An Efficient Convolutional Denoising Autoencoder-Based BDS NLOS Detection Method in Urban Forest Environments

The BeiDou Navigation Satellite System (BDS) provides real-time absolute location services to users around the world and plays a key role in the rapidly evolving field of autonomous driving. In complex urban environments, the positioning accuracy of BDS often suffers from large deviations due to non...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 24; číslo 6; s. 1959
Hlavní autori: Qin, Yahang, Li, Zhenni, Xie, Shengli, Zhao, Haoli, Wang, Qianming
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 19.03.2024
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The BeiDou Navigation Satellite System (BDS) provides real-time absolute location services to users around the world and plays a key role in the rapidly evolving field of autonomous driving. In complex urban environments, the positioning accuracy of BDS often suffers from large deviations due to non-line-of-sight (NLOS) signals. Deep learning (DL) methods have shown strong capabilities in detecting complex and variable NLOS signals. However, these methods still suffer from the following limitations. On the one hand, supervised learning methods require labeled samples for learning, which inevitably encounters the bottleneck of difficulty in constructing databases with a large number of labels. On the other hand, the collected data tend to have varying degrees of noise, leading to low accuracy and poor generalization performance of the detection model, especially when the environment around the receiver changes. In this article, we propose a novel deep neural architecture named convolutional denoising autoencoder network (CDAENet) to detect NLOS in urban forest environments. Specifically, we first design a denoising autoencoder based on unsupervised DL to reduce the long time series signal dimension and extract the deep features of the data. Meanwhile, denoising autoencoders improve the model’s robustness in identifying noisy data by introducing a certain amount of noise into the input data. Then, an MLP algorithm is used to identify the non-linearity of the BDS signal. Finally, the performance of the proposed CDAENet model is validated on a real urban forest dataset. The experimental results show that the satellite detection accuracy of our proposed algorithm is more than 95%, which is about an 8% improvement over existing machine-learning-based methods and about 3% improvement over deep-learning-based approaches.
AbstractList The BeiDou Navigation Satellite System (BDS) provides real-time absolute location services to users around the world and plays a key role in the rapidly evolving field of autonomous driving. In complex urban environments, the positioning accuracy of BDS often suffers from large deviations due to non-line-of-sight (NLOS) signals. Deep learning (DL) methods have shown strong capabilities in detecting complex and variable NLOS signals. However, these methods still suffer from the following limitations. On the one hand, supervised learning methods require labeled samples for learning, which inevitably encounters the bottleneck of difficulty in constructing databases with a large number of labels. On the other hand, the collected data tend to have varying degrees of noise, leading to low accuracy and poor generalization performance of the detection model, especially when the environment around the receiver changes. In this article, we propose a novel deep neural architecture named convolutional denoising autoencoder network (CDAENet) to detect NLOS in urban forest environments. Specifically, we first design a denoising autoencoder based on unsupervised DL to reduce the long time series signal dimension and extract the deep features of the data. Meanwhile, denoising autoencoders improve the model’s robustness in identifying noisy data by introducing a certain amount of noise into the input data. Then, an MLP algorithm is used to identify the non-linearity of the BDS signal. Finally, the performance of the proposed CDAENet model is validated on a real urban forest dataset. The experimental results show that the satellite detection accuracy of our proposed algorithm is more than 95%, which is about an 8% improvement over existing machine-learning-based methods and about 3% improvement over deep-learning-based approaches.
The BeiDou Navigation Satellite System (BDS) provides real-time absolute location services to users around the world and plays a key role in the rapidly evolving field of autonomous driving. In complex urban environments, the positioning accuracy of BDS often suffers from large deviations due to non-line-of-sight (NLOS) signals. Deep learning (DL) methods have shown strong capabilities in detecting complex and variable NLOS signals. However, these methods still suffer from the following limitations. On the one hand, supervised learning methods require labeled samples for learning, which inevitably encounters the bottleneck of difficulty in constructing databases with a large number of labels. On the other hand, the collected data tend to have varying degrees of noise, leading to low accuracy and poor generalization performance of the detection model, especially when the environment around the receiver changes. In this article, we propose a novel deep neural architecture named convolutional denoising autoencoder network (CDAENet) to detect NLOS in urban forest environments. Specifically, we first design a denoising autoencoder based on unsupervised DL to reduce the long time series signal dimension and extract the deep features of the data. Meanwhile, denoising autoencoders improve the model's robustness in identifying noisy data by introducing a certain amount of noise into the input data. Then, an MLP algorithm is used to identify the non-linearity of the BDS signal. Finally, the performance of the proposed CDAENet model is validated on a real urban forest dataset. The experimental results show that the satellite detection accuracy of our proposed algorithm is more than 95%, which is about an 8% improvement over existing machine-learning-based methods and about 3% improvement over deep-learning-based approaches.The BeiDou Navigation Satellite System (BDS) provides real-time absolute location services to users around the world and plays a key role in the rapidly evolving field of autonomous driving. In complex urban environments, the positioning accuracy of BDS often suffers from large deviations due to non-line-of-sight (NLOS) signals. Deep learning (DL) methods have shown strong capabilities in detecting complex and variable NLOS signals. However, these methods still suffer from the following limitations. On the one hand, supervised learning methods require labeled samples for learning, which inevitably encounters the bottleneck of difficulty in constructing databases with a large number of labels. On the other hand, the collected data tend to have varying degrees of noise, leading to low accuracy and poor generalization performance of the detection model, especially when the environment around the receiver changes. In this article, we propose a novel deep neural architecture named convolutional denoising autoencoder network (CDAENet) to detect NLOS in urban forest environments. Specifically, we first design a denoising autoencoder based on unsupervised DL to reduce the long time series signal dimension and extract the deep features of the data. Meanwhile, denoising autoencoders improve the model's robustness in identifying noisy data by introducing a certain amount of noise into the input data. Then, an MLP algorithm is used to identify the non-linearity of the BDS signal. Finally, the performance of the proposed CDAENet model is validated on a real urban forest dataset. The experimental results show that the satellite detection accuracy of our proposed algorithm is more than 95%, which is about an 8% improvement over existing machine-learning-based methods and about 3% improvement over deep-learning-based approaches.
Audience Academic
Author Qin, Yahang
Wang, Qianming
Li, Zhenni
Zhao, Haoli
Xie, Shengli
AuthorAffiliation 3 111 Center for Intelligent Batch Manufacturing Based on IoT Technology (GDUT), Guangzhou 510006, China; shlxie@gdut.edu.cn
2 Guangdong-HongKong-Macao Joint Laboratory for Smart Discrete Manufacturing (GDUT), Guangzhou 510006, China
5 The Guangdong Key Laboratory of IoT Information Technology (GDUT), Guangzhou 510006, China
1 School of Automation, Guangdong University of Technology, Guangzhou 510006, China; yahang.qin@gmail.com (Y.Q.); zhaohli1989@hotmail.com (H.Z.)
4 The Key Laboratory of Intelligent Information Processing and System Integration of IoT (GDUT), Ministry of Education, Guangzhou 510006, China
6 Taidou Microelectronics Technology Co., Ltd., Guangzhou 510006, China; 1112304006@mail2.gdut.edu.cn
AuthorAffiliation_xml – name: 1 School of Automation, Guangdong University of Technology, Guangzhou 510006, China; yahang.qin@gmail.com (Y.Q.); zhaohli1989@hotmail.com (H.Z.)
– name: 5 The Guangdong Key Laboratory of IoT Information Technology (GDUT), Guangzhou 510006, China
– name: 2 Guangdong-HongKong-Macao Joint Laboratory for Smart Discrete Manufacturing (GDUT), Guangzhou 510006, China
– name: 4 The Key Laboratory of Intelligent Information Processing and System Integration of IoT (GDUT), Ministry of Education, Guangzhou 510006, China
– name: 6 Taidou Microelectronics Technology Co., Ltd., Guangzhou 510006, China; 1112304006@mail2.gdut.edu.cn
– name: 3 111 Center for Intelligent Batch Manufacturing Based on IoT Technology (GDUT), Guangzhou 510006, China; shlxie@gdut.edu.cn
Author_xml – sequence: 1
  givenname: Yahang
  orcidid: 0009-0002-8632-0269
  surname: Qin
  fullname: Qin, Yahang
– sequence: 2
  givenname: Zhenni
  surname: Li
  fullname: Li, Zhenni
– sequence: 3
  givenname: Shengli
  surname: Xie
  fullname: Xie, Shengli
– sequence: 4
  givenname: Haoli
  surname: Zhao
  fullname: Zhao, Haoli
– sequence: 5
  givenname: Qianming
  surname: Wang
  fullname: Wang, Qianming
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38544221$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v3CAQhq0qVfPRHvoHKqRemsMmfNpwqjabTRtp2xzSnBHG4w0rG1KwV-q_L86mqySqOADDMy8M8x4XBz54KIqPBJ8xpvB5ohyXRAn1pjginPKZpBQfPFsfFscpbTCmjDH5rjhkUnBOKTkq-rlHy7Z11oEf0CL4bejGwQVvOnQJPrjk_BrNxyGAt6GBOLswCRp0cXmLfq5ubjM0gJ0S0A8Y7kODnEd3sTYeXYUIaUBLv3Ux-D7rp_fF29Z0CT48zSfF3dXy1-L7bHXz7XoxX82swGqYQQVGYFHmXSWaqiaNMRxAKQq85bYkAoiwxNZG1Kw0E2hlTRsCTYsxt-ykuN7pNsFs9EN0vYl_dDBOPwZCXGsTB2c70K2yEmMJlNKS11gpyRnGxtgSV8bWLGt93Wk9jHUPjc11RNO9EH154t29XoetJlhVXPAyK3x5Uojh95j_RPcuWeg64yGMSTNMeO5NblRGP79CN2GMuRkThRmnpcJVps521NrkCpxvQ77Y5tFA72z2RutyfF5JSQWTaqrh0_Ma9o__54MMnO4AG0NKEdo9QrCePKb3Hsvs-SvWusFMFsivcN1_Mv4CE9rR3g
CitedBy_id crossref_primary_10_1109_JSEN_2024_3491178
crossref_primary_10_1038_s41598_025_03007_6
Cites_doi 10.1002/navi.362
10.1109/TIM.2022.3197757
10.1109/JIOT.2023.3256008
10.33012/2020.17654
10.1186/s43020-020-00027-7
10.1109/IAI55780.2022.9976714
10.3390/s19173778
10.1007/s11430-017-9186-9
10.1109/TNNLS.2022.3232147
10.33012/2020.17663
10.3390/s21072503
10.20944/preprints202303.0023.v1
10.3390/s20144059
10.3389/frobt.2022.868608
10.1155/2022/2742620
10.1109/TIM.2022.3170985
10.20944/preprints202211.0282.v1
10.1109/PLANS46316.2020.9109935
10.15292/geodetski-vestnik.2022.01.49-59
10.1186/s43020-019-0006-0
10.3390/s140815415
10.3390/s140100927
10.1007/978-981-16-3138-2
10.1007/s10291-022-01369-2
10.1109/ACCESS.2021.3052733
10.3390/land11101810
10.1186/s13634-023-01044-9
10.1109/ICRA40945.2020.9197567
10.1016/j.asr.2020.06.002
10.3390/mi13071128
10.33012/2023.18654
10.33012/2019.17028
10.1109/TITS.2023.3246493
10.33012/navi.590
10.1109/PLANS46316.2020.9110155
10.1007/s12524-022-01494-y
10.3390/molecules25051201
10.1109/TGRS.2022.3144165
10.3390/rs11212522
10.3390/e24010055
10.3390/rs10122052
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s24061959
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_f9c8008e22264b09984300aac607acb3
PMC10974546
A788253893
38544221
10_3390_s24061959
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: GuangDong Basic and Applied Basic Research Foundation
  grantid: 2023A1515011480, 2023A1515011159
– fundername: National Natural Science Foundation of China
  grantid: 62273106, 62203122, 62320106008, 62373114, 62203123, 62073086,
– fundername: China Postdoctoral Science Foundation
  grantid: 2022M720840
– fundername: GuangDong Basic and Applied Basic Research Foundation
  grantid: 2023A1515011480; 2023A1515011159
– fundername: National Natural Science Foundation of China
  grantid: 62273106; 62203122; 62320106008; 62373114; 62203123; 62073086
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c509t-e7ea5056c5075d7b1daa4ee992e4f4c615e15c1cba5b36a56c5c8b2d1edf004c3
IEDL.DBID 7X7
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001192490400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:52:31 EDT 2025
Tue Nov 04 02:05:42 EST 2025
Fri Sep 05 13:37:36 EDT 2025
Tue Oct 07 07:27:44 EDT 2025
Tue Nov 04 18:25:35 EST 2025
Wed Feb 19 02:03:47 EST 2025
Sat Nov 29 07:14:30 EST 2025
Tue Nov 18 22:24:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords BDS
denoising autoencoder
time series features
NLOS
urban forest
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-e7ea5056c5075d7b1daa4ee992e4f4c615e15c1cba5b36a56c5c8b2d1edf004c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0002-8632-0269
OpenAccessLink https://www.proquest.com/docview/3003426907?pq-origsite=%requestingapplication%
PMID 38544221
PQID 3003426907
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_f9c8008e22264b09984300aac607acb3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10974546
proquest_miscellaneous_3014002822
proquest_journals_3003426907
gale_infotracacademiconefile_A788253893
pubmed_primary_38544221
crossref_primary_10_3390_s24061959
crossref_citationtrail_10_3390_s24061959
PublicationCentury 2000
PublicationDate 20240319
PublicationDateYYYYMMDD 2024-03-19
PublicationDate_xml – month: 3
  year: 2024
  text: 20240319
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Yue (ref_19) 2022; 71
Lee (ref_23) 2023; 24
Sun (ref_22) 2023; 10
ref_14
Sun (ref_30) 2022; 71
Wang (ref_24) 2023; 2023
ref_35
ref_12
ref_33
ref_10
ref_32
ref_31
Chen (ref_43) 2021; 60
Li (ref_7) 2014; 14
Li (ref_28) 2022; 2022
Liu (ref_34) 2023; 27
He (ref_44) 2022; 60
ref_17
ref_39
ref_16
ref_38
ref_15
ref_37
Ozeki (ref_13) 2022; 9
Ng (ref_36) 2020; 66
Chen (ref_3) 2020; 1
Yang (ref_5) 2018; 61
Singh (ref_40) 2022; 71
Gong (ref_18) 2022; 50
Wen (ref_21) 2023; 70
ref_25
ref_45
ref_20
ref_42
Zhao (ref_8) 2014; 14
ref_41
Yang (ref_6) 2020; 1
ref_2
Chwedczuk (ref_1) 2022; 66
Luo (ref_11) 2021; 9
ref_27
ref_26
ref_9
Smolyakov (ref_29) 2020; 67
ref_4
References_xml – volume: 60
  start-page: 5920416
  year: 2021
  ident: ref_43
  article-title: Remote sensing image change detection with transformers
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 67
  start-page: 397
  year: 2020
  ident: ref_29
  article-title: Resilient multipath prediction and detection architecture for low-cost navigation in challenging urban areas
  publication-title: Navigation
  doi: 10.1002/navi.362
– volume: 71
  start-page: 4007710
  year: 2022
  ident: ref_40
  article-title: Attention-based convolutional denoising autoencoder for two-lead ECG denoising and arrhythmia classification
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3197757
– volume: 10
  start-page: 12777
  year: 2023
  ident: ref_22
  article-title: An adaptive weighting strategy for multi sensor integrated navigation in urban areas
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2023.3256008
– ident: ref_31
  doi: 10.33012/2020.17654
– volume: 1
  start-page: 26
  year: 2020
  ident: ref_3
  article-title: BDS B1I multipath channel statistical model comparison between static and dynamic scenarios in dense urban canyon environment
  publication-title: Satell. Navig.
  doi: 10.1186/s43020-020-00027-7
– ident: ref_4
  doi: 10.1109/IAI55780.2022.9976714
– ident: ref_2
  doi: 10.3390/s19173778
– volume: 61
  start-page: 614
  year: 2018
  ident: ref_5
  article-title: Progress and performance evaluation of BeiDou global navigation satellite system: Data analysis based on BDS-3 demonstration system
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-017-9186-9
– ident: ref_41
  doi: 10.1109/TNNLS.2022.3232147
– ident: ref_32
  doi: 10.33012/2020.17663
– ident: ref_42
  doi: 10.3390/s21072503
– ident: ref_38
  doi: 10.20944/preprints202303.0023.v1
– ident: ref_9
  doi: 10.3390/s20144059
– ident: ref_37
– volume: 9
  start-page: 106
  year: 2022
  ident: ref_13
  article-title: GNSS NLOS Signal Classification Based on Machine Learning and Pseudorange Residual Check
  publication-title: Front. Robot. AI
  doi: 10.3389/frobt.2022.868608
– volume: 2022
  start-page: 2742620
  year: 2022
  ident: ref_28
  article-title: Mitigating GNSS Multipath Effects Using XGBoost Integrated Classifier Based on Consistency Checks
  publication-title: Int. J. Antennas Propag.
  doi: 10.1155/2022/2742620
– volume: 71
  start-page: 3512510
  year: 2022
  ident: ref_30
  article-title: Stacking ensemble learning for non-line-of-sight detection of global navigation satellite system
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3170985
– ident: ref_25
  doi: 10.20944/preprints202211.0282.v1
– ident: ref_33
  doi: 10.1109/PLANS46316.2020.9109935
– volume: 66
  start-page: 49
  year: 2022
  ident: ref_1
  article-title: Challenges related to the determination of altitudes of mountain peaks presented on cartographic sources
  publication-title: Geod. Vestn.
  doi: 10.15292/geodetski-vestnik.2022.01.49-59
– volume: 1
  start-page: 1
  year: 2020
  ident: ref_6
  article-title: Basic performance and future developments of BeiDou global navigation satellite system
  publication-title: Satell. Navig.
  doi: 10.1186/s43020-019-0006-0
– volume: 71
  start-page: 1
  year: 2022
  ident: ref_19
  article-title: Data Denoising Based on Hadamard Matrix Transformation and Rayleigh Quotient Maximization: Application to GNSS Signal Classification
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 14
  start-page: 15415
  year: 2014
  ident: ref_8
  article-title: A Kalman filter-based short baseline RTK algorithm for single-frequency combination of GPS and BDS
  publication-title: Sensors
  doi: 10.3390/s140815415
– volume: 14
  start-page: 927
  year: 2014
  ident: ref_7
  article-title: Precise point positioning with the BeiDou navigation satellite system
  publication-title: Sensors
  doi: 10.3390/s140100927
– ident: ref_14
  doi: 10.1007/978-981-16-3138-2
– volume: 27
  start-page: 31
  year: 2023
  ident: ref_34
  article-title: NLOS signal detection and correction for smartphone using convolutional neural network and variational mode decomposition in urban environment
  publication-title: GPS Solut.
  doi: 10.1007/s10291-022-01369-2
– volume: 9
  start-page: 15744
  year: 2021
  ident: ref_11
  article-title: Integration of GNSS and BLE technology with inertial sensors for real-time positioning in urban environments
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3052733
– ident: ref_10
– ident: ref_45
  doi: 10.3390/land11101810
– volume: 2023
  start-page: 83
  year: 2023
  ident: ref_24
  article-title: A Novel Robust Iterated CKF for GNSS/SINS Integrated Navigation Applications
  publication-title: Eurasip J. Adv. Signal Process.
  doi: 10.1186/s13634-023-01044-9
– ident: ref_20
  doi: 10.1109/ICRA40945.2020.9197567
– volume: 66
  start-page: 1647
  year: 2020
  ident: ref_36
  article-title: Improved weighting scheme using consumer-level GNSS L5/E5a/B2a pseudorange measurements in the urban area
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2020.06.002
– ident: ref_16
  doi: 10.3390/mi13071128
– ident: ref_35
  doi: 10.33012/2023.18654
– ident: ref_17
  doi: 10.33012/2019.17028
– volume: 24
  start-page: 5082
  year: 2023
  ident: ref_23
  article-title: Nonlinear Regression-Based GNSS Multipath Dynamic Map Construction and Its Application in Deep Urban Areas
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2023.3246493
– volume: 70
  start-page: navi.590
  year: 2023
  ident: ref_21
  article-title: 3D Vision Aided GNSS Real-Time Kinematic Positioning for Autonomous Systems in Urban Canyons
  publication-title: NAVIGATION J. Inst. Navig.
  doi: 10.33012/navi.590
– ident: ref_12
  doi: 10.1109/PLANS46316.2020.9110155
– volume: 50
  start-page: 805
  year: 2022
  ident: ref_18
  article-title: GNSS multipath mitigation method based on K-means classification in urban environment
  publication-title: J. Indian Soc. Remote Sens.
  doi: 10.1007/s12524-022-01494-y
– ident: ref_27
  doi: 10.3390/molecules25051201
– volume: 60
  start-page: 4408715
  year: 2022
  ident: ref_44
  article-title: Swin transformer embedding UNet for remote sensing image semantic segmentation
  publication-title: IEEE Trans. Geosci. Remote. Sens.
  doi: 10.1109/TGRS.2022.3144165
– ident: ref_26
  doi: 10.3390/rs11212522
– ident: ref_39
  doi: 10.3390/e24010055
– ident: ref_15
  doi: 10.3390/rs10122052
SSID ssj0023338
Score 2.4273129
Snippet The BeiDou Navigation Satellite System (BDS) provides real-time absolute location services to users around the world and plays a key role in the rapidly...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1959
SubjectTerms Accuracy
Algorithms
Analysis
Artificial intelligence
Artificial satellites
BDS
denoising autoencoder
Machine learning
Methods
NLOS
Noise
Satellites
Sensors
Time series
time series features
urban forest
VOCs
Volatile organic compounds
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6higMcEFAeoQW5CAkuURM7zuO4227VQ1mQSqXeIr8iVioO2s3293fGyUZZgcSFY-JJ5MdM5htn_A3AJ4T1FlG8ilUiTZw1RsQ6MUnM01wFRnPZ6FBsolguy9vb6vuk1BflhPX0wP3EnTaVQUxTOk4nPjXimTITSaKUyZNCGR14PpOi2gVTQ6glMPLqeYQEBvWnm-C3KiIknXifQNL_56d44ov28yQnjufiOTwbECOb9T19AY-cfwlPJzyCh_Br5tkicEHgK9hZ6-8HhcLnzp1vV7QhwGbbriXaSuvW8Rydl2Xz82u2vPp2jUJdSMny7GuoKM1Wnt2stfKMSnduOraYnId7BTcXix9nl_FQRyE2CAe62BVOEdDBq0LaQqdWqcy5quIuazKDmMal0qRGK6lFrkjQlJrb1NkGbciI13DgW-_eAuOJaJzJG-vQrYdC5VbqvHEKA03OrYzgy25-azOQjFOti7sagw1ainpcigg-jqK_e2aNvwnNaZFGASLDDjdQRepBRep_qUgEn2mJazJZ7IxRw8kDHBKRX9WzAsMMScgtguOdFtSDLW9qEWgSaRchgpOxGa2Qfq0o79otyWCgGlJyI3jTK83YZ1HKLOM8jaDcU6e9Qe23-NXPwPRN6QGZzPJ3_2MajuAJR0RGCXRpdQwH3Xrr3sNjc9-tNusPwX4eAGmgH_Q
  priority: 102
  providerName: Directory of Open Access Journals
Title An Efficient Convolutional Denoising Autoencoder-Based BDS NLOS Detection Method in Urban Forest Environments
URI https://www.ncbi.nlm.nih.gov/pubmed/38544221
https://www.proquest.com/docview/3003426907
https://www.proquest.com/docview/3014002822
https://pubmed.ncbi.nlm.nih.gov/PMC10974546
https://doaj.org/article/f9c8008e22264b09984300aac607acb3
Volume 24
WOSCitedRecordID wos001192490400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health Medical collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5By4EeeD8MJVoQElys-rV-nFDSpgKJhIhSKZys9e4aIpV1sZ0e-e3MbBzXEYgLF0uxJ9JYM7PzzXr2G4DXCOsVonjhCo9LNypl6Bae9NzAj4VlNOdlYYdNJPN5ulxmi27DrenaKrdrol2oVSVpj_wotGR1VMu9u_zp0tQo-rrajdC4Cfs0Npv8PFleF1wh1l8bNqEQS_ujxmavjGhJBznIUvX_uSAPMtJut-Qg_Zze_V_F78GdDniy8cZT7sMNbR7AwYCO8CH8GBs2tZQSqAM7rsxV55f4vxNtqhXtK7Dxuq2I_VLp2p1gDlRscnLG5h8_naFQazu7DJvZwdRsZdh5XQjDaAJo07Lp4FjdIzg_nX45fu924xhciaiidXWiBeEl_JVwlRS-EiLSOssCHZWRRGikfS59WQhehLEgQZkWgfK1KjEUZfgY9kxl9FNggReWWsal0ogO7LxzxYu41ALr1SBQ3IG3WwPlsuMqp5EZFznWLGTLvLelA6960csNQcffhCZk5V6AOLXtjar-lnchmpeZRPSc6oDOFheInNMIbSeEjL1EyCJ04A35SE6Rj8pI0R1gwFciDq18nGC1wgkAOnC4dYW8WxKa_NoPHHjZP8Zgpi80wuhqTTJY79rOXgeebLyu1zlMeRQFge9AuuOPOy-1-8SsvlvCcOoyiHgUP_u3Xs_hdoCQjTrs_OwQ9tp6rV_ALXnVrpp6ZEPLXtMR7E-m88Xnkd3BwOvs1xTvLT7MFl9_A9hXNPU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQceD8MBRYEKher9vp9QChpUrVqGpDaSrmZ9e4aIsG6xE4Rf4rfyMzGcROBuPXAMfEk2rW_nZlvPfsNwGtM6xVm8cIVXiTdsJSBW3jSc7kfC6toHpWFbTaRjMfpZJJ93IBfy7MwVFa59InWUatK0h75TmDF6ojLvT_77lLXKHq7umyhsYDFof75Aylb_e5ggM_3Ded7w5PdfbftKuBKDI6NqxMtKOzjpyRSSeErIUKts4zrsAwlRnjtR9KXhYiKIBZkKNOCK1-rEhElA_zfK3AV_XhCZC-ZXBC8APneQr0oCDJvp7bRMiMZ1JWYZ1sD_BkAViLgenXmSrjbu_2_3ag7cKtNrFlvsRLuwoY29-DmitziffjWM2xoJTNwzmy3MuftusPfDbSpprRvwnrzpiJ1T6Vnbh9jvGL9wTEbjz4co1FjK9cMO7KNt9nUsNNZIQyjDqd1w4YrxwYfwOmlzPchbJrK6MfAuBeUWsal0pj92H7uKiriUgvk45yryIG3S0DkstVip5YgX3PkZISdvMOOA68607OFAMnfjPqEqs6ANMPtF9Xsc966oLzMJLKDVHM6O10gM0hDxIoQMvYSIYvAgW3CZE6eDQcjRXtAA6dEGmF5L0E2FlGC68DWEnp56_Lq_AJ3DrzsLqOzojdQwuhqTjbI523lsgOPFijvxhykURhy7juQruF_bVLrV8z0ixVEpyqKMArjJ_8e1wu4vn9yNMpHB-PDp3CDY3pK1YR-tgWbzWyun8E1ed5M69lzu6wZfLrs5fEbhQWN1w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48H4YCiwIVC5W7PX7gFDSpCJqGyKVSuVk1rtriATrkjhF_DV-HTMbxyQCceuBY-JJtJt88_js2W8AXmBZr7CKF67wIumGpQzcwpOey_1YWEXzqCzssIlkPE5PT7PJFvxcnYWhtspVTLSBWlWS7pF3AytWR1yuWzZtEZPB_puzby5NkKInratxGkuIHOgf35G-zV-PBvhfv-R8f_h-763bTBhwJSbK2tWJFlQC4KskUknhKyFCrbOM67AMJWZ77UfSl4WIiiAWZCjTgitfqxLRJQP83kuwjSV5yDuwPRkdTT60dC9A9rfUMgqCzOvObe7MSBR1LQPaQQF_poO1fLjZq7mW_PZv_M8_20243pTcrLf0kVuwpc1tuLYmxHgHvvYMG1oxDdw_26vMeeOR-LmBNtWU7qiw3qKuSPdT6Znbx-yvWH9wzMaH747RqLY9bYYd2ZHcbGrYyawQhtHs03nNhmsHCu_CyYXs9x50TGX0A2DcC0ot41JprIvspHcVFXGpBTJ1zlXkwKsVOHLZqLTTsJAvObI1wlHe4siB563p2VKa5G9GfUJYa0Bq4vaNavYpb4JTXmYSeUOqOZ2qLpAzpCHiRggZe4mQReDALuEzp5iHi5GiObqBWyL1sLyXIE-LqPR1YGcFw7wJhvP8NwYdeNZexjBGz6aE0dWCbJDp255mB-4vEd-uOUijMOTcdyDd8IWNTW1eMdPPViqd-ivCKIwf_ntdT-EKekV-OBofPIKrHOtWajP0sx3o1LOFfgyX5Xk9nc-eND7O4ONF-8cvWEKYJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Convolutional+Denoising+Autoencoder-Based+BDS+NLOS+Detection+Method+in+Urban+Forest+Environments&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Qin%2C+Yahang&rft.au=Li%2C+Zhenni&rft.au=Xie%2C+Shengli&rft.au=Zhao%2C+Haoli&rft.date=2024-03-19&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=6&rft.spage=1959&rft_id=info:doi/10.3390%2Fs24061959&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s24061959
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon