An Efficient Convolutional Denoising Autoencoder-Based BDS NLOS Detection Method in Urban Forest Environments
The BeiDou Navigation Satellite System (BDS) provides real-time absolute location services to users around the world and plays a key role in the rapidly evolving field of autonomous driving. In complex urban environments, the positioning accuracy of BDS often suffers from large deviations due to non...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 24; číslo 6; s. 1959 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
19.03.2024
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The BeiDou Navigation Satellite System (BDS) provides real-time absolute location services to users around the world and plays a key role in the rapidly evolving field of autonomous driving. In complex urban environments, the positioning accuracy of BDS often suffers from large deviations due to non-line-of-sight (NLOS) signals. Deep learning (DL) methods have shown strong capabilities in detecting complex and variable NLOS signals. However, these methods still suffer from the following limitations. On the one hand, supervised learning methods require labeled samples for learning, which inevitably encounters the bottleneck of difficulty in constructing databases with a large number of labels. On the other hand, the collected data tend to have varying degrees of noise, leading to low accuracy and poor generalization performance of the detection model, especially when the environment around the receiver changes. In this article, we propose a novel deep neural architecture named convolutional denoising autoencoder network (CDAENet) to detect NLOS in urban forest environments. Specifically, we first design a denoising autoencoder based on unsupervised DL to reduce the long time series signal dimension and extract the deep features of the data. Meanwhile, denoising autoencoders improve the model’s robustness in identifying noisy data by introducing a certain amount of noise into the input data. Then, an MLP algorithm is used to identify the non-linearity of the BDS signal. Finally, the performance of the proposed CDAENet model is validated on a real urban forest dataset. The experimental results show that the satellite detection accuracy of our proposed algorithm is more than 95%, which is about an 8% improvement over existing machine-learning-based methods and about 3% improvement over deep-learning-based approaches. |
|---|---|
| AbstractList | The BeiDou Navigation Satellite System (BDS) provides real-time absolute location services to users around the world and plays a key role in the rapidly evolving field of autonomous driving. In complex urban environments, the positioning accuracy of BDS often suffers from large deviations due to non-line-of-sight (NLOS) signals. Deep learning (DL) methods have shown strong capabilities in detecting complex and variable NLOS signals. However, these methods still suffer from the following limitations. On the one hand, supervised learning methods require labeled samples for learning, which inevitably encounters the bottleneck of difficulty in constructing databases with a large number of labels. On the other hand, the collected data tend to have varying degrees of noise, leading to low accuracy and poor generalization performance of the detection model, especially when the environment around the receiver changes. In this article, we propose a novel deep neural architecture named convolutional denoising autoencoder network (CDAENet) to detect NLOS in urban forest environments. Specifically, we first design a denoising autoencoder based on unsupervised DL to reduce the long time series signal dimension and extract the deep features of the data. Meanwhile, denoising autoencoders improve the model’s robustness in identifying noisy data by introducing a certain amount of noise into the input data. Then, an MLP algorithm is used to identify the non-linearity of the BDS signal. Finally, the performance of the proposed CDAENet model is validated on a real urban forest dataset. The experimental results show that the satellite detection accuracy of our proposed algorithm is more than 95%, which is about an 8% improvement over existing machine-learning-based methods and about 3% improvement over deep-learning-based approaches. The BeiDou Navigation Satellite System (BDS) provides real-time absolute location services to users around the world and plays a key role in the rapidly evolving field of autonomous driving. In complex urban environments, the positioning accuracy of BDS often suffers from large deviations due to non-line-of-sight (NLOS) signals. Deep learning (DL) methods have shown strong capabilities in detecting complex and variable NLOS signals. However, these methods still suffer from the following limitations. On the one hand, supervised learning methods require labeled samples for learning, which inevitably encounters the bottleneck of difficulty in constructing databases with a large number of labels. On the other hand, the collected data tend to have varying degrees of noise, leading to low accuracy and poor generalization performance of the detection model, especially when the environment around the receiver changes. In this article, we propose a novel deep neural architecture named convolutional denoising autoencoder network (CDAENet) to detect NLOS in urban forest environments. Specifically, we first design a denoising autoencoder based on unsupervised DL to reduce the long time series signal dimension and extract the deep features of the data. Meanwhile, denoising autoencoders improve the model's robustness in identifying noisy data by introducing a certain amount of noise into the input data. Then, an MLP algorithm is used to identify the non-linearity of the BDS signal. Finally, the performance of the proposed CDAENet model is validated on a real urban forest dataset. The experimental results show that the satellite detection accuracy of our proposed algorithm is more than 95%, which is about an 8% improvement over existing machine-learning-based methods and about 3% improvement over deep-learning-based approaches.The BeiDou Navigation Satellite System (BDS) provides real-time absolute location services to users around the world and plays a key role in the rapidly evolving field of autonomous driving. In complex urban environments, the positioning accuracy of BDS often suffers from large deviations due to non-line-of-sight (NLOS) signals. Deep learning (DL) methods have shown strong capabilities in detecting complex and variable NLOS signals. However, these methods still suffer from the following limitations. On the one hand, supervised learning methods require labeled samples for learning, which inevitably encounters the bottleneck of difficulty in constructing databases with a large number of labels. On the other hand, the collected data tend to have varying degrees of noise, leading to low accuracy and poor generalization performance of the detection model, especially when the environment around the receiver changes. In this article, we propose a novel deep neural architecture named convolutional denoising autoencoder network (CDAENet) to detect NLOS in urban forest environments. Specifically, we first design a denoising autoencoder based on unsupervised DL to reduce the long time series signal dimension and extract the deep features of the data. Meanwhile, denoising autoencoders improve the model's robustness in identifying noisy data by introducing a certain amount of noise into the input data. Then, an MLP algorithm is used to identify the non-linearity of the BDS signal. Finally, the performance of the proposed CDAENet model is validated on a real urban forest dataset. The experimental results show that the satellite detection accuracy of our proposed algorithm is more than 95%, which is about an 8% improvement over existing machine-learning-based methods and about 3% improvement over deep-learning-based approaches. |
| Audience | Academic |
| Author | Qin, Yahang Wang, Qianming Li, Zhenni Zhao, Haoli Xie, Shengli |
| AuthorAffiliation | 3 111 Center for Intelligent Batch Manufacturing Based on IoT Technology (GDUT), Guangzhou 510006, China; shlxie@gdut.edu.cn 2 Guangdong-HongKong-Macao Joint Laboratory for Smart Discrete Manufacturing (GDUT), Guangzhou 510006, China 5 The Guangdong Key Laboratory of IoT Information Technology (GDUT), Guangzhou 510006, China 1 School of Automation, Guangdong University of Technology, Guangzhou 510006, China; yahang.qin@gmail.com (Y.Q.); zhaohli1989@hotmail.com (H.Z.) 4 The Key Laboratory of Intelligent Information Processing and System Integration of IoT (GDUT), Ministry of Education, Guangzhou 510006, China 6 Taidou Microelectronics Technology Co., Ltd., Guangzhou 510006, China; 1112304006@mail2.gdut.edu.cn |
| AuthorAffiliation_xml | – name: 1 School of Automation, Guangdong University of Technology, Guangzhou 510006, China; yahang.qin@gmail.com (Y.Q.); zhaohli1989@hotmail.com (H.Z.) – name: 5 The Guangdong Key Laboratory of IoT Information Technology (GDUT), Guangzhou 510006, China – name: 2 Guangdong-HongKong-Macao Joint Laboratory for Smart Discrete Manufacturing (GDUT), Guangzhou 510006, China – name: 4 The Key Laboratory of Intelligent Information Processing and System Integration of IoT (GDUT), Ministry of Education, Guangzhou 510006, China – name: 6 Taidou Microelectronics Technology Co., Ltd., Guangzhou 510006, China; 1112304006@mail2.gdut.edu.cn – name: 3 111 Center for Intelligent Batch Manufacturing Based on IoT Technology (GDUT), Guangzhou 510006, China; shlxie@gdut.edu.cn |
| Author_xml | – sequence: 1 givenname: Yahang orcidid: 0009-0002-8632-0269 surname: Qin fullname: Qin, Yahang – sequence: 2 givenname: Zhenni surname: Li fullname: Li, Zhenni – sequence: 3 givenname: Shengli surname: Xie fullname: Xie, Shengli – sequence: 4 givenname: Haoli surname: Zhao fullname: Zhao, Haoli – sequence: 5 givenname: Qianming surname: Wang fullname: Wang, Qianming |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38544221$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1v3CAQhq0qVfPRHvoHKqRemsMmfNpwqjabTRtp2xzSnBHG4w0rG1KwV-q_L86mqySqOADDMy8M8x4XBz54KIqPBJ8xpvB5ohyXRAn1pjginPKZpBQfPFsfFscpbTCmjDH5rjhkUnBOKTkq-rlHy7Z11oEf0CL4bejGwQVvOnQJPrjk_BrNxyGAt6GBOLswCRp0cXmLfq5ubjM0gJ0S0A8Y7kODnEd3sTYeXYUIaUBLv3Ux-D7rp_fF29Z0CT48zSfF3dXy1-L7bHXz7XoxX82swGqYQQVGYFHmXSWaqiaNMRxAKQq85bYkAoiwxNZG1Kw0E2hlTRsCTYsxt-ykuN7pNsFs9EN0vYl_dDBOPwZCXGsTB2c70K2yEmMJlNKS11gpyRnGxtgSV8bWLGt93Wk9jHUPjc11RNO9EH154t29XoetJlhVXPAyK3x5Uojh95j_RPcuWeg64yGMSTNMeO5NblRGP79CN2GMuRkThRmnpcJVps521NrkCpxvQ77Y5tFA72z2RutyfF5JSQWTaqrh0_Ma9o__54MMnO4AG0NKEdo9QrCePKb3Hsvs-SvWusFMFsivcN1_Mv4CE9rR3g |
| CitedBy_id | crossref_primary_10_1109_JSEN_2024_3491178 crossref_primary_10_1038_s41598_025_03007_6 |
| Cites_doi | 10.1002/navi.362 10.1109/TIM.2022.3197757 10.1109/JIOT.2023.3256008 10.33012/2020.17654 10.1186/s43020-020-00027-7 10.1109/IAI55780.2022.9976714 10.3390/s19173778 10.1007/s11430-017-9186-9 10.1109/TNNLS.2022.3232147 10.33012/2020.17663 10.3390/s21072503 10.20944/preprints202303.0023.v1 10.3390/s20144059 10.3389/frobt.2022.868608 10.1155/2022/2742620 10.1109/TIM.2022.3170985 10.20944/preprints202211.0282.v1 10.1109/PLANS46316.2020.9109935 10.15292/geodetski-vestnik.2022.01.49-59 10.1186/s43020-019-0006-0 10.3390/s140815415 10.3390/s140100927 10.1007/978-981-16-3138-2 10.1007/s10291-022-01369-2 10.1109/ACCESS.2021.3052733 10.3390/land11101810 10.1186/s13634-023-01044-9 10.1109/ICRA40945.2020.9197567 10.1016/j.asr.2020.06.002 10.3390/mi13071128 10.33012/2023.18654 10.33012/2019.17028 10.1109/TITS.2023.3246493 10.33012/navi.590 10.1109/PLANS46316.2020.9110155 10.1007/s12524-022-01494-y 10.3390/molecules25051201 10.1109/TGRS.2022.3144165 10.3390/rs11212522 10.3390/e24010055 10.3390/rs10122052 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/s24061959 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_f9c8008e22264b09984300aac607acb3 PMC10974546 A788253893 38544221 10_3390_s24061959 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: GuangDong Basic and Applied Basic Research Foundation grantid: 2023A1515011480, 2023A1515011159 – fundername: National Natural Science Foundation of China grantid: 62273106, 62203122, 62320106008, 62373114, 62203123, 62073086, – fundername: China Postdoctoral Science Foundation grantid: 2022M720840 – fundername: GuangDong Basic and Applied Basic Research Foundation grantid: 2023A1515011480; 2023A1515011159 – fundername: National Natural Science Foundation of China grantid: 62273106; 62203122; 62320106008; 62373114; 62203123; 62073086 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c509t-e7ea5056c5075d7b1daa4ee992e4f4c615e15c1cba5b36a56c5c8b2d1edf004c3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001192490400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:52:31 EDT 2025 Tue Nov 04 02:05:42 EST 2025 Fri Sep 05 13:37:36 EDT 2025 Tue Oct 07 07:27:44 EDT 2025 Tue Nov 04 18:25:35 EST 2025 Wed Feb 19 02:03:47 EST 2025 Sat Nov 29 07:14:30 EST 2025 Tue Nov 18 22:24:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | BDS denoising autoencoder time series features NLOS urban forest |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-e7ea5056c5075d7b1daa4ee992e4f4c615e15c1cba5b36a56c5c8b2d1edf004c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0002-8632-0269 |
| OpenAccessLink | https://www.proquest.com/docview/3003426907?pq-origsite=%requestingapplication% |
| PMID | 38544221 |
| PQID | 3003426907 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f9c8008e22264b09984300aac607acb3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10974546 proquest_miscellaneous_3014002822 proquest_journals_3003426907 gale_infotracacademiconefile_A788253893 pubmed_primary_38544221 crossref_primary_10_3390_s24061959 crossref_citationtrail_10_3390_s24061959 |
| PublicationCentury | 2000 |
| PublicationDate | 20240319 |
| PublicationDateYYYYMMDD | 2024-03-19 |
| PublicationDate_xml | – month: 3 year: 2024 text: 20240319 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Yue (ref_19) 2022; 71 Lee (ref_23) 2023; 24 Sun (ref_22) 2023; 10 ref_14 Sun (ref_30) 2022; 71 Wang (ref_24) 2023; 2023 ref_35 ref_12 ref_33 ref_10 ref_32 ref_31 Chen (ref_43) 2021; 60 Li (ref_7) 2014; 14 Li (ref_28) 2022; 2022 Liu (ref_34) 2023; 27 He (ref_44) 2022; 60 ref_17 ref_39 ref_16 ref_38 ref_15 ref_37 Ozeki (ref_13) 2022; 9 Ng (ref_36) 2020; 66 Chen (ref_3) 2020; 1 Yang (ref_5) 2018; 61 Singh (ref_40) 2022; 71 Gong (ref_18) 2022; 50 Wen (ref_21) 2023; 70 ref_25 ref_45 ref_20 ref_42 Zhao (ref_8) 2014; 14 ref_41 Yang (ref_6) 2020; 1 ref_2 Chwedczuk (ref_1) 2022; 66 Luo (ref_11) 2021; 9 ref_27 ref_26 ref_9 Smolyakov (ref_29) 2020; 67 ref_4 |
| References_xml | – volume: 60 start-page: 5920416 year: 2021 ident: ref_43 article-title: Remote sensing image change detection with transformers publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 67 start-page: 397 year: 2020 ident: ref_29 article-title: Resilient multipath prediction and detection architecture for low-cost navigation in challenging urban areas publication-title: Navigation doi: 10.1002/navi.362 – volume: 71 start-page: 4007710 year: 2022 ident: ref_40 article-title: Attention-based convolutional denoising autoencoder for two-lead ECG denoising and arrhythmia classification publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3197757 – volume: 10 start-page: 12777 year: 2023 ident: ref_22 article-title: An adaptive weighting strategy for multi sensor integrated navigation in urban areas publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2023.3256008 – ident: ref_31 doi: 10.33012/2020.17654 – volume: 1 start-page: 26 year: 2020 ident: ref_3 article-title: BDS B1I multipath channel statistical model comparison between static and dynamic scenarios in dense urban canyon environment publication-title: Satell. Navig. doi: 10.1186/s43020-020-00027-7 – ident: ref_4 doi: 10.1109/IAI55780.2022.9976714 – ident: ref_2 doi: 10.3390/s19173778 – volume: 61 start-page: 614 year: 2018 ident: ref_5 article-title: Progress and performance evaluation of BeiDou global navigation satellite system: Data analysis based on BDS-3 demonstration system publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-017-9186-9 – ident: ref_41 doi: 10.1109/TNNLS.2022.3232147 – ident: ref_32 doi: 10.33012/2020.17663 – ident: ref_42 doi: 10.3390/s21072503 – ident: ref_38 doi: 10.20944/preprints202303.0023.v1 – ident: ref_9 doi: 10.3390/s20144059 – ident: ref_37 – volume: 9 start-page: 106 year: 2022 ident: ref_13 article-title: GNSS NLOS Signal Classification Based on Machine Learning and Pseudorange Residual Check publication-title: Front. Robot. AI doi: 10.3389/frobt.2022.868608 – volume: 2022 start-page: 2742620 year: 2022 ident: ref_28 article-title: Mitigating GNSS Multipath Effects Using XGBoost Integrated Classifier Based on Consistency Checks publication-title: Int. J. Antennas Propag. doi: 10.1155/2022/2742620 – volume: 71 start-page: 3512510 year: 2022 ident: ref_30 article-title: Stacking ensemble learning for non-line-of-sight detection of global navigation satellite system publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3170985 – ident: ref_25 doi: 10.20944/preprints202211.0282.v1 – ident: ref_33 doi: 10.1109/PLANS46316.2020.9109935 – volume: 66 start-page: 49 year: 2022 ident: ref_1 article-title: Challenges related to the determination of altitudes of mountain peaks presented on cartographic sources publication-title: Geod. Vestn. doi: 10.15292/geodetski-vestnik.2022.01.49-59 – volume: 1 start-page: 1 year: 2020 ident: ref_6 article-title: Basic performance and future developments of BeiDou global navigation satellite system publication-title: Satell. Navig. doi: 10.1186/s43020-019-0006-0 – volume: 71 start-page: 1 year: 2022 ident: ref_19 article-title: Data Denoising Based on Hadamard Matrix Transformation and Rayleigh Quotient Maximization: Application to GNSS Signal Classification publication-title: IEEE Trans. Instrum. Meas. – volume: 14 start-page: 15415 year: 2014 ident: ref_8 article-title: A Kalman filter-based short baseline RTK algorithm for single-frequency combination of GPS and BDS publication-title: Sensors doi: 10.3390/s140815415 – volume: 14 start-page: 927 year: 2014 ident: ref_7 article-title: Precise point positioning with the BeiDou navigation satellite system publication-title: Sensors doi: 10.3390/s140100927 – ident: ref_14 doi: 10.1007/978-981-16-3138-2 – volume: 27 start-page: 31 year: 2023 ident: ref_34 article-title: NLOS signal detection and correction for smartphone using convolutional neural network and variational mode decomposition in urban environment publication-title: GPS Solut. doi: 10.1007/s10291-022-01369-2 – volume: 9 start-page: 15744 year: 2021 ident: ref_11 article-title: Integration of GNSS and BLE technology with inertial sensors for real-time positioning in urban environments publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3052733 – ident: ref_10 – ident: ref_45 doi: 10.3390/land11101810 – volume: 2023 start-page: 83 year: 2023 ident: ref_24 article-title: A Novel Robust Iterated CKF for GNSS/SINS Integrated Navigation Applications publication-title: Eurasip J. Adv. Signal Process. doi: 10.1186/s13634-023-01044-9 – ident: ref_20 doi: 10.1109/ICRA40945.2020.9197567 – volume: 66 start-page: 1647 year: 2020 ident: ref_36 article-title: Improved weighting scheme using consumer-level GNSS L5/E5a/B2a pseudorange measurements in the urban area publication-title: Adv. Space Res. doi: 10.1016/j.asr.2020.06.002 – ident: ref_16 doi: 10.3390/mi13071128 – ident: ref_35 doi: 10.33012/2023.18654 – ident: ref_17 doi: 10.33012/2019.17028 – volume: 24 start-page: 5082 year: 2023 ident: ref_23 article-title: Nonlinear Regression-Based GNSS Multipath Dynamic Map Construction and Its Application in Deep Urban Areas publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2023.3246493 – volume: 70 start-page: navi.590 year: 2023 ident: ref_21 article-title: 3D Vision Aided GNSS Real-Time Kinematic Positioning for Autonomous Systems in Urban Canyons publication-title: NAVIGATION J. Inst. Navig. doi: 10.33012/navi.590 – ident: ref_12 doi: 10.1109/PLANS46316.2020.9110155 – volume: 50 start-page: 805 year: 2022 ident: ref_18 article-title: GNSS multipath mitigation method based on K-means classification in urban environment publication-title: J. Indian Soc. Remote Sens. doi: 10.1007/s12524-022-01494-y – ident: ref_27 doi: 10.3390/molecules25051201 – volume: 60 start-page: 4408715 year: 2022 ident: ref_44 article-title: Swin transformer embedding UNet for remote sensing image semantic segmentation publication-title: IEEE Trans. Geosci. Remote. Sens. doi: 10.1109/TGRS.2022.3144165 – ident: ref_26 doi: 10.3390/rs11212522 – ident: ref_39 doi: 10.3390/e24010055 – ident: ref_15 doi: 10.3390/rs10122052 |
| SSID | ssj0023338 |
| Score | 2.4273129 |
| Snippet | The BeiDou Navigation Satellite System (BDS) provides real-time absolute location services to users around the world and plays a key role in the rapidly... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1959 |
| SubjectTerms | Accuracy Algorithms Analysis Artificial intelligence Artificial satellites BDS denoising autoencoder Machine learning Methods NLOS Noise Satellites Sensors Time series time series features urban forest VOCs Volatile organic compounds |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6higMcEFAeoQW5CAkuURM7zuO4227VQ1mQSqXeIr8iVioO2s3293fGyUZZgcSFY-JJ5MdM5htn_A3AJ4T1FlG8ilUiTZw1RsQ6MUnM01wFRnPZ6FBsolguy9vb6vuk1BflhPX0wP3EnTaVQUxTOk4nPjXimTITSaKUyZNCGR14PpOi2gVTQ6glMPLqeYQEBvWnm-C3KiIknXifQNL_56d44ov28yQnjufiOTwbECOb9T19AY-cfwlPJzyCh_Br5tkicEHgK9hZ6-8HhcLnzp1vV7QhwGbbriXaSuvW8Rydl2Xz82u2vPp2jUJdSMny7GuoKM1Wnt2stfKMSnduOraYnId7BTcXix9nl_FQRyE2CAe62BVOEdDBq0LaQqdWqcy5quIuazKDmMal0qRGK6lFrkjQlJrb1NkGbciI13DgW-_eAuOJaJzJG-vQrYdC5VbqvHEKA03OrYzgy25-azOQjFOti7sagw1ainpcigg-jqK_e2aNvwnNaZFGASLDDjdQRepBRep_qUgEn2mJazJZ7IxRw8kDHBKRX9WzAsMMScgtguOdFtSDLW9qEWgSaRchgpOxGa2Qfq0o79otyWCgGlJyI3jTK83YZ1HKLOM8jaDcU6e9Qe23-NXPwPRN6QGZzPJ3_2MajuAJR0RGCXRpdQwH3Xrr3sNjc9-tNusPwX4eAGmgH_Q priority: 102 providerName: Directory of Open Access Journals |
| Title | An Efficient Convolutional Denoising Autoencoder-Based BDS NLOS Detection Method in Urban Forest Environments |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38544221 https://www.proquest.com/docview/3003426907 https://www.proquest.com/docview/3014002822 https://pubmed.ncbi.nlm.nih.gov/PMC10974546 https://doaj.org/article/f9c8008e22264b09984300aac607acb3 |
| Volume | 24 |
| WOSCitedRecordID | wos001192490400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health Medical collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5By4EeeD8MJVoQElys-rV-nFDSpgKJhIhSKZys9e4aIpV1sZ0e-e3MbBzXEYgLF0uxJ9JYM7PzzXr2G4DXCOsVonjhCo9LNypl6Bae9NzAj4VlNOdlYYdNJPN5ulxmi27DrenaKrdrol2oVSVpj_wotGR1VMu9u_zp0tQo-rrajdC4Cfs0Npv8PFleF1wh1l8bNqEQS_ujxmavjGhJBznIUvX_uSAPMtJut-Qg_Zze_V_F78GdDniy8cZT7sMNbR7AwYCO8CH8GBs2tZQSqAM7rsxV55f4vxNtqhXtK7Dxuq2I_VLp2p1gDlRscnLG5h8_naFQazu7DJvZwdRsZdh5XQjDaAJo07Lp4FjdIzg_nX45fu924xhciaiidXWiBeEl_JVwlRS-EiLSOssCHZWRRGikfS59WQhehLEgQZkWgfK1KjEUZfgY9kxl9FNggReWWsal0ogO7LxzxYu41ALr1SBQ3IG3WwPlsuMqp5EZFznWLGTLvLelA6960csNQcffhCZk5V6AOLXtjar-lnchmpeZRPSc6oDOFheInNMIbSeEjL1EyCJ04A35SE6Rj8pI0R1gwFciDq18nGC1wgkAOnC4dYW8WxKa_NoPHHjZP8Zgpi80wuhqTTJY79rOXgeebLyu1zlMeRQFge9AuuOPOy-1-8SsvlvCcOoyiHgUP_u3Xs_hdoCQjTrs_OwQ9tp6rV_ALXnVrpp6ZEPLXtMR7E-m88Xnkd3BwOvs1xTvLT7MFl9_A9hXNPU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQceD8MBRYEKher9vp9QChpUrVqGpDaSrmZ9e4aIsG6xE4Rf4rfyMzGcROBuPXAMfEk2rW_nZlvPfsNwGtM6xVm8cIVXiTdsJSBW3jSc7kfC6toHpWFbTaRjMfpZJJ93IBfy7MwVFa59InWUatK0h75TmDF6ojLvT_77lLXKHq7umyhsYDFof75Aylb_e5ggM_3Ded7w5PdfbftKuBKDI6NqxMtKOzjpyRSSeErIUKts4zrsAwlRnjtR9KXhYiKIBZkKNOCK1-rEhElA_zfK3AV_XhCZC-ZXBC8APneQr0oCDJvp7bRMiMZ1JWYZ1sD_BkAViLgenXmSrjbu_2_3ag7cKtNrFlvsRLuwoY29-DmitziffjWM2xoJTNwzmy3MuftusPfDbSpprRvwnrzpiJ1T6Vnbh9jvGL9wTEbjz4co1FjK9cMO7KNt9nUsNNZIQyjDqd1w4YrxwYfwOmlzPchbJrK6MfAuBeUWsal0pj92H7uKiriUgvk45yryIG3S0DkstVip5YgX3PkZISdvMOOA68607OFAMnfjPqEqs6ANMPtF9Xsc966oLzMJLKDVHM6O10gM0hDxIoQMvYSIYvAgW3CZE6eDQcjRXtAA6dEGmF5L0E2FlGC68DWEnp56_Lq_AJ3DrzsLqOzojdQwuhqTjbI523lsgOPFijvxhykURhy7juQruF_bVLrV8z0ixVEpyqKMArjJ_8e1wu4vn9yNMpHB-PDp3CDY3pK1YR-tgWbzWyun8E1ed5M69lzu6wZfLrs5fEbhQWN1w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48H4YCiwIVC5W7PX7gFDSpCJqGyKVSuVk1rtriATrkjhF_DV-HTMbxyQCceuBY-JJtJt88_js2W8AXmBZr7CKF67wIumGpQzcwpOey_1YWEXzqCzssIlkPE5PT7PJFvxcnYWhtspVTLSBWlWS7pF3AytWR1yuWzZtEZPB_puzby5NkKInratxGkuIHOgf35G-zV-PBvhfv-R8f_h-763bTBhwJSbK2tWJFlQC4KskUknhKyFCrbOM67AMJWZ77UfSl4WIiiAWZCjTgitfqxLRJQP83kuwjSV5yDuwPRkdTT60dC9A9rfUMgqCzOvObe7MSBR1LQPaQQF_poO1fLjZq7mW_PZv_M8_20243pTcrLf0kVuwpc1tuLYmxHgHvvYMG1oxDdw_26vMeeOR-LmBNtWU7qiw3qKuSPdT6Znbx-yvWH9wzMaH747RqLY9bYYd2ZHcbGrYyawQhtHs03nNhmsHCu_CyYXs9x50TGX0A2DcC0ot41JprIvspHcVFXGpBTJ1zlXkwKsVOHLZqLTTsJAvObI1wlHe4siB563p2VKa5G9GfUJYa0Bq4vaNavYpb4JTXmYSeUOqOZ2qLpAzpCHiRggZe4mQReDALuEzp5iHi5GiObqBWyL1sLyXIE-LqPR1YGcFw7wJhvP8NwYdeNZexjBGz6aE0dWCbJDp255mB-4vEd-uOUijMOTcdyDd8IWNTW1eMdPPViqd-ivCKIwf_ntdT-EKekV-OBofPIKrHOtWajP0sx3o1LOFfgyX5Xk9nc-eND7O4ONF-8cvWEKYJg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Convolutional+Denoising+Autoencoder-Based+BDS+NLOS+Detection+Method+in+Urban+Forest+Environments&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Qin%2C+Yahang&rft.au=Li%2C+Zhenni&rft.au=Xie%2C+Shengli&rft.au=Zhao%2C+Haoli&rft.date=2024-03-19&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=6&rft.spage=1959&rft_id=info:doi/10.3390%2Fs24061959&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s24061959 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |