Modulating the proteinase inhibitory profile of a plant cystatin by single mutations at positively selected amino acid sites
Cysteine proteinase inhibitors of the cystatin superfamily have several important functions in plants, including the inhibition of exogenous cysteine proteinases during herbivory or infection. Here we used a maximum-likelihood approach to assess whether plant cystatins, like other proteins implicate...
Uloženo v:
| Vydáno v: | The Plant journal : for cell and molecular biology Ročník 48; číslo 3; s. 403 - 413 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.11.2006
Blackwell Publishing Ltd Blackwell Science |
| Témata: | |
| ISSN: | 0960-7412, 1365-313X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Cysteine proteinase inhibitors of the cystatin superfamily have several important functions in plants, including the inhibition of exogenous cysteine proteinases during herbivory or infection. Here we used a maximum-likelihood approach to assess whether plant cystatins, like other proteins implicated in host-pest interactions, have been subject to positive selection during the course of their evolution. Several amino acid sites were identified as being positively selected in cystatins from either Poaceae (monocots) and Solanaceae (dicots). These hypervariable sites were located at strategic positions on the protein: on each side of the conserved glycine residues in the N-terminal trunk, within the first and second inhibitory loops entering the active site of target enzymes, and surrounding the [smallcapital larfav] motif, a sequence of unknown function conserved among plant cystatins. Supporting the assumption that positively selected, hypervariable sites are indicative of amino acid sites implicated in functional diversity, mutants of the 8th cystatin unit of tomato multicystatin including alternative residues at positively selected sites in the N-terminal trunk exhibited highly variable affinities for the cysteine proteases papain, cathepsin B and cathepsin H. Overall, these observations support the hypothesis that plant cystatins have been under selective pressure to evolve in response to predatory challenges by herbivorous enemies. They also indicate the potential of site-directed mutagenesis at positively selected sites for the generation of cystatins with improved binding properties. |
|---|---|
| AbstractList | Cysteine proteinase inhibitors of the cystatin superfamily have several important functions in plants, including the inhibition of exogenous cysteine proteinases during herbivory or infection. Here we used a maximum-likelihood approach to assess whether plant cystatins, like other proteins implicated in host-pest interactions, have been subject to positive selection during the course of their evolution. Several amino acid sites were identified as being positively selected in cystatins from either Poaceae (monocots) and Solanaceae (dicots). These hypervariable sites were located at strategic positions on the protein: on each side of the conserved glycine residues in the N-terminal trunk, within the first and second inhibitory loops entering the active site of target enzymes, and surrounding the [smallcapital larfav] motif, a sequence of unknown function conserved among plant cystatins. Supporting the assumption that positively selected, hypervariable sites are indicative of amino acid sites implicated in functional diversity, mutants of the 8th cystatin unit of tomato multicystatin including alternative residues at positively selected sites in the N-terminal trunk exhibited highly variable affinities for the cysteine proteases papain, cathepsin B and cathepsin H. Overall, these observations support the hypothesis that plant cystatins have been under selective pressure to evolve in response to predatory challenges by herbivorous enemies. They also indicate the potential of site-directed mutagenesis at positively selected sites for the generation of cystatins with improved binding properties. Summary Cysteine proteinase inhibitors of the cystatin superfamily have several important functions in plants, including the inhibition of exogenous cysteine proteinases during herbivory or infection. Here we used a maximum‐likelihood approach to assess whether plant cystatins, like other proteins implicated in host–pest interactions, have been subject to positive selection during the course of their evolution. Several amino acid sites were identified as being positively selected in cystatins from either Poaceae (monocots) and Solanaceae (dicots). These hypervariable sites were located at strategic positions on the protein: on each side of the conserved glycine residues in the N‐terminal trunk, within the first and second inhibitory loops entering the active site of target enzymes, and surrounding the larfav motif, a sequence of unknown function conserved among plant cystatins. Supporting the assumption that positively selected, hypervariable sites are indicative of amino acid sites implicated in functional diversity, mutants of the 8th cystatin unit of tomato multicystatin including alternative residues at positively selected sites in the N‐terminal trunk exhibited highly variable affinities for the cysteine proteases papain, cathepsin B and cathepsin H. Overall, these observations support the hypothesis that plant cystatins have been under selective pressure to evolve in response to predatory challenges by herbivorous enemies. They also indicate the potential of site‐directed mutagenesis at positively selected sites for the generation of cystatins with improved binding properties. Cysteine proteinase inhibitors of the cystatin superfamily have several important functions in plants, including the inhibition of exogenous cysteine proteinases during herbivory or infection. Here we used a maximum-likelihood approach to assess whether plant cystatins, like other proteins implicated in host-pest interactions, have been subject to positive selection during the course of their evolution. Several amino acid sites were identified as being positively selected in cystatins from either Poaceae (monocots) and Solanaceae (dicots). These hypervariable sites were located at strategic positions on the protein: on each side of the conserved glycine residues in the N-terminal trunk, within the first and second inhibitory loops entering the active site of target enzymes, and surrounding the larfav motif, a sequence of unknown function conserved among plant cystatins. Supporting the assumption that positively selected, hypervariable sites are indicative of amino acid sites implicated in functional diversity, mutants of the 8th cystatin unit of tomato multicystatin including alternative residues at positively selected sites in the N-terminal trunk exhibited highly variable affinities for the cysteine proteases papain, cathepsin B and cathepsin H. Overall, these observations support the hypothesis that plant cystatins have been under selective pressure to evolve in response to predatory challenges by herbivorous enemies. They also indicate the potential of site-directed mutagenesis at positively selected sites for the generation of cystatins with improved binding properties.Cysteine proteinase inhibitors of the cystatin superfamily have several important functions in plants, including the inhibition of exogenous cysteine proteinases during herbivory or infection. Here we used a maximum-likelihood approach to assess whether plant cystatins, like other proteins implicated in host-pest interactions, have been subject to positive selection during the course of their evolution. Several amino acid sites were identified as being positively selected in cystatins from either Poaceae (monocots) and Solanaceae (dicots). These hypervariable sites were located at strategic positions on the protein: on each side of the conserved glycine residues in the N-terminal trunk, within the first and second inhibitory loops entering the active site of target enzymes, and surrounding the larfav motif, a sequence of unknown function conserved among plant cystatins. Supporting the assumption that positively selected, hypervariable sites are indicative of amino acid sites implicated in functional diversity, mutants of the 8th cystatin unit of tomato multicystatin including alternative residues at positively selected sites in the N-terminal trunk exhibited highly variable affinities for the cysteine proteases papain, cathepsin B and cathepsin H. Overall, these observations support the hypothesis that plant cystatins have been under selective pressure to evolve in response to predatory challenges by herbivorous enemies. They also indicate the potential of site-directed mutagenesis at positively selected sites for the generation of cystatins with improved binding properties. Cysteine proteinase inhibitors of the cystatin superfamily have several important functions in plants, including the inhibition of exogenous cysteine proteinases during herbivory or infection. Here we used a maximum-likelihood approach to assess whether plant cystatins, like other proteins implicated in host-pest interactions, have been subject to positive selection during the course of their evolution. Several amino acid sites were identified as being positively selected in cystatins from either Poaceae (monocots) and Solanaceae (dicots). These hypervariable sites were located at strategic positions on the protein: on each side of the conserved glycine residues in the N-terminal trunk, within the first and second inhibitory loops entering the active site of target enzymes, and surrounding thelarfav motif, a sequence of unknown function conserved among plant cystatins. Supporting the assumption that positively selected, hypervariable sites are indicative of amino acid sites implicated in functional diversity, mutants of the 8th cystatin unit of tomato multicystatin including alternative residues at positively selected sites in the N-terminal trunk exhibited highly variable affinities for the cysteine proteases papain, cathepsin B and cathepsin H. Overall, these observations support the hypothesis that plant cystatins have been under selective pressure to evolve in response to predatory challenges by herbivorous enemies. They also indicate the potential of site-directed mutagenesis at positively selected sites for the generation of cystatins with improved binding properties. [PUBLICATION ABSTRACT] Cysteine proteinase inhibitors of the cystatin superfamily have several important functions in plants, including the inhibition of exogenous cysteine proteinases during herbivory or infection. Here we used a maximum-likelihood approach to assess whether plant cystatins, like other proteins implicated in host-pest interactions, have been subject to positive selection during the course of their evolution. Several amino acid sites were identified as being positively selected in cystatins from either Poaceae (monocots) and Solanaceae (dicots). These hypervariable sites were located at strategic positions on the protein: on each side of the conserved glycine residues in the N-terminal trunk, within the first and second inhibitory loops entering the active site of target enzymes, and surrounding the larfav motif, a sequence of unknown function conserved among plant cystatins. Supporting the assumption that positively selected, hypervariable sites are indicative of amino acid sites implicated in functional diversity, mutants of the 8th cystatin unit of tomato multicystatin including alternative residues at positively selected sites in the N-terminal trunk exhibited highly variable affinities for the cysteine proteases papain, cathepsin B and cathepsin H. Overall, these observations support the hypothesis that plant cystatins have been under selective pressure to evolve in response to predatory challenges by herbivorous enemies. They also indicate the potential of site-directed mutagenesis at positively selected sites for the generation of cystatins with improved binding properties. Cysteine proteinase inhibitors of the cystatin superfamily have several important functions in plants, including the inhibition of exogenous cysteine proteinases during herbivory or infection. Here we used a maximum‐likelihood approach to assess whether plant cystatins, like other proteins implicated in host–pest interactions, have been subject to positive selection during the course of their evolution. Several amino acid sites were identified as being positively selected in cystatins from either Poaceae (monocots) and Solanaceae (dicots). These hypervariable sites were located at strategic positions on the protein: on each side of the conserved glycine residues in the N‐terminal trunk, within the first and second inhibitory loops entering the active site of target enzymes, and surrounding the larfav motif, a sequence of unknown function conserved among plant cystatins. Supporting the assumption that positively selected, hypervariable sites are indicative of amino acid sites implicated in functional diversity, mutants of the 8th cystatin unit of tomato multicystatin including alternative residues at positively selected sites in the N‐terminal trunk exhibited highly variable affinities for the cysteine proteases papain, cathepsin B and cathepsin H. Overall, these observations support the hypothesis that plant cystatins have been under selective pressure to evolve in response to predatory challenges by herbivorous enemies. They also indicate the potential of site‐directed mutagenesis at positively selected sites for the generation of cystatins with improved binding properties. |
| Author | Vyver, Christell van der Kunert, Karl Pépin, Geneviève Michaud, Dominique Rivard, Daniel Benchabane, Meriem Kiggundu, Andrew Dubuc, Jean-François Goulet, Marie-Claire Goulet, Charles |
| Author_xml | – sequence: 1 fullname: Kiggundu, Andrew – sequence: 2 fullname: Goulet, Marie-Claire – sequence: 3 fullname: Goulet, Charles – sequence: 4 fullname: Dubuc, Jean-François – sequence: 5 fullname: Rivard, Daniel – sequence: 6 fullname: Benchabane, Meriem – sequence: 7 fullname: Pépin, Geneviève – sequence: 8 fullname: Vyver, Christell van der – sequence: 9 fullname: Kunert, Karl – sequence: 10 fullname: Michaud, Dominique |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18204981$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16965553$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl1rFDEUhoNU7Lb6FzQIerdrMvmYyYWClPpFRcEWvAtnMmfaLLOT7SRju-CPN9NdK_RmzU3COc97Psh7RA760CMhlLMFz-fNcsGFVnPBxc9FwZhesKIqq8XtIzK7TxyQGTOazUvJi0NyFOOSMV4KLZ-QQ66NVkqJGfn9NTRjB8n3lzRdIV0PIaHvISL1_ZWvfQrDZoq2vkMaWgp03UGfqNvENMlovaExq3N2NU6R0EcKia5D9Mn_wi6nsUOXsKGw8n2g4HyTJQnjU_K4hS7is919TC4-nJ6ffJqfffv4-eT92dwpzqq5a2uOSiqt0NQAslAGwSkmdKsdlGBqbhpTNcKBMEo2hjFEUBqQSSlrJY7J623dvMf1iDHZlY8Ou7wIhjFaXZkqN-J7QVlyI5go94I8z1EKNrV--QBchnHo87a24EIxU1YyQ8930FivsLHrwa9g2Ni_35SBVzsAooOuHaB3Pv7jqoJJczf_uy3nhhDjgK11fvsnaQDfWc7s5B-7tJNN7GQTO_nH3vnH3uYC1YMC9z32S99upTfZKZv_1tnz71-mV9a_2OpbCBYuh7zfxY-CccE4Z2VVCPEHgvTnUQ |
| CitedBy_id | crossref_primary_10_3390_toxins4060455 crossref_primary_10_1016_j_biochi_2019_06_006 crossref_primary_10_1016_j_ibmb_2015_07_017 crossref_primary_10_3390_ijms17101747 crossref_primary_10_1186_1471_2229_12_198 crossref_primary_10_1016_j_plaphy_2007_03_028 crossref_primary_10_1093_jxb_erq166 crossref_primary_10_1093_jxb_erv211 crossref_primary_10_1111_j_1467_7652_2008_00382_x crossref_primary_10_1016_S1672_0229_10_60005_8 crossref_primary_10_1002_arch_20342 crossref_primary_10_3389_fpls_2023_1129454 crossref_primary_10_1111_febs_16335 crossref_primary_10_1111_j_1742_4658_2009_07138_x crossref_primary_10_1016_j_biochi_2010_06_006 crossref_primary_10_1016_j_plaphy_2008_04_005 crossref_primary_10_1007_s12010_012_9882_6 crossref_primary_10_1111_j_1469_8137_2007_01968_x crossref_primary_10_1002_biot_200700022 crossref_primary_10_1104_pp_109_142232 crossref_primary_10_1016_j_plaphy_2011_03_012 crossref_primary_10_1016_j_jinsphys_2017_03_001 crossref_primary_10_1093_jxb_eru274 crossref_primary_10_1111_pbi_12928 crossref_primary_10_1093_jxb_eraf156 crossref_primary_10_1134_S0003683808030010 crossref_primary_10_1007_s00299_021_02800_7 crossref_primary_10_3389_fpls_2017_00743 crossref_primary_10_1016_j_plantsci_2022_111342 crossref_primary_10_1104_pp_107_112177 crossref_primary_10_1186_1472_6807_10_30 crossref_primary_10_1104_pp_108_115741 crossref_primary_10_1016_j_plantsci_2016_02_016 crossref_primary_10_1038_srep38827 crossref_primary_10_1111_febs_16288 crossref_primary_10_1111_febs_13671 crossref_primary_10_1186_1741_7007_6_38 |
| Cites_doi | 10.1093/oxfordjournals.molbev.a003750 10.1104/pp.103.4.1347 10.1016/0305-0491(94)90141-4 10.1002/arch.10134 10.1016/j.ibmb.2004.01.003 10.1093/sysbio/46.1.101 10.1073/pnas.2133013100 10.1023/A:1022642807731 10.1016/0014-5793(89)80135-8 10.1016/0022-1910(95)00073-4 10.1111/j.0014-3820.2000.tb00079.x 10.1046/j.1365-313X.2003.01645.x 10.1016/S1570-9639(02)00411-9 10.1042/bj1270321 10.1021/jf0201935 10.1016/S0021-9258(18)45453-1 10.1007/BF00021535 10.1093/molbev/msh084 10.1046/j.1467-7652.2003.00037.x 10.1002/(SICI)1520-6327(1999)40:2<69::AID-ARCH1>3.0.CO;2-M 10.1046/j.1365-313X.1995.08010121.x 10.1042/bj3300833 10.1016/S0167-7799(96)10072-X 10.1016/0965-1748(95)00044-V 10.1046/j.1365-294X.2003.01919.x 10.1093/nar/16.22.10881 10.1093/oxfordjournals.molbev.a004130 10.1016/0968-0004(89)90159-X 10.1016/S0965-1748(98)00027-7 10.1002/elps.1150170816 10.1002/j.1460-2075.1990.tb08321.x 10.1016/0924-2244(96)10023-6 10.1046/j.1467-7652.2003.00010.x 10.1111/j.0962-1075.2004.00485.x 10.1016/0305-0491(87)90388-9 10.1104/pp.112.3.1201 10.1016/S0006-291X(02)02046-6 10.1074/jbc.M211776200 10.1093/oxfordjournals.molbev.a025957 10.1093/genetics/155.1.431 10.1046/j.1365-313X.2001.01104.x 10.1016/S0168-9452(98)00153-8 10.1021/bi9620870 10.1073/pnas.0500371102 10.1016/S0965-1748(00)00169-7 10.1021/bi030119v 10.1016/S0968-0004(00)01561-9 10.1046/j.1432-1033.2003.03630.x 10.2307/2411196 10.1038/70781 10.1016/S0022-1910(98)00050-X 10.1006/abbi.1998.0875 10.1016/S0169-5347(00)01994-7 10.1016/S0021-9258(18)55473-9 10.1038/nbt860 10.1111/j.1365-294X.2005.02457.x 10.1074/jbc.M203076200 10.1021/bi0006971 10.1002/j.1460-2075.1988.tb03109.x 10.1073/pnas.97.10.5322 10.1093/jxb/eri172 10.1016/S0965-1748(00)00168-5 10.1073/pnas.0409853102 10.1017/CBO9780511623486 10.1006/abbi.1995.1490 10.1002/1520-6327(200006)44:2<69::AID-ARCH2>3.0.CO;2-6 10.1021/bp00026a004 10.1046/j.1365-2583.2003.00395.x 10.1016/S0965-1748(97)00043-X 10.1073/pnas.0403999101 |
| ContentType | Journal Article |
| Copyright | 2006 INIST-CNRS 2006 The Authors Journal compilation 2006 Blackwell Publishing Ltd |
| Copyright_xml | – notice: 2006 INIST-CNRS – notice: 2006 The Authors Journal compilation 2006 Blackwell Publishing Ltd |
| DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7S9 L.6 7X8 |
| DOI | 10.1111/j.1365-313X.2006.02878.x |
| DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic Genetics Abstracts Genetics Abstracts CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany Chemistry |
| EISSN | 1365-313X |
| EndPage | 413 |
| ExternalDocumentID | 1146569121 16965553 18204981 10_1111_j_1365_313X_2006_02878_x TPJ2878 US201301107823 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
| GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABJNI ABPTK ABPVW ABWRO ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FIJ G-S G.N GODZA H.T H.X HF~ HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAHBH AAHQN AAMNL AAYCA AFWVQ AHBTC AITYG ALVPJ HGLYW OIG AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION O8X IQODW CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7S9 L.6 7X8 |
| ID | FETCH-LOGICAL-c5108-cfb1e54565e9baa4259eac5036f6ca7a9b19d98d3ca3954d900eea56ae0444b53 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000241240300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-7412 |
| IngestDate | Fri Jul 11 16:56:01 EDT 2025 Fri Jul 11 08:43:15 EDT 2025 Thu Oct 02 12:07:23 EDT 2025 Tue Oct 21 04:47:57 EDT 2025 Wed Feb 19 01:43:20 EST 2025 Mon Jul 21 09:14:15 EDT 2025 Sat Nov 29 06:05:04 EST 2025 Tue Nov 18 21:11:23 EST 2025 Wed Jan 22 16:41:10 EST 2025 Wed Dec 27 19:27:20 EST 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Cystatin EC 3.4.22.16 Monocotyledones Cysteine plant cystatins Pest cysteine proteinase inhibitors Gramineae plant-insect interactions Dicotyledones Aminoacid Angiospermae Lycopersicon esculentum site- directed mutagenesis Spermatophyta EC 3.4.22.1 positive selection Inhibition Mutation Solanaceae EC 3.4.22.2 |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5108-cfb1e54565e9baa4259eac5036f6ca7a9b19d98d3ca3954d900eea56ae0444b53 |
| Notes | http://dx.doi.org/10.1111/j.1365-313X.2006.02878.x This is an intra‐laboratory collaboration. The first four authors contributed equally to this work. SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 16965553 |
| PQID | 213509784 |
| PQPubID | 31702 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_68981081 proquest_miscellaneous_47193037 proquest_miscellaneous_19547305 proquest_journals_213509784 pubmed_primary_16965553 pascalfrancis_primary_18204981 crossref_citationtrail_10_1111_j_1365_313X_2006_02878_x crossref_primary_10_1111_j_1365_313X_2006_02878_x wiley_primary_10_1111_j_1365_313X_2006_02878_x_TPJ2878 fao_agris_US201301107823 |
| PublicationCentury | 2000 |
| PublicationDate | November 2006 |
| PublicationDateYYYYMMDD | 2006-11-01 |
| PublicationDate_xml | – month: 11 year: 2006 text: November 2006 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
| PublicationTitle | The Plant journal : for cell and molecular biology |
| PublicationTitleAlternate | Plant J |
| PublicationYear | 2006 |
| Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell Science |
| Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell Science |
| References | 1987; 262 2004; 21 1993; 23 2002; 19 1995a; 25 2002; 50 1987; 4 2000; 44 1997; 46 2002; 277 2003; 270 1999; 40 2004; 2 1998; 359 2003; 278 1990; 265 2000; 290 2003; 12 1998; 15 1987; 87 2000 2000; 15 1997; 53 2005; 102 1999; 17 1997; 15 2000; 54 2002; 1599 2004; 34 1997; 13 2000; 97 2003; 3 1983 2001a; 31 2001; 18 2003; 1 2001b; 31 1994; 109 1994; 305 1996; 377 2003; 42 1989 1996; 7 2004; 101 1997; 378 1996; 17 2002; 296 2000; 25 1998b; 28 1988; 16 1995b; 322 1997; 27 2001; 27 2000; 155 1998; 138 1993; 103 1998; 330 2003; 33 1995; 8 1995; 41 2004; 55 2000; 39 1997; 36 1988; 7 1989; 243 2004; 13 1990; 9 1996; 112 1989; 14 2003; 100 1972; 127 2005; 56 2003; 21 1998a; 44 1994; 10 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_72_1 Salvesen G. (e_1_2_6_60_1) 1989 Arai S. (e_1_2_6_3_1) 2000 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 Björk I. (e_1_2_6_11_1) 1994; 305 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 Yang Z. (e_1_2_6_73_1) 1997; 13 Felsenstein J. (e_1_2_6_23_1) 1997; 46 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_22_1 Henskens Y.M.C. (e_1_2_6_30_1) 1996; 377 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 Saitou N. (e_1_2_6_59_1) 1987; 4 e_1_2_6_65_1 e_1_2_6_21_1 Kondo H. (e_1_2_6_35_1) 1990; 265 e_1_2_6_40_1 e_1_2_6_61_1 Turk B. (e_1_2_6_68_1) 1997; 378 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 Mauricio R. (e_1_2_6_45_1) 1997; 53 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
| References_xml | – volume: 277 start-page: 26623 year: 2002 end-page: 26631 article-title: Computer‐assisted mutagenesis of ecotin to engineer its secondary binding site for urokinase inhibition publication-title: J. Biol. Chem. – volume: 377 start-page: 71 year: 1996 end-page: 86 article-title: Cystatins in health and disease publication-title: Biol. Chem. Hoppe-Seyler – volume: 21 start-page: 1063 year: 2003 end-page: 1068 article-title: Engineering of a macromolecular scaffold to develop specific protease inhibitors publication-title: Nature Biotechnol. – volume: 36 start-page: 1598 year: 1997 end-page: 1607 article-title: Interscaffolding activity. Association of p1 variants of eglin c and of turkey ovomucoid third domain with serine proteinase publication-title: Biochemistry – volume: 27 start-page: 383 year: 2001 end-page: 391 article-title: Phage display selection of hairpin loop soyacystatin variants that mediate high affinity inhibition of a cysteine proteinase publication-title: Plant J. – volume: 46 start-page: 101 year: 1997 end-page: 111 article-title: An alternative least‐squares approach to inferring phylogenies from pairwise distances publication-title: Syst. Biol. – volume: 1 start-page: 101 year: 2003 end-page: 112 article-title: Oryzacystatin I expression in transformed tobacco produces a conditional growth phenotype and enhances chilling tolerance publication-title: Plant Biotechnol. J. – volume: 44 start-page: 69 year: 2000 end-page: 81 article-title: Adult Colorado potato beetles, , compensate for nutritional stress on oryzacystatin I‐transgenic potato plants by hypertrophic behavior and over‐production of insensitive proteases publication-title: Arch. Insect Biochem. Physiol. – volume: 31 start-page: 645 year: 2001b end-page: 657 article-title: Transcriptional induction of diverse midgut trypsins in larval and feeding on the soybean trypsin inhibitor publication-title: Insect Biochem. Mol. Biol. – volume: 103 start-page: 1347 year: 1993 end-page: 1353 article-title: Methyl jasmonate induces papain inhibitor(s) in tomato leaves publication-title: Plant Physiol. – start-page: 27 year: 2000 end-page: 42 – volume: 296 start-page: 1194 year: 2002 end-page: 1199 article-title: A sugarcane cystatin: recombinant expression, purification, and antifungal activity publication-title: Biochem. Biophys. Res. Commun. – volume: 9 start-page: 1939 year: 1990 end-page: 1947 article-title: The refined 2.4 Å X‐ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction publication-title: EMBO J. – volume: 13 start-page: 555 year: 1997 end-page: 556 article-title: PAML: a program package for phylogenetic analysis by maximum likelihood publication-title: Comput. Appl. Biosci. – volume: 8 start-page: 121 year: 1995 end-page: 131 article-title: Engineered oryzacystatin‐I expressed in transgenic hairy roots confers resistance to publication-title: Plant J. – volume: 4 start-page: 406 year: 1987 end-page: 425 article-title: The neighbor‐joining method: a new method for reconstructing phylogenetic trees publication-title: Mol. Biol. Evol. – volume: 23 start-page: 801 year: 1993 end-page: 812 article-title: Characterization of a genomic sequence coding for potato multicystatin, an eight‐domain cysteine proteinase inhibitor publication-title: Plant Mol. Biol. – volume: 34 start-page: 365 year: 2004 end-page: 375 article-title: Molecular basis of Colorado potato beetle adaptation to potato plant defence at the level of digestive cysteine proteinases publication-title: Insect Biochem. Mol. Biol. – volume: 19 start-page: 718 year: 2002 end-page: 727 article-title: Functional diversification during evolution of the murine ‐proteinase inhibitor family: role of the hypervariable reactive center loop publication-title: Mol. Biol. Evol. – volume: 33 start-page: 557 year: 2003 end-page: 566 article-title: Selection by phage display of a variant mustard trypsin inhibitor toxic against aphids publication-title: Plant J. – volume: 12 start-page: 2439 year: 2003 end-page: 2446 article-title: Oryzacystatin I expressed in transgenic potato induces digestive compensation in an insect natural predator via its herbivorous prey feeding on the plant publication-title: Mol. Ecol. – volume: 13 start-page: 283 year: 2004 end-page: 291 article-title: Transcriptional regulation in cowpea bruchid guts during adaptation to a plant defence protease inhibitor publication-title: Insect Mol. Biol. – volume: 155 start-page: 431 year: 2000 end-page: 449 article-title: Codon‐substitution models for heterogeneous selection pressure at amino acid sites publication-title: Genetics – volume: 27 start-page: 625 year: 1997 end-page: 638 article-title: Differentially regulated inhibitor‐sensitive and insensitive protease genes from the phytophagous insect pest, , are members of complex multigene families publication-title: Insect Biochem. Mol. Biol. – volume: 1599 start-page: 115 year: 2002 end-page: 124 article-title: Enhancement of proteinase inhibitory activity of recombinant human cystatin C using random‐centroid optimization publication-title: Biochim. Biophys. Acta – volume: 2 start-page: 3 year: 2004 end-page: 12 article-title: Preferential expression patterns of a plant cystatin at nematode feeding sites confers resistance to and spp publication-title: Plant Biotechnol. J. – volume: 18 start-page: 2092 year: 2001 end-page: 2101 article-title: Molecular evolution of the wound‐induced serine protease inhibitor in and related genera publication-title: Mol. Biol. Evol. – volume: 12 start-page: 135 year: 2003 end-page: 145 article-title: Cowpea bruchid uses a three‐component strategy to overcome a plant defensive cysteine protease inhibitor publication-title: Insect Mol. Biol. – volume: 3 start-page: 201 year: 2003 end-page: 212 article-title: Maximum likelihood methods for detecting adaptive evolution after gene duplication publication-title: J. Struct. Funct. Genom. – volume: 112 start-page: 1201 year: 1996 end-page: 1210 article-title: Differential expression of soybean cysteine proteinase inhibitor genes during development and in response to wounding and methyl jasmonate publication-title: Plant Physiol. – volume: 10 start-page: 155 year: 1994 end-page: 159 article-title: Production of oryzacystatins I and II in using the glutathione ‐transferase gene fusion system publication-title: Biotechnol. Progr. – volume: 7 start-page: 2593 year: 1988 end-page: 2599 article-title: The 2.0 Å crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases publication-title: EMBO J. – volume: 127 start-page: 321 year: 1972 end-page: 333 article-title: A linear equation that describes the steady‐state kinetics of enzymes and subcellular particles interacting with tightly bound inhibitors publication-title: Biochem. J. – volume: 278 start-page: 8733 year: 2003 end-page: 8738 article-title: Identification of residues in glutathione transferase capable of driving functional diversification in evolution. A novel approach to protein redesign publication-title: J. Biol. Chem. – volume: 25 start-page: 1041 year: 1995a end-page: 1048 article-title: Constitutive expression of digestive cysteine proteinase forms during development of the Colorado potato beetle, Say (Coloeptera: Chrysomelidae) publication-title: Insect Biochem. Mol. Biol. – volume: 7 start-page: 197 year: 1996 end-page: 204 article-title: Proteinase inhibitors publication-title: Trends Food Sci. Technol. – volume: 322 start-page: 469 year: 1995b end-page: 474 article-title: Carboxy‐terminal truncation of oryzacystatin II by oryzacystatin‐insensitive insect digestive proteinases publication-title: Arch. Biochem. Biophys. – volume: 17 start-page: 1223 year: 1999 end-page: 1226 article-title: The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants publication-title: Nature Biotechnol. – volume: 262 start-page: 16793 year: 1987 end-page: 16797 article-title: Molecular cloning of a cysteine proteinase inhibitor of rice (oryzacystatin). Homology with animal cystatins and transient expression in the ripening process of rice seeds publication-title: J. Biol. Chem. – volume: 138 start-page: 35 year: 1998 end-page: 42 article-title: Leaves of transgenic tomato plants overexpressing prosystemin accumulate high levels of cystatin publication-title: Plant Sci. – volume: 14 start-page: 319 year: 1989 end-page: 324 article-title: Functional evolutionary divergence of proteolytic enzymes and their inhibitors publication-title: Trends Biochem. Sci. – volume: 40 start-page: 69 year: 1999 end-page: 79 article-title: Growth compensation and faster development of Colorado potato beetle (Coleoptera: Chrysomelidae) feeding on potato foliage expressing oryzacystatin I publication-title: Arch. Insect Biochem. Physiol. – volume: 21 start-page: 819 year: 2004 end-page: 827 article-title: Evidence of positively selected sites in mammalian ‐defensins publication-title: Mol. Biol. Evol. – volume: 305 start-page: 513 year: 1994 end-page: 518 article-title: Probing the functional role of the N‐terminal region of cystatins by equilibrium and kinetic studies of the binding of Gly‐11 variants of recombinant human cystatin C to target proteinases publication-title: Biochem. J. – volume: 54 start-page: 778 year: 2000 end-page: 788 article-title: Evolutionary ecology of the tropane alkaloids of L. (Solanaceae) publication-title: Evolution – volume: 15 start-page: 496 year: 2000 end-page: 503 article-title: Statistical methods for detecting molecular adaptation publication-title: Trends Ecol. Evol. – volume: 28 start-page: 229 year: 1998b end-page: 237 article-title: High level of resistance to proteinase inhibitors conferred by proteolytic cleavage in beetle larvae publication-title: Insect Biochem. Mol. Biol. – volume: 97 start-page: 5322 year: 2000 end-page: 5327 article-title: Rapid evolution in plant chitinases: molecular targets of selection in plant–pathogen coevolution publication-title: Proc. Natl Acad. Sci. USA – volume: 15 start-page: 4 year: 1997 end-page: 6 article-title: Avoiding protease‐mediated resistance in herbivorous pests publication-title: Trends Biotechnol. – start-page: 83 year: 1989 end-page: 104 – volume: 290 start-page: 1151 year: 2000 end-page: 1155 article-title: The evolutionary fate and consequences of duplicate genes publication-title: Science – volume: 50 start-page: 6612 year: 2002 end-page: 6617 article-title: Plant seed cystatins and their target enzymes of endogenous and exogenous origin publication-title: J. Agric. Food Chem. – year: 1983 – volume: 44 start-page: 569 year: 1998a end-page: 577 article-title: Two strains of cabbage seed weevil (Coleoptera: Curculionidae) exhibit differential susceptibility to transgenic oilseed rape expressing oryzacystatin‐I publication-title: J. Insect Physiol. – volume: 102 start-page: 2832 year: 2005 end-page: 2837 article-title: Positive selection of primate identifies a critical species‐specific retroviral restriction domain publication-title: Proc. Natl Acad. Sci. USA – volume: 359 start-page: 24 year: 1998 end-page: 30 article-title: Structural and phylogenetic relationships among plant and animal cystatins publication-title: Arch. Biochem. Biophys. – volume: 102 start-page: 3179 year: 2005 end-page: 3180 article-title: The power of phylogenetic comparison in revealing protein function publication-title: Proc. Natl Acad. Sci. USA – volume: 101 start-page: 14824 year: 2004 end-page: 14829 article-title: Darwinian adaptation of proteorhodopsin to different light intensities in the marine environment publication-title: Proc. Natl Acad. Sci. USA – volume: 109 start-page: 1 year: 1994 end-page: 62 article-title: Insect digestive enzymes: properties, compartmentalization and function publication-title: Comp. Biochem. Physiol. B – volume: 17 start-page: 1373 year: 1996 end-page: 1379 article-title: Identification of stable plant cystatin/nematode proteinase complexes using mildly‐denaturing gelatin polyacrylamide gel electrophoresis publication-title: Electrophoresis – volume: 25 start-page: 300 year: 2000 end-page: 302 article-title: Cn3D: sequence and structure views for Entrez publication-title: Trends Biochem. Sci. – volume: 265 start-page: 15832 year: 1990 end-page: 15837 article-title: Two distinct cystatin species in rice seeds with different specificities against cysteine proteinases. Molecular cloning, expression, and biochemical studies on oryzacystatin‐II publication-title: J. Biol. Chem. – volume: 31 start-page: 633 year: 2001a end-page: 644 article-title: Identification of six chymotrypsin cDNAs from larval midguts of and feeding on the soybean (Kunitz) trypsin inhibitor publication-title: Insect Biochem. Mol. Biol. – volume: 243 start-page: 234 year: 1989 end-page: 238 article-title: Mechanism of inhibition of papapin by chicken egg white cystatin. Inhibition constants of N‐terminally truncated forms and cyanogen bromide fragments of the inhibitor publication-title: FEBS Lett. – volume: 378 start-page: 141 year: 1997 end-page: 150 article-title: Structural and functional aspects of papain‐like cysteine proteinases and their protein inhibitors publication-title: Biol. Chem. – volume: 41 start-page: 1071 year: 1995 end-page: 1078 article-title: Colorado potato beetles ( ) adapt to proteinase inhibitors induced in potato leaves by methyl jasmonate publication-title: J. Insect Physiol. – volume: 56 start-page: 1821 year: 2005 end-page: 1829 article-title: The strawberry gene encodes a phytocystatin with antifungal properties publication-title: J. Exp. Bot. – volume: 53 start-page: 1435 year: 1997 end-page: 1444 article-title: Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense publication-title: Evolution – volume: 55 start-page: 140 year: 2004 end-page: 152 article-title: Coevolution of insect trypsins and inhibitors publication-title: Arch. Insect Biochem. Physiol. – volume: 16 start-page: 10881 year: 1988 end-page: 10890 article-title: Multiple sequence alignment with hierarchical clustering publication-title: Nucl. Acids Res. – volume: 100 start-page: 12804 year: 2003 end-page: 12807 article-title: Synchronous coadaptation in an ancient case of herbivory publication-title: Proc. Natl Acad. Sci. USA – volume: 270 start-page: 2593 year: 2003 end-page: 2604 article-title: AtCYS1, a cystatin from , suppresses hypersensitive cell death publication-title: Eur. J. Biochem. – volume: 330 start-page: 833 year: 1998 end-page: 838 article-title: Amino acid substitutions in the N‐terminal segment of cystatin C create selective protein inhibitors of lysosomal cysteine proteinases publication-title: Biochem. J. – volume: 39 start-page: 14753 year: 2000 end-page: 14760 article-title: Three‐dimensional solution structure of oryzacystatin‐I, a cysteine proteinase inhibitor of the rice, L. japonica publication-title: Biochemistry – volume: 15 start-page: 568 year: 1998 end-page: 573 article-title: Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution publication-title: Mol. Biol. Evol. – volume: 42 start-page: 11326 year: 2003 end-page: 11333 article-title: Grafting of features of cystatins C or B into the N‐terminal region or second binding loop of cystatin A (stefin A) substantially enhances inhibition of cysteine proteinases publication-title: Biochemistry – volume: 87 start-page: 783 year: 1987 end-page: 787 article-title: Cysteine digestive proteinases in Coleoptera publication-title: Comp. Biochem. Physiol. B – volume: 305 start-page: 513 year: 1994 ident: e_1_2_6_11_1 article-title: Probing the functional role of the N‐terminal region of cystatins by equilibrium and kinetic studies of the binding of Gly‐11 variants of recombinant human cystatin C to target proteinases publication-title: Biochem. J. – ident: e_1_2_6_67_1 doi: 10.1093/oxfordjournals.molbev.a003750 – ident: e_1_2_6_13_1 doi: 10.1104/pp.103.4.1347 – ident: e_1_2_6_66_1 doi: 10.1016/0305-0491(94)90141-4 – ident: e_1_2_6_38_1 doi: 10.1002/arch.10134 – ident: e_1_2_6_27_1 doi: 10.1016/j.ibmb.2004.01.003 – volume: 377 start-page: 71 year: 1996 ident: e_1_2_6_30_1 article-title: Cystatins in health and disease publication-title: Biol. Chem. Hoppe-Seyler – volume: 46 start-page: 101 year: 1997 ident: e_1_2_6_23_1 article-title: An alternative least‐squares approach to inferring phylogenies from pairwise distances publication-title: Syst. Biol. doi: 10.1093/sysbio/46.1.101 – ident: e_1_2_6_6_1 doi: 10.1073/pnas.2133013100 – ident: e_1_2_6_8_1 doi: 10.1023/A:1022642807731 – ident: e_1_2_6_41_1 doi: 10.1016/0014-5793(89)80135-8 – ident: e_1_2_6_14_1 doi: 10.1016/0022-1910(95)00073-4 – ident: e_1_2_6_62_1 doi: 10.1111/j.0014-3820.2000.tb00079.x – ident: e_1_2_6_18_1 doi: 10.1046/j.1365-313X.2003.01645.x – volume: 4 start-page: 406 year: 1987 ident: e_1_2_6_59_1 article-title: The neighbor‐joining method: a new method for reconstructing phylogenetic trees publication-title: Mol. Biol. Evol. – ident: e_1_2_6_56_1 doi: 10.1016/S1570-9639(02)00411-9 – ident: e_1_2_6_29_1 doi: 10.1042/bj1270321 – ident: e_1_2_6_4_1 doi: 10.1021/jf0201935 – ident: e_1_2_6_2_1 doi: 10.1016/S0021-9258(18)45453-1 – ident: e_1_2_6_71_1 doi: 10.1007/BF00021535 – ident: e_1_2_6_40_1 doi: 10.1093/molbev/msh084 – ident: e_1_2_6_37_1 doi: 10.1046/j.1467-7652.2003.00037.x – ident: e_1_2_6_19_1 doi: 10.1002/(SICI)1520-6327(1999)40:2<69::AID-ARCH1>3.0.CO;2-M – ident: e_1_2_6_69_1 doi: 10.1046/j.1365-313X.1995.08010121.x – ident: e_1_2_6_44_1 doi: 10.1042/bj3300833 – ident: e_1_2_6_48_1 doi: 10.1016/S0167-7799(96)10072-X – ident: e_1_2_6_50_1 doi: 10.1016/0965-1748(95)00044-V – ident: e_1_2_6_16_1 doi: 10.1046/j.1365-294X.2003.01919.x – ident: e_1_2_6_21_1 doi: 10.1093/nar/16.22.10881 – ident: e_1_2_6_5_1 doi: 10.1093/oxfordjournals.molbev.a004130 – ident: e_1_2_6_22_1 doi: 10.1016/0968-0004(89)90159-X – ident: e_1_2_6_26_1 doi: 10.1016/S0965-1748(98)00027-7 – ident: e_1_2_6_52_1 doi: 10.1002/elps.1150170816 – ident: e_1_2_6_65_1 doi: 10.1002/j.1460-2075.1990.tb08321.x – ident: e_1_2_6_24_1 doi: 10.1016/0924-2244(96)10023-6 – ident: e_1_2_6_70_1 doi: 10.1046/j.1467-7652.2003.00010.x – ident: e_1_2_6_53_1 doi: 10.1111/j.0962-1075.2004.00485.x – ident: e_1_2_6_54_1 doi: 10.1016/0305-0491(87)90388-9 – ident: e_1_2_6_15_1 doi: 10.1104/pp.112.3.1201 – ident: e_1_2_6_63_1 doi: 10.1016/S0006-291X(02)02046-6 – ident: e_1_2_6_31_1 doi: 10.1074/jbc.M211776200 – ident: e_1_2_6_74_1 doi: 10.1093/oxfordjournals.molbev.a025957 – ident: e_1_2_6_77_1 doi: 10.1093/genetics/155.1.431 – ident: e_1_2_6_34_1 doi: 10.1046/j.1365-313X.2001.01104.x – ident: e_1_2_6_32_1 doi: 10.1016/S0168-9452(98)00153-8 – ident: e_1_2_6_58_1 doi: 10.1021/bi9620870 – ident: e_1_2_6_75_1 doi: 10.1073/pnas.0500371102 – ident: e_1_2_6_47_1 doi: 10.1016/S0965-1748(00)00169-7 – ident: e_1_2_6_57_1 doi: 10.1021/bi030119v – ident: e_1_2_6_72_1 doi: 10.1016/S0968-0004(00)01561-9 – ident: e_1_2_6_7_1 doi: 10.1046/j.1432-1033.2003.03630.x – volume: 53 start-page: 1435 year: 1997 ident: e_1_2_6_45_1 article-title: Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense publication-title: Evolution doi: 10.2307/2411196 – ident: e_1_2_6_28_1 doi: 10.1038/70781 – ident: e_1_2_6_25_1 doi: 10.1016/S0022-1910(98)00050-X – ident: e_1_2_6_42_1 doi: 10.1006/abbi.1998.0875 – volume: 13 start-page: 555 year: 1997 ident: e_1_2_6_73_1 article-title: PAML: a program package for phylogenetic analysis by maximum likelihood publication-title: Comput. Appl. Biosci. – ident: e_1_2_6_76_1 doi: 10.1016/S0169-5347(00)01994-7 – volume: 265 start-page: 15832 year: 1990 ident: e_1_2_6_35_1 article-title: Two distinct cystatin species in rice seeds with different specificities against cysteine proteinases. Molecular cloning, expression, and biochemical studies on oryzacystatin‐II publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)55473-9 – ident: e_1_2_6_64_1 doi: 10.1038/nbt860 – ident: e_1_2_6_39_1 doi: 10.1111/j.1365-294X.2005.02457.x – ident: e_1_2_6_36_1 doi: 10.1074/jbc.M203076200 – ident: e_1_2_6_55_1 doi: 10.1021/bi0006971 – ident: e_1_2_6_12_1 doi: 10.1002/j.1460-2075.1988.tb03109.x – ident: e_1_2_6_10_1 doi: 10.1073/pnas.97.10.5322 – ident: e_1_2_6_43_1 doi: 10.1093/jxb/eri172 – ident: e_1_2_6_46_1 doi: 10.1016/S0965-1748(00)00168-5 – ident: e_1_2_6_61_1 doi: 10.1073/pnas.0409853102 – ident: e_1_2_6_33_1 doi: 10.1017/CBO9780511623486 – ident: e_1_2_6_51_1 doi: 10.1006/abbi.1995.1490 – volume: 378 start-page: 141 year: 1997 ident: e_1_2_6_68_1 article-title: Structural and functional aspects of papain‐like cysteine proteinases and their protein inhibitors publication-title: Biol. Chem. – ident: e_1_2_6_20_1 doi: 10.1002/1520-6327(200006)44:2<69::AID-ARCH2>3.0.CO;2-6 – ident: e_1_2_6_49_1 doi: 10.1021/bp00026a004 – ident: e_1_2_6_78_1 doi: 10.1046/j.1365-2583.2003.00395.x – start-page: 27 volume-title: Recombinant Protease Inhibitors in Plants year: 2000 ident: e_1_2_6_3_1 – ident: e_1_2_6_17_1 doi: 10.1016/S0965-1748(97)00043-X – ident: e_1_2_6_9_1 doi: 10.1073/pnas.0403999101 – start-page: 83 volume-title: Proteolytic Enzymes. A Practical Approach year: 1989 ident: e_1_2_6_60_1 |
| SSID | ssj0017364 |
| Score | 2.05375 |
| Snippet | Cysteine proteinase inhibitors of the cystatin superfamily have several important functions in plants, including the inhibition of exogenous cysteine... Summary Cysteine proteinase inhibitors of the cystatin superfamily have several important functions in plants, including the inhibition of exogenous cysteine... |
| SourceID | proquest pubmed pascalfrancis crossref wiley fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 403 |
| SubjectTerms | Agronomy. Soil science and plant productions Amino Acids Amino Acids - chemistry Base Sequence binding properties Binding sites Biological and medical sciences cathepsin B cathepsin H chemistry Codon cystatins Cystatins - chemistry Cystatins - pharmacology Cysteine Proteinase Inhibitors Cysteine Proteinase Inhibitors - pharmacology DNA Primers evolution Flowers & plants functional diversity Fundamental and applied biological sciences. Psychology Genetics and breeding of economic plants Herbivory Likelihood Functions Lycopersicon esculentum Models, Molecular Mutagenesis mutants Mutation papain pharmacology Plant breeding: fundamental aspects and methodology plant cystatins plant–insect interactions Poaceae positive selection Proteinase inhibitors Proteins site-directed mutagenesis Solanaceae Tomatoes |
| Title | Modulating the proteinase inhibitory profile of a plant cystatin by single mutations at positively selected amino acid sites |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-313X.2006.02878.x https://www.ncbi.nlm.nih.gov/pubmed/16965553 https://www.proquest.com/docview/213509784 https://www.proquest.com/docview/19547305 https://www.proquest.com/docview/47193037 https://www.proquest.com/docview/68981081 |
| Volume | 48 |
| WOSCitedRecordID | wos000241240300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1365-313X dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0017364 issn: 0960-7412 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-313X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017364 issn: 0960-7412 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbotgculHe3hcUHrkF5ObGPvFaAyqqCrtibNXbsNtI2qZrdipX48cwk6ZZFrVQhbolsR854Hp894xnGXmcyM1LaNMi9xw2K92GgjITARc4hgnCxMG12_cN8MpGzmTrq45_oLkyXH2J94EaS0eprEnAwzaaQU4RWEiWz3qeA4F--QTy5HSMbiwHb_vBtPD1c-xTypEsmhZg9QDv6V1zPjd_aMFZbHmoKnYQGqee7shc34dJNmNvaqfHu__zDh-xBj1b52469HrF7rnrMdt7ViChXT9ivr3XRVv-qTjjiSN7mfCgrtIu8rE5LU5IDn_dVwXntOfDzOa4ktyu6x1RW3Kw4nVVg69myiwloOCx4F0l26ebY3NbpcQWHs7KqOdiy4OTwbp6y6fjj8ftPQV_NIbAo9zKw3kSO8JpwygCgrlCo9AVaUJ9ZyEGZSBVKFomFRIm0UGHoHIgMHKW0MyJ5xgZVXbk9xsGHsUdoa21CgBLApLERwuWFKEIbmiHLr5ZN2z7VOVXcmOs_tjxIWk2kpUKcmW5Jq38OWbQeed6l-7jDmD3kDA0nqJX19HtMvmDaVcs4GbLRBrtcfxOBV6pkNGQHV_yje-XR6DhKBF2vSYfs1boVpZ5cOVC5etloytOHulnc3gNBh0J4kt_eI5M4gZDm8Lxj3OvZZSoTQuD0s5Y_70wKfXz0hZ72_3XgAbvfnnG1lz1fsMHiYulesh17uSibixHbymdy1Ms1vv34PPkNOO1Lag |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagVIILb2gotD5wDcrLjn0ERNXCdlWJrdibZTt2G2mbVM1uxUr8eGacdMuiVqoQt5UcR97JPD57xvMR8p4LboSwRVx6DxsU75NYGqFjlzoHCMJlzITu-qNyPBbTqTwa6IDwLkzfH2J14IaWEfw1GjgeSK9bOZZo5Wk-HZIKgP7FBwCUDwrAHcjj8ONgvEoplHnfSwogewxh9K-ynhvftBar7nvdYuWk7kB4vme9uAmWrqPcEKb2nvzXP_iUPB7QKv3Yq9czcs81z8nmpxYQ5fIF-XXYVoH9qzmhgCNp6PlQNxAXad2c1qbGBD4dWMFp66mm5zP4ktQu8R5T3VCzpHhWAaNni74moKN6TvtKsks3g-HA0-Mqqs_qpqXa1hXFhHf3khzvfZl83o8HNofYgt2L2HqTOsRrzEmjNfgKCU6fQQT13OpSS5PKSooqtzqXrKhkkjinGdcOW9oZlr8iG03buC1CtU8yD9DW2hwBpdamyAxjrqxYldjERKS8-m7KDq3OkXFjpv7Y8oBoFYoWiTi5CqJVPyOSrmae9-0-7jBnC1RD6RPwyur4e4a5YNxViyyPyM6avly_E4BXIUUake0rBVKD8-hUluYMr9cUEdldjYLVYypHN65ddAr79IFvZrc_AaBDAjwpb3-CC1hAgmt43Wvu9eq45IwxWD4PCnpnUajJ0Vf89eZfJ-6Sh_uTw5EaHYy_bZNH4bwrXPx8SzbmFwv3jmzay3ndXewE4_4NLlVMNQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLagmxAv3GFhsPmB16DcnNiPwKi4lKqCVeqbZTv2FqlLqqWdqMSP5xwn6yjapAnxVslx5J6cy2ef4_MR8ibnuebcZGHhHGxQnItCobkKbWwtIAibMO2764-K8ZjPZmLS0wHhXZiuP8TmwA0tw_trNHC7KN22lWOJVhqnsz6pAOifvwVAuZMhp8yA7Bx9H05Hm6RCkXbdpAC0hxBI_yrsufZdW9HqrlMN1k6qFsTnOt6L64DpNs71gWr48L_-xUfkQY9X6btOwR6TO7Z-QnbfN4Ap10_Jr29N6fm_6hMKSJL6rg9VDZGRVvVppStM4dOeF5w2jiq6mMO3pGaNN5mqmuo1xdMKGD1bdVUBLVVL2tWSXdg5DHumHltSdVbVDVWmKimmvNtnZDr8ePzhU9jzOYQGLJ-HxunYImJjVmilwFsIcPsMYqjLjSqU0LEoBS9To1LBslJEkbWK5cpiUzvN0udkUDe13SNUuShxAG6NSRFSKqWzRDNmi5KVkYl0QIrL7yZN3-wcOTfm8o9ND4hWomiRijOXXrTyZ0DizcxF1_DjFnP2QDWkOgG_LKc_EswG476aJ2lADrb05eqdAL0yweOA7F8qkOzdRyuTOGV4wSYLyOFmFOwekzmqts2qldipD7wzu_kJgB0CAEpx8xM5hwVEuIYXneZerS4XOWMMlp97Bb21KOTx5Av-evmvEw_JvcnRUI4-j7_uk_v-wMvf_HxFBsvzlX1Nds3FsmrPD3rr_g2MX0ze |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+the+proteinase+inhibitory+profile+of+a+plant+cystatin+by+single+mutations+at+positively+selected+amino+acid+sites&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=KIGGUNDU%2C+Andrew&rft.au=GOULET%2C+Marie-Claire&rft.au=GOULET%2C+Charles&rft.au=DUBUC%2C+Jean-Francois&rft.date=2006-11-01&rft.pub=Blackwell+Science&rft.issn=0960-7412&rft.volume=48&rft.issue=3&rft.spage=403&rft.epage=413&rft_id=info:doi/10.1111%2Fj.1365-313X.2006.02878.x&rft.externalDBID=n%2Fa&rft.externalDocID=18204981 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |