_TMI_2024_3473970 crossref_primary_10_1016_j_compbiomed_2025_109853 crossref_primary_10_1016_j_cmpb_2023_107802 crossref_primary_10_1097_RCT_0000000000001734 crossref_primary_10_1109_TCI_2025_3553039 crossref_primary_10_1109_TMI_2023_3325824 crossref_primary_10_1109_ACCESS_2023_3255641 crossref_primary_10_1007_s10851_025_01249_7 crossref_primary_10_1088_1361_6560_ace498 crossref_primary_10_3233_XST_230245 crossref_primary_10_1016_j_compbiomed_2023_107345 crossref_primary_10_1109_ACCESS_2023_3342026 crossref_primary_10_1016_j_eswa_2024_125099 crossref_primary_10_1109_TRPMS_2023_3242662 crossref_primary_10_1109_TCSVT_2024_3397012 crossref_primary_10_1109_TRPMS_2022_3222213 crossref_primary_10_1109_TRPMS_2024_3512172 crossref_primary_10_1109_TIM_2021_3078555 crossref_primary_10_1007_s10851_025_01241_1 crossref_primary_10_1016_j_compbiomed_2022_105710 crossref_primary_10_1007_s10921_025_01244_3 crossref_primary_10_1007_s41365_024_01439_9 crossref_primary_10_1109_TNNLS_2023_3338867 crossref_primary_10_3390_app14083397 crossref_primary_10_1016_j_compbiomed_2023_106780 crossref_primary_10_1038_s41598_023_35938_3 crossref_primary_10_1109_TIP_2024_3351382 crossref_primary_10_1109_TMI_2024_3385650 crossref_primary_10_1016_j_bspc_2024_107182 crossref_primary_10_1109_TCI_2023_3328278 crossref_primary_10_1088_2632_2153_ad1b8e crossref_primary_10_1002_acm2_14268 crossref_primary_10_1016_j_bspc_2023_105322 crossref_primary_10_1016_j_media_2024_103300 crossref_primary_10_1016_j_displa_2024_102734 crossref_primary_10_1109_TMI_2024_3376414 crossref_primary_10_1364_AO_534352 crossref_primary_10_1109_ACCESS_2024_3365506 crossref_primary_10_1109_ACCESS_2023_3273900 crossref_primary_10_1088_1361_6560_ad8da2 crossref_primary_10_1109_TMI_2024_3395348 crossref_primary_10_1088_1361_6560_adffe0 crossref_primary_10_1109_TIM_2023_3271714 crossref_primary_10_1088_1361_6560_ad31c7 crossref_primary_10_3233_XST_221310 crossref_primary_10_1007_s00138_024_01568_6 crossref_primary_10_1016_j_compbiomed_2023_107819 crossref_primary_10_1016_j_knosys_2022_109295 crossref_primary_10_1109_TIM_2022_3221136 crossref_primary_10_1016_j_optcom_2023_130156 crossref_primary_10_1088_1361_6501_ac9c21 crossref_primary_10_1109_ACCESS_2023_3342710 crossref_primary_10_3233_XST_230138 crossref_primary_10_1088_1361_6560_acbe8e crossref_primary_10_1109_TIM_2023_3318712 crossref_primary_10_1016_j_neucom_2021_12_096 crossref_primary_10_1016_j_ejmp_2024_103382 crossref_primary_10_1109_TCI_2024_3507645 crossref_primary_10_1016_j_neunet_2024_106740 crossref_primary_10_1186_s12943_025_02369_9 crossref_primary_10_1088_1361_6560_ad2716 crossref_primary_10_1109_ACCESS_2024_3417928 crossref_primary_10_1177_08953996241308759 crossref_primary_10_1088_1361_6560_aced33 crossref_primary_10_1002_mp_16371 crossref_primary_10_1038_s44172_023_00121_z crossref_primary_10_1080_10589759_2023_2170374 crossref_primary_10_1088_1361_6560_ac3842 crossref_primary_10_1109_TMI_2024_3367167 crossref_primary_10_1088_1361_6560_ac7bce crossref_primary_10_1177_08953996251329214 crossref_primary_10_1088_1361_6560_ad4a1b crossref_primary_10_7717_peerj_cs_1849 crossref_primary_10_1109_TMI_2024_3355455 crossref_primary_10_1007_s10278_025_01639_8 crossref_primary_10_1088_1361_6501_ad83e9 crossref_primary_10_1016_j_eswa_2023_120001 crossref_primary_10_1109_ACCESS_2024_3506155 crossref_primary_10_1088_1361_6560_adb932 crossref_primary_10_1088_1361_6560_ad2a94 crossref_primary_10_1088_1361_6560_adaf06 crossref_primary_10_1109_TMI_2023_3261822 crossref_primary_10_1088_1361_6463_acae31 crossref_primary_10_1109_TCI_2025_3551166 crossref_primary_10_1002_mp_15952 crossref_primary_10_1038_s41598_025_02133_5 crossref_primary_10_1109_TIM_2025_3551476 crossref_primary_10_1016_j_compbiomed_2022_106447 crossref_primary_10_3233_XST_230278 crossref_primary_10_1016_j_compbiomed_2023_107830 crossref_primary_10_1148_ryai_230275 crossref_primary_10_1088_1361_6560_ac3d16 crossref_primary_10_1109_TCI_2025_3540711 crossref_primary_10_1109_TIM_2024_3351228 crossref_primary_10_1109_ACCESS_2023_3343707 crossref_primary_10_1109_LSP_2024_3438118 |
| Cites_doi | 10.1137/1.9780898719284 10.1109/TMI.2017.2785879 10.1073/pnas.1907377117 10.1097/RCT.0b013e318231c578 10.1038/s42256-019-0057-9 10.1109/TMI.2012.2195669 10.1109/TMI.2020.3033541 10.1002/mp.12344 10.1109/TMI.2018.2823338 10.1109/TMI.2017.2715284 10.1109/TMI.2020.2964266 10.1088/0031-9155/59/4/1005 10.1088/0031-9155/59/12/3121 10.1023/B:JMIV.0000011321.19549.88 10.1109/TPAMI.2020.3012955 10.7717/peerj.453 10.1088/0031-9155/51/13/R08 10.1109/TRPMS.2020.3011413 10.1364/OE.25.024215 10.1038/s42256-020-00273-z 10.1109/TMI.2018.2805692 10.1117/12.2549444 10.1088/0031-9155/54/9/014 10.1109/TMI.2014.2380993 10.3233/XST-16208 10.1137/080724265 10.1109/TIP.2017.2713099 10.1109/IVMSPW.2018.8448694 10.1118/1.2370508 10.1038/nature25988 10.1109/ACCESS.2016.2624938 10.1109/TMI.2018.2827462 10.1109/TRPMS.2020.2991887 10.1088/0031-9155/60/8/N131 10.1016/j.apm.2018.07.006 10.1109/TMI.2018.2799231 10.1109/TMI.2018.2878226 10.1109/TMI.2018.2823768 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
| DOI | 10.1109/TMI.2021.3078067 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 3014 |
| ExternalDocumentID | PMC8591633 33956627 10_1109_TMI_2021_3078067 9424618 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Li Ka Shing Foundation funderid: 10.13039/100007421 – fundername: NIH grantid: R01CA237267; R01CA233888; R01EB026646; R01HL151561 funderid: 10.13039/100000002 – fundername: NIBIB NIH HHS grantid: R01 EB026646 – fundername: NCI NIH HHS grantid: R01 CA237267 – fundername: NHLBI NIH HHS grantid: R01 HL151561 – fundername: NCI NIH HHS grantid: R01 CA250636 – fundername: NCI NIH HHS grantid: R01 CA233888 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION AAYOK CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
| ID | FETCH-LOGICAL-c510t-3e08a77c0c67a93a5bf4194c0e17487ed2dbf5fd7055c0c116623eba630938a03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 183 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000711848900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Tue Sep 30 17:19:09 EDT 2025 Sat Sep 27 19:32:31 EDT 2025 Sun Nov 09 08:53:32 EST 2025 Sun Jul 20 01:30:39 EDT 2025 Sat Nov 29 05:14:09 EST 2025 Tue Nov 18 22:35:36 EST 2025 Wed Aug 27 02:28:58 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c510t-3e08a77c0c67a93a5bf4194c0e17487ed2dbf5fd7055c0c116623eba630938a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4857-9878 0000-0001-6677-3194 0000-0002-3310-7803 0000-0002-8295-5104 0000-0002-2656-7705 0000-0002-5852-0813 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8591633 |
| PMID | 33956627 |
| PQID | 2586591931 |
| PQPubID | 85460 |
| PageCount | 13 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8591633 proquest_miscellaneous_2524353965 crossref_primary_10_1109_TMI_2021_3078067 pubmed_primary_33956627 ieee_primary_9424618 proquest_journals_2586591931 crossref_citationtrail_10_1109_TMI_2021_3078067 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref37 ref36 ref14 ref31 ref33 ref11 antun (ref13) 2020; 117 ref32 ref10 xia (ref15) 2020 ref2 ref39 ref17 ref38 ref19 hochmuth (ref1) 2002; 23 ref18 sun (ref16) 2016 wu (ref30) 2021; 70 wu (ref47) 2020 johnson (ref34) 2016 kak (ref22) 1988 gottschling (ref27) 2020 ref24 ref45 ref23 ref48 ref26 ref25 ref20 ref42 gulrajani (ref35) 2017 ref44 ref21 ref43 ref28 ref29 ref8 ref7 kingma (ref41) 2014 ref9 ref4 ref3 ref6 ref5 xu (ref46) 2012; 31 ref40 |
| References_xml | – ident: ref21 doi: 10.1137/1.9780898719284 – ident: ref37 doi: 10.1109/TMI.2017.2785879 – volume: 117 start-page: 30088 year: 2020 ident: ref13 article-title: On instabilities of deep learning in image reconstruction and the potential costs of AI publication-title: Proc Nat Acad Sci USA doi: 10.1073/pnas.1907377117 – ident: ref43 doi: 10.1097/RCT.0b013e318231c578 – year: 2020 ident: ref15 article-title: MAGIC: Manifold and graph integrative convolutional network for low-dose CT reconstruction publication-title: arXiv 2008 00406 – ident: ref42 doi: 10.1038/s42256-019-0057-9 – start-page: 694 year: 2016 ident: ref34 article-title: Perceptual losses for real-time style transfer and super-resolution publication-title: Proc Eur Conf Comput Vis – volume: 31 start-page: 1682 year: 2012 ident: ref46 article-title: Low-dose X-ray CT reconstruction via dictionary learning publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2012.2195669 – ident: ref20 doi: 10.1109/TMI.2020.3033541 – ident: ref10 doi: 10.1002/mp.12344 – year: 2020 ident: ref27 article-title: The troublesome kernel: Why deep learning for inverse problems is typically unstable publication-title: arXiv 2001 01258 – ident: ref6 doi: 10.1109/TMI.2018.2823338 – ident: ref5 doi: 10.1109/TMI.2017.2715284 – year: 2014 ident: ref41 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref12 doi: 10.1109/TMI.2020.2964266 – ident: ref4 doi: 10.1088/0031-9155/59/4/1005 – ident: ref3 doi: 10.1088/0031-9155/59/12/3121 – ident: ref38 doi: 10.1023/B:JMIV.0000011321.19549.88 – ident: ref18 doi: 10.1109/TPAMI.2020.3012955 – volume: 70 start-page: 1 year: 2021 ident: ref30 article-title: A high-quality photon-counting CT technique based on weight adaptive total-variation and image-spectral tensor factorization for small animals imaging publication-title: IEEE Trans Instrum Meas – ident: ref39 doi: 10.7717/peerj.453 – ident: ref48 doi: 10.1088/0031-9155/51/13/R08 – ident: ref33 doi: 10.1109/TRPMS.2020.3011413 – ident: ref28 doi: 10.1364/OE.25.024215 – ident: ref7 doi: 10.1038/s42256-020-00273-z – ident: ref14 doi: 10.1109/TMI.2018.2805692 – ident: ref40 doi: 10.1117/12.2549444 – year: 2020 ident: ref47 article-title: Stabilizing deep tomographic reconstruction networks publication-title: arXiv 2008 01846 – ident: ref29 doi: 10.1088/0031-9155/54/9/014 – ident: ref31 doi: 10.1109/TMI.2014.2380993 – ident: ref26 doi: 10.3233/XST-16208 – ident: ref45 doi: 10.1137/080724265 – year: 1988 ident: ref22 publication-title: Principles of Computerized Tomographic Imaging – ident: ref8 doi: 10.1109/TIP.2017.2713099 – ident: ref19 doi: 10.1109/IVMSPW.2018.8448694 – volume: 23 start-page: 1199 year: 2002 ident: ref1 article-title: Comparison of three-dimensional rotational angiography with digital subtraction angiography in the assessment of ruptured cerebral aneurysms publication-title: Amer J Neuroradiol – start-page: 10 year: 2016 ident: ref16 article-title: Deep ADMM-Net for compressive sensing MRI publication-title: Proc Adv Neural Inf Process Syst – ident: ref2 doi: 10.1118/1.2370508 – ident: ref11 doi: 10.1038/nature25988 – ident: ref25 doi: 10.1109/ACCESS.2016.2624938 – ident: ref36 doi: 10.1109/TMI.2018.2827462 – ident: ref32 doi: 10.1109/TRPMS.2020.2991887 – ident: ref44 doi: 10.1088/0031-9155/60/8/N131 – ident: ref23 doi: 10.1016/j.apm.2018.07.006 – year: 2017 ident: ref35 article-title: Improved training of Wasserstein GANs publication-title: arXiv 1704 00028 – ident: ref17 doi: 10.1109/TMI.2018.2799231 – ident: ref24 doi: 10.1109/TMI.2018.2878226 – ident: ref9 doi: 10.1109/TMI.2018.2823768 |
| SSID | ssj0014509 |
| Score | 2.6771472 |
| Snippet | Deep learning has attracted rapidly increasing attention in the field of tomographic image reconstruction, especially for CT, MRI, PET/SPECT, ultrasound and... |
| SourceID | pubmedcentral proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3002 |
| SubjectTerms | Algorithms Biomedical measurement compressed sensing Computed tomography Computed tomography (CT) Deep learning Domains Drones Embedding Generative adversarial networks Image processing Image Processing, Computer-Assisted Image quality Image reconstruction Imaging iterative reconstruction Magnetic resonance imaging Medical imaging Modules Optimization Phantoms, Imaging Positron emission Reconstruction algorithms Single photon emission computed tomography sparse-view CT reconstruction Tomography Tomography, X-Ray Computed |
| Title | DRONE: Dual-Domain Residual-based Optimization NEtwork for Sparse-View CT Reconstruction |
| URI | https://ieeexplore.ieee.org/document/9424618 https://www.ncbi.nlm.nih.gov/pubmed/33956627 https://www.proquest.com/docview/2586591931 https://www.proquest.com/docview/2524353965 https://pubmed.ncbi.nlm.nih.gov/PMC8591633 |
| Volume | 40 |
| WOSCitedRecordID | wos000711848900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9wwDLYATYg9wAZj62Aok_YyaeXSpGlS3hB3aJPGMbHbdG9V2uS0k6CHOG77-7PTXndMaNLeKsWt2tiO7dr-DPAOrULFRYmahsFXnDrumyIAY8tS6lRVxoZG4c96ODTjcf5lDT50vTDe-1B85o_pMuTy3axa0K-yXp4S-plZh3WtddOr1WUMUtWUcwhCjOWZWKYked4bXXzCQFAkxyjPBk_nLdiUEuOCjEbJrFijMF7lMU_z74LJFQt0vvN_7_4MtltPk502ovEc1ny9C09X8Ad3YfOizazvwbh_dTkcnLD-wl7H_dmNndbsys9Dq1ZMps6xSzxdbtq2TTYchPJxhj4v-3qL0bGPv0_9L3Y2YhTR_sGlfQHfzgejs49xO3UhrlA_72PpubFaV7zKtM2lVeUkTXLkqMfgxWjvhCsnauIIhgeJkgT3UfrSZpRTNZbLfdioZ7V_BYzrUkmnhRNSUj42V2JSosZbpw36DTaC3nL3i6qFJKfJGNdFCE14XiDrCmJd0bIugvfdHbcNHMc_aPeIDR1dy4EIDpcMLlp9nRdCmUzl6MwmEbztllHTKH1iaz9bEI1A31LmmYrgZSMP3bOX8hSBfiApHQGheD9cqac_Apo3AQhmUr5-_G0PYIu-qel-PIQNZJ5_A0-qn_fT-d0RKsLYHAVF-A2VgwET |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgcZ44GNjEBhgJF6QyOrYcWzzhtZOm2gzNArqW-TErlZpSye6wr_P2UlDhyYk3iL5EiW-O99d7u53AO_QKlSUlahpGHzFqaWuKQJQpiy5TEWlTGgUHso8V5OJ_rIBH7peGOdcKD5zB_4y5PLtvFr6X2U9nXr0M3UH7oo0ZUnTrdXlDFLRFHQwjxlLM7ZKSlLdG49OMBRkyQFKtMLzeRu2OMfIIPPDZNbsURiwcpuv-XfJ5JoNOnr0f2__GB62vib51AjHE9hw9Q48WEMg3IGtUZtb34VJ_-w0H3wk_aW5iPvzSzOryZlbhGat2Bs7S07xfLlsGzdJPggF5AS9XvL1CuNjF3-fuV_kcEx8TPsHmfYpfDsajA-P43buQlyhhl7H3FFlpKxolUmjuRHlNE008tRh-KKks8yWUzG1HogHiZIE95G70mQ-q6oM5XuwWc9r9xwIlaXgVjLLOPcZWS3YtESdN1Yq9BxMBL3V7hdVC0ruZ2NcFCE4obpA1hWedUXLugjed3dcNYAc_6Dd9Wzo6FoORLC_YnDRauyiYEJlQqM7m0TwtltGXfMJFFO7-dLTMPQuuc5EBM8aeeievZKnCOQNSekIPI73zZV6dh7wvD2EYMb5i9vf9g3cPx6PhsXwJP_8Erb99zW9kPuwiYx0r-Be9fN6tvjxOqjDbwaXA3I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DRONE%3A+Dual-Domain+Residual-based+Optimization+NEtwork+for+Sparse-View+CT+Reconstruction&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Wu%2C+Weiwen&rft.au=Hu%2C+Dianlin&rft.au=Niu%2C+Chuang&rft.au=Yu%2C+Hengyong&rft.date=2021-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=40&rft.issue=11&rft.spage=3002&rft_id=info:doi/10.1109%2FTMI.2021.3078067&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |