Multi-Energy Load Prediction Method for Integrated Energy System Based on Fennec Fox Optimization Algorithm and Hybrid Kernel Extreme Learning Machine

To meet the challenges of energy sustainability, the integrated energy system (IES) has become a key component in promoting the development of innovative energy systems. Accurate and reliable multivariate load prediction is a prerequisite for IES optimal scheduling and steady running, but the uncert...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Entropy (Basel, Switzerland) Ročník 26; číslo 8; s. 699
Hlavní autoři: Shen, Yang, Li, Deyi, Wang, Wenbo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 17.08.2024
MDPI
Témata:
ISSN:1099-4300, 1099-4300
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:To meet the challenges of energy sustainability, the integrated energy system (IES) has become a key component in promoting the development of innovative energy systems. Accurate and reliable multivariate load prediction is a prerequisite for IES optimal scheduling and steady running, but the uncertainty of load fluctuation and many influencing factors increase the difficulty of forecasting. Therefore, this article puts forward a multi-energy load prediction approach of the IES, which combines the fennec fox optimization algorithm (FFA) and hybrid kernel extreme learning machine. Firstly, the comprehensive weight method is used to combine the entropy weight method and Pearson correlation coefficient, fully considering the information content and correlation, selecting the key factors affecting the prediction, and ensuring that the input features can effectively modify the prediction results. Secondly, the coupling relationship between the multi-energy load is learned and predicted using the hybrid kernel extreme learning machine. At the same time, the FFA is used for parameter optimization, which reduces the randomness of parameter setting. Finally, the approach is utilized for the measured data at Arizona State University to verify its effectiveness in multi-energy load forecasting. The results indicate that the mean absolute error (MAE) of the proposed method is 0.0959, 0.3103 and 0.0443, respectively. The root mean square error (RMSE) is 0.1378, 0.3848 and 0.0578, respectively. The weighted mean absolute percentage error (WMAPE) is only 1.915%. Compared to other models, this model has a higher accuracy, with the maximum reductions on MAE, RMSE and WMAPE of 0.3833, 0.491 and 2.8138%, respectively.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1099-4300
1099-4300
DOI:10.3390/e26080699