Standard‐space atlas of the viscoelastic properties of the human brain
Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tiss...
Gespeichert in:
| Veröffentlicht in: | Human brain mapping Jg. 41; H. 18; S. 5282 - 5300 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken, USA
John Wiley & Sons, Inc
15.12.2020
|
| Schlagworte: | |
| ISSN: | 1065-9471, 1097-0193, 1097-0193 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast‐based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18–35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ, and damping ratio, ξ) to the MNI152 standard structural template within the spatial coordinates of the ICBM‐152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available (github.com/mechneurolab/mre134) to foster collaboration across research institutions and to support robust cross‐center comparisons.
Tissue mechanical properties provide a macroscopic representation of the microstructural constituents of soft biological tissue. In the work, we have produced the first standard‐space atlas description of the stiffness and damping ratio of the healthy human brain. The detailed nature of the new atlas has revealed that neuroanatomical structures possess distinct mechanical characteristics and that sex differences exist in a range of brain structures. Our results provide a novel biophysical signature of the brain and have implications for understanding individual differences in both health and disease. |
|---|---|
| AbstractList | Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast-based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18-35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ, and damping ratio, ξ) to the MNI152 standard structural template within the spatial coordinates of the ICBM-152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available http://github.com/mechneurolab/mre134) to foster collaboration across research institutions and to support robust cross-center comparisons. Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast-based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18-35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ, and damping ratio, ξ) to the MNI152 standard structural template within the spatial coordinates of the ICBM-152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available (github.com/mechneurolab/mre134) to foster collaboration across research institutions and to support robust cross-center comparisons.Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast-based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18-35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ, and damping ratio, ξ) to the MNI152 standard structural template within the spatial coordinates of the ICBM-152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available (github.com/mechneurolab/mre134) to foster collaboration across research institutions and to support robust cross-center comparisons. Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast‐based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18–35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ, and damping ratio, ξ) to the MNI152 standard structural template within the spatial coordinates of the ICBM‐152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available (github.com/mechneurolab/mre134) to foster collaboration across research institutions and to support robust cross‐center comparisons. Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast‐based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18–35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ, and damping ratio, ξ) to the MNI152 standard structural template within the spatial coordinates of the ICBM‐152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available (github.com/mechneurolab/mre134) to foster collaboration across research institutions and to support robust cross‐center comparisons. Tissue mechanical properties provide a macroscopic representation of the microstructural constituents of soft biological tissue. In the work, we have produced the first standard‐space atlas description of the stiffness and damping ratio of the healthy human brain. The detailed nature of the new atlas has revealed that neuroanatomical structures possess distinct mechanical characteristics and that sex differences exist in a range of brain structures. Our results provide a novel biophysical signature of the brain and have implications for understanding individual differences in both health and disease. Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast‐based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18–35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ , and damping ratio, ξ ) to the MNI152 standard structural template within the spatial coordinates of the ICBM‐152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available (github.com/mechneurolab/mre134 ) to foster collaboration across research institutions and to support robust cross‐center comparisons. Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast‐based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18–35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ, and damping ratio, ξ) to the MNI152 standard structural template within the spatial coordinates of the ICBM‐152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available (github.com/mechneurolab/mre134) to foster collaboration across research institutions and to support robust cross‐center comparisons. Tissue mechanical properties provide a macroscopic representation of the microstructural constituents of soft biological tissue. In the work, we have produced the first standard‐space atlas description of the stiffness and damping ratio of the healthy human brain. The detailed nature of the new atlas has revealed that neuroanatomical structures possess distinct mechanical characteristics and that sex differences exist in a range of brain structures. Our results provide a novel biophysical signature of the brain and have implications for understanding individual differences in both health and disease. Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this study was to develop a standardized human brain atlas based on the physical mechanical properties (i.e., tissue viscoelasticity) of brain tissue using magnetic resonance elastography (MRE). MRE is a phase contrast-based MRI method that quantifies tissue viscoelasticity noninvasively and in vivo thus providing a macroscopic representation of the microstructural constituents of soft biological tissue. The development of standardized brain MRE atlases are therefore beneficial for comparing neural tissue integrity across populations. Data from a large number of healthy, young adults from multiple studies collected using common MRE acquisition and analysis protocols were assembled (N = 134; 78F/ 56 M; 18-35 years). Nonlinear image registration methods were applied to normalize viscoelastic property maps (shear stiffness, μ, and damping ratio, ξ) to the MNI152 standard structural template within the spatial coordinates of the ICBM-152. We find that average MRE brain templates contain emerging and symmetrized anatomical detail. Leveraging the substantial amount of data assembled, we illustrate that subcortical gray matter structures, white matter tracts, and regions of the cerebral cortex exhibit differing mechanical characteristics. Moreover, we report sex differences in viscoelasticity for specific neuroanatomical structures, which has implications for understanding patterns of individual differences in health and disease. These atlases provide reference values for clinical investigations as well as novel biophysical signatures of neuroanatomy. The templates are made openly available |
| Audience | Academic |
| Author | Sutton, Bradley P. McGarry, Matthew D. J. Barbey, Aron K. Schwarb, Hillary Burzynska, Agnieszka Z. Cohen, Neal J. Paulsen, Keith D. Hillman, Charles H. Hiscox, Lucy V. Huesmann, Graham R. Johnson, Curtis L. Roberts, Neil Van Houten, Elijah E. W. Kramer, Arthur F. Pohlig, Ryan T. |
| AuthorAffiliation | 10 Department of Bioengineering University of Illinois at Urbana‐Champaign Urbana Illinois USA 9 Department of Human Development and Family Studies and Molecular, Cellular and Integrative Neurosciences Colorado State University Fort Collins Colorado USA 7 School of Clinical Sciences University of Edinburgh Edinburgh UK 1 Department of Biomedical Engineering University of Delaware Newark Delaware USA 3 Beckman Institute for Advanced Science and Technology University of Illinois at Urbana‐Champaign Urbana Illinois USA 6 College of Health Sciences University of Delaware Newark Delaware USA 12 Department of Physical Therapy, Movement, & Rehabilitation Sciences Northeastern University Boston Massachusetts USA 5 Département de génie mécanique Université de Sherbrooke Sherbrooke Québec Canada 8 Carle Neuroscience Institute Carle Foundation Hospital Urbana Illinois USA 11 Department of Psychology Northeastern University Boston Massachusetts USA 4 Interdisciplinary Health Sciences Institute University of |
| AuthorAffiliation_xml | – name: 4 Interdisciplinary Health Sciences Institute University of Illinois at Urbana‐Champaign Urbana Illinois USA – name: 9 Department of Human Development and Family Studies and Molecular, Cellular and Integrative Neurosciences Colorado State University Fort Collins Colorado USA – name: 11 Department of Psychology Northeastern University Boston Massachusetts USA – name: 6 College of Health Sciences University of Delaware Newark Delaware USA – name: 12 Department of Physical Therapy, Movement, & Rehabilitation Sciences Northeastern University Boston Massachusetts USA – name: 1 Department of Biomedical Engineering University of Delaware Newark Delaware USA – name: 7 School of Clinical Sciences University of Edinburgh Edinburgh UK – name: 2 Thayer School of Engineering Dartmouth College Hanover New Hampshire USA – name: 5 Département de génie mécanique Université de Sherbrooke Sherbrooke Québec Canada – name: 10 Department of Bioengineering University of Illinois at Urbana‐Champaign Urbana Illinois USA – name: 3 Beckman Institute for Advanced Science and Technology University of Illinois at Urbana‐Champaign Urbana Illinois USA – name: 8 Carle Neuroscience Institute Carle Foundation Hospital Urbana Illinois USA |
| Author_xml | – sequence: 1 givenname: Lucy V. orcidid: 0000-0001-6296-7442 surname: Hiscox fullname: Hiscox, Lucy V. email: lvhiscox@udel.edu organization: University of Delaware – sequence: 2 givenname: Matthew D. J. surname: McGarry fullname: McGarry, Matthew D. J. organization: Dartmouth College – sequence: 3 givenname: Hillary orcidid: 0000-0002-9454-2614 surname: Schwarb fullname: Schwarb, Hillary organization: University of Illinois at Urbana‐Champaign – sequence: 4 givenname: Elijah E. W. orcidid: 0000-0001-6565-8469 surname: Van Houten fullname: Van Houten, Elijah E. W. organization: Université de Sherbrooke – sequence: 5 givenname: Ryan T. surname: Pohlig fullname: Pohlig, Ryan T. organization: University of Delaware – sequence: 6 givenname: Neil surname: Roberts fullname: Roberts, Neil organization: University of Edinburgh – sequence: 7 givenname: Graham R. orcidid: 0000-0002-9120-9867 surname: Huesmann fullname: Huesmann, Graham R. organization: Carle Foundation Hospital – sequence: 8 givenname: Agnieszka Z. surname: Burzynska fullname: Burzynska, Agnieszka Z. organization: Colorado State University – sequence: 9 givenname: Bradley P. orcidid: 0000-0002-8443-0408 surname: Sutton fullname: Sutton, Bradley P. organization: University of Illinois at Urbana‐Champaign – sequence: 10 givenname: Charles H. orcidid: 0000-0002-3722-5612 surname: Hillman fullname: Hillman, Charles H. organization: Northeastern University – sequence: 11 givenname: Arthur F. orcidid: 0000-0001-5870-2724 surname: Kramer fullname: Kramer, Arthur F. organization: Northeastern University – sequence: 12 givenname: Neal J. surname: Cohen fullname: Cohen, Neal J. organization: University of Illinois at Urbana‐Champaign – sequence: 13 givenname: Aron K. orcidid: 0000-0002-6092-0912 surname: Barbey fullname: Barbey, Aron K. organization: University of Illinois at Urbana‐Champaign – sequence: 14 givenname: Keith D. orcidid: 0000-0002-6692-3196 surname: Paulsen fullname: Paulsen, Keith D. organization: Dartmouth College – sequence: 15 givenname: Curtis L. orcidid: 0000-0002-7760-131X surname: Johnson fullname: Johnson, Curtis L. email: clj@udel.edu organization: University of Delaware |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32931076$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ks1u1DAQxy1URD_gwAugSFzgkK0_480Fqa2ARWrFAThbE8fpukrsYDtFvfUR-ow8CQ67LW1V5IOtmd_87b9n9tGO884g9JrgBcGYHq6bYUEFqekztEdwLUtMarYznytR1lySXbQf4wXGhAhMXqBdRmtGsKz20OpbAtdCaH9f38QRtCkg9RAL3xVpbYpLG7U3OZCsLsbgRxOSNXfp9TSAK5oA1r1Ezzvoo3m13Q_Qj08fv5-sytOvn7-cHJ2WWhBMSy2XUrYUV50E3um2Fhwb0TIiG-CNACIEbw2vukpkR6KmIGpOW8BNI2gHmh2gDxvdcWoG02rjUoBejcEOEK6UB6seZpxdq3N_qWQlccWWWeDdViD4n5OJSQ3ZpOl7cMZPUVHO6ZILIWb07SP0wk_BZXuZqvJHYyblP-oceqOs63y-V8-i6kjmFlDGKpapxRNUXq0ZrM797GyOPyh4c9_oncPb3mXgcAPo4GMMplPaJkjWz75trwhW83SoPB3q73TkivePKm5Fn2K36r_yu67-D6rV8dmm4g-098e3 |
| CitedBy_id | crossref_primary_10_1088_1361_6560_ac4a42 crossref_primary_10_1523_JNEUROSCI_0592_22_2022 crossref_primary_10_3390_brainsci14040323 crossref_primary_10_3389_fphy_2024_1324659 crossref_primary_10_1093_biomethods_bpae086 crossref_primary_10_1016_j_jmbbm_2024_106522 crossref_primary_10_3389_fbioe_2024_1386955 crossref_primary_10_1016_j_actbio_2025_07_046 crossref_primary_10_1016_j_euromechsol_2023_104910 crossref_primary_10_1002_jmri_27475 crossref_primary_10_1109_TMI_2023_3329293 crossref_primary_10_1007_s10439_022_02999_w crossref_primary_10_1016_j_jbiomech_2021_110851 crossref_primary_10_1016_j_actbio_2023_07_040 crossref_primary_10_1088_1361_6560_ad7fc9 crossref_primary_10_1002_cnm_3741 crossref_primary_10_1007_s10439_025_03725_y crossref_primary_10_1016_j_jmps_2025_106032 crossref_primary_10_1016_j_cobme_2022_100421 crossref_primary_10_1080_17461391_2022_2069512 crossref_primary_10_1016_j_actbio_2021_10_038 crossref_primary_10_1007_s10237_024_01830_w crossref_primary_10_1016_j_jmbbm_2022_105586 crossref_primary_10_1002_mrm_29226 crossref_primary_10_1073_pnas_2213836120 crossref_primary_10_3389_fbioe_2021_664268 crossref_primary_10_1016_j_cma_2022_115108 crossref_primary_10_1002_jmri_29633 crossref_primary_10_1016_j_jmbbm_2022_105613 crossref_primary_10_1088_1361_6560_ac5fde crossref_primary_10_1016_j_jmbbm_2021_104967 crossref_primary_10_1007_s10439_021_02820_0 crossref_primary_10_1227_ons_0000000000001523 crossref_primary_10_3389_fbioe_2022_818201 crossref_primary_10_1177_09544119231195182 crossref_primary_10_1016_j_brain_2023_100075 crossref_primary_10_1109_TMI_2023_3261346 crossref_primary_10_1016_j_brain_2021_100038 crossref_primary_10_1109_TBME_2024_3381708 crossref_primary_10_1088_2057_1976_ac5ebe crossref_primary_10_1007_s00247_023_05779_3 crossref_primary_10_1007_s10439_025_03765_4 crossref_primary_10_1259_bjr_20200265 crossref_primary_10_1016_j_jmbbm_2023_105744 crossref_primary_10_1016_j_nicl_2024_103606 crossref_primary_10_3389_fbioe_2022_1056131 crossref_primary_10_1001_jamanetworkopen_2024_43416 crossref_primary_10_1016_j_ejrad_2021_110136 crossref_primary_10_1007_s10439_022_03084_y crossref_primary_10_1002_hbm_26524 crossref_primary_10_1002_nbm_70073 crossref_primary_10_1093_cercor_bhaa388 |
| Cites_doi | 10.1016/j.neuroimage.2015.02.016 10.3389/fnmol.2018.00266 10.1089/neu.2012.2788 10.1016/j.neuroimage.2017.03.061 10.1016/j.neuroimage.2009.02.040 10.1371/journal.pone.0092582 10.1002/nbm.3853 10.1016/j.nicl.2012.09.003 10.2535/ofaj1936.77.1_21 10.1016/j.jmbbm.2009.09.001 10.1016/j.jmbbm.2017.04.017 10.1073/pnas.0606150103 10.1007/s00330-019-06471-7 10.3389/fninf.2017.00001 10.1073/pnas.1200151109 10.1016/j.jbiomech.2003.12.032 10.1162/jocn_a_01454 10.1371/journal.pone.0138873 10.1002/mrm.25065 10.1109/TBME.2018.2878555 10.1002/nbm.4141 10.1016/S0006-3495(94)80775-1 10.1038/s41598-018-28852-6 10.1016/j.actbio.2016.10.036 10.1177/0271678X15606923 10.1016/j.jbiomech.2011.04.034 10.1007/s11831-019-09352-w 10.1088/0031-9155/56/8/005 10.1093/braincomms/fcz049 10.3389/fnhum.2017.00566 10.1371/journal.pone.0118907 10.1016/j.cobeha.2015.04.002 10.1002/cne.902120105 10.1016/j.dcn.2017.08.010 10.1016/j.neuroimage.2017.10.008 10.3389/fnagi.2014.00343 10.1007/s11682-018-9988-8 10.3174/ajnr.A4361 10.1016/j.neurobiolaging.2018.01.010 10.1016/j.neuroimage.2010.09.025 10.1109/TMI.2008.923956 10.1371/journal.pone.0071807 10.1016/j.jmbbm.2017.11.045 10.1016/j.jmbbm.2015.02.024 10.1177/0363546515617746 10.1371/journal.pone.0023451 10.3389/fnins.2019.00898 10.1002/mrm.26738 10.1088/0031-9155/52/24/006 10.1016/j.neuroimage.2016.02.059 10.1002/hbm.23314 10.1016/j.neuroimage.2017.12.069 10.1016/j.neuroimage.2013.12.032 10.1126/science.7569924 10.1039/c3sm50552a 10.3389/fnagi.2015.00001 10.1016/j.jbiomech.2011.01.019 10.1016/j.neuroimage.2007.12.035 10.1002/jmri.22294 10.1016/j.neuroimage.2018.01.007 10.1097/RMR.0b013e31821e56f8 10.1148/radiol.13122669 10.1002/(SICI)1522-2594(199910)42:4<779::AID-MRM21>3.0.CO;2-Z 10.1177/0271678X17691530 10.1016/j.neuroimage.2020.116850 10.1109/TMI.2013.2268978 10.1118/1.4754649 10.1115/1.1449907 10.1016/j.actbio.2017.03.037 10.1088/0031-9155/56/13/N02 10.1016/j.neuroimage.2018.06.027 10.1037/bul0000197 10.1016/j.nicl.2020.102313 10.1371/journal.pcbi.1005350 10.1115/1.4046199 10.1111/j.1552-6569.2011.00633.x 10.1088/0031-9155/61/24/R401 10.1016/j.neuroimage.2009.03.046 10.1002/hbm.10062 10.1002/cnm.3250 10.1016/j.actbio.2016.07.040 10.1016/j.neuroimage.2013.04.089 10.1002/jmri.25129 10.5812/ijem.3505 10.1016/S0896-6273(02)00569-X 10.1016/j.jbiomech.2018.01.016 10.12688/f1000research.6210.1 10.1002/nbm.2987 10.1093/jnen/61.1.46 10.1016/j.jmbbm.2018.02.005 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors. published by Wiley Periodicals LLC. 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. COPYRIGHT 2020 John Wiley & Sons, Inc. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals LLC. – notice: 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. – notice: COPYRIGHT 2020 John Wiley & Sons, Inc. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
| DOI | 10.1002/hbm.25192 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Technology Research Database CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| DocumentTitleAlternate | Hiscox et al |
| EISSN | 1097-0193 |
| EndPage | 5300 |
| ExternalDocumentID | PMC7670638 A710623363 32931076 10_1002_hbm_25192 HBM25192 |
| Genre | article Multicenter Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIH/NINDS funderid: U01‐NS112120 – fundername: NIH/NIMH funderid: R01‐MH062500 – fundername: Medical Research Council funderid: MR/K026992/1 – fundername: NIH/NIBIB funderid: R01‐EB001981; R01‐EB027577 – fundername: NIH/NIA funderid: R01‐AG058853 – fundername: NIBIB NIH HHS grantid: R01 EB001981 – fundername: NINDS NIH HHS grantid: U01 NS112120 – fundername: Medical Research Council grantid: MR/K026992/1 – fundername: NIA NIH HHS grantid: R01 AG058853 – fundername: NCI NIH HHS grantid: P30 CA023108 – fundername: NIBIB NIH HHS grantid: R01 EB027577 – fundername: NIMH NIH HHS grantid: R01 MH062500 – fundername: NIBIB NIH HHS grantid: R37 EB001981 – fundername: Medical Research Council grantid: G0700704 – fundername: ; grantid: U01‐NS112120 – fundername: ; grantid: R01‐EB001981; R01‐EB027577 – fundername: ; grantid: R01‐AG058853 – fundername: ; grantid: MR/K026992/1 – fundername: ; grantid: R01‐MH062500 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAMMB AAYXX AEFGJ AFPKN AGXDD AIDQK AIDYY CITATION O8X WXSBR CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
| ID | FETCH-LOGICAL-c5102-c7877d206f7a4fcd9540e5d317ba4b5a1554de46f65251592a5942da0bb52fac3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 61 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000569162400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1065-9471 1097-0193 |
| IngestDate | Tue Sep 30 16:51:00 EDT 2025 Sun Sep 28 01:23:30 EDT 2025 Sat Nov 29 14:25:25 EST 2025 Sat Nov 29 13:29:02 EST 2025 Sat Nov 29 10:18:04 EST 2025 Mon Jul 21 06:04:55 EDT 2025 Sat Nov 29 02:24:47 EST 2025 Tue Nov 18 22:15:45 EST 2025 Wed Jan 22 16:33:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Keywords | brain atlases magnetic resonance imaging magnetic resonance elastography MRI templates mechanical properties viscoelasticity |
| Language | English |
| License | Attribution 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5102-c7877d206f7a4fcd9540e5d317ba4b5a1554de46f65251592a5942da0bb52fac3 |
| Notes | Funding information Medical Research Council, Grant/Award Number: MR/K026992/1; NIH/NIMH, Grant/Award Number: R01‐MH062500; NIH/NINDS, Grant/Award Number: U01‐NS112120; NIH/NIBIB, Grant/Award Numbers: R01‐EB001981, R01‐EB027577; NIH/NIA, Grant/Award Number: R01‐AG058853 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information Medical Research Council, Grant/Award Number: MR/K026992/1; NIH/NIMH, Grant/Award Number: R01‐MH062500; NIH/NINDS, Grant/Award Number: U01‐NS112120; NIH/NIBIB, Grant/Award Numbers: R01‐EB001981, R01‐EB027577; NIH/NIA, Grant/Award Number: R01‐AG058853 |
| ORCID | 0000-0002-9120-9867 0000-0001-6296-7442 0000-0002-7760-131X 0000-0002-3722-5612 0000-0001-6565-8469 0000-0002-8443-0408 0000-0001-5870-2724 0000-0002-6092-0912 0000-0002-6692-3196 0000-0002-9454-2614 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25192 |
| PMID | 32931076 |
| PQID | 2460970377 |
| PQPubID | 996345 |
| PageCount | 19 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7670638 proquest_miscellaneous_2442845558 proquest_journals_2460970377 gale_infotracmisc_A710623363 gale_infotracacademiconefile_A710623363 pubmed_primary_32931076 crossref_citationtrail_10_1002_hbm_25192 crossref_primary_10_1002_hbm_25192 wiley_primary_10_1002_hbm_25192_HBM25192 |
| PublicationCentury | 2000 |
| PublicationDate | December 15, 2020 |
| PublicationDateYYYYMMDD | 2020-12-15 |
| PublicationDate_xml | – month: 12 year: 2020 text: December 15, 2020 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
| PublicationTitle | Human brain mapping |
| PublicationTitleAlternate | Hum Brain Mapp |
| PublicationYear | 2020 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2002; 17 2015; 36 2009; 46 2013; 26 2017; 48 2019; 13 1994; 66 2018; 80 2011; 54 2020; 14 1999; 42 2011; 56 2017; 153 2013; 8 2016; 37 2016; 36 2012; 10 2013; 9 2015; 46 2010; 21 2018; 8 2018; 171 2020; 2 2019; 66 2017; 38 2018; 179 2004; 37 2017; 76 2008; 27 2015; 44 2020; 215 2019; 27 2016; 42 1982; 212 2014; 9 2010; 3 2018; 33 2018; 31 2012; 22 2018; 79 2016; 44 2010; 32 2015; 6 2015; 4 2014; 90 2019; 31 2020; 142 2019; 32 2019; 35 2013; 269 2004; 48 2015; 10 2002; 33 2012; 39 2007; 52 2018; 65 2011; 6 2015; 7 2019; 145 2018; 69 2012; 109 2019; 187 2012; 1 2013; 32 2020; 30 2013; 79 2002; 61 2015; 111 2017; 11 2017; 55 2002; 124 2000; 77 2017; 13 2013; 30 2020; 27 2011; 44 1995; 269 2016; 132 2016; 61 2015 2018; 11 2008; 40 2007; 44 2014; 71 2006; 103 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 Nicolle S. (e_1_2_9_64_1) 2004; 48 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_90_1 e_1_2_9_92_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_87_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_88_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_86_1 Garo A. (e_1_2_9_28_1) 2007; 44 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
| References_xml | – volume: 54 start-page: 2033 year: 2011 end-page: 2044 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: NeuroImage – volume: 109 start-page: 6650 year: 2012 end-page: 6655 article-title: Demyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastography publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 32 start-page: 577 year: 2010 end-page: 583 article-title: In vivo magnetic resonance elastography of human brain at 7T and 1.5T publication-title: Journal of Magnetic Resonance Imaging – volume: 61 start-page: 401 year: 2016 end-page: 437 article-title: Magnetic resonance elastography (MRE) of the human brain: Technique, findings and clinical applications publication-title: Physics in Medicine and Biology – volume: 56 start-page: 2391 year: 2011 end-page: 2406 article-title: Frequency‐dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography publication-title: Physics in Medicine and Biology – volume: 153 start-page: 179 year: 2017 end-page: 188 article-title: Aerobic fitness, hippocampal viscoelasticity, and relational memory performance publication-title: NeuroImage – volume: 44 start-page: 1909 year: 2011 end-page: 1913 article-title: Viscoelastic properties of human cerebellum using magnetic resonance Elastography publication-title: Journal of Biomechanics – volume: 32 year: 2019 article-title: Magnetic resonance Elastography of kidneys: SE‐EPI MRE reproducibility and its comparison to GRE MRE publication-title: NMR in Biomedicine – volume: 66 start-page: 259 year: 1994 end-page: 267 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophysical Journal – volume: 11 start-page: 1 year: 2017 article-title: Whole brain magnetic resonance image atlases: A systematic review of existing atlases and caveats for use in population imaging publication-title: Frontiers in Neuroinformatics – volume: 46 start-page: 652 issue: 3 year: 2009 end-page: 657 article-title: The impact of aging and gender on brain viscoelasticity publication-title: NeuroImage – volume: 145 start-page: 785 year: 2019 end-page: 821 article-title: What did you do yesterday? A meta‐analysis of sex differences in episodic memory publication-title: Psychological Bulletin – volume: 61 start-page: 46 issue: 1 year: 2002 end-page: 57 article-title: Structure of the Cerebral Cortex in Men and Women publication-title: Journal of Neuropathology & Experimental Neurology – volume: 215 start-page: 116850 year: 2020 article-title: Viscoelasticity of reward and control systems in adolescent risk taking publication-title: NeuroImage – volume: 44 start-page: 1158 year: 2011 end-page: 1163 article-title: Measurement of the hyperelastic properties of ex vivo brain tissue slices publication-title: Journal of Biomechanics – volume: 10 year: 2015 article-title: Quantifying the elastic property of nine thigh muscles using magnetic resonance Elastography publication-title: PLoS One – volume: 55 start-page: 333 year: 2017 end-page: 339 article-title: Regional mechanical properties of human brain tissue for computational models of traumatic brain injury publication-title: Acta Biomaterialia – volume: 10 issue: 3 year: 2015 article-title: Correlation between relaxometry and diffusion tensor imaging in the globus pallidus of Huntington's disease patients publication-title: PLoS One – volume: 1 start-page: 81 year: 2012 end-page: 90 article-title: Magnetic resonance elastography reveals altered brain viscoelasticity in experimental autoimmune encephalomyelitis publication-title: NeuroImage: Clinical – volume: 9 start-page: 5672 issue: 24 year: 2013 article-title: Structure‐sensitive elastography: On the viscoelastic powerlaw behavior of in vivo human tissue in health and disease publication-title: Soft Matter – volume: 46 start-page: 967 year: 2009 end-page: 980 article-title: Development of a human brain diffusion tensor template publication-title: NeuroImage – volume: 14 start-page: 175 issue: 1 year: 2020 end-page: 185 article-title: Hippocampal viscoelasticity and episodic memory performance in healthy older adults examined with magnetic resonance elastography publication-title: Brain Imaging and Behavior – volume: 52 start-page: 7281 year: 2007 end-page: 7294 article-title: Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: A study of brain and liver viscoelasticity publication-title: Physics in Medicine and Biology – volume: 42 start-page: 779 year: 1999 end-page: 786 article-title: An overlapping subzone technique for MR‐based elastic property reconstruction publication-title: Magnetic Resonance in Medicine – volume: 13 start-page: 1 year: 2017 end-page: 40 article-title: Mindboggling morphometry of human brains publication-title: PLOS Computational Biology – volume: 38 start-page: 116 year: 2017 end-page: 125 article-title: Perfusion alters stiffness of deep gray matter publication-title: The Journal of Cerebral Blood Flow & Metabolism – volume: 79 start-page: 30 year: 2018 end-page: 37 article-title: Measurement of anisotropic mechanical properties in porcine brain white matter ex vivo using magnetic resonance elastography publication-title: Journal of the Mechanical Behavior of Biomedical Materials – volume: 11 start-page: 266 year: 2018 article-title: Sex differences in synaptic plasticity: Hormones and beyond publication-title: Frontiers in Molecular Neuroscience – volume: 79 start-page: 145 year: 2013 end-page: 152 article-title: Local mechanical properties of white matter structures in the human brain publication-title: Neuroimage – volume: 269 start-page: 1854 year: 1995 end-page: 1857 article-title: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves publication-title: Science – volume: 7 start-page: 1 year: 2015 article-title: The fornix in mild cognitive impairment and Alzheimer's disease publication-title: Frontiers in Aging Neuroscience – volume: 171 start-page: 332 year: 2018 end-page: 340 article-title: More highly myelinated white matter tracts are associated with faster processing speed in healthy adults publication-title: NeuroImage – volume: 132 start-page: 534 year: 2016 end-page: 541 article-title: Medial temporal lobe viscoelasticity and relational memory performance publication-title: NeuroImage – volume: 8 start-page: e71807 year: 2013 article-title: Towards an elastographic atlas of brain anatomy publication-title: PLoS One – volume: 30 start-page: 1512 year: 2013 end-page: 1520 article-title: Long‐term in vivo imaging of viscoelastic properties of the mouse brain after controlled cortical impact publication-title: Journal of Neurotrauma – volume: 65 start-page: 158 year: 2018 end-page: 167 article-title: High‐resolution magnetic resonance elastography reveals differences in subcortical gray matter viscoelasticity between young and healthy older adults publication-title: Neurobiology of Aging – volume: 35 year: 2019 article-title: Biomechanical modeling and computer simulation of the brain during neurosurgery publication-title: International Journal for Numerical Methods in Biomedical Engineering – volume: 44 start-page: 51 year: 2007 end-page: 58 article-title: Towards a reliable characterisation of the mechanical behaviour of brain tissue: The effects of post‐mortem time and sample preparation publication-title: Biorheology – volume: 21 start-page: 63 year: 2010 article-title: Quantitative brain MRI publication-title: Topics in Magnetic Resonance Imaging: TMRI – volume: 179 start-page: 429 year: 2018 end-page: 447 article-title: An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan publication-title: NeuroImage – volume: 27 start-page: 1484 year: 2008 end-page: 1494 article-title: Regularized field map estimation in MRI publication-title: IEEE Transactions on Medical Imaging – volume: 56 start-page: N153 year: 2011 end-page: N164 article-title: An octahedral shear strain‐based measure of SNR for 3D MR elastography publication-title: Physics in Medicine and Biology – volume: 8 start-page: 10554 year: 2018 article-title: Myelin measurement: Comparison between simultaneous tissue Relaxometry, magnetization transfer saturation index, and T1w/T2w ratio methods publication-title: Scientific Reports – volume: 33 start-page: 341 year: 2002 end-page: 355 article-title: Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain publication-title: Neuron – volume: 37 start-page: 1339 issue: 9 year: 2004 end-page: 1352 article-title: Are in vivo and in situ brain tissues mechanically similar? publication-title: Journal of Biomechanics – volume: 69 start-page: 10 year: 2018 end-page: 18 article-title: Mechanical properties of porcine brain tissue in vivo and ex vivo estimated by MR elastography publication-title: Journal of Biomechanics – volume: 27 year: 2020 article-title: Hippocampal stiffness in mesial temporal lobe epilepsy measured with MR elastography: Preliminary comparison with healthy participants publication-title: NeuroImage: Clinical – year: 2015 – volume: 103 start-page: 17759 year: 2006 end-page: 17764 article-title: Viscoelastic properties of individual glial cells and neurons in the CNS publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 10 start-page: 486 year: 2012 end-page: 489 article-title: Normality tests for statistical analysis: A guide for non‐statisticians publication-title: International Journal of Endocrinology and Metabolism – volume: 90 start-page: 308 year: 2014 end-page: 314 article-title: High‐resolution mechanical imaging of the human brain by three‐dimensional multifrequency magnetic resonance elastography at 7T publication-title: NeuroImage – volume: 79 start-page: 1043 year: 2018 end-page: 1051 article-title: Acute pressure changes in the brain are correlated with MR elastography stiffness measurements: Initial feasibility in an in vivo large animal model publication-title: Magnetic Resonance in Medicine – volume: 6 start-page: 343 year: 2015 article-title: Fornix as an imaging marker for episodic memory deficits in healthy aging and in various neurological disorders publication-title: Frontiers in Aging Neuroscience – volume: 212 start-page: 53 year: 1982 end-page: 75 article-title: A Golgi and ultrastructural study of the monkey globus pallidus publication-title: The Journal of Comparative Neurology – volume: 46 start-page: 318 year: 2015 end-page: 330 article-title: Mechanical properties of gray and white matter brain tissue by indentation publication-title: Journal of the Mechanical Behavior of Biomedical Materials – volume: 26 start-page: 1534 year: 2013 end-page: 1539 article-title: MR elastography in a murine stroke model reveals correlation of macroscopic viscoelastic properties of the brain with neuronal density publication-title: NMR in Biomedicine – volume: 32 start-page: 1901 issue: 10 year: 2013 end-page: 1909 article-title: Including spatial information in nonlinear inversion MR elastography using soft prior regularization publication-title: IEEE Transactions on Medical Imaging – volume: 111 start-page: 59 year: 2015 end-page: 64 article-title: Measuring the effects of aging and sex on regional brain stiffness with MR elastography in healthy older adults publication-title: NeuroImage – volume: 39 start-page: 6388 year: 2012 end-page: 6396 article-title: Multiresolution MR elastography using nonlinear inversion publication-title: Medical Physics – volume: 44 start-page: 748 year: 2015 end-page: 752 article-title: Sex‐based differences as a predictor of recovery trajectories in young athletes after a sports‐related concussion publication-title: The American Journal of Sports Medicine – volume: 44 start-page: 51 year: 2016 end-page: 58 article-title: Higher‐resolution MR elastography reveals early mechanical signatures of neuroinflammation in patients with clinically isolated syndrome publication-title: Journal of Magnetic Resonance Imaging – volume: 40 start-page: 570 year: 2008 end-page: 582 article-title: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template publication-title: NeuroImage – volume: 37 start-page: 4221 year: 2016 end-page: 4233 article-title: Viscoelasticity of subcortical gray matter structures publication-title: Human Brain Mapping – volume: 27 start-page: 1187 year: 2019 end-page: 1230 article-title: Fifty shades of brain: A review on the mechanical testing and modeling of brain tissue publication-title: Archives of Computational Methods in Engineering – volume: 31 start-page: 1857 issue: 12 year: 2019 end-page: 1872 article-title: Structural and functional MRI evidence for distinct medial temporal and prefrontal roles in context‐dependent relational memory publication-title: Journal of Cognitive Neuroscience – volume: 66 start-page: 1705 issue: 6 year: 2019 end-page: 1713 article-title: Viscoelastic properties of human autopsy brain tissues as biomarkers for Alzheimer's diseases publication-title: IEEE Transactions on Biomedical Engineering – volume: 80 start-page: 222 year: 2018 end-page: 234 article-title: Material properties of the brain in injury‐relevant conditions ‐ experiments and computational modeling publication-title: Journal of the Mechanical Behavior of Biomedical Materials – volume: 187 start-page: 176 year: 2019 end-page: 183 article-title: MR elastography of the brain and its application in neurological diseases publication-title: NeuroImage – volume: 77 start-page: 21 year: 2000 end-page: 27 article-title: Gender dimorphism of axons in the human lateral corticospinal tract publication-title: Okajimas Folia Anatomica Japonica – volume: 4 start-page: 92 year: 2015 end-page: 102 article-title: Network topology and dynamics in traumatic brain injury publication-title: Current Opinion in Behavioral Sciences – volume: 3 start-page: 158 year: 2010 end-page: 166 article-title: Mechanical properties of brain tissue by indentation: Interregional variation publication-title: Journal of the Mechanical Behavior of Biomedical Materials – volume: 31 year: 2018 article-title: Cardiovascular magnetic resonance elastography: A review publication-title: NMR in Biomedicine – volume: 142 start-page: 071005 year: 2020 article-title: Multi‐excitation MR Elastography of the brain: Wave propagation in anisotropic white matter publication-title: Journal of Biomechanical Engineering – volume: 33 start-page: 81 year: 2018 end-page: 176 article-title: Magnetic resonance elastography for examining developmental changes in the mechanical properties of the brain publication-title: Developmental Cognitive Neuroscience – volume: 48 start-page: 239 year: 2004 end-page: 258 article-title: Shear properties of brain tissue over a frequency range relevant for automotive impact situations: New experimental results publication-title: Stapp Car Crash Journal – volume: 42 start-page: 265 year: 2016 end-page: 272 article-title: Brain stiffness increases with myelin content publication-title: Acta Biomaterialia – volume: 171 start-page: 99 year: 2018 end-page: 106 article-title: Double dissociation of structure‐function relationships in memory and fluid intelligence observed with magnetic resonance elastography publication-title: NeuroImage – volume: 13 start-page: 898 year: 2019 article-title: Sex differences in white matter pathways related to language ability publication-title: Frontiers in Neuroscience – volume: 36 start-page: 1971 year: 2015 end-page: 1977 article-title: MR Elastography can be used to measure brain stiffness changes as a result of altered cranial venous drainage during jugular compression publication-title: AJNR. American Journal of Neuroradiology – volume: 9 year: 2014 article-title: Enhanced adult neurogenesis increases brain stiffness: in vivo magnetic resonance elastography in a mouse model of dopamine depletion publication-title: PLoS One – volume: 22 start-page: 365 issue: 4 year: 2012 end-page: 374 article-title: The fornix sign: A potential sign for Alzheimer's disease based on diffusion tensor imaging publication-title: Journal of Neuroimaging – volume: 17 start-page: 143 year: 2002 end-page: 155 article-title: Fast robust automated brain extraction publication-title: Human Brain Mapping – volume: 269 start-page: 768 year: 2013 end-page: 776 article-title: MR Elastography of the liver: Defining thresholds for detecting viscoelastic changes publication-title: Radiology – volume: 30 start-page: 1719 issue: 3 year: 2020 end-page: 1729 article-title: Diagnostic performance of tomoelastography of the liver and spleen for staging hepatic fibrosis publication-title: European Radiology – volume: 11 start-page: 566 year: 2017 article-title: The dancing brain: Structural and functional signatures of expert dance training publication-title: Frontiers in Human Neuroscience – volume: 71 start-page: 477 year: 2014 end-page: 485 article-title: 3D multislab, multishot acquisition for fast, whole‐brain MR elastography with high signal‐to‐noise efficiency publication-title: Magnetic Resonance in Medicine – volume: 6 start-page: e23451 year: 2011 article-title: The influence of physiological aging and atrophy on brain viscoelastic properties in humans publication-title: PLoS One – volume: 2 start-page: fcz049 year: 2020 article-title: Mechanical property alterations across the cerebral cortex due to Alzheimer's disease publication-title: Brain Communications – volume: 124 start-page: 244 year: 2002 end-page: 252 article-title: Regional, directional, and age‐dependent properties of the brain undergoing large deformation publication-title: Journal of Biomechanical Engineering – volume: 36 start-page: 954 year: 2016 end-page: 964 article-title: Cannabinoid receptor activation in the juvenile rat brain results in rapid biomechanical alterations: Neurovascular mechanism as a putative confounding factor publication-title: Journal of Cerebral Blood Flow & Metabolism – volume: 48 start-page: 319 year: 2017 end-page: 340 article-title: Mechanical characterization of human brain tissue publication-title: Acta Biomaterialia – volume: 76 start-page: 119 year: 2017 end-page: 124 article-title: The mechanical importance of myelination in the central nervous system publication-title: Journal of the Mechanical Behavior of Biomedical Materials – ident: e_1_2_9_2_1 doi: 10.1016/j.neuroimage.2015.02.016 – ident: e_1_2_9_43_1 doi: 10.3389/fnmol.2018.00266 – ident: e_1_2_9_9_1 doi: 10.1089/neu.2012.2788 – ident: e_1_2_9_80_1 doi: 10.1016/j.neuroimage.2017.03.061 – ident: e_1_2_9_75_1 doi: 10.1016/j.neuroimage.2009.02.040 – ident: e_1_2_9_54_1 doi: 10.1371/journal.pone.0092582 – ident: e_1_2_9_51_1 doi: 10.1002/nbm.3853 – ident: e_1_2_9_74_1 doi: 10.1016/j.nicl.2012.09.003 – ident: e_1_2_9_93_1 doi: 10.2535/ofaj1936.77.1_21 – ident: e_1_2_9_86_1 doi: 10.1016/j.jmbbm.2009.09.001 – ident: e_1_2_9_89_1 doi: 10.1016/j.jmbbm.2017.04.017 – ident: e_1_2_9_55_1 doi: 10.1073/pnas.0606150103 – ident: e_1_2_9_73_1 doi: 10.1007/s00330-019-06471-7 – ident: e_1_2_9_19_1 doi: 10.3389/fninf.2017.00001 – ident: e_1_2_9_79_1 doi: 10.1073/pnas.1200151109 – ident: e_1_2_9_29_1 doi: 10.1016/j.jbiomech.2003.12.032 – ident: e_1_2_9_81_1 doi: 10.1162/jocn_a_01454 – ident: e_1_2_9_15_1 doi: 10.1371/journal.pone.0138873 – ident: e_1_2_9_44_1 doi: 10.1002/mrm.25065 – ident: e_1_2_9_68_1 doi: 10.1109/TBME.2018.2878555 – ident: e_1_2_9_27_1 doi: 10.1002/nbm.4141 – ident: e_1_2_9_7_1 doi: 10.1016/S0006-3495(94)80775-1 – ident: e_1_2_9_33_1 doi: 10.1038/s41598-018-28852-6 – ident: e_1_2_9_11_1 doi: 10.1016/j.actbio.2016.10.036 – ident: e_1_2_9_16_1 doi: 10.1177/0271678X15606923 – ident: e_1_2_9_91_1 doi: 10.1016/j.jbiomech.2011.04.034 – ident: e_1_2_9_13_1 doi: 10.1007/s11831-019-09352-w – ident: e_1_2_9_18_1 doi: 10.1088/0031-9155/56/8/005 – ident: e_1_2_9_39_1 doi: 10.1093/braincomms/fcz049 – ident: e_1_2_9_14_1 doi: 10.3389/fnhum.2017.00566 – ident: e_1_2_9_85_1 doi: 10.1371/journal.pone.0118907 – ident: e_1_2_9_6_1 doi: 10.1016/j.cobeha.2015.04.002 – ident: e_1_2_9_20_1 doi: 10.1002/cne.902120105 – ident: e_1_2_9_47_1 doi: 10.1016/j.dcn.2017.08.010 – ident: e_1_2_9_62_1 doi: 10.1016/j.neuroimage.2017.10.008 – ident: e_1_2_9_21_1 doi: 10.3389/fnagi.2014.00343 – ident: e_1_2_9_41_1 doi: 10.1007/s11682-018-9988-8 – ident: e_1_2_9_35_1 doi: 10.3174/ajnr.A4361 – ident: e_1_2_9_40_1 doi: 10.1016/j.neurobiolaging.2018.01.010 – ident: e_1_2_9_5_1 doi: 10.1016/j.neuroimage.2010.09.025 – ident: e_1_2_9_26_1 doi: 10.1109/TMI.2008.923956 – ident: e_1_2_9_32_1 doi: 10.1371/journal.pone.0071807 – ident: e_1_2_9_78_1 doi: 10.1016/j.jmbbm.2017.11.045 – ident: e_1_2_9_12_1 doi: 10.1016/j.jmbbm.2015.02.024 – ident: e_1_2_9_67_1 doi: 10.1177/0363546515617746 – ident: e_1_2_9_77_1 doi: 10.1371/journal.pone.0023451 – ident: e_1_2_9_49_1 doi: 10.3389/fnins.2019.00898 – ident: e_1_2_9_3_1 doi: 10.1002/mrm.26738 – ident: e_1_2_9_52_1 doi: 10.1088/0031-9155/52/24/006 – ident: e_1_2_9_82_1 doi: 10.1016/j.neuroimage.2016.02.059 – ident: e_1_2_9_46_1 doi: 10.1002/hbm.23314 – ident: e_1_2_9_17_1 doi: 10.1016/j.neuroimage.2017.12.069 – ident: e_1_2_9_10_1 doi: 10.1016/j.neuroimage.2013.12.032 – ident: e_1_2_9_63_1 doi: 10.1126/science.7569924 – ident: e_1_2_9_76_1 doi: 10.1039/c3sm50552a – ident: e_1_2_9_65_1 doi: 10.3389/fnagi.2015.00001 – ident: e_1_2_9_50_1 doi: 10.1016/j.jbiomech.2011.01.019 – ident: e_1_2_9_61_1 doi: 10.1016/j.neuroimage.2007.12.035 – ident: e_1_2_9_34_1 doi: 10.1002/jmri.22294 – ident: e_1_2_9_48_1 doi: 10.1016/j.neuroimage.2018.01.007 – ident: e_1_2_9_70_1 doi: 10.1097/RMR.0b013e31821e56f8 – ident: e_1_2_9_8_1 doi: 10.1148/radiol.13122669 – volume: 48 start-page: 239 year: 2004 ident: e_1_2_9_64_1 article-title: Shear properties of brain tissue over a frequency range relevant for automotive impact situations: New experimental results publication-title: Stapp Car Crash Journal – ident: e_1_2_9_87_1 doi: 10.1002/(SICI)1522-2594(199910)42:4<779::AID-MRM21>3.0.CO;2-Z – ident: e_1_2_9_37_1 doi: 10.1177/0271678X17691530 – ident: e_1_2_9_59_1 doi: 10.1016/j.neuroimage.2020.116850 – ident: e_1_2_9_56_1 doi: 10.1109/TMI.2013.2268978 – ident: e_1_2_9_57_1 doi: 10.1118/1.4754649 – ident: e_1_2_9_71_1 doi: 10.1115/1.1449907 – ident: e_1_2_9_23_1 doi: 10.1016/j.actbio.2017.03.037 – ident: e_1_2_9_58_1 doi: 10.1088/0031-9155/56/13/N02 – ident: e_1_2_9_90_1 doi: 10.1016/j.neuroimage.2018.06.027 – ident: e_1_2_9_4_1 doi: 10.1037/bul0000197 – ident: e_1_2_9_42_1 doi: 10.1016/j.nicl.2020.102313 – ident: e_1_2_9_53_1 doi: 10.1371/journal.pcbi.1005350 – ident: e_1_2_9_83_1 doi: 10.1115/1.4046199 – ident: e_1_2_9_66_1 doi: 10.1111/j.1552-6569.2011.00633.x – volume: 44 start-page: 51 year: 2007 ident: e_1_2_9_28_1 article-title: Towards a reliable characterisation of the mechanical behaviour of brain tissue: The effects of post‐mortem time and sample preparation publication-title: Biorheology – ident: e_1_2_9_38_1 doi: 10.1088/0031-9155/61/24/R401 – ident: e_1_2_9_69_1 doi: 10.1016/j.neuroimage.2009.03.046 – ident: e_1_2_9_84_1 doi: 10.1002/hbm.10062 – ident: e_1_2_9_60_1 doi: 10.1002/cnm.3250 – ident: e_1_2_9_88_1 doi: 10.1016/j.actbio.2016.07.040 – ident: e_1_2_9_45_1 doi: 10.1016/j.neuroimage.2013.04.089 – ident: e_1_2_9_22_1 doi: 10.1002/jmri.25129 – ident: e_1_2_9_30_1 doi: 10.5812/ijem.3505 – ident: e_1_2_9_24_1 doi: 10.1016/S0896-6273(02)00569-X – ident: e_1_2_9_31_1 doi: 10.1016/j.jbiomech.2018.01.016 – ident: e_1_2_9_36_1 doi: 10.12688/f1000research.6210.1 – ident: e_1_2_9_25_1 doi: 10.1002/nbm.2987 – ident: e_1_2_9_72_1 doi: 10.1093/jnen/61.1.46 – ident: e_1_2_9_92_1 doi: 10.1016/j.jmbbm.2018.02.005 |
| SSID | ssj0011501 |
| Score | 2.5783482 |
| Snippet | Standard anatomical atlases are common in neuroimaging because they facilitate data analyses and comparisons across subjects and studies. The purpose of this... |
| SourceID | pubmedcentral proquest gale pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5282 |
| SubjectTerms | Adolescent Adult Anatomy Atlases as Topic Brain Brain architecture brain atlases Brain mapping Cerebral cortex Cerebral Cortex - anatomy & histology Cerebral Cortex - diagnostic imaging Damping ratio Elasticity Elasticity Imaging Techniques - methods Female Gender aspects Gray Matter - anatomy & histology Gray Matter - diagnostic imaging Humans Image registration In vivo methods and tests Magnetic properties magnetic resonance elastography Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Mechanical properties Medical imaging MRI templates Neuroimaging Phase contrast Research facilities Research institutions Sex differences Shear stiffness Substantia alba Substantia grisea Tissues Viscoelasticity Viscosity White Matter - anatomy & histology White Matter - diagnostic imaging Young Adult Young adults |
| Title | Standard‐space atlas of the viscoelastic properties of the human brain |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25192 https://www.ncbi.nlm.nih.gov/pubmed/32931076 https://www.proquest.com/docview/2460970377 https://www.proquest.com/docview/2442845558 https://pubmed.ncbi.nlm.nih.gov/PMC7670638 |
| Volume | 41 |
| WOSCitedRecordID | wos000569162400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 issn: 1065-9471 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 issn: 1065-9471 databaseCode: WIN dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 issn: 1065-9471 databaseCode: 24P dateStart: 20200101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5VBSEuUFqggVIZhIBLaOI49kY9LYhqOXRVCRB7s2zHUVdqs9XuthI3HoFn5EmYcX5oKpCQuESr9SSbdebnm4n9DcDLMndZakYyxliXxaJU1Mg9rTBVSY0wWVFx70KzCTWdjmaz4mQDDru9MA0_RF9wI8sI_poM3NjVwW_S0FN7_pa2XaL_vZWm2Yj6NnBx0r9CQKQTsi2MsfjzKu1ohRJ-0J86CEY3XfK1mHRzveR1HBsC0dH9__oLW3CvxZ9s3CjMA9jw9TbsjGvMvc-_sVcsrAgNpfZtuHPcvnjfgcmntuTw8_sP9EHOM7NG3M0WFUMEya7mK7fw-AVelV1QfX9JRK3dcGgEyCx1o3gIX44-fH4_idsmDLFDc-WxQ4tWJU9kpYyoXFkgxPN5ibDDGmFzQ3ik9EJWMueEjbjJC8FLk1ib88q47BFs1ova7wKTGAettagUhRS5U4W1PCkII1XOILKK4E33NLRrGcqpUcaZbriVucYJ02HCInjRi140tBx_EnpNj1STqeJ1nGl3HODdEOmVHiO6QvSXySyCvYEkmpgbDndKoVsTX2kuZFKgv1Qqguf9MJ1Jy9Zqv7gkGczuBFGqRfC40aH-djMEWph7ywjUQLt6ASL-Ho7U89NAAK6kIqSJ8xW06-8zoCfvjsOHJ_8u-hTucqoppDxO8z3YXC8v_TO47a7W89VyP9gYHtVstB_qF3j8-nH6Cz8JKr4 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VBQEXHi2PQAGDEPQSmjiO3UhcFkS1Fd0VEkX0ZtmOo65Es9XuthI3fgK_kV_CjPOgqUBC4hatJ4915vHNxP4G4EWZuyw1uzLGWJfFolTUyD2tMFVJjTBZUXHvQrMJNZ3uHh0VH9fgTbcXpuGH6AtuZBnBX5OBU0F65zdr6LE9eU37LtEBXxEINKhxw5f9af8NAaFOSLcwyOL9VdrxCiV8pz91EI0u--QLQenygsmLQDZEor1b__cfbsPNFoGyUaMyd2DN1xuwOaox-z75xl6ysCY0FNs34Nqk_fS-CeNPbdHh5_cf6IWcZ2aFyJvNK4YYkp3Plm7u8Qe8KjulCv-CqFq74dAKkFnqR3EXPu-9P3w3jts2DLFDg-WxQ5tWJU9kpYyoXFkgyPN5icDDGmFzQ4ik9EJWMueEjrjJC8FLk1ib88q47B6s1_PaPwAmMRJaa1EtCilypwpreVIQSqqcQWwVwXb3OrRrOcqpVcZX3bArc40TpsOERfC8Fz1tiDn-JPSK3qkmY8XrONPuOcCnIdorPUJ8hfgvk1kEWwNJNDI3HO60QrdGvtRcyKRAj6lUBM_6YTqTFq7Vfn5GMpjfCSJVi-B-o0T942YItTD7lhGogXr1AkT9PRypZ8eBAlxJRVgT5yuo199nQI_fTsLBw38XfQrXx4eTA32wP_3wCG5wqjCkPE7zLVhfLc78Y7jqzlez5eJJMLhfqw4sKg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VBVVcKLQ8UgoYhIBL2sRx7EbisjxWi6CrlQCpN8t2HHUlml3tbitx4yfwG_klzDgPuhVISNyi9eSxzjy-mdjfADwrc5el5kjGGOuyWJSKGrmnFaYqqREmKyruXWg2ocbjo5OTYrIBr7q9MA0_RF9wI8sI_poM3M_L6vA3a-ipPTugfZfogK-JXKWk01xM-m8ICHVCuoVBFu-v0o5XKOGH_alr0eiqT74UlK4umLwMZEMkGm7_33-4BTdbBMoGjcrchg1f78DuoMbs--wbe87CmtBQbN-BreP20_sujD61RYef33-gF3KemRUibzarGGJIdjFdupnHH_CqbE4V_gVRtXbDoRUgs9SP4g58Gb77_GYUt20YYocGy2OHNq1KnshKGVG5skCQ5_MSgYc1wuaGEEnphaxkzgkdcZMXgpcmsTbnlXHZXdisZ7W_D0xiJLTWoloUUuROFdbypCCUVDmD2CqCl93r0K7lKKdWGV91w67MNU6YDhMWwdNedN4Qc_xJ6AW9U03Gitdxpt1zgE9DtFd6gPgK8V8mswj21yTRyNz6cKcVujXypeZCJgV6TKUieNIP05m0cK32s3OSwfxOEKlaBPcaJeofN0Oohdm3jECtqVcvQNTf6yP19DRQgCupCGvifAX1-vsM6NHr43Cw9--ij2Fr8naoP74ff3gANzgVGFIep_k-bK4W5_4hXHcXq-ly8SjY2y9eRytB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Standard%E2%80%90space+atlas+of+the+viscoelastic+properties+of+the+human+brain&rft.jtitle=Human+brain+mapping&rft.au=Hiscox%2C+Lucy+V&rft.au=McGarry%2C+Matthew+D+J&rft.au=Schwarb%2C+Hillary&rft.au=Elijah+E+W+Van+Houten&rft.date=2020-12-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=41&rft.issue=18&rft.spage=5282&rft.epage=5300&rft_id=info:doi/10.1002%2Fhbm.25192&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |