DRONE: Dual-Domain Residual-based Optimization NEtwork for Sparse-View CT Reconstruction

Deep learning has attracted rapidly increasing attention in the field of tomographic image reconstruction, especially for CT, MRI, PET/SPECT, ultrasound and optical imaging. Among various topics, sparse-view CT remains a challenge which targets a decent image reconstruction from very few projections...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on medical imaging Ročník 40; číslo 11; s. 3002 - 3014
Hlavní autori: Wu, Weiwen, Hu, Dianlin, Niu, Chuang, Yu, Hengyong, Vardhanabhuti, Varut, Wang, Ge
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0278-0062, 1558-254X, 1558-254X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Deep learning has attracted rapidly increasing attention in the field of tomographic image reconstruction, especially for CT, MRI, PET/SPECT, ultrasound and optical imaging. Among various topics, sparse-view CT remains a challenge which targets a decent image reconstruction from very few projections. To address this challenge, in this article we propose a Dual-domain Residual-based Optimization NEtwork (DRONE). DRONE consists of three modules respectively for embedding, refinement, and awareness. In the embedding module, a sparse sinogram is first extended. Then, sparse-view artifacts are effectively suppressed in the image domain. After that, the refinement module recovers image details in the residual data and image domains synergistically. Finally, the results from the embedding and refinement modules in the data and image domains are regularized for optimized image quality in the awareness module, which ensures the consistency between measurements and images with the kernel awareness of compressed sensing. The DRONE network is trained, validated, and tested on preclinical and clinical datasets, demonstrating its merits in edge preservation, feature recovery, and reconstruction accuracy.
AbstractList Deep learning has attracted rapidly increasing attention in the field of tomographic image reconstruction, especially for CT, MRI, PET/SPECT, ultrasound and optical imaging. Among various topics, sparse-view CT remains a challenge which targets a decent image reconstruction from ultra-sparse projections. To address this challenge, in this article we propose a Dual-domain Residual-based Optimization NEtwork (DRONE). DRONE consists of three modules respectively for embedding, refinement, and awareness. In the embedding module, a sparse sinogram is first extended. Then, sparse-view artifacts are effectively suppressed by the image domain networks. After that, the refinement module focuses on the recovery of image details in the residual data and image domains synergistically. Finally, the results from embedding and refinement components in the data and image domains are regularized for optimized image quality in the awareness module, which ensures the consistency between measurements and images with the kernel awareness of compressed sensing. The DRONE network is trained, validated, and tested on preclinical and clinical datasets, demonstrating its merits in edge preservation, feature recovery, and reconstruction accuracy.
Deep learning has attracted rapidly increasing attention in the field of tomographic image reconstruction, especially for CT, MRI, PET/SPECT, ultrasound and optical imaging. Among various topics, sparse-view CT remains a challenge which targets a decent image reconstruction from very few projections. To address this challenge, in this article we propose a Dual-domain Residual-based Optimization NEtwork (DRONE). DRONE consists of three modules respectively for embedding, refinement, and awareness. In the embedding module, a sparse sinogram is first extended. Then, sparse-view artifacts are effectively suppressed in the image domain. After that, the refinement module recovers image details in the residual data and image domains synergistically. Finally, the results from the embedding and refinement modules in the data and image domains are regularized for optimized image quality in the awareness module, which ensures the consistency between measurements and images with the kernel awareness of compressed sensing. The DRONE network is trained, validated, and tested on preclinical and clinical datasets, demonstrating its merits in edge preservation, feature recovery, and reconstruction accuracy.
Deep learning has attracted rapidly increasing attention in the field of tomographic image reconstruction, especially for CT, MRI, PET/SPECT, ultrasound and optical imaging. Among various topics, sparse-view CT remains a challenge which targets a decent image reconstruction from very few projections. To address this challenge, in this article we propose a Dual-domain Residual-based Optimization NEtwork (DRONE). DRONE consists of three modules respectively for embedding, refinement, and awareness. In the embedding module, a sparse sinogram is first extended. Then, sparse-view artifacts are effectively suppressed in the image domain. After that, the refinement module recovers image details in the residual data and image domains synergistically. Finally, the results from the embedding and refinement modules in the data and image domains are regularized for optimized image quality in the awareness module, which ensures the consistency between measurements and images with the kernel awareness of compressed sensing. The DRONE network is trained, validated, and tested on preclinical and clinical datasets, demonstrating its merits in edge preservation, feature recovery, and reconstruction accuracy.Deep learning has attracted rapidly increasing attention in the field of tomographic image reconstruction, especially for CT, MRI, PET/SPECT, ultrasound and optical imaging. Among various topics, sparse-view CT remains a challenge which targets a decent image reconstruction from very few projections. To address this challenge, in this article we propose a Dual-domain Residual-based Optimization NEtwork (DRONE). DRONE consists of three modules respectively for embedding, refinement, and awareness. In the embedding module, a sparse sinogram is first extended. Then, sparse-view artifacts are effectively suppressed in the image domain. After that, the refinement module recovers image details in the residual data and image domains synergistically. Finally, the results from the embedding and refinement modules in the data and image domains are regularized for optimized image quality in the awareness module, which ensures the consistency between measurements and images with the kernel awareness of compressed sensing. The DRONE network is trained, validated, and tested on preclinical and clinical datasets, demonstrating its merits in edge preservation, feature recovery, and reconstruction accuracy.
Author Vardhanabhuti, Varut
Wang, Ge
Wu, Weiwen
Hu, Dianlin
Niu, Chuang
Yu, Hengyong
Author_xml – sequence: 1
  givenname: Weiwen
  orcidid: 0000-0002-8295-5104
  surname: Wu
  fullname: Wu, Weiwen
  email: weiwenwu12@gmail.com
  organization: Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong
– sequence: 2
  givenname: Dianlin
  orcidid: 0000-0003-4857-9878
  surname: Hu
  fullname: Hu, Dianlin
  email: 220171616@seu.edu.cn
  organization: Laboratory of Image Science and Technology, Southeast University, Nanjing, China
– sequence: 3
  givenname: Chuang
  orcidid: 0000-0002-3310-7803
  surname: Niu
  fullname: Niu, Chuang
  email: niuc@rpi.edu
  organization: Department of Biomedical Engineering, Biomedical Imaging Center, School of Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
– sequence: 4
  givenname: Hengyong
  orcidid: 0000-0002-5852-0813
  surname: Yu
  fullname: Yu, Hengyong
  email: hengyong-yu@ieee.org
  organization: Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, USA
– sequence: 5
  givenname: Varut
  orcidid: 0000-0001-6677-3194
  surname: Vardhanabhuti
  fullname: Vardhanabhuti, Varut
  email: varv@hku.hk
  organization: Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong
– sequence: 6
  givenname: Ge
  orcidid: 0000-0002-2656-7705
  surname: Wang
  fullname: Wang, Ge
  email: wangg6@rpi.edu
  organization: Department of Biomedical Engineering, Biomedical Imaging Center, School of Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33956627$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFrFDEUxoNU7Lb1Lggy4MXLbF-SSTLxUJDdVQu1C3WV3kImk9HUmcmazLTUv95sd1u0h54e4f2-jy_vO0B7ve8tQq8wTDEGebz6cjolQPCUgiiBi2doghkrc8KKyz00ASLKHICTfXQQ4xUALhjIF2ifUsk4J2KCLucXy_PF-2w-6jaf-067Pruw0dWbd6WjrbPlenCd-6MH5_vsfDHc-PAra3zIvq51iDb_7uxNNlslmfF9HMJoNuQRet7oNtqXu3mIvn1crGaf87Plp9PZh7PcMAxDTi2UWggDhgstqWZVU2BZGLBYFKWwNamrhjW1AMYShHGKTW2lOQVJSw30EJ1sfddj1dna2H4IulXr4DodbpXXTv2_6d1P9cNfq5JJzClNBu92BsH_Hm0cVOeisW2re-vHqAgjBWVUcpbQt4_QKz-GPn0vUSVPhpLiRL35N9FDlPujJ4BvARN8jME2yrjh7rwpoGsVBrVpV6V21aZdtWs3CeGR8N77CcnrrcRZax9wWZCC45L-BXrnrqE
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_TCI_2023_3240078
crossref_primary_10_1109_TCI_2024_3430469
crossref_primary_10_1016_j_eswa_2025_128109
crossref_primary_10_1002_mp_16157
crossref_primary_10_1002_mp_16552
crossref_primary_10_1016_j_bspc_2024_106853
crossref_primary_10_1088_1361_6560_ad1d6b
crossref_primary_10_3233_XST_230184
crossref_primary_10_1016_j_neunet_2021_08_026
crossref_primary_10_1109_TCI_2021_3098922
crossref_primary_10_1109_TRPMS_2023_3309474
crossref_primary_10_1109_TRPMS_2024_3420742
crossref_primary_10_1088_1361_6560_ac1d20
crossref_primary_10_1088_1361_6560_ad229f
crossref_primary_10_1109_TMI_2024_3420411
crossref_primary_10_1007_s41365_023_01258_4
crossref_primary_10_3390_e26020101
crossref_primary_10_1109_TRPMS_2024_3452683
crossref_primary_10_1088_1361_6560_ad69f7
crossref_primary_10_1016_j_compbiomed_2025_109900
crossref_primary_10_1007_s11263_025_02426_2
crossref_primary_10_1016_j_cmpb_2024_108010
crossref_primary_10_1080_10589759_2024_2305329
crossref_primary_10_1007_s10762_021_00806_6
crossref_primary_10_1016_j_cmpb_2024_108376
crossref_primary_10_1016_j_compbiomed_2024_108837
crossref_primary_10_1109_TIM_2025_3554318
crossref_primary_10_1109_JBHI_2022_3225697
crossref_primary_10_1016_j_compbiomed_2023_106888
crossref_primary_10_1109_TRPMS_2023_3316349
crossref_primary_10_1088_1361_6560_ad9dac
crossref_primary_10_3390_bioengineering10040470
crossref_primary_10_1109_TIM_2023_3306830
crossref_primary_10_1109_TMI_2024_3473970
crossref_primary_10_1016_j_compbiomed_2025_109853
crossref_primary_10_1016_j_cmpb_2023_107802
crossref_primary_10_1097_RCT_0000000000001734
crossref_primary_10_1109_TCI_2025_3553039
crossref_primary_10_1109_TMI_2023_3325824
crossref_primary_10_1109_ACCESS_2023_3255641
crossref_primary_10_1007_s10851_025_01249_7
crossref_primary_10_1088_1361_6560_ace498
crossref_primary_10_3233_XST_230245
crossref_primary_10_1016_j_compbiomed_2023_107345
crossref_primary_10_1109_ACCESS_2023_3342026
crossref_primary_10_1016_j_eswa_2024_125099
crossref_primary_10_1109_TRPMS_2023_3242662
crossref_primary_10_1109_TCSVT_2024_3397012
crossref_primary_10_1109_TRPMS_2022_3222213
crossref_primary_10_1109_TRPMS_2024_3512172
crossref_primary_10_1109_TIM_2021_3078555
crossref_primary_10_1007_s10851_025_01241_1
crossref_primary_10_1016_j_compbiomed_2022_105710
crossref_primary_10_1007_s10921_025_01244_3
crossref_primary_10_1007_s41365_024_01439_9
crossref_primary_10_1109_TNNLS_2023_3338867
crossref_primary_10_3390_app14083397
crossref_primary_10_1016_j_compbiomed_2023_106780
crossref_primary_10_1038_s41598_023_35938_3
crossref_primary_10_1109_TIP_2024_3351382
crossref_primary_10_1109_TMI_2024_3385650
crossref_primary_10_1016_j_bspc_2024_107182
crossref_primary_10_1109_TCI_2023_3328278
crossref_primary_10_1088_2632_2153_ad1b8e
crossref_primary_10_1002_acm2_14268
crossref_primary_10_1016_j_bspc_2023_105322
crossref_primary_10_1016_j_media_2024_103300
crossref_primary_10_1016_j_displa_2024_102734
crossref_primary_10_1109_TMI_2024_3376414
crossref_primary_10_1364_AO_534352
crossref_primary_10_1109_ACCESS_2024_3365506
crossref_primary_10_1109_ACCESS_2023_3273900
crossref_primary_10_1088_1361_6560_ad8da2
crossref_primary_10_1109_TMI_2024_3395348
crossref_primary_10_1088_1361_6560_adffe0
crossref_primary_10_1109_TIM_2023_3271714
crossref_primary_10_1088_1361_6560_ad31c7
crossref_primary_10_3233_XST_221310
crossref_primary_10_1007_s00138_024_01568_6
crossref_primary_10_1016_j_compbiomed_2023_107819
crossref_primary_10_1016_j_knosys_2022_109295
crossref_primary_10_1109_TIM_2022_3221136
crossref_primary_10_1016_j_optcom_2023_130156
crossref_primary_10_1088_1361_6501_ac9c21
crossref_primary_10_1109_ACCESS_2023_3342710
crossref_primary_10_3233_XST_230138
crossref_primary_10_1088_1361_6560_acbe8e
crossref_primary_10_1109_TIM_2023_3318712
crossref_primary_10_1016_j_neucom_2021_12_096
crossref_primary_10_1016_j_ejmp_2024_103382
crossref_primary_10_1109_TCI_2024_3507645
crossref_primary_10_1016_j_neunet_2024_106740
crossref_primary_10_1186_s12943_025_02369_9
crossref_primary_10_1088_1361_6560_ad2716
crossref_primary_10_1109_ACCESS_2024_3417928
crossref_primary_10_1177_08953996241308759
crossref_primary_10_1088_1361_6560_aced33
crossref_primary_10_1002_mp_16371
crossref_primary_10_1038_s44172_023_00121_z
crossref_primary_10_1080_10589759_2023_2170374
crossref_primary_10_1088_1361_6560_ac3842
crossref_primary_10_1109_TMI_2024_3367167
crossref_primary_10_1088_1361_6560_ac7bce
crossref_primary_10_1177_08953996251329214
crossref_primary_10_1088_1361_6560_ad4a1b
crossref_primary_10_7717_peerj_cs_1849
crossref_primary_10_1109_TMI_2024_3355455
crossref_primary_10_1007_s10278_025_01639_8
crossref_primary_10_1088_1361_6501_ad83e9
crossref_primary_10_1016_j_eswa_2023_120001
crossref_primary_10_1109_ACCESS_2024_3506155
crossref_primary_10_1088_1361_6560_adb932
crossref_primary_10_1088_1361_6560_ad2a94
crossref_primary_10_1088_1361_6560_adaf06
crossref_primary_10_1109_TMI_2023_3261822
crossref_primary_10_1088_1361_6463_acae31
crossref_primary_10_1109_TCI_2025_3551166
crossref_primary_10_1002_mp_15952
crossref_primary_10_1038_s41598_025_02133_5
crossref_primary_10_1109_TIM_2025_3551476
crossref_primary_10_1016_j_compbiomed_2022_106447
crossref_primary_10_3233_XST_230278
crossref_primary_10_1016_j_compbiomed_2023_107830
crossref_primary_10_1148_ryai_230275
crossref_primary_10_1088_1361_6560_ac3d16
crossref_primary_10_1109_TCI_2025_3540711
crossref_primary_10_1109_TIM_2024_3351228
crossref_primary_10_1109_ACCESS_2023_3343707
crossref_primary_10_1109_LSP_2024_3438118
Cites_doi 10.1137/1.9780898719284
10.1109/TMI.2017.2785879
10.1073/pnas.1907377117
10.1097/RCT.0b013e318231c578
10.1038/s42256-019-0057-9
10.1109/TMI.2012.2195669
10.1109/TMI.2020.3033541
10.1002/mp.12344
10.1109/TMI.2018.2823338
10.1109/TMI.2017.2715284
10.1109/TMI.2020.2964266
10.1088/0031-9155/59/4/1005
10.1088/0031-9155/59/12/3121
10.1023/B:JMIV.0000011321.19549.88
10.1109/TPAMI.2020.3012955
10.7717/peerj.453
10.1088/0031-9155/51/13/R08
10.1109/TRPMS.2020.3011413
10.1364/OE.25.024215
10.1038/s42256-020-00273-z
10.1109/TMI.2018.2805692
10.1117/12.2549444
10.1088/0031-9155/54/9/014
10.1109/TMI.2014.2380993
10.3233/XST-16208
10.1137/080724265
10.1109/TIP.2017.2713099
10.1109/IVMSPW.2018.8448694
10.1118/1.2370508
10.1038/nature25988
10.1109/ACCESS.2016.2624938
10.1109/TMI.2018.2827462
10.1109/TRPMS.2020.2991887
10.1088/0031-9155/60/8/N131
10.1016/j.apm.2018.07.006
10.1109/TMI.2018.2799231
10.1109/TMI.2018.2878226
10.1109/TMI.2018.2823768
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2021.3078067
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 3014
ExternalDocumentID PMC8591633
33956627
10_1109_TMI_2021_3078067
9424618
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Li Ka Shing Foundation
  funderid: 10.13039/100007421
– fundername: NIH
  grantid: R01CA237267; R01CA233888; R01EB026646; R01HL151561
  funderid: 10.13039/100000002
– fundername: NIBIB NIH HHS
  grantid: R01 EB026646
– fundername: NCI NIH HHS
  grantid: R01 CA237267
– fundername: NHLBI NIH HHS
  grantid: R01 HL151561
– fundername: NCI NIH HHS
  grantid: R01 CA250636
– fundername: NCI NIH HHS
  grantid: R01 CA233888
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c510t-3e08a77c0c67a93a5bf4194c0e17487ed2dbf5fd7055c0c116623eba630938a03
IEDL.DBID RIE
ISICitedReferencesCount 183
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000711848900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Tue Sep 30 17:19:09 EDT 2025
Sat Sep 27 19:32:31 EDT 2025
Sun Nov 09 08:53:32 EST 2025
Sun Jul 20 01:30:39 EDT 2025
Sat Nov 29 05:14:09 EST 2025
Tue Nov 18 22:35:36 EST 2025
Wed Aug 27 02:28:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c510t-3e08a77c0c67a93a5bf4194c0e17487ed2dbf5fd7055c0c116623eba630938a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4857-9878
0000-0001-6677-3194
0000-0002-3310-7803
0000-0002-8295-5104
0000-0002-2656-7705
0000-0002-5852-0813
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8591633
PMID 33956627
PQID 2586591931
PQPubID 85460
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8591633
proquest_miscellaneous_2524353965
crossref_primary_10_1109_TMI_2021_3078067
pubmed_primary_33956627
ieee_primary_9424618
proquest_journals_2586591931
crossref_citationtrail_10_1109_TMI_2021_3078067
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref37
ref36
ref14
ref31
ref33
ref11
antun (ref13) 2020; 117
ref32
ref10
xia (ref15) 2020
ref2
ref39
ref17
ref38
ref19
hochmuth (ref1) 2002; 23
ref18
sun (ref16) 2016
wu (ref30) 2021; 70
wu (ref47) 2020
johnson (ref34) 2016
kak (ref22) 1988
gottschling (ref27) 2020
ref24
ref45
ref23
ref48
ref26
ref25
ref20
ref42
gulrajani (ref35) 2017
ref44
ref21
ref43
ref28
ref29
ref8
ref7
kingma (ref41) 2014
ref9
ref4
ref3
ref6
ref5
xu (ref46) 2012; 31
ref40
References_xml – ident: ref21
  doi: 10.1137/1.9780898719284
– ident: ref37
  doi: 10.1109/TMI.2017.2785879
– volume: 117
  start-page: 30088
  year: 2020
  ident: ref13
  article-title: On instabilities of deep learning in image reconstruction and the potential costs of AI
  publication-title: Proc Nat Acad Sci USA
  doi: 10.1073/pnas.1907377117
– ident: ref43
  doi: 10.1097/RCT.0b013e318231c578
– year: 2020
  ident: ref15
  article-title: MAGIC: Manifold and graph integrative convolutional network for low-dose CT reconstruction
  publication-title: arXiv 2008 00406
– ident: ref42
  doi: 10.1038/s42256-019-0057-9
– start-page: 694
  year: 2016
  ident: ref34
  article-title: Perceptual losses for real-time style transfer and super-resolution
  publication-title: Proc Eur Conf Comput Vis
– volume: 31
  start-page: 1682
  year: 2012
  ident: ref46
  article-title: Low-dose X-ray CT reconstruction via dictionary learning
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2012.2195669
– ident: ref20
  doi: 10.1109/TMI.2020.3033541
– ident: ref10
  doi: 10.1002/mp.12344
– year: 2020
  ident: ref27
  article-title: The troublesome kernel: Why deep learning for inverse problems is typically unstable
  publication-title: arXiv 2001 01258
– ident: ref6
  doi: 10.1109/TMI.2018.2823338
– ident: ref5
  doi: 10.1109/TMI.2017.2715284
– year: 2014
  ident: ref41
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref12
  doi: 10.1109/TMI.2020.2964266
– ident: ref4
  doi: 10.1088/0031-9155/59/4/1005
– ident: ref3
  doi: 10.1088/0031-9155/59/12/3121
– ident: ref38
  doi: 10.1023/B:JMIV.0000011321.19549.88
– ident: ref18
  doi: 10.1109/TPAMI.2020.3012955
– volume: 70
  start-page: 1
  year: 2021
  ident: ref30
  article-title: A high-quality photon-counting CT technique based on weight adaptive total-variation and image-spectral tensor factorization for small animals imaging
  publication-title: IEEE Trans Instrum Meas
– ident: ref39
  doi: 10.7717/peerj.453
– ident: ref48
  doi: 10.1088/0031-9155/51/13/R08
– ident: ref33
  doi: 10.1109/TRPMS.2020.3011413
– ident: ref28
  doi: 10.1364/OE.25.024215
– ident: ref7
  doi: 10.1038/s42256-020-00273-z
– ident: ref14
  doi: 10.1109/TMI.2018.2805692
– ident: ref40
  doi: 10.1117/12.2549444
– year: 2020
  ident: ref47
  article-title: Stabilizing deep tomographic reconstruction networks
  publication-title: arXiv 2008 01846
– ident: ref29
  doi: 10.1088/0031-9155/54/9/014
– ident: ref31
  doi: 10.1109/TMI.2014.2380993
– ident: ref26
  doi: 10.3233/XST-16208
– ident: ref45
  doi: 10.1137/080724265
– year: 1988
  ident: ref22
  publication-title: Principles of Computerized Tomographic Imaging
– ident: ref8
  doi: 10.1109/TIP.2017.2713099
– ident: ref19
  doi: 10.1109/IVMSPW.2018.8448694
– volume: 23
  start-page: 1199
  year: 2002
  ident: ref1
  article-title: Comparison of three-dimensional rotational angiography with digital subtraction angiography in the assessment of ruptured cerebral aneurysms
  publication-title: Amer J Neuroradiol
– start-page: 10
  year: 2016
  ident: ref16
  article-title: Deep ADMM-Net for compressive sensing MRI
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref2
  doi: 10.1118/1.2370508
– ident: ref11
  doi: 10.1038/nature25988
– ident: ref25
  doi: 10.1109/ACCESS.2016.2624938
– ident: ref36
  doi: 10.1109/TMI.2018.2827462
– ident: ref32
  doi: 10.1109/TRPMS.2020.2991887
– ident: ref44
  doi: 10.1088/0031-9155/60/8/N131
– ident: ref23
  doi: 10.1016/j.apm.2018.07.006
– year: 2017
  ident: ref35
  article-title: Improved training of Wasserstein GANs
  publication-title: arXiv 1704 00028
– ident: ref17
  doi: 10.1109/TMI.2018.2799231
– ident: ref24
  doi: 10.1109/TMI.2018.2878226
– ident: ref9
  doi: 10.1109/TMI.2018.2823768
SSID ssj0014509
Score 2.6771472
Snippet Deep learning has attracted rapidly increasing attention in the field of tomographic image reconstruction, especially for CT, MRI, PET/SPECT, ultrasound and...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3002
SubjectTerms Algorithms
Biomedical measurement
compressed sensing
Computed tomography
Computed tomography (CT)
Deep learning
Domains
Drones
Embedding
Generative adversarial networks
Image processing
Image Processing, Computer-Assisted
Image quality
Image reconstruction
Imaging
iterative reconstruction
Magnetic resonance imaging
Medical imaging
Modules
Optimization
Phantoms, Imaging
Positron emission
Reconstruction algorithms
Single photon emission computed tomography
sparse-view CT reconstruction
Tomography
Tomography, X-Ray Computed
Title DRONE: Dual-Domain Residual-based Optimization NEtwork for Sparse-View CT Reconstruction
URI https://ieeexplore.ieee.org/document/9424618
https://www.ncbi.nlm.nih.gov/pubmed/33956627
https://www.proquest.com/docview/2586591931
https://www.proquest.com/docview/2524353965
https://pubmed.ncbi.nlm.nih.gov/PMC8591633
Volume 40
WOSCitedRecordID wos000711848900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9wwDLYATYg9wAZj62Aok_YyaeXSpGlS3hB3aJPGMbHbdG9V2uS0k6CHOG77-7PTXndMaNLeKsWt2tiO7dr-DPAOrULFRYmahsFXnDrumyIAY8tS6lRVxoZG4c96ODTjcf5lDT50vTDe-1B85o_pMuTy3axa0K-yXp4S-plZh3WtddOr1WUMUtWUcwhCjOWZWKYked4bXXzCQFAkxyjPBk_nLdiUEuOCjEbJrFijMF7lMU_z74LJFQt0vvN_7_4MtltPk502ovEc1ny9C09X8Ad3YfOizazvwbh_dTkcnLD-wl7H_dmNndbsys9Dq1ZMps6xSzxdbtq2TTYchPJxhj4v-3qL0bGPv0_9L3Y2YhTR_sGlfQHfzgejs49xO3UhrlA_72PpubFaV7zKtM2lVeUkTXLkqMfgxWjvhCsnauIIhgeJkgT3UfrSZpRTNZbLfdioZ7V_BYzrUkmnhRNSUj42V2JSosZbpw36DTaC3nL3i6qFJKfJGNdFCE14XiDrCmJd0bIugvfdHbcNHMc_aPeIDR1dy4EIDpcMLlp9nRdCmUzl6MwmEbztllHTKH1iaz9bEI1A31LmmYrgZSMP3bOX8hSBfiApHQGheD9cqac_Apo3AQhmUr5-_G0PYIu-qel-PIQNZJ5_A0-qn_fT-d0RKsLYHAVF-A2VgwET
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgcZ44GNjEBhgJF6QyOrYcWzzhtZOm2gzNArqW-TErlZpSye6wr_P2UlDhyYk3iL5EiW-O99d7u53AO_QKlSUlahpGHzFqaWuKQJQpiy5TEWlTGgUHso8V5OJ_rIBH7peGOdcKD5zB_4y5PLtvFr6X2U9nXr0M3UH7oo0ZUnTrdXlDFLRFHQwjxlLM7ZKSlLdG49OMBRkyQFKtMLzeRu2OMfIIPPDZNbsURiwcpuv-XfJ5JoNOnr0f2__GB62vib51AjHE9hw9Q48WEMg3IGtUZtb34VJ_-w0H3wk_aW5iPvzSzOryZlbhGat2Bs7S07xfLlsGzdJPggF5AS9XvL1CuNjF3-fuV_kcEx8TPsHmfYpfDsajA-P43buQlyhhl7H3FFlpKxolUmjuRHlNE008tRh-KKks8yWUzG1HogHiZIE95G70mQ-q6oM5XuwWc9r9xwIlaXgVjLLOPcZWS3YtESdN1Yq9BxMBL3V7hdVC0ruZ2NcFCE4obpA1hWedUXLugjed3dcNYAc_6Dd9Wzo6FoORLC_YnDRauyiYEJlQqM7m0TwtltGXfMJFFO7-dLTMPQuuc5EBM8aeeievZKnCOQNSekIPI73zZV6dh7wvD2EYMb5i9vf9g3cPx6PhsXwJP_8Erb99zW9kPuwiYx0r-Be9fN6tvjxOqjDbwaXA3I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DRONE%3A+Dual-Domain+Residual-based+Optimization+NEtwork+for+Sparse-View+CT+Reconstruction&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Wu%2C+Weiwen&rft.au=Hu%2C+Dianlin&rft.au=Niu%2C+Chuang&rft.au=Yu%2C+Hengyong&rft.date=2021-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=40&rft.issue=11&rft.spage=3002&rft_id=info:doi/10.1109%2FTMI.2021.3078067&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon