Phase shift migration for imaging layered objects and objects immersed in water

This paper proposes the use of phase shift migration for ultrasonic imaging of layered objects and objects immersed in water. The method, which was developed in reflection seismology, is a frequency domain technique that in a computationally efficient way restores images of objects that are isotropi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on ultrasonics, ferroelectrics, and frequency control Ročník 57; číslo 11; s. 2522 - 2530
Hlavní autor: Olofsson, T
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.11.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0885-3010, 1525-8955, 1525-8955
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes the use of phase shift migration for ultrasonic imaging of layered objects and objects immersed in water. The method, which was developed in reflection seismology, is a frequency domain technique that in a computationally efficient way restores images of objects that are isotropic and homogeneous in the lateral direction but inhomogeneous in depth. The performance of the proposed method was evaluated using immersion test data from a block with side-drilled holes with an additional scatterer residing in water. In this way, the method's capability of simultaneously imaging scatterers in different media and at different depths was investigated. The method was also applied to a copper block with flat bottom holes. The results verify that the proposed method is capable of producing high-resolution and lownoise images for layered or immersed objects.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0885-3010
1525-8955
1525-8955
DOI:10.1109/TUFFC.2010.1718