Standard‐space atlas of the viscoelastic properties of the human brain

Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tiss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping Jg. 41; H. 18; S. 5282 - 5300
Hauptverfasser: Hiscox, Lucy V., McGarry, Matthew D. J., Schwarb, Hillary, Van Houten, Elijah E. W., Pohlig, Ryan T., Roberts, Neil, Huesmann, Graham R., Burzynska, Agnieszka Z., Sutton, Bradley P., Hillman, Charles H., Kramer, Arthur F., Cohen, Neal J., Barbey, Aron K., Paulsen, Keith D., Johnson, Curtis L.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 15.12.2020
Schlagworte:
ISSN:1065-9471, 1097-0193, 1097-0193
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast‐based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18–35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ, and damping ratio, ξ) to the MNI152 standard structural template within the spatial coordinates of the ICBM‐152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available (github.com/mechneurolab/mre134) to foster collaboration across research institutions and to support robust cross‐center comparisons. Tissue mechanical properties provide a macroscopic representation of the microstructural constituents of soft biological tissue. In the work, we have produced the first standard‐space atlas description of the stiffness and damping ratio of the healthy human brain. The detailed nature of the new atlas has revealed that neuroanatomical structures possess distinct mechanical characteristics and that sex differences exist in a range of brain structures. Our results provide a novel biophysical signature of the brain and have implications for understanding individual differences in both health and disease.
AbstractList Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast-based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18-35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ, and damping ratio, ξ) to the MNI152 standard structural template within the spatial coordinates of the ICBM-152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available http://github.com/mechneurolab/mre134) to foster collaboration across research institutions and to support robust cross-center comparisons.
Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast-based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18-35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ, and damping ratio, ξ) to the MNI152 standard structural template within the spatial coordinates of the ICBM-152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available (github.com/mechneurolab/mre134) to foster collaboration across research institutions and to support robust cross-center comparisons.Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast-based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18-35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ, and damping ratio, ξ) to the MNI152 standard structural template within the spatial coordinates of the ICBM-152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available (github.com/mechneurolab/mre134) to foster collaboration across research institutions and to support robust cross-center comparisons.
Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast‐based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18–35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ, and damping ratio, ξ) to the MNI152 standard structural template within the spatial coordinates of the ICBM‐152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available (github.com/mechneurolab/mre134) to foster collaboration across research institutions and to support robust cross‐center comparisons.
Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast‐based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18–35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ, and damping ratio, ξ) to the MNI152 standard structural template within the spatial coordinates of the ICBM‐152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available (github.com/mechneurolab/mre134) to foster collaboration across research institutions and to support robust cross‐center comparisons. Tissue mechanical properties provide a macroscopic representation of the microstructural constituents of soft biological tissue. In the work, we have produced the first standard‐space atlas description of the stiffness and damping ratio of the healthy human brain. The detailed nature of the new atlas has revealed that neuroanatomical structures possess distinct mechanical characteristics and that sex differences exist in a range of brain structures. Our results provide a novel biophysical signature of the brain and have implications for understanding individual differences in both health and disease.
Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast‐based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18–35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ , and damping ratio, ξ ) to the MNI152 standard structural template within the spatial coordinates of the ICBM‐152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available (github.com/mechneurolab/mre134 ) to foster collaboration across research institutions and to support robust cross‐center comparisons.
Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast‐based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18–35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ, and damping ratio, ξ) to the MNI152 standard structural template within the spatial coordinates of the ICBM‐152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available (github.com/mechneurolab/mre134) to foster collaboration across research institutions and to support robust cross‐center comparisons. Tissue mechanical properties provide a macroscopic representation of the microstructural constituents of soft biological tissue. In the work, we have produced the first standard‐space atlas description of the stiffness and damping ratio of the healthy human brain. The detailed nature of the new atlas has revealed that neuroanatomical structures possess distinct mechanical characteristics and that sex differences exist in a range of brain structures. Our results provide a novel biophysical signature of the brain and have implications for understanding individual differences in both health and disease.
Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast-based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18-35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ, and damping ratio, ξ) to the MNI152 standard structural template within the spatial coordinates of the ICBM-152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available
Audience Academic
Author Sutton, Bradley P.
McGarry, Matthew D. J.
Barbey, Aron K.
Schwarb, Hillary
Burzynska, Agnieszka Z.
Cohen, Neal J.
Paulsen, Keith D.
Hillman, Charles H.
Hiscox, Lucy V.
Huesmann, Graham R.
Johnson, Curtis L.
Roberts, Neil
Van Houten, Elijah E. W.
Kramer, Arthur F.
Pohlig, Ryan T.
AuthorAffiliation 10 Department of Bioengineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
9 Department of Human Development and Family Studies and Molecular, Cellular and Integrative Neurosciences Colorado State University Fort Collins Colorado USA
7 School of Clinical Sciences University of Edinburgh Edinburgh UK
1 Department of Biomedical Engineering University of Delaware Newark Delaware USA
3 Beckman Institute for Advanced Science and Technology University of Illinois at Urbana‐Champaign Urbana Illinois USA
6 College of Health Sciences University of Delaware Newark Delaware USA
12 Department of Physical Therapy, Movement, & Rehabilitation Sciences Northeastern University Boston Massachusetts USA
5 Département de génie mécanique Université de Sherbrooke Sherbrooke Québec Canada
8 Carle Neuroscience Institute Carle Foundation Hospital Urbana Illinois USA
11 Department of Psychology Northeastern University Boston Massachusetts USA
4 Interdisciplinary Health Sciences Institute University of
AuthorAffiliation_xml – name: 4 Interdisciplinary Health Sciences Institute University of Illinois at Urbana‐Champaign Urbana Illinois USA
– name: 9 Department of Human Development and Family Studies and Molecular, Cellular and Integrative Neurosciences Colorado State University Fort Collins Colorado USA
– name: 11 Department of Psychology Northeastern University Boston Massachusetts USA
– name: 6 College of Health Sciences University of Delaware Newark Delaware USA
– name: 12 Department of Physical Therapy, Movement, & Rehabilitation Sciences Northeastern University Boston Massachusetts USA
– name: 1 Department of Biomedical Engineering University of Delaware Newark Delaware USA
– name: 7 School of Clinical Sciences University of Edinburgh Edinburgh UK
– name: 2 Thayer School of Engineering Dartmouth College Hanover New Hampshire USA
– name: 5 Département de génie mécanique Université de Sherbrooke Sherbrooke Québec Canada
– name: 10 Department of Bioengineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
– name: 3 Beckman Institute for Advanced Science and Technology University of Illinois at Urbana‐Champaign Urbana Illinois USA
– name: 8 Carle Neuroscience Institute Carle Foundation Hospital Urbana Illinois USA
Author_xml – sequence: 1
  givenname: Lucy V.
  orcidid: 0000-0001-6296-7442
  surname: Hiscox
  fullname: Hiscox, Lucy V.
  email: lvhiscox@udel.edu
  organization: University of Delaware
– sequence: 2
  givenname: Matthew D. J.
  surname: McGarry
  fullname: McGarry, Matthew D. J.
  organization: Dartmouth College
– sequence: 3
  givenname: Hillary
  orcidid: 0000-0002-9454-2614
  surname: Schwarb
  fullname: Schwarb, Hillary
  organization: University of Illinois at Urbana‐Champaign
– sequence: 4
  givenname: Elijah E. W.
  orcidid: 0000-0001-6565-8469
  surname: Van Houten
  fullname: Van Houten, Elijah E. W.
  organization: Université de Sherbrooke
– sequence: 5
  givenname: Ryan T.
  surname: Pohlig
  fullname: Pohlig, Ryan T.
  organization: University of Delaware
– sequence: 6
  givenname: Neil
  surname: Roberts
  fullname: Roberts, Neil
  organization: University of Edinburgh
– sequence: 7
  givenname: Graham R.
  orcidid: 0000-0002-9120-9867
  surname: Huesmann
  fullname: Huesmann, Graham R.
  organization: Carle Foundation Hospital
– sequence: 8
  givenname: Agnieszka Z.
  surname: Burzynska
  fullname: Burzynska, Agnieszka Z.
  organization: Colorado State University
– sequence: 9
  givenname: Bradley P.
  orcidid: 0000-0002-8443-0408
  surname: Sutton
  fullname: Sutton, Bradley P.
  organization: University of Illinois at Urbana‐Champaign
– sequence: 10
  givenname: Charles H.
  orcidid: 0000-0002-3722-5612
  surname: Hillman
  fullname: Hillman, Charles H.
  organization: Northeastern University
– sequence: 11
  givenname: Arthur F.
  orcidid: 0000-0001-5870-2724
  surname: Kramer
  fullname: Kramer, Arthur F.
  organization: Northeastern University
– sequence: 12
  givenname: Neal J.
  surname: Cohen
  fullname: Cohen, Neal J.
  organization: University of Illinois at Urbana‐Champaign
– sequence: 13
  givenname: Aron K.
  orcidid: 0000-0002-6092-0912
  surname: Barbey
  fullname: Barbey, Aron K.
  organization: University of Illinois at Urbana‐Champaign
– sequence: 14
  givenname: Keith D.
  orcidid: 0000-0002-6692-3196
  surname: Paulsen
  fullname: Paulsen, Keith D.
  organization: Dartmouth College
– sequence: 15
  givenname: Curtis L.
  orcidid: 0000-0002-7760-131X
  surname: Johnson
  fullname: Johnson, Curtis L.
  email: clj@udel.edu
  organization: University of Delaware
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32931076$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1u1DAQxy1URD_gwAugSFzgkK0_480Fqa2ARWrFAThbE8fpukrsYDtFvfUR-ow8CQ67LW1V5IOtmd_87b9n9tGO884g9JrgBcGYHq6bYUEFqekztEdwLUtMarYznytR1lySXbQf4wXGhAhMXqBdRmtGsKz20OpbAtdCaH9f38QRtCkg9RAL3xVpbYpLG7U3OZCsLsbgRxOSNXfp9TSAK5oA1r1Ezzvoo3m13Q_Qj08fv5-sytOvn7-cHJ2WWhBMSy2XUrYUV50E3um2Fhwb0TIiG-CNACIEbw2vukpkR6KmIGpOW8BNI2gHmh2gDxvdcWoG02rjUoBejcEOEK6UB6seZpxdq3N_qWQlccWWWeDdViD4n5OJSQ3ZpOl7cMZPUVHO6ZILIWb07SP0wk_BZXuZqvJHYyblP-oceqOs63y-V8-i6kjmFlDGKpapxRNUXq0ZrM797GyOPyh4c9_oncPb3mXgcAPo4GMMplPaJkjWz75trwhW83SoPB3q73TkivePKm5Fn2K36r_yu67-D6rV8dmm4g-098e3
CitedBy_id crossref_primary_10_1088_1361_6560_ac4a42
crossref_primary_10_1523_JNEUROSCI_0592_22_2022
crossref_primary_10_3390_brainsci14040323
crossref_primary_10_3389_fphy_2024_1324659
crossref_primary_10_1093_biomethods_bpae086
crossref_primary_10_1016_j_jmbbm_2024_106522
crossref_primary_10_3389_fbioe_2024_1386955
crossref_primary_10_1016_j_actbio_2025_07_046
crossref_primary_10_1016_j_euromechsol_2023_104910
crossref_primary_10_1002_jmri_27475
crossref_primary_10_1109_TMI_2023_3329293
crossref_primary_10_1007_s10439_022_02999_w
crossref_primary_10_1016_j_jbiomech_2021_110851
crossref_primary_10_1016_j_actbio_2023_07_040
crossref_primary_10_1088_1361_6560_ad7fc9
crossref_primary_10_1002_cnm_3741
crossref_primary_10_1007_s10439_025_03725_y
crossref_primary_10_1016_j_jmps_2025_106032
crossref_primary_10_1016_j_cobme_2022_100421
crossref_primary_10_1080_17461391_2022_2069512
crossref_primary_10_1016_j_actbio_2021_10_038
crossref_primary_10_1007_s10237_024_01830_w
crossref_primary_10_1016_j_jmbbm_2022_105586
crossref_primary_10_1002_mrm_29226
crossref_primary_10_1073_pnas_2213836120
crossref_primary_10_3389_fbioe_2021_664268
crossref_primary_10_1016_j_cma_2022_115108
crossref_primary_10_1002_jmri_29633
crossref_primary_10_1016_j_jmbbm_2022_105613
crossref_primary_10_1088_1361_6560_ac5fde
crossref_primary_10_1016_j_jmbbm_2021_104967
crossref_primary_10_1007_s10439_021_02820_0
crossref_primary_10_1227_ons_0000000000001523
crossref_primary_10_3389_fbioe_2022_818201
crossref_primary_10_1177_09544119231195182
crossref_primary_10_1016_j_brain_2023_100075
crossref_primary_10_1109_TMI_2023_3261346
crossref_primary_10_1016_j_brain_2021_100038
crossref_primary_10_1109_TBME_2024_3381708
crossref_primary_10_1088_2057_1976_ac5ebe
crossref_primary_10_1007_s00247_023_05779_3
crossref_primary_10_1007_s10439_025_03765_4
crossref_primary_10_1259_bjr_20200265
crossref_primary_10_1016_j_jmbbm_2023_105744
crossref_primary_10_1016_j_nicl_2024_103606
crossref_primary_10_3389_fbioe_2022_1056131
crossref_primary_10_1001_jamanetworkopen_2024_43416
crossref_primary_10_1016_j_ejrad_2021_110136
crossref_primary_10_1007_s10439_022_03084_y
crossref_primary_10_1002_hbm_26524
crossref_primary_10_1002_nbm_70073
crossref_primary_10_1093_cercor_bhaa388
Cites_doi 10.1016/j.neuroimage.2015.02.016
10.3389/fnmol.2018.00266
10.1089/neu.2012.2788
10.1016/j.neuroimage.2017.03.061
10.1016/j.neuroimage.2009.02.040
10.1371/journal.pone.0092582
10.1002/nbm.3853
10.1016/j.nicl.2012.09.003
10.2535/ofaj1936.77.1_21
10.1016/j.jmbbm.2009.09.001
10.1016/j.jmbbm.2017.04.017
10.1073/pnas.0606150103
10.1007/s00330-019-06471-7
10.3389/fninf.2017.00001
10.1073/pnas.1200151109
10.1016/j.jbiomech.2003.12.032
10.1162/jocn_a_01454
10.1371/journal.pone.0138873
10.1002/mrm.25065
10.1109/TBME.2018.2878555
10.1002/nbm.4141
10.1016/S0006-3495(94)80775-1
10.1038/s41598-018-28852-6
10.1016/j.actbio.2016.10.036
10.1177/0271678X15606923
10.1016/j.jbiomech.2011.04.034
10.1007/s11831-019-09352-w
10.1088/0031-9155/56/8/005
10.1093/braincomms/fcz049
10.3389/fnhum.2017.00566
10.1371/journal.pone.0118907
10.1016/j.cobeha.2015.04.002
10.1002/cne.902120105
10.1016/j.dcn.2017.08.010
10.1016/j.neuroimage.2017.10.008
10.3389/fnagi.2014.00343
10.1007/s11682-018-9988-8
10.3174/ajnr.A4361
10.1016/j.neurobiolaging.2018.01.010
10.1016/j.neuroimage.2010.09.025
10.1109/TMI.2008.923956
10.1371/journal.pone.0071807
10.1016/j.jmbbm.2017.11.045
10.1016/j.jmbbm.2015.02.024
10.1177/0363546515617746
10.1371/journal.pone.0023451
10.3389/fnins.2019.00898
10.1002/mrm.26738
10.1088/0031-9155/52/24/006
10.1016/j.neuroimage.2016.02.059
10.1002/hbm.23314
10.1016/j.neuroimage.2017.12.069
10.1016/j.neuroimage.2013.12.032
10.1126/science.7569924
10.1039/c3sm50552a
10.3389/fnagi.2015.00001
10.1016/j.jbiomech.2011.01.019
10.1016/j.neuroimage.2007.12.035
10.1002/jmri.22294
10.1016/j.neuroimage.2018.01.007
10.1097/RMR.0b013e31821e56f8
10.1148/radiol.13122669
10.1002/(SICI)1522-2594(199910)42:4<779::AID-MRM21>3.0.CO;2-Z
10.1177/0271678X17691530
10.1016/j.neuroimage.2020.116850
10.1109/TMI.2013.2268978
10.1118/1.4754649
10.1115/1.1449907
10.1016/j.actbio.2017.03.037
10.1088/0031-9155/56/13/N02
10.1016/j.neuroimage.2018.06.027
10.1037/bul0000197
10.1016/j.nicl.2020.102313
10.1371/journal.pcbi.1005350
10.1115/1.4046199
10.1111/j.1552-6569.2011.00633.x
10.1088/0031-9155/61/24/R401
10.1016/j.neuroimage.2009.03.046
10.1002/hbm.10062
10.1002/cnm.3250
10.1016/j.actbio.2016.07.040
10.1016/j.neuroimage.2013.04.089
10.1002/jmri.25129
10.5812/ijem.3505
10.1016/S0896-6273(02)00569-X
10.1016/j.jbiomech.2018.01.016
10.12688/f1000research.6210.1
10.1002/nbm.2987
10.1093/jnen/61.1.46
10.1016/j.jmbbm.2018.02.005
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals LLC.
2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
COPYRIGHT 2020 John Wiley & Sons, Inc.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals LLC.
– notice: 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: COPYRIGHT 2020 John Wiley & Sons, Inc.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.25192
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Technology Research Database

CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Hiscox et al
EISSN 1097-0193
EndPage 5300
ExternalDocumentID PMC7670638
A710623363
32931076
10_1002_hbm_25192
HBM25192
Genre article
Multicenter Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH/NINDS
  funderid: U01‐NS112120
– fundername: NIH/NIMH
  funderid: R01‐MH062500
– fundername: Medical Research Council
  funderid: MR/K026992/1
– fundername: NIH/NIBIB
  funderid: R01‐EB001981; R01‐EB027577
– fundername: NIH/NIA
  funderid: R01‐AG058853
– fundername: NIBIB NIH HHS
  grantid: R01 EB001981
– fundername: NINDS NIH HHS
  grantid: U01 NS112120
– fundername: Medical Research Council
  grantid: MR/K026992/1
– fundername: NIA NIH HHS
  grantid: R01 AG058853
– fundername: NCI NIH HHS
  grantid: P30 CA023108
– fundername: NIBIB NIH HHS
  grantid: R01 EB027577
– fundername: NIMH NIH HHS
  grantid: R01 MH062500
– fundername: NIBIB NIH HHS
  grantid: R37 EB001981
– fundername: Medical Research Council
  grantid: G0700704
– fundername: ;
  grantid: U01‐NS112120
– fundername: ;
  grantid: R01‐EB001981; R01‐EB027577
– fundername: ;
  grantid: R01‐AG058853
– fundername: ;
  grantid: MR/K026992/1
– fundername: ;
  grantid: R01‐MH062500
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAMMB
AAYXX
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
O8X
WXSBR
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5102-c7877d206f7a4fcd9540e5d317ba4b5a1554de46f65251592a5942da0bb52fac3
IEDL.DBID 24P
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000569162400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1065-9471
1097-0193
IngestDate Tue Sep 30 16:51:00 EDT 2025
Sun Sep 28 01:23:30 EDT 2025
Sat Nov 29 14:25:25 EST 2025
Sat Nov 29 13:29:02 EST 2025
Sat Nov 29 10:18:04 EST 2025
Mon Jul 21 06:04:55 EDT 2025
Sat Nov 29 02:24:47 EST 2025
Tue Nov 18 22:15:45 EST 2025
Wed Jan 22 16:33:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords brain atlases
magnetic resonance imaging
magnetic resonance elastography
MRI templates
mechanical properties
viscoelasticity
Language English
License Attribution
2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5102-c7877d206f7a4fcd9540e5d317ba4b5a1554de46f65251592a5942da0bb52fac3
Notes Funding information
Medical Research Council, Grant/Award Number: MR/K026992/1; NIH/NIMH, Grant/Award Number: R01‐MH062500; NIH/NINDS, Grant/Award Number: U01‐NS112120; NIH/NIBIB, Grant/Award Numbers: R01‐EB001981, R01‐EB027577; NIH/NIA, Grant/Award Number: R01‐AG058853
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Medical Research Council, Grant/Award Number: MR/K026992/1; NIH/NIMH, Grant/Award Number: R01‐MH062500; NIH/NINDS, Grant/Award Number: U01‐NS112120; NIH/NIBIB, Grant/Award Numbers: R01‐EB001981, R01‐EB027577; NIH/NIA, Grant/Award Number: R01‐AG058853
ORCID 0000-0002-9120-9867
0000-0001-6296-7442
0000-0002-7760-131X
0000-0002-3722-5612
0000-0001-6565-8469
0000-0002-8443-0408
0000-0001-5870-2724
0000-0002-6092-0912
0000-0002-6692-3196
0000-0002-9454-2614
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25192
PMID 32931076
PQID 2460970377
PQPubID 996345
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7670638
proquest_miscellaneous_2442845558
proquest_journals_2460970377
gale_infotracmisc_A710623363
gale_infotracacademiconefile_A710623363
pubmed_primary_32931076
crossref_citationtrail_10_1002_hbm_25192
crossref_primary_10_1002_hbm_25192
wiley_primary_10_1002_hbm_25192_HBM25192
PublicationCentury 2000
PublicationDate December 15, 2020
PublicationDateYYYYMMDD 2020-12-15
PublicationDate_xml – month: 12
  year: 2020
  text: December 15, 2020
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2002; 17
2015; 36
2009; 46
2013; 26
2017; 48
2019; 13
1994; 66
2018; 80
2011; 54
2020; 14
1999; 42
2011; 56
2017; 153
2013; 8
2016; 37
2016; 36
2012; 10
2013; 9
2015; 46
2010; 21
2018; 8
2018; 171
2020; 2
2019; 66
2017; 38
2018; 179
2004; 37
2017; 76
2008; 27
2015; 44
2020; 215
2019; 27
2016; 42
1982; 212
2014; 9
2010; 3
2018; 33
2018; 31
2012; 22
2018; 79
2016; 44
2010; 32
2015; 6
2015; 4
2014; 90
2019; 31
2020; 142
2019; 32
2019; 35
2013; 269
2004; 48
2015; 10
2002; 33
2012; 39
2007; 52
2018; 65
2011; 6
2015; 7
2019; 145
2018; 69
2012; 109
2019; 187
2012; 1
2013; 32
2020; 30
2013; 79
2002; 61
2015; 111
2017; 11
2017; 55
2002; 124
2000; 77
2017; 13
2013; 30
2020; 27
2011; 44
1995; 269
2016; 132
2016; 61
2015
2018; 11
2008; 40
2007; 44
2014; 71
2006; 103
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
Nicolle S. (e_1_2_9_64_1) 2004; 48
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_90_1
e_1_2_9_92_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_87_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_88_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_86_1
Garo A. (e_1_2_9_28_1) 2007; 44
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 54
  start-page: 2033
  year: 2011
  end-page: 2044
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: NeuroImage
– volume: 109
  start-page: 6650
  year: 2012
  end-page: 6655
  article-title: Demyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastography
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 32
  start-page: 577
  year: 2010
  end-page: 583
  article-title: In vivo magnetic resonance elastography of human brain at 7T and 1.5T
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 61
  start-page: 401
  year: 2016
  end-page: 437
  article-title: Magnetic resonance elastography (MRE) of the human brain: Technique, findings and clinical applications
  publication-title: Physics in Medicine and Biology
– volume: 56
  start-page: 2391
  year: 2011
  end-page: 2406
  article-title: Frequency‐dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography
  publication-title: Physics in Medicine and Biology
– volume: 153
  start-page: 179
  year: 2017
  end-page: 188
  article-title: Aerobic fitness, hippocampal viscoelasticity, and relational memory performance
  publication-title: NeuroImage
– volume: 44
  start-page: 1909
  year: 2011
  end-page: 1913
  article-title: Viscoelastic properties of human cerebellum using magnetic resonance Elastography
  publication-title: Journal of Biomechanics
– volume: 32
  year: 2019
  article-title: Magnetic resonance Elastography of kidneys: SE‐EPI MRE reproducibility and its comparison to GRE MRE
  publication-title: NMR in Biomedicine
– volume: 66
  start-page: 259
  year: 1994
  end-page: 267
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophysical Journal
– volume: 11
  start-page: 1
  year: 2017
  article-title: Whole brain magnetic resonance image atlases: A systematic review of existing atlases and caveats for use in population imaging
  publication-title: Frontiers in Neuroinformatics
– volume: 46
  start-page: 652
  issue: 3
  year: 2009
  end-page: 657
  article-title: The impact of aging and gender on brain viscoelasticity
  publication-title: NeuroImage
– volume: 145
  start-page: 785
  year: 2019
  end-page: 821
  article-title: What did you do yesterday? A meta‐analysis of sex differences in episodic memory
  publication-title: Psychological Bulletin
– volume: 61
  start-page: 46
  issue: 1
  year: 2002
  end-page: 57
  article-title: Structure of the Cerebral Cortex in Men and Women
  publication-title: Journal of Neuropathology & Experimental Neurology
– volume: 215
  start-page: 116850
  year: 2020
  article-title: Viscoelasticity of reward and control systems in adolescent risk taking
  publication-title: NeuroImage
– volume: 44
  start-page: 1158
  year: 2011
  end-page: 1163
  article-title: Measurement of the hyperelastic properties of ex vivo brain tissue slices
  publication-title: Journal of Biomechanics
– volume: 10
  year: 2015
  article-title: Quantifying the elastic property of nine thigh muscles using magnetic resonance Elastography
  publication-title: PLoS One
– volume: 55
  start-page: 333
  year: 2017
  end-page: 339
  article-title: Regional mechanical properties of human brain tissue for computational models of traumatic brain injury
  publication-title: Acta Biomaterialia
– volume: 10
  issue: 3
  year: 2015
  article-title: Correlation between relaxometry and diffusion tensor imaging in the globus pallidus of Huntington's disease patients
  publication-title: PLoS One
– volume: 1
  start-page: 81
  year: 2012
  end-page: 90
  article-title: Magnetic resonance elastography reveals altered brain viscoelasticity in experimental autoimmune encephalomyelitis
  publication-title: NeuroImage: Clinical
– volume: 9
  start-page: 5672
  issue: 24
  year: 2013
  article-title: Structure‐sensitive elastography: On the viscoelastic powerlaw behavior of in vivo human tissue in health and disease
  publication-title: Soft Matter
– volume: 46
  start-page: 967
  year: 2009
  end-page: 980
  article-title: Development of a human brain diffusion tensor template
  publication-title: NeuroImage
– volume: 14
  start-page: 175
  issue: 1
  year: 2020
  end-page: 185
  article-title: Hippocampal viscoelasticity and episodic memory performance in healthy older adults examined with magnetic resonance elastography
  publication-title: Brain Imaging and Behavior
– volume: 52
  start-page: 7281
  year: 2007
  end-page: 7294
  article-title: Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: A study of brain and liver viscoelasticity
  publication-title: Physics in Medicine and Biology
– volume: 42
  start-page: 779
  year: 1999
  end-page: 786
  article-title: An overlapping subzone technique for MR‐based elastic property reconstruction
  publication-title: Magnetic Resonance in Medicine
– volume: 13
  start-page: 1
  year: 2017
  end-page: 40
  article-title: Mindboggling morphometry of human brains
  publication-title: PLOS Computational Biology
– volume: 38
  start-page: 116
  year: 2017
  end-page: 125
  article-title: Perfusion alters stiffness of deep gray matter
  publication-title: The Journal of Cerebral Blood Flow & Metabolism
– volume: 79
  start-page: 30
  year: 2018
  end-page: 37
  article-title: Measurement of anisotropic mechanical properties in porcine brain white matter ex vivo using magnetic resonance elastography
  publication-title: Journal of the Mechanical Behavior of Biomedical Materials
– volume: 11
  start-page: 266
  year: 2018
  article-title: Sex differences in synaptic plasticity: Hormones and beyond
  publication-title: Frontiers in Molecular Neuroscience
– volume: 79
  start-page: 145
  year: 2013
  end-page: 152
  article-title: Local mechanical properties of white matter structures in the human brain
  publication-title: Neuroimage
– volume: 269
  start-page: 1854
  year: 1995
  end-page: 1857
  article-title: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves
  publication-title: Science
– volume: 7
  start-page: 1
  year: 2015
  article-title: The fornix in mild cognitive impairment and Alzheimer's disease
  publication-title: Frontiers in Aging Neuroscience
– volume: 171
  start-page: 332
  year: 2018
  end-page: 340
  article-title: More highly myelinated white matter tracts are associated with faster processing speed in healthy adults
  publication-title: NeuroImage
– volume: 132
  start-page: 534
  year: 2016
  end-page: 541
  article-title: Medial temporal lobe viscoelasticity and relational memory performance
  publication-title: NeuroImage
– volume: 8
  start-page: e71807
  year: 2013
  article-title: Towards an elastographic atlas of brain anatomy
  publication-title: PLoS One
– volume: 30
  start-page: 1512
  year: 2013
  end-page: 1520
  article-title: Long‐term in vivo imaging of viscoelastic properties of the mouse brain after controlled cortical impact
  publication-title: Journal of Neurotrauma
– volume: 65
  start-page: 158
  year: 2018
  end-page: 167
  article-title: High‐resolution magnetic resonance elastography reveals differences in subcortical gray matter viscoelasticity between young and healthy older adults
  publication-title: Neurobiology of Aging
– volume: 35
  year: 2019
  article-title: Biomechanical modeling and computer simulation of the brain during neurosurgery
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
– volume: 44
  start-page: 51
  year: 2007
  end-page: 58
  article-title: Towards a reliable characterisation of the mechanical behaviour of brain tissue: The effects of post‐mortem time and sample preparation
  publication-title: Biorheology
– volume: 21
  start-page: 63
  year: 2010
  article-title: Quantitative brain MRI
  publication-title: Topics in Magnetic Resonance Imaging: TMRI
– volume: 179
  start-page: 429
  year: 2018
  end-page: 447
  article-title: An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan
  publication-title: NeuroImage
– volume: 27
  start-page: 1484
  year: 2008
  end-page: 1494
  article-title: Regularized field map estimation in MRI
  publication-title: IEEE Transactions on Medical Imaging
– volume: 56
  start-page: N153
  year: 2011
  end-page: N164
  article-title: An octahedral shear strain‐based measure of SNR for 3D MR elastography
  publication-title: Physics in Medicine and Biology
– volume: 8
  start-page: 10554
  year: 2018
  article-title: Myelin measurement: Comparison between simultaneous tissue Relaxometry, magnetization transfer saturation index, and T1w/T2w ratio methods
  publication-title: Scientific Reports
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  article-title: Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
– volume: 37
  start-page: 1339
  issue: 9
  year: 2004
  end-page: 1352
  article-title: Are in vivo and in situ brain tissues mechanically similar?
  publication-title: Journal of Biomechanics
– volume: 69
  start-page: 10
  year: 2018
  end-page: 18
  article-title: Mechanical properties of porcine brain tissue in vivo and ex vivo estimated by MR elastography
  publication-title: Journal of Biomechanics
– volume: 27
  year: 2020
  article-title: Hippocampal stiffness in mesial temporal lobe epilepsy measured with MR elastography: Preliminary comparison with healthy participants
  publication-title: NeuroImage: Clinical
– year: 2015
– volume: 103
  start-page: 17759
  year: 2006
  end-page: 17764
  article-title: Viscoelastic properties of individual glial cells and neurons in the CNS
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 10
  start-page: 486
  year: 2012
  end-page: 489
  article-title: Normality tests for statistical analysis: A guide for non‐statisticians
  publication-title: International Journal of Endocrinology and Metabolism
– volume: 90
  start-page: 308
  year: 2014
  end-page: 314
  article-title: High‐resolution mechanical imaging of the human brain by three‐dimensional multifrequency magnetic resonance elastography at 7T
  publication-title: NeuroImage
– volume: 79
  start-page: 1043
  year: 2018
  end-page: 1051
  article-title: Acute pressure changes in the brain are correlated with MR elastography stiffness measurements: Initial feasibility in an in vivo large animal model
  publication-title: Magnetic Resonance in Medicine
– volume: 6
  start-page: 343
  year: 2015
  article-title: Fornix as an imaging marker for episodic memory deficits in healthy aging and in various neurological disorders
  publication-title: Frontiers in Aging Neuroscience
– volume: 212
  start-page: 53
  year: 1982
  end-page: 75
  article-title: A Golgi and ultrastructural study of the monkey globus pallidus
  publication-title: The Journal of Comparative Neurology
– volume: 46
  start-page: 318
  year: 2015
  end-page: 330
  article-title: Mechanical properties of gray and white matter brain tissue by indentation
  publication-title: Journal of the Mechanical Behavior of Biomedical Materials
– volume: 26
  start-page: 1534
  year: 2013
  end-page: 1539
  article-title: MR elastography in a murine stroke model reveals correlation of macroscopic viscoelastic properties of the brain with neuronal density
  publication-title: NMR in Biomedicine
– volume: 32
  start-page: 1901
  issue: 10
  year: 2013
  end-page: 1909
  article-title: Including spatial information in nonlinear inversion MR elastography using soft prior regularization
  publication-title: IEEE Transactions on Medical Imaging
– volume: 111
  start-page: 59
  year: 2015
  end-page: 64
  article-title: Measuring the effects of aging and sex on regional brain stiffness with MR elastography in healthy older adults
  publication-title: NeuroImage
– volume: 39
  start-page: 6388
  year: 2012
  end-page: 6396
  article-title: Multiresolution MR elastography using nonlinear inversion
  publication-title: Medical Physics
– volume: 44
  start-page: 748
  year: 2015
  end-page: 752
  article-title: Sex‐based differences as a predictor of recovery trajectories in young athletes after a sports‐related concussion
  publication-title: The American Journal of Sports Medicine
– volume: 44
  start-page: 51
  year: 2016
  end-page: 58
  article-title: Higher‐resolution MR elastography reveals early mechanical signatures of neuroinflammation in patients with clinically isolated syndrome
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 40
  start-page: 570
  year: 2008
  end-page: 582
  article-title: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template
  publication-title: NeuroImage
– volume: 37
  start-page: 4221
  year: 2016
  end-page: 4233
  article-title: Viscoelasticity of subcortical gray matter structures
  publication-title: Human Brain Mapping
– volume: 27
  start-page: 1187
  year: 2019
  end-page: 1230
  article-title: Fifty shades of brain: A review on the mechanical testing and modeling of brain tissue
  publication-title: Archives of Computational Methods in Engineering
– volume: 31
  start-page: 1857
  issue: 12
  year: 2019
  end-page: 1872
  article-title: Structural and functional MRI evidence for distinct medial temporal and prefrontal roles in context‐dependent relational memory
  publication-title: Journal of Cognitive Neuroscience
– volume: 66
  start-page: 1705
  issue: 6
  year: 2019
  end-page: 1713
  article-title: Viscoelastic properties of human autopsy brain tissues as biomarkers for Alzheimer's diseases
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 80
  start-page: 222
  year: 2018
  end-page: 234
  article-title: Material properties of the brain in injury‐relevant conditions ‐ experiments and computational modeling
  publication-title: Journal of the Mechanical Behavior of Biomedical Materials
– volume: 187
  start-page: 176
  year: 2019
  end-page: 183
  article-title: MR elastography of the brain and its application in neurological diseases
  publication-title: NeuroImage
– volume: 77
  start-page: 21
  year: 2000
  end-page: 27
  article-title: Gender dimorphism of axons in the human lateral corticospinal tract
  publication-title: Okajimas Folia Anatomica Japonica
– volume: 4
  start-page: 92
  year: 2015
  end-page: 102
  article-title: Network topology and dynamics in traumatic brain injury
  publication-title: Current Opinion in Behavioral Sciences
– volume: 3
  start-page: 158
  year: 2010
  end-page: 166
  article-title: Mechanical properties of brain tissue by indentation: Interregional variation
  publication-title: Journal of the Mechanical Behavior of Biomedical Materials
– volume: 31
  year: 2018
  article-title: Cardiovascular magnetic resonance elastography: A review
  publication-title: NMR in Biomedicine
– volume: 142
  start-page: 071005
  year: 2020
  article-title: Multi‐excitation MR Elastography of the brain: Wave propagation in anisotropic white matter
  publication-title: Journal of Biomechanical Engineering
– volume: 33
  start-page: 81
  year: 2018
  end-page: 176
  article-title: Magnetic resonance elastography for examining developmental changes in the mechanical properties of the brain
  publication-title: Developmental Cognitive Neuroscience
– volume: 48
  start-page: 239
  year: 2004
  end-page: 258
  article-title: Shear properties of brain tissue over a frequency range relevant for automotive impact situations: New experimental results
  publication-title: Stapp Car Crash Journal
– volume: 42
  start-page: 265
  year: 2016
  end-page: 272
  article-title: Brain stiffness increases with myelin content
  publication-title: Acta Biomaterialia
– volume: 171
  start-page: 99
  year: 2018
  end-page: 106
  article-title: Double dissociation of structure‐function relationships in memory and fluid intelligence observed with magnetic resonance elastography
  publication-title: NeuroImage
– volume: 13
  start-page: 898
  year: 2019
  article-title: Sex differences in white matter pathways related to language ability
  publication-title: Frontiers in Neuroscience
– volume: 36
  start-page: 1971
  year: 2015
  end-page: 1977
  article-title: MR Elastography can be used to measure brain stiffness changes as a result of altered cranial venous drainage during jugular compression
  publication-title: AJNR. American Journal of Neuroradiology
– volume: 9
  year: 2014
  article-title: Enhanced adult neurogenesis increases brain stiffness: in vivo magnetic resonance elastography in a mouse model of dopamine depletion
  publication-title: PLoS One
– volume: 22
  start-page: 365
  issue: 4
  year: 2012
  end-page: 374
  article-title: The fornix sign: A potential sign for Alzheimer's disease based on diffusion tensor imaging
  publication-title: Journal of Neuroimaging
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  article-title: Fast robust automated brain extraction
  publication-title: Human Brain Mapping
– volume: 269
  start-page: 768
  year: 2013
  end-page: 776
  article-title: MR Elastography of the liver: Defining thresholds for detecting viscoelastic changes
  publication-title: Radiology
– volume: 30
  start-page: 1719
  issue: 3
  year: 2020
  end-page: 1729
  article-title: Diagnostic performance of tomoelastography of the liver and spleen for staging hepatic fibrosis
  publication-title: European Radiology
– volume: 11
  start-page: 566
  year: 2017
  article-title: The dancing brain: Structural and functional signatures of expert dance training
  publication-title: Frontiers in Human Neuroscience
– volume: 71
  start-page: 477
  year: 2014
  end-page: 485
  article-title: 3D multislab, multishot acquisition for fast, whole‐brain MR elastography with high signal‐to‐noise efficiency
  publication-title: Magnetic Resonance in Medicine
– volume: 6
  start-page: e23451
  year: 2011
  article-title: The influence of physiological aging and atrophy on brain viscoelastic properties in humans
  publication-title: PLoS One
– volume: 2
  start-page: fcz049
  year: 2020
  article-title: Mechanical property alterations across the cerebral cortex due to Alzheimer's disease
  publication-title: Brain Communications
– volume: 124
  start-page: 244
  year: 2002
  end-page: 252
  article-title: Regional, directional, and age‐dependent properties of the brain undergoing large deformation
  publication-title: Journal of Biomechanical Engineering
– volume: 36
  start-page: 954
  year: 2016
  end-page: 964
  article-title: Cannabinoid receptor activation in the juvenile rat brain results in rapid biomechanical alterations: Neurovascular mechanism as a putative confounding factor
  publication-title: Journal of Cerebral Blood Flow & Metabolism
– volume: 48
  start-page: 319
  year: 2017
  end-page: 340
  article-title: Mechanical characterization of human brain tissue
  publication-title: Acta Biomaterialia
– volume: 76
  start-page: 119
  year: 2017
  end-page: 124
  article-title: The mechanical importance of myelination in the central nervous system
  publication-title: Journal of the Mechanical Behavior of Biomedical Materials
– ident: e_1_2_9_2_1
  doi: 10.1016/j.neuroimage.2015.02.016
– ident: e_1_2_9_43_1
  doi: 10.3389/fnmol.2018.00266
– ident: e_1_2_9_9_1
  doi: 10.1089/neu.2012.2788
– ident: e_1_2_9_80_1
  doi: 10.1016/j.neuroimage.2017.03.061
– ident: e_1_2_9_75_1
  doi: 10.1016/j.neuroimage.2009.02.040
– ident: e_1_2_9_54_1
  doi: 10.1371/journal.pone.0092582
– ident: e_1_2_9_51_1
  doi: 10.1002/nbm.3853
– ident: e_1_2_9_74_1
  doi: 10.1016/j.nicl.2012.09.003
– ident: e_1_2_9_93_1
  doi: 10.2535/ofaj1936.77.1_21
– ident: e_1_2_9_86_1
  doi: 10.1016/j.jmbbm.2009.09.001
– ident: e_1_2_9_89_1
  doi: 10.1016/j.jmbbm.2017.04.017
– ident: e_1_2_9_55_1
  doi: 10.1073/pnas.0606150103
– ident: e_1_2_9_73_1
  doi: 10.1007/s00330-019-06471-7
– ident: e_1_2_9_19_1
  doi: 10.3389/fninf.2017.00001
– ident: e_1_2_9_79_1
  doi: 10.1073/pnas.1200151109
– ident: e_1_2_9_29_1
  doi: 10.1016/j.jbiomech.2003.12.032
– ident: e_1_2_9_81_1
  doi: 10.1162/jocn_a_01454
– ident: e_1_2_9_15_1
  doi: 10.1371/journal.pone.0138873
– ident: e_1_2_9_44_1
  doi: 10.1002/mrm.25065
– ident: e_1_2_9_68_1
  doi: 10.1109/TBME.2018.2878555
– ident: e_1_2_9_27_1
  doi: 10.1002/nbm.4141
– ident: e_1_2_9_7_1
  doi: 10.1016/S0006-3495(94)80775-1
– ident: e_1_2_9_33_1
  doi: 10.1038/s41598-018-28852-6
– ident: e_1_2_9_11_1
  doi: 10.1016/j.actbio.2016.10.036
– ident: e_1_2_9_16_1
  doi: 10.1177/0271678X15606923
– ident: e_1_2_9_91_1
  doi: 10.1016/j.jbiomech.2011.04.034
– ident: e_1_2_9_13_1
  doi: 10.1007/s11831-019-09352-w
– ident: e_1_2_9_18_1
  doi: 10.1088/0031-9155/56/8/005
– ident: e_1_2_9_39_1
  doi: 10.1093/braincomms/fcz049
– ident: e_1_2_9_14_1
  doi: 10.3389/fnhum.2017.00566
– ident: e_1_2_9_85_1
  doi: 10.1371/journal.pone.0118907
– ident: e_1_2_9_6_1
  doi: 10.1016/j.cobeha.2015.04.002
– ident: e_1_2_9_20_1
  doi: 10.1002/cne.902120105
– ident: e_1_2_9_47_1
  doi: 10.1016/j.dcn.2017.08.010
– ident: e_1_2_9_62_1
  doi: 10.1016/j.neuroimage.2017.10.008
– ident: e_1_2_9_21_1
  doi: 10.3389/fnagi.2014.00343
– ident: e_1_2_9_41_1
  doi: 10.1007/s11682-018-9988-8
– ident: e_1_2_9_35_1
  doi: 10.3174/ajnr.A4361
– ident: e_1_2_9_40_1
  doi: 10.1016/j.neurobiolaging.2018.01.010
– ident: e_1_2_9_5_1
  doi: 10.1016/j.neuroimage.2010.09.025
– ident: e_1_2_9_26_1
  doi: 10.1109/TMI.2008.923956
– ident: e_1_2_9_32_1
  doi: 10.1371/journal.pone.0071807
– ident: e_1_2_9_78_1
  doi: 10.1016/j.jmbbm.2017.11.045
– ident: e_1_2_9_12_1
  doi: 10.1016/j.jmbbm.2015.02.024
– ident: e_1_2_9_67_1
  doi: 10.1177/0363546515617746
– ident: e_1_2_9_77_1
  doi: 10.1371/journal.pone.0023451
– ident: e_1_2_9_49_1
  doi: 10.3389/fnins.2019.00898
– ident: e_1_2_9_3_1
  doi: 10.1002/mrm.26738
– ident: e_1_2_9_52_1
  doi: 10.1088/0031-9155/52/24/006
– ident: e_1_2_9_82_1
  doi: 10.1016/j.neuroimage.2016.02.059
– ident: e_1_2_9_46_1
  doi: 10.1002/hbm.23314
– ident: e_1_2_9_17_1
  doi: 10.1016/j.neuroimage.2017.12.069
– ident: e_1_2_9_10_1
  doi: 10.1016/j.neuroimage.2013.12.032
– ident: e_1_2_9_63_1
  doi: 10.1126/science.7569924
– ident: e_1_2_9_76_1
  doi: 10.1039/c3sm50552a
– ident: e_1_2_9_65_1
  doi: 10.3389/fnagi.2015.00001
– ident: e_1_2_9_50_1
  doi: 10.1016/j.jbiomech.2011.01.019
– ident: e_1_2_9_61_1
  doi: 10.1016/j.neuroimage.2007.12.035
– ident: e_1_2_9_34_1
  doi: 10.1002/jmri.22294
– ident: e_1_2_9_48_1
  doi: 10.1016/j.neuroimage.2018.01.007
– ident: e_1_2_9_70_1
  doi: 10.1097/RMR.0b013e31821e56f8
– ident: e_1_2_9_8_1
  doi: 10.1148/radiol.13122669
– volume: 48
  start-page: 239
  year: 2004
  ident: e_1_2_9_64_1
  article-title: Shear properties of brain tissue over a frequency range relevant for automotive impact situations: New experimental results
  publication-title: Stapp Car Crash Journal
– ident: e_1_2_9_87_1
  doi: 10.1002/(SICI)1522-2594(199910)42:4<779::AID-MRM21>3.0.CO;2-Z
– ident: e_1_2_9_37_1
  doi: 10.1177/0271678X17691530
– ident: e_1_2_9_59_1
  doi: 10.1016/j.neuroimage.2020.116850
– ident: e_1_2_9_56_1
  doi: 10.1109/TMI.2013.2268978
– ident: e_1_2_9_57_1
  doi: 10.1118/1.4754649
– ident: e_1_2_9_71_1
  doi: 10.1115/1.1449907
– ident: e_1_2_9_23_1
  doi: 10.1016/j.actbio.2017.03.037
– ident: e_1_2_9_58_1
  doi: 10.1088/0031-9155/56/13/N02
– ident: e_1_2_9_90_1
  doi: 10.1016/j.neuroimage.2018.06.027
– ident: e_1_2_9_4_1
  doi: 10.1037/bul0000197
– ident: e_1_2_9_42_1
  doi: 10.1016/j.nicl.2020.102313
– ident: e_1_2_9_53_1
  doi: 10.1371/journal.pcbi.1005350
– ident: e_1_2_9_83_1
  doi: 10.1115/1.4046199
– ident: e_1_2_9_66_1
  doi: 10.1111/j.1552-6569.2011.00633.x
– volume: 44
  start-page: 51
  year: 2007
  ident: e_1_2_9_28_1
  article-title: Towards a reliable characterisation of the mechanical behaviour of brain tissue: The effects of post‐mortem time and sample preparation
  publication-title: Biorheology
– ident: e_1_2_9_38_1
  doi: 10.1088/0031-9155/61/24/R401
– ident: e_1_2_9_69_1
  doi: 10.1016/j.neuroimage.2009.03.046
– ident: e_1_2_9_84_1
  doi: 10.1002/hbm.10062
– ident: e_1_2_9_60_1
  doi: 10.1002/cnm.3250
– ident: e_1_2_9_88_1
  doi: 10.1016/j.actbio.2016.07.040
– ident: e_1_2_9_45_1
  doi: 10.1016/j.neuroimage.2013.04.089
– ident: e_1_2_9_22_1
  doi: 10.1002/jmri.25129
– ident: e_1_2_9_30_1
  doi: 10.5812/ijem.3505
– ident: e_1_2_9_24_1
  doi: 10.1016/S0896-6273(02)00569-X
– ident: e_1_2_9_31_1
  doi: 10.1016/j.jbiomech.2018.01.016
– ident: e_1_2_9_36_1
  doi: 10.12688/f1000research.6210.1
– ident: e_1_2_9_25_1
  doi: 10.1002/nbm.2987
– ident: e_1_2_9_72_1
  doi: 10.1093/jnen/61.1.46
– ident: e_1_2_9_92_1
  doi: 10.1016/j.jmbbm.2018.02.005
SSID ssj0011501
Score 2.5783482
Snippet Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5282
SubjectTerms Adolescent
Adult
Anatomy
Atlases as Topic
Brain
Brain architecture
brain atlases
Brain mapping
Cerebral cortex
Cerebral Cortex - anatomy & histology
Cerebral Cortex - diagnostic imaging
Damping ratio
Elasticity
Elasticity Imaging Techniques - methods
Female
Gender aspects
Gray Matter - anatomy & histology
Gray Matter - diagnostic imaging
Humans
Image registration
In vivo methods and tests
Magnetic properties
magnetic resonance elastography
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Mechanical properties
Medical imaging
MRI templates
Neuroimaging
Phase contrast
Research facilities
Research institutions
Sex differences
Shear stiffness
Substantia alba
Substantia grisea
Tissues
Viscoelasticity
Viscosity
White Matter - anatomy & histology
White Matter - diagnostic imaging
Young Adult
Young adults
Title Standard‐space atlas of the viscoelastic properties of the human brain
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25192
https://www.ncbi.nlm.nih.gov/pubmed/32931076
https://www.proquest.com/docview/2460970377
https://www.proquest.com/docview/2442845558
https://pubmed.ncbi.nlm.nih.gov/PMC7670638
Volume 41
WOSCitedRecordID wos000569162400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: WIN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: 24P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VBSEuUFqggVIZhIBLaOI49kY9LYhqOXRVCRB7s2zHUVdqs9XuthI3HoFn5EmYcX5oKpCQuESr9SSbdebnm4n9DcDLMndZakYyxliXxaJU1Mg9rTBVSY0wWVFx70KzCTWdjmaz4mQDDru9MA0_RF9wI8sI_poM3NjVwW_S0FN7_pa2XaL_vZWm2Yj6NnBx0r9CQKQTsi2MsfjzKu1ohRJ-0J86CEY3XfK1mHRzveR1HBsC0dH9__oLW3CvxZ9s3CjMA9jw9TbsjGvMvc-_sVcsrAgNpfZtuHPcvnjfgcmntuTw8_sP9EHOM7NG3M0WFUMEya7mK7fw-AVelV1QfX9JRK3dcGgEyCx1o3gIX44-fH4_idsmDLFDc-WxQ4tWJU9kpYyoXFkgxPN5ibDDGmFzQ3ik9EJWMueEjbjJC8FLk1ib88q47BFs1ova7wKTGAettagUhRS5U4W1PCkII1XOILKK4E33NLRrGcqpUcaZbriVucYJ02HCInjRi140tBx_EnpNj1STqeJ1nGl3HODdEOmVHiO6QvSXySyCvYEkmpgbDndKoVsTX2kuZFKgv1Qqguf9MJ1Jy9Zqv7gkGczuBFGqRfC40aH-djMEWph7ywjUQLt6ASL-Ho7U89NAAK6kIqSJ8xW06-8zoCfvjsOHJ_8u-hTucqoppDxO8z3YXC8v_TO47a7W89VyP9gYHtVstB_qF3j8-nH6Cz8JKr4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VBQEXHi2PQAGDEPQSmjiO3UhcFkS1Fd0VEkX0ZtmOo65Es9XuthI3fgK_kV_CjPOgqUBC4hatJ4915vHNxP4G4EWZuyw1uzLGWJfFolTUyD2tMFVJjTBZUXHvQrMJNZ3uHh0VH9fgTbcXpuGH6AtuZBnBX5OBU0F65zdr6LE9eU37LtEBXxEINKhxw5f9af8NAaFOSLcwyOL9VdrxCiV8pz91EI0u--QLQenygsmLQDZEor1b__cfbsPNFoGyUaMyd2DN1xuwOaox-z75xl6ysCY0FNs34Nqk_fS-CeNPbdHh5_cf6IWcZ2aFyJvNK4YYkp3Plm7u8Qe8KjulCv-CqFq74dAKkFnqR3EXPu-9P3w3jts2DLFDg-WxQ5tWJU9kpYyoXFkgyPN5icDDGmFzQ4ik9EJWMueEjrjJC8FLk1ib88q47B6s1_PaPwAmMRJaa1EtCilypwpreVIQSqqcQWwVwXb3OrRrOcqpVcZX3bArc40TpsOERfC8Fz1tiDn-JPSK3qkmY8XrONPuOcCnIdorPUJ8hfgvk1kEWwNJNDI3HO60QrdGvtRcyKRAj6lUBM_6YTqTFq7Vfn5GMpjfCSJVi-B-o0T942YItTD7lhGogXr1AkT9PRypZ8eBAlxJRVgT5yuo199nQI_fTsLBw38XfQrXx4eTA32wP_3wCG5wqjCkPE7zLVhfLc78Y7jqzlez5eJJMLhfqw4sKg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VBVVcKLQ8UgoYhIBL2sRx7EbisjxWi6CrlQCpN8t2HHUlml3tbitx4yfwG_klzDgPuhVISNyi9eSxzjy-mdjfADwrc5el5kjGGOuyWJSKGrmnFaYqqREmKyruXWg2ocbjo5OTYrIBr7q9MA0_RF9wI8sI_poM3M_L6vA3a-ipPTugfZfogK-JXKWk01xM-m8ICHVCuoVBFu-v0o5XKOGH_alr0eiqT74UlK4umLwMZEMkGm7_33-4BTdbBMoGjcrchg1f78DuoMbs--wbe87CmtBQbN-BreP20_sujD61RYef33-gF3KemRUibzarGGJIdjFdupnHH_CqbE4V_gVRtXbDoRUgs9SP4g58Gb77_GYUt20YYocGy2OHNq1KnshKGVG5skCQ5_MSgYc1wuaGEEnphaxkzgkdcZMXgpcmsTbnlXHZXdisZ7W_D0xiJLTWoloUUuROFdbypCCUVDmD2CqCl93r0K7lKKdWGV91w67MNU6YDhMWwdNedN4Qc_xJ6AW9U03Gitdxpt1zgE9DtFd6gPgK8V8mswj21yTRyNz6cKcVujXypeZCJgV6TKUieNIP05m0cK32s3OSwfxOEKlaBPcaJeofN0Oohdm3jECtqVcvQNTf6yP19DRQgCupCGvifAX1-vsM6NHr43Cw9--ij2Fr8naoP74ff3gANzgVGFIep_k-bK4W5_4hXHcXq-ly8SjY2y9eRytB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Standard%E2%80%90space+atlas+of+the+viscoelastic+properties+of+the+human+brain&rft.jtitle=Human+brain+mapping&rft.au=Hiscox%2C+Lucy+V&rft.au=McGarry%2C+Matthew+D+J&rft.au=Schwarb%2C+Hillary&rft.au=Elijah+E+W+Van+Houten&rft.date=2020-12-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=41&rft.issue=18&rft.spage=5282&rft.epage=5300&rft_id=info:doi/10.1002%2Fhbm.25192&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon