Evaluation of Federated Learning in Phishing Email Detection

The use of artificial intelligence (AI) to detect phishing emails is primarily dependent on large-scale centralized datasets, which has opened it up to a myriad of privacy, trust, and legal issues. Moreover, organizations have been loath to share emails, given the risk of leaking commercially sensit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 23; číslo 9; s. 4346
Hlavní autoři: Thapa, Chandra, Tang, Jun Wen, Abuadbba, Alsharif, Gao, Yansong, Camtepe, Seyit, Nepal, Surya, Almashor, Mahathir, Zheng, Yifeng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 27.04.2023
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The use of artificial intelligence (AI) to detect phishing emails is primarily dependent on large-scale centralized datasets, which has opened it up to a myriad of privacy, trust, and legal issues. Moreover, organizations have been loath to share emails, given the risk of leaking commercially sensitive information. Consequently, it has been difficult to obtain sufficient emails to train a global AI model efficiently. Accordingly, privacy-preserving distributed and collaborative machine learning, particularly federated learning (FL), is a desideratum. As it is already prevalent in the healthcare sector, questions remain regarding the effectiveness and efficacy of FL-based phishing detection within the context of multi-organization collaborations. To the best of our knowledge, the work herein was the first to investigate the use of FL in phishing email detection. This study focused on building upon a deep neural network model, particularly recurrent convolutional neural network (RNN) and bidirectional encoder representations from transformers (BERT), for phishing email detection. We analyzed the FL-entangled learning performance in various settings, including (i) a balanced and asymmetrical data distribution among organizations and (ii) scalability. Our results corroborated the comparable performance statistics of FL in phishing email detection to centralized learning for balanced datasets and low organizational counts. Moreover, we observed a variation in performance when increasing the organizational counts. For a fixed total email dataset, the global RNN-based model had a 1.8% accuracy decrease when the organizational counts were increased from 2 to 10. In contrast, BERT accuracy increased by 0.6% when increasing organizational counts from 2 to 5. However, if we increased the overall email dataset by introducing new organizations in the FL framework, the organizational level performance improved by achieving a faster convergence speed. In addition, FL suffered in its overall global model performance due to highly unstable outputs if the email dataset distribution was highly asymmetric.
AbstractList The use of artificial intelligence (AI) to detect phishing emails is primarily dependent on large-scale centralized datasets, which has opened it up to a myriad of privacy, trust, and legal issues. Moreover, organizations have been loath to share emails, given the risk of leaking commercially sensitive information. Consequently, it has been difficult to obtain sufficient emails to train a global AI model efficiently. Accordingly, privacy-preserving distributed and collaborative machine learning, particularly federated learning (FL), is a desideratum. As it is already prevalent in the healthcare sector, questions remain regarding the effectiveness and efficacy of FL-based phishing detection within the context of multi-organization collaborations. To the best of our knowledge, the work herein was the first to investigate the use of FL in phishing email detection. This study focused on building upon a deep neural network model, particularly recurrent convolutional neural network (RNN) and bidirectional encoder representations from transformers (BERT), for phishing email detection. We analyzed the FL-entangled learning performance in various settings, including (i) a balanced and asymmetrical data distribution among organizations and (ii) scalability. Our results corroborated the comparable performance statistics of FL in phishing email detection to centralized learning for balanced datasets and low organizational counts. Moreover, we observed a variation in performance when increasing the organizational counts. For a fixed total email dataset, the global RNN-based model had a 1.8% accuracy decrease when the organizational counts were increased from 2 to 10. In contrast, BERT accuracy increased by 0.6% when increasing organizational counts from 2 to 5. However, if we increased the overall email dataset by introducing new organizations in the FL framework, the organizational level performance improved by achieving a faster convergence speed. In addition, FL suffered in its overall global model performance due to highly unstable outputs if the email dataset distribution was highly asymmetric.
The use of artificial intelligence (AI) to detect phishing emails is primarily dependent on large-scale centralized datasets, which has opened it up to a myriad of privacy, trust, and legal issues. Moreover, organizations have been loath to share emails, given the risk of leaking commercially sensitive information. Consequently, it has been difficult to obtain sufficient emails to train a global AI model efficiently. Accordingly, privacy-preserving distributed and collaborative machine learning, particularly federated learning (FL), is a desideratum. As it is already prevalent in the healthcare sector, questions remain regarding the effectiveness and efficacy of FL-based phishing detection within the context of multi-organization collaborations. To the best of our knowledge, the work herein was the first to investigate the use of FL in phishing email detection. This study focused on building upon a deep neural network model, particularly recurrent convolutional neural network (RNN) and bidirectional encoder representations from transformers (BERT), for phishing email detection. We analyzed the FL-entangled learning performance in various settings, including (i) a balanced and asymmetrical data distribution among organizations and (ii) scalability. Our results corroborated the comparable performance statistics of FL in phishing email detection to centralized learning for balanced datasets and low organizational counts. Moreover, we observed a variation in performance when increasing the organizational counts. For a fixed total email dataset, the global RNN-based model had a 1.8% accuracy decrease when the organizational counts were increased from 2 to 10. In contrast, BERT accuracy increased by 0.6% when increasing organizational counts from 2 to 5. However, if we increased the overall email dataset by introducing new organizations in the FL framework, the organizational level performance improved by achieving a faster convergence speed. In addition, FL suffered in its overall global model performance due to highly unstable outputs if the email dataset distribution was highly asymmetric.The use of artificial intelligence (AI) to detect phishing emails is primarily dependent on large-scale centralized datasets, which has opened it up to a myriad of privacy, trust, and legal issues. Moreover, organizations have been loath to share emails, given the risk of leaking commercially sensitive information. Consequently, it has been difficult to obtain sufficient emails to train a global AI model efficiently. Accordingly, privacy-preserving distributed and collaborative machine learning, particularly federated learning (FL), is a desideratum. As it is already prevalent in the healthcare sector, questions remain regarding the effectiveness and efficacy of FL-based phishing detection within the context of multi-organization collaborations. To the best of our knowledge, the work herein was the first to investigate the use of FL in phishing email detection. This study focused on building upon a deep neural network model, particularly recurrent convolutional neural network (RNN) and bidirectional encoder representations from transformers (BERT), for phishing email detection. We analyzed the FL-entangled learning performance in various settings, including (i) a balanced and asymmetrical data distribution among organizations and (ii) scalability. Our results corroborated the comparable performance statistics of FL in phishing email detection to centralized learning for balanced datasets and low organizational counts. Moreover, we observed a variation in performance when increasing the organizational counts. For a fixed total email dataset, the global RNN-based model had a 1.8% accuracy decrease when the organizational counts were increased from 2 to 10. In contrast, BERT accuracy increased by 0.6% when increasing organizational counts from 2 to 5. However, if we increased the overall email dataset by introducing new organizations in the FL framework, the organizational level performance improved by achieving a faster convergence speed. In addition, FL suffered in its overall global model performance due to highly unstable outputs if the email dataset distribution was highly asymmetric.
Audience Academic
Author Thapa, Chandra
Tang, Jun Wen
Gao, Yansong
Almashor, Mahathir
Zheng, Yifeng
Camtepe, Seyit
Abuadbba, Alsharif
Nepal, Surya
AuthorAffiliation 3 Cyber Security Cooperative Research Centre, Australian Capital Territory 2604, Australia
1 Commonwealth Scientific and Industrial Research Organisation, Data61, Sydney 2122, Australia
2 School of Chemical Engineering, The University of New South Wales, Sydney 2052, Australia
4 Harbin Institute of Technology, Harbin 150001, China
AuthorAffiliation_xml – name: 2 School of Chemical Engineering, The University of New South Wales, Sydney 2052, Australia
– name: 3 Cyber Security Cooperative Research Centre, Australian Capital Territory 2604, Australia
– name: 4 Harbin Institute of Technology, Harbin 150001, China
– name: 1 Commonwealth Scientific and Industrial Research Organisation, Data61, Sydney 2122, Australia
Author_xml – sequence: 1
  givenname: Chandra
  orcidid: 0000-0002-3855-3378
  surname: Thapa
  fullname: Thapa, Chandra
– sequence: 2
  givenname: Jun Wen
  orcidid: 0000-0002-1561-0288
  surname: Tang
  fullname: Tang, Jun Wen
– sequence: 3
  givenname: Alsharif
  orcidid: 0000-0001-9695-7947
  surname: Abuadbba
  fullname: Abuadbba, Alsharif
– sequence: 4
  givenname: Yansong
  surname: Gao
  fullname: Gao, Yansong
– sequence: 5
  givenname: Seyit
  orcidid: 0000-0001-6353-8359
  surname: Camtepe
  fullname: Camtepe, Seyit
– sequence: 6
  givenname: Surya
  surname: Nepal
  fullname: Nepal, Surya
– sequence: 7
  givenname: Mahathir
  orcidid: 0000-0002-3846-6282
  surname: Almashor
  fullname: Almashor, Mahathir
– sequence: 8
  givenname: Yifeng
  surname: Zheng
  fullname: Zheng, Yifeng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37177549$$D View this record in MEDLINE/PubMed
BookMark eNplkl1LHDEUhkOxVN32on-gDPSmXqzmc5JAQcSuVlhoL9rrkM_dLDOJzcwI_ffNuCpqyUXCyXue5Jz3HIODlJMH4COCp4RIeDZgAiUltH0DjhDFdCkwhgfPzofgeBh2EGJCiHgHDglHnDMqj8DX1Z3uJj3GnJocmivvfNGjd83a65Ji2jQxNT-3cdjO51WvY9d886O3c8Z78DbobvAfHvYF-H21-nX5fbn-cX1zebFeWgbluAzYG2QYhkZyK1vWtjwQa5Ez2FvhWoqkw8ZxQVqiOWkdN8xLw6GhUnBDyQLc7Lku6526LbHX5a_KOqr7QC4bpcsYbeeVEJ7pgCkN0NKAueAuUIgR5cKwwExlne9Zt5PpvbM-jUV3L6Avb1Lcqk2-UwgigZjklfDlgVDyn8kPo-rjYH3X6eTzNCgsEGEtYrXXC_D5lXSXp5Jqr2YV5oRTMatO96qNrhXEFHJ92NblfB9ttTrEGr_gVFb_JIU14dPzGp4-_2hrFZztBbbkYSg-KBvHe5MrOXa1FjUPjnoanJpx8irjEfq_9h_1b7-y
CitedBy_id crossref_primary_10_3390_buildings14010259
crossref_primary_10_1145_3606031
crossref_primary_10_17694_bajece_1490596
crossref_primary_10_3390_electronics12214545
crossref_primary_10_1080_23742917_2025_2498776
crossref_primary_10_1109_ACCESS_2024_3518923
crossref_primary_10_3390_informatics12030093
crossref_primary_10_1007_s00521_024_10969_7
crossref_primary_10_1016_j_compeleceng_2024_109625
Cites_doi 10.1109/JSAC.2022.3213341
10.1109/TDSC.2018.2864993
10.18653/v1/2022.findings-naacl.13
10.1109/ICASSP.2019.8683546
10.1038/s41746-020-00323-1
10.1109/SP.2017.12
10.1109/ACCESS.2019.2913705
10.1007/978-3-319-72395-2_5
10.1007/978-3-030-23551-2_2
10.1109/SP.2019.00065
10.1609/aaai.v29i1.9513
10.1109/SP.2019.00031
10.3233/JCS-2010-0371
10.1016/j.neucom.2019.01.037
10.1109/COMST.2019.2957750
10.1109/TDSC.2022.3208706
10.1561/0400000042
10.1145/1536414.1536440
10.1145/1299015.1299021
10.1145/3359789.3359790
10.1016/j.heliyon.2019.e01802
10.2478/popets-2019-0035
10.1007/s11280-017-0524-3
10.1016/j.dss.2018.01.001
10.1007/978-3-642-33167-1_47
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23094346
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

CrossRef
MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_88e5af244f0c4f2787df4021478b5f5b
PMC10181597
A749233940
37177549
10_3390_s23094346
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Partially supported by the Cyber Security Cooperative Research Centre, 639 Australia.
  grantid: Not applicable
– fundername: Cyber Security Cooperative Research Centre
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c509t-f2eb1b520b97c965667f3cc1db2ec8d6419d2bd78363a736d7b5e9b70b4987b43
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000987851800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:53:07 EDT 2025
Tue Nov 04 02:07:26 EST 2025
Fri Sep 05 13:49:29 EDT 2025
Tue Oct 07 07:02:58 EDT 2025
Tue Nov 04 17:57:48 EST 2025
Wed Feb 19 02:23:26 EST 2025
Sat Nov 29 07:19:11 EST 2025
Tue Nov 18 21:39:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords bidirectional encoder representations from transformers (BERT)
phishing email detection
recurrent neural network
federated learning
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-f2eb1b520b97c965667f3cc1db2ec8d6419d2bd78363a736d7b5e9b70b4987b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Was with Commonwealth Scientific and Industrial Research Organisation, Data61, Sydney 2122, Australia, while doing this work.
ORCID 0000-0001-9695-7947
0000-0002-3846-6282
0000-0002-1561-0288
0000-0001-6353-8359
0000-0002-3855-3378
OpenAccessLink https://doaj.org/article/88e5af244f0c4f2787df4021478b5f5b
PMID 37177549
PQID 2812737483
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_88e5af244f0c4f2787df4021478b5f5b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10181597
proquest_miscellaneous_2813561533
proquest_journals_2812737483
gale_infotracacademiconefile_A749233940
pubmed_primary_37177549
crossref_citationtrail_10_3390_s23094346
crossref_primary_10_3390_s23094346
PublicationCentury 2000
PublicationDate 2023-04-27
PublicationDateYYYYMMDD 2023-04-27
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-27
  day: 27
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
ref_13
ref_57
ref_12
ref_56
ref_11
ref_55
ref_10
ref_54
ref_53
ref_52
ref_19
ref_17
ref_16
ref_15
ref_59
ref_61
ref_60
Li (ref_58) 2020; 2
Das (ref_8) 2020; 22
ref_25
ref_24
ref_68
ref_23
ref_67
ref_22
ref_21
ref_65
ref_20
ref_64
ref_63
ref_62
Gao (ref_9) 2018; 21
Dwork (ref_69) 2014; 9
McMahan (ref_14) 2017; 18
ref_29
ref_28
ref_27
ref_26
Fang (ref_6) 2019; 7
Wagh (ref_51) 2019; 2019
ref_36
ref_35
ref_34
ref_33
ref_32
Meng (ref_38) 2019; 337
Zhao (ref_66) 2020; 18
ref_31
Bergholz (ref_40) 2010; 18
ref_30
ref_39
ref_37
Gutierrez (ref_43) 2018; 15
Rieke (ref_18) 2020; 3
Zhang (ref_70) 2022; 40
ref_47
ref_46
ref_44
ref_42
ref_41
ref_1
ref_3
ref_2
Dada (ref_4) 2019; 5
ref_49
ref_48
ref_5
ref_7
Smadi (ref_45) 2018; 107
References_xml – volume: 40
  start-page: 3343
  year: 2022
  ident: ref_70
  article-title: FRUIT: A Blockchain-Based Efficient and Privacy-Preserving Quality-Aware Incentive Scheme
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2022.3213341
– ident: ref_49
– ident: ref_5
– ident: ref_32
– ident: ref_55
– ident: ref_26
– volume: 15
  start-page: 988
  year: 2018
  ident: ref_43
  article-title: Learning from the Ones that Got Away: Detecting New Forms of Phishing Attacks
  publication-title: IEEE Trans. Dependable Secur. Comput.
  doi: 10.1109/TDSC.2018.2864993
– volume: 2
  start-page: 429
  year: 2020
  ident: ref_58
  article-title: Federated optimization in heterogeneous networks
  publication-title: Proc. Mach. Learn. Syst.
– ident: ref_16
– ident: ref_19
  doi: 10.18653/v1/2022.findings-naacl.13
– ident: ref_54
  doi: 10.1109/ICASSP.2019.8683546
– volume: 3
  start-page: 119
  year: 2020
  ident: ref_18
  article-title: The Future of Digital Health with Federated Learning
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-020-00323-1
– ident: ref_42
– ident: ref_61
– ident: ref_1
– ident: ref_35
– ident: ref_50
  doi: 10.1109/SP.2017.12
– ident: ref_23
– volume: 7
  start-page: 56329
  year: 2019
  ident: ref_6
  article-title: Phishing email detection using improved RCNN model with multilevel vectors and attention mechanism
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2913705
– ident: ref_31
– ident: ref_56
– ident: ref_27
– ident: ref_52
– ident: ref_48
– ident: ref_10
– ident: ref_46
  doi: 10.1007/978-3-319-72395-2_5
– ident: ref_17
  doi: 10.1007/978-3-030-23551-2_2
– ident: ref_13
– volume: 18
  start-page: 2029
  year: 2020
  ident: ref_66
  article-title: Shielding Collaborative Learning: Mitigating Poisoning Attacks through Client-Side Detection
  publication-title: IEEE Trans. Dependable Secur. Comput.
– ident: ref_62
  doi: 10.1109/SP.2019.00065
– ident: ref_25
  doi: 10.1609/aaai.v29i1.9513
– ident: ref_20
– ident: ref_59
– ident: ref_64
  doi: 10.1109/SP.2019.00031
– volume: 18
  start-page: 7
  year: 2010
  ident: ref_40
  article-title: New filtering approaches for phishing email
  publication-title: J. Comput. Secur.
  doi: 10.3233/JCS-2010-0371
– ident: ref_7
– ident: ref_28
– ident: ref_53
– ident: ref_30
– volume: 337
  start-page: 46
  year: 2019
  ident: ref_38
  article-title: Convergence analysis of distributed stochastic gradient descent with shuffling
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.037
– ident: ref_3
– ident: ref_24
– ident: ref_34
– volume: 22
  start-page: 671
  year: 2020
  ident: ref_8
  article-title: SoK: A Comprehensive Reexamination of Phishing Research From the Security Perspective
  publication-title: Commun. Surv. Tuts.
  doi: 10.1109/COMST.2019.2957750
– ident: ref_47
– ident: ref_11
– ident: ref_67
  doi: 10.1109/TDSC.2022.3208706
– volume: 9
  start-page: 211
  year: 2014
  ident: ref_69
  article-title: The Algorithmic Foundations of Differential Privacy
  publication-title: Found. Trends Theor. Comput. Sci.
  doi: 10.1561/0400000042
– ident: ref_68
  doi: 10.1145/1536414.1536440
– ident: ref_39
  doi: 10.1145/1299015.1299021
– ident: ref_65
  doi: 10.1145/3359789.3359790
– ident: ref_37
– ident: ref_63
– ident: ref_44
– ident: ref_21
– volume: 5
  start-page: e01802
  year: 2019
  ident: ref_4
  article-title: Machine learning for email spam filtering: Review, approaches and open research problems
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2019.e01802
– volume: 18
  start-page: 90:1
  year: 2017
  ident: ref_14
  article-title: A survey of Algorithms and Analysis for Adaptive Online Learning
  publication-title: J. Mach. Learn. Res.
– ident: ref_29
– ident: ref_33
– ident: ref_2
– volume: 2019
  start-page: 26
  year: 2019
  ident: ref_51
  article-title: SecureNN: 3-Party Secure Computation for Neural Network Training
  publication-title: PoPETs
  doi: 10.2478/popets-2019-0035
– ident: ref_12
– volume: 21
  start-page: 1759
  year: 2018
  ident: ref_9
  article-title: Resisting re-identification mining on social graph data
  publication-title: World Wide Web
  doi: 10.1007/s11280-017-0524-3
– volume: 107
  start-page: 88
  year: 2018
  ident: ref_45
  article-title: Detection of online phishing email using dynamic evolving neural network based on reinforcement learning
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2018.01.001
– ident: ref_15
– ident: ref_36
– ident: ref_60
– ident: ref_22
– ident: ref_57
– ident: ref_41
  doi: 10.1007/978-3-642-33167-1_47
SSID ssj0023338
Score 2.493226
Snippet The use of artificial intelligence (AI) to detect phishing emails is primarily dependent on large-scale centralized datasets, which has opened it up to a...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4346
SubjectTerms Accuracy
Analysis
Artificial intelligence
Asymmetry
bidirectional encoder representations from transformers (BERT)
Communication
Computational linguistics
Cybercrime
Data integrity
Datasets
Deep learning
Electronic mail systems
federated learning
Gas transmission industry
Identity theft
Language processing
Machine learning
Natural language interfaces
Neural networks
Phishing
phishing email detection
Privacy
recurrent neural network
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Nb9NAEIZHkHKAA1BowVCQQUhwsers2tm1hIRaSNRTFCGQerP2s41U7JKk_H5m1hsTC9QLV3sPa8_O7Lz78QzAOy-cIDJRNmZWZoViRaa4LzPuLaanzufcqFBsQszn8vy8WsQFt3U8VrmNiSFQ29bQGvkxw5lIECuFf7r-mVHVKNpdjSU07sIekcqKEeydTueLr73k4qjAOp4QR3F_vMaEm4Bok8EsFGD9f4fknTlpeF5yZwKaPfrfrj-GhzH1TE-6sbIPd1zzBB7sAAmfwsdpD_9OW5_OiDSByahNI4b1Il026eKyW7dKpz_U8ir94jbhOFdzAN9n02-fz7JYXyEzmCZsMs8wUOuS5boSpqLETnhuzNhq5oy0k2JcWaYt3fPgSvCJFbp0lRa5LiopdMEPYdS0jXsOqapQoeeGjyc2iDIlC6mIhJ8rVLrSJvBh-79rE-HjVAPjqkYRQqape9Mk8LZvet0RN_7V6JSM1jcgSHZ40K4u6uhztZSuVB7zF5-bwjMMTdYXxIgTUpe-1Am8J5PX5MrYGaPijQT8JIJi1SeC6HVUOj6Bo61l6-jj6_qPWRN4079G76QtF9W49ia04WXIqRN41g2ivs8clbRAeZ6AHAyvwUcN3zTLy0AAD5g1lIIvbu_XS7jP0Ado84uJIxhtVjfuFdwzvzbL9ep19JXfC8cddg
  priority: 102
  providerName: ProQuest
Title Evaluation of Federated Learning in Phishing Email Detection
URI https://www.ncbi.nlm.nih.gov/pubmed/37177549
https://www.proquest.com/docview/2812737483
https://www.proquest.com/docview/2813561533
https://pubmed.ncbi.nlm.nih.gov/PMC10181597
https://doaj.org/article/88e5af244f0c4f2787df4021478b5f5b
Volume 23
WOSCitedRecordID wos000987851800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Nb9QwEIZHUDjQA-KbQFkFhASXqFk7WTsSlxaygkNXEQJpOVn-pCuVbNXdcuS3M-Nko41A4sIlh8QHZ8b2zBs7zwC8DsILIhNlU-ZkVmhWZJqHMuPBYXrqQ86tjsUmxGIhl8uq2Sv1RWfCOjxwZ7hjKX2pAwahkNsiMBxfLhQE-hLSlKE0tPpi1rMTU73U4qi8Oo4QR1F_vMFEm0Bos1H0iZD-P5fivVg0Pie5F3jm9-BunzGmJ11P78MN3z6Awz2O4EN4Vw_M7nQd0jkBIjCHdGlPT_2ertq0Oe8-N6X1D726SD_4bTyF1T6Cr_P6y_uPWV8WIbMY3bdZYLi-mpLlphK2onxMBG7t1BnmrXSzYlo5Zhz9nsG14DMnTOkrI3JTVFKYgj-Gg3bd-qeQ6gqFdW75dOailtKykJoA9rlGgSpdAm935lK2Z4ZT6YoLhdqBLKsGyybwamh62YEy_tbolGw-NCC2dbyBHle9x9W_PJ7AG_KYohmInbG6_5EAX4lYVupEEHSOKr4ncLRzquqn5kYxTGkEQXd4Ai-HxzipaKdEt359HdvwMqbCCTzpxsDQZ44CWKCqTkCORsfopcZP2tV5BHdHOhoquGf_wwzP4Q7DgU47W0wcwcH26tq_gNv253a1uZrATbEU8SoncOu0XjSfJ3GK4PXsV433mk9nzbffvrYUIQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1Lb9NAEMdHJUWiHHhTDAUMAsHFqrNrZ9cSCBWaqFHbKIcilZPZZxup2CVJQXwpPiMztmMSgbj1wNVeWWvvf-fh3f0NwAsvnCAyUdRlVkaJYkmkuE8j7i2Gp87H3Kiq2IQYjeTxcTZeg5-LszC0rXJhEytDbUtD_8i3GXoiQawU_u78a0RVo2h1dVFCo5bFvvvxHVO22dvhLo7vS8YG_aMPe1FTVSAy6BznkWdonnTKYp0Jk1E4Izw3pms1c0baXtLNLNOWTjdwJXjPCp26TItYJ5if64Tjc6_AeoJilx1YHw8Px5_aFI9jxlfzizjP4u0ZBvgEYOuteL2qOMCfLmDJB67uz1xyeIOb_9unugU3mtA63Knnwm1Yc8UduL4EXLwLb_ot3DwsfTggkgYG2zZsMLMn4aQIx6f1f7mw_0VNzsJdN6-2qxX34OOldP8-dIqycA8gVJnTLDa827NV0qlkIhWR_mOFmby0AbxejG9uGrg61fg4yzHJIinkrRQCeN42Pa-JIn9r9J5E0jYgCHh1oZye5I1NyaV0qfIYn_nYJJ6h6bU-IQaekDr1qQ7gFUksJ1OFnTGqOXGBr0TQr3xHEJ2PZ0kcwNZCSXljw2b5bxkF8Ky9jdaHlpRU4cqLqg1Pq5whgM1atG2fuegSXjELQK7IeeWlVu8Uk9OKcF5h5DDVffjvfj2Fa3tHhwf5wXC0_wg2GM4_WuhjYgs68-mFewxXzbf5ZDZ90szTED5ftt5_AVt0eoo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFiE48H4YChgEgosVe9fO2hIIFZKIqBDlAFI5mX22kYpdkhTEX-PXMeMXsUDceuDqXVm73m9n5vPOfgPwxAkrSJkoiJhJg1iyOJDcJQF3BsNT60KuZVVsQsxm6cFBNt-Cn-1dGEqrbG1iZahNqekf-YChJxKklcIHrkmLmI8mr06-BlRBik5a23IaNUT27Y_vSN9WL6cjXOunjE3GH968DZoKA4FGR7kOHENTpRIWqkzojEIb4bjWkVHM6tQM4ygzTBm66cCl4EMjVGIzJUIVI1dXMcf3noMdDMlj3GM78-n7-aeO7nFkf7WWEedZOFhhsE9ibMOeB6wKBfzpDjb8YT9Xc8P5Ta78z5_tKlxuQm5_r94j12DLFtfh0oYQ4w14Me5Ez_3S-RNS2MAg3PiN_Oyhvyj8-VH9v84ff5GLY39k11UaW3ETPp7J8G_BdlEW9g74MrOKhZpHQ1ORUZnGqaQKAKFEhp8aD563a53rRnSdan8c50i-CBZ5BwsPHnddT2qlkb91ek2A6TqQOHj1oFwe5o2tydPUJtJh3OZCHTuGJtm4mLTxRKoSlygPnhHccjJhOBgtm5sYOCUSA8v3BKn28SwOPdhtUZU3tm2V_4aUB4-6ZrRKdNQkC1ueVn14UnEJD27XAO7GzEVEsouZB2kP2r1J9VuKxVGlfF7JyyEFvvvvcT2ECwjy_N10tn8PLjLcinT-x8QubK-Xp_Y-nNff1ovV8kGzZX34fNZw_wWCNINK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Federated+Learning+in+Phishing+Email+Detection&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chandra+Thapa&rft.au=Jun+Wen+Tang&rft.au=Alsharif+Abuadbba&rft.au=Yansong+Gao&rft.date=2023-04-27&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=9&rft.spage=4346&rft_id=info:doi/10.3390%2Fs23094346&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_88e5af244f0c4f2787df4021478b5f5b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon