Energy-Saving Multi-Agent Deep Reinforcement Learning Algorithm for Drone Routing Problem
With the rapid advancement of drone technology, the efficient distribution of drones has garnered significant attention. Central to this discourse is the energy consumption of drones, a critical metric for assessing energy-efficient distribution strategies. Accordingly, this study delves into the en...
Gespeichert in:
| Veröffentlicht in: | Sensors (Basel, Switzerland) Jg. 24; H. 20; S. 6698 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
18.10.2024
MDPI |
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With the rapid advancement of drone technology, the efficient distribution of drones has garnered significant attention. Central to this discourse is the energy consumption of drones, a critical metric for assessing energy-efficient distribution strategies. Accordingly, this study delves into the energy consumption factors affecting drone distribution. A primary challenge in drone distribution lies in devising optimal, energy-efficient routes for drones. However, traditional routing algorithms, predominantly heuristic-based, exhibit certain limitations. These algorithms often rely on heuristic rules and expert knowledge, which can constrain their ability to escape local optima. Motivated by these shortcomings, we propose a novel multi-agent deep reinforcement learning algorithm that integrates a drone energy consumption model, namely EMADRL. The EMADRL algorithm first formulates the drone routing problem within a multi-agent reinforcement learning framework. It subsequently designs a strategy network model comprising multiple agent networks, tailored to address the node adjacency and masking complexities typical of multi-depot vehicle routing problem. Training utilizes strategy gradient algorithms and attention mechanisms. Furthermore, local and sampling search strategies are introduced to enhance solution quality. Extensive experimentation demonstrates that EMADRL consistently achieves high-quality solutions swiftly. A comparative analysis against contemporary algorithms reveals EMADRL’s superior energy efficiency, with average energy savings of 5.96% and maximum savings reaching 12.45%. Thus, this approach offers a promising new avenue for optimizing energy consumption in last-mile distribution scenarios. |
|---|---|
| AbstractList | With the rapid advancement of drone technology, the efficient distribution of drones has garnered significant attention. Central to this discourse is the energy consumption of drones, a critical metric for assessing energy-efficient distribution strategies. Accordingly, this study delves into the energy consumption factors affecting drone distribution. A primary challenge in drone distribution lies in devising optimal, energy-efficient routes for drones. However, traditional routing algorithms, predominantly heuristic-based, exhibit certain limitations. These algorithms often rely on heuristic rules and expert knowledge, which can constrain their ability to escape local optima. Motivated by these shortcomings, we propose a novel multi-agent deep reinforcement learning algorithm that integrates a drone energy consumption model, namely EMADRL. The EMADRL algorithm first formulates the drone routing problem within a multi-agent reinforcement learning framework. It subsequently designs a strategy network model comprising multiple agent networks, tailored to address the node adjacency and masking complexities typical of multi-depot vehicle routing problem. Training utilizes strategy gradient algorithms and attention mechanisms. Furthermore, local and sampling search strategies are introduced to enhance solution quality. Extensive experimentation demonstrates that EMADRL consistently achieves high-quality solutions swiftly. A comparative analysis against contemporary algorithms reveals EMADRL's superior energy efficiency, with average energy savings of 5.96% and maximum savings reaching 12.45%. Thus, this approach offers a promising new avenue for optimizing energy consumption in last-mile distribution scenarios.With the rapid advancement of drone technology, the efficient distribution of drones has garnered significant attention. Central to this discourse is the energy consumption of drones, a critical metric for assessing energy-efficient distribution strategies. Accordingly, this study delves into the energy consumption factors affecting drone distribution. A primary challenge in drone distribution lies in devising optimal, energy-efficient routes for drones. However, traditional routing algorithms, predominantly heuristic-based, exhibit certain limitations. These algorithms often rely on heuristic rules and expert knowledge, which can constrain their ability to escape local optima. Motivated by these shortcomings, we propose a novel multi-agent deep reinforcement learning algorithm that integrates a drone energy consumption model, namely EMADRL. The EMADRL algorithm first formulates the drone routing problem within a multi-agent reinforcement learning framework. It subsequently designs a strategy network model comprising multiple agent networks, tailored to address the node adjacency and masking complexities typical of multi-depot vehicle routing problem. Training utilizes strategy gradient algorithms and attention mechanisms. Furthermore, local and sampling search strategies are introduced to enhance solution quality. Extensive experimentation demonstrates that EMADRL consistently achieves high-quality solutions swiftly. A comparative analysis against contemporary algorithms reveals EMADRL's superior energy efficiency, with average energy savings of 5.96% and maximum savings reaching 12.45%. Thus, this approach offers a promising new avenue for optimizing energy consumption in last-mile distribution scenarios. With the rapid advancement of drone technology, the efficient distribution of drones has garnered significant attention. Central to this discourse is the energy consumption of drones, a critical metric for assessing energy-efficient distribution strategies. Accordingly, this study delves into the energy consumption factors affecting drone distribution. A primary challenge in drone distribution lies in devising optimal, energy-efficient routes for drones. However, traditional routing algorithms, predominantly heuristic-based, exhibit certain limitations. These algorithms often rely on heuristic rules and expert knowledge, which can constrain their ability to escape local optima. Motivated by these shortcomings, we propose a novel multi-agent deep reinforcement learning algorithm that integrates a drone energy consumption model, namely EMADRL. The EMADRL algorithm first formulates the drone routing problem within a multi-agent reinforcement learning framework. It subsequently designs a strategy network model comprising multiple agent networks, tailored to address the node adjacency and masking complexities typical of multi-depot vehicle routing problem. Training utilizes strategy gradient algorithms and attention mechanisms. Furthermore, local and sampling search strategies are introduced to enhance solution quality. Extensive experimentation demonstrates that EMADRL consistently achieves high-quality solutions swiftly. A comparative analysis against contemporary algorithms reveals EMADRL’s superior energy efficiency, with average energy savings of 5.96% and maximum savings reaching 12.45%. Thus, this approach offers a promising new avenue for optimizing energy consumption in last-mile distribution scenarios. |
| Audience | Academic |
| Author | Lin, Anping Wen, Xupeng Shu, Xiulan |
| AuthorAffiliation | 1 School of Intelligent Manufacturing Engineering, Zhanjiang University of Science and Technology, Zhanjiang 524000, China; xiulanshu8383@163.com 2 School of Physics and Electronic Electrical Engineering, Xiangnan University, Chenzhou 423000, China 3 China Nanhu Academy of Electronic and Information Technology, Jiaxing 314107, China; xupengwen0411@163.com |
| AuthorAffiliation_xml | – name: 1 School of Intelligent Manufacturing Engineering, Zhanjiang University of Science and Technology, Zhanjiang 524000, China; xiulanshu8383@163.com – name: 3 China Nanhu Academy of Electronic and Information Technology, Jiaxing 314107, China; xupengwen0411@163.com – name: 2 School of Physics and Electronic Electrical Engineering, Xiangnan University, Chenzhou 423000, China |
| Author_xml | – sequence: 1 givenname: Xiulan surname: Shu fullname: Shu, Xiulan – sequence: 2 givenname: Anping surname: Lin fullname: Lin, Anping – sequence: 3 givenname: Xupeng surname: Wen fullname: Wen, Xupeng |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39460178$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkktv1DAQxy1URB9w4AugSFzgkNav2M4JrdoClRaBChw4WY4zTr1K7MVJKvXb47Bl1VbIB1szv_nPy8foIMQACL0m-JSxGp-NlFMsRK2eoSPCKS8VpfjgwfsQHY_jBmPKGFMv0CGrucBEqiP06zJA6u7K7-bWh674MveTL1cdhKm4ANgW1-CDi8nCsJjWYFJYuFXfxeSnm6HIzuIi5XqK6zhPi-9bik0Pw0v03Jl-hFf39wn6-fHyx_nncv3109X5al3aCtdTCbzBQvEKjKASsJF1W5O6BgBbMeWEAGYbSlsnWwa2IdQZqVjDXYshY4qdoKudbhvNRm-TH0y609F4_dcQU6dNmrztQbuGVdAyQRwFrhyuK5kTGSkraVglq6z1Yae1nZsBWpt7TqZ_JPrYE_yN7uKtJqQihAqRFd7dK6T4e4Zx0oMfLfS9CRDnUTNCCRYVIwv69gm6iXMKeVYLhaUQguBMne6ozuQOlmXkxDafFgZv89ydz_aVIpwTRRXLAW8e9rAv_t_OM_B-B9gUxzGB2yME6-U_6f1_yuzZE9b6yUw-Lu37_j8RfwA9JstX |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2025_112078 crossref_primary_10_3390_fi17040158 crossref_primary_10_3390_math13172734 crossref_primary_10_1145_3769070 |
| Cites_doi | 10.1016/j.ejor.2021.10.032 10.1109/TASE.2014.2326952 10.1109/TASE.2024.3398663 10.1109/TNSM.2023.3243543 10.3390/s21227735 10.1016/j.cor.2021.105211 10.1109/TNNLS.2021.3068828 10.3390/s23167305 10.1038/nature14236 10.1109/DSW.2018.8439919 10.1016/j.trc.2010.07.008 10.3390/s23239540 10.1016/j.engappai.2007.06.001 10.1287/opre.12.4.568 10.1038/nature24270 10.3390/s22082909 10.1109/TSMC.2016.2582745 10.1109/ICEENG45378.2020.9171757 10.1109/TMC.2024.3403890 10.1109/TVT.2020.3040537 10.3390/s23031463 10.1016/j.eswa.2015.08.030 10.1016/j.trc.2022.103763 10.1109/TVT.2023.3328266 10.1109/CSCWD.2014.6846809 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/s24206698 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (NC Live) ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_fb35ed361f2e48f09579eea7757a3575 PMC11511266 A814418283 39460178 10_3390_s24206698 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Chenzhou Low Carbon Intelligent Manufacturing Technology Research and Development Center – fundername: Applied Characteristic Disciplines of Electronic Science and Technology of Xiangnan University grantid: XNXY20221210 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 5PM |
| ID | FETCH-LOGICAL-c509t-e4b06845ea627e0a79d9199eeec538f66e3cb22df7d3ecb12fa783b4fd0e99e83 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001341385200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Thu Oct 30 06:30:51 EDT 2025 Tue Nov 04 02:04:56 EST 2025 Sun Nov 09 09:33:55 EST 2025 Tue Oct 07 07:44:20 EDT 2025 Tue Nov 04 18:13:48 EST 2025 Thu Apr 03 07:07:01 EDT 2025 Sat Nov 29 07:12:09 EST 2025 Tue Nov 18 22:44:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Keywords | drone routing energy savings deep reinforcement learning multiple agents |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-e4b06845ea627e0a79d9199eeec538f66e3cb22df7d3ecb12fa783b4fd0e99e83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3120766610?pq-origsite=%requestingapplication% |
| PMID | 39460178 |
| PQID | 3120766610 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fb35ed361f2e48f09579eea7757a3575 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11511266 proquest_miscellaneous_3121065316 proquest_journals_3120766610 gale_infotracacademiconefile_A814418283 pubmed_primary_39460178 crossref_primary_10_3390_s24206698 crossref_citationtrail_10_3390_s24206698 |
| PublicationCentury | 2000 |
| PublicationDate | 20241018 |
| PublicationDateYYYYMMDD | 2024-10-18 |
| PublicationDate_xml | – month: 10 year: 2024 text: 20241018 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Silver (ref_20) 2017; 550 ref_36 ref_13 ref_34 ref_33 ref_32 ref_31 ref_30 Zhang (ref_37) 2022; 300 Dorling (ref_40) 2016; 47 Xu (ref_15) 2013; 28 ref_38 Ho (ref_11) 2008; 21 Mnih (ref_19) 2015; 518 Bettinelli (ref_8) 2011; 19 Hong (ref_7) 2020; 69 Enayatifar (ref_10) 2016; 43 Zeng (ref_16) 2014; 29 ref_25 ref_24 ref_23 ref_21 Wen (ref_17) 2022; 141 ref_41 ref_1 Clarke (ref_12) 1964; 12 Wu (ref_35) 2021; 33 ref_3 ref_2 ref_29 ref_27 Zou (ref_28) 2023; 73 ref_26 ref_9 ref_5 Wang (ref_14) 2011; 19 ref_4 Fan (ref_18) 2021; 129 (ref_39) 2014; 11 ref_6 Qu (ref_22) 2023; 20 |
| References_xml | – volume: 300 start-page: 418 year: 2022 ident: ref_37 article-title: A deep reinforcement learning based hyper-heuristic for combinatorial optimisation with uncertainties publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2021.10.032 – volume: 19 start-page: 99 year: 2011 ident: ref_14 article-title: A modified variable neighborhood search algorithm for multi depot vehicle routing problem with time windows publication-title: Chin. J. Manag. Sci. – ident: ref_32 – volume: 11 start-page: 647 year: 2014 ident: ref_39 article-title: Guest editorial can drones deliver? publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2014.2326952 – ident: ref_24 – ident: ref_21 doi: 10.1109/TASE.2024.3398663 – ident: ref_26 – ident: ref_34 – volume: 20 start-page: 1093 year: 2023 ident: ref_22 article-title: Environmentally-aware and energy-efficient multi-drone coordination and networking for disaster response publication-title: IEEE Trans. Netw. Serv. Manag. doi: 10.1109/TNSM.2023.3243543 – ident: ref_3 doi: 10.3390/s21227735 – volume: 129 start-page: 105211 year: 2021 ident: ref_18 article-title: Time-dependent multi-depot green vehicle routing problem with time windows considering temporal-spatial distance publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2021.105211 – volume: 33 start-page: 5057 year: 2021 ident: ref_35 article-title: Learning improvement heuristics for solving routing problems publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3068828 – ident: ref_6 doi: 10.3390/s23167305 – volume: 518 start-page: 529 year: 2015 ident: ref_19 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 28 start-page: 1587 year: 2013 ident: ref_15 article-title: A memetic algorithm for solving two-echelon vehicle routing problem publication-title: Control Decis. – ident: ref_30 doi: 10.1109/DSW.2018.8439919 – volume: 19 start-page: 723 year: 2011 ident: ref_8 article-title: A branch-and-cut-and-price algorithm for the multi-depot heterogeneous vehicle routing problem with time windows publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2010.07.008 – ident: ref_23 – ident: ref_2 doi: 10.3390/s23239540 – volume: 29 start-page: 2183 year: 2014 ident: ref_16 article-title: Cumulative multi-depot vehicle routing problem in emergency logistics publication-title: J. Control Decis. – ident: ref_25 – ident: ref_31 – volume: 21 start-page: 548 year: 2008 ident: ref_11 article-title: A hybrid genetic algorithm for the multi-depot vehicle routing problem publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2007.06.001 – ident: ref_29 – ident: ref_33 – volume: 12 start-page: 568 year: 1964 ident: ref_12 article-title: Scheduling of vehicles from a central depot to a number of delivery points publication-title: Oper. Res. doi: 10.1287/opre.12.4.568 – volume: 550 start-page: 354 year: 2017 ident: ref_20 article-title: Mastering the game of go without human knowledge publication-title: Nature doi: 10.1038/nature24270 – ident: ref_4 doi: 10.3390/s22082909 – volume: 47 start-page: 70 year: 2016 ident: ref_40 article-title: Vehicle routing problems for drone delivery publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2016.2582745 – ident: ref_5 doi: 10.1109/ICEENG45378.2020.9171757 – ident: ref_41 – ident: ref_13 – ident: ref_27 doi: 10.1109/TMC.2024.3403890 – volume: 69 start-page: 14803 year: 2020 ident: ref_7 article-title: Least-energy path planning with building accurate power consumption model of rotary unmanned aerial vehicle publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3040537 – ident: ref_38 – ident: ref_36 – ident: ref_1 doi: 10.3390/s23031463 – volume: 43 start-page: 117 year: 2016 ident: ref_10 article-title: A cooperative coevolutionary algorithm for the multi-depot vehicle routing problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.08.030 – volume: 141 start-page: 103763 year: 2022 ident: ref_17 article-title: Heterogeneous multi-drone routing problem for parcel delivery publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2022.103763 – volume: 73 start-page: 3404 year: 2023 ident: ref_28 article-title: Imbalance cost-aware energy scheduling for prosumers towards uam charging: A matching and multi-agent drl approach publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2023.3328266 – ident: ref_9 doi: 10.1109/CSCWD.2014.6846809 |
| SSID | ssj0023338 |
| Score | 2.4554596 |
| Snippet | With the rapid advancement of drone technology, the efficient distribution of drones has garnered significant attention. Central to this discourse is the... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 6698 |
| SubjectTerms | Algorithms Data mining Deep learning deep reinforcement learning drone routing Drones Energy conservation Energy consumption Energy efficiency Energy management systems energy savings Energy use Genetic algorithms Heuristic Learning strategies Logistics Machine learning Methods multiple agents Neural networks Optimization Planning Traveling salesman problem |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl9NAeSpO-3CRFLYX2ImJZtiUft3nQUwh9QHoSkjxKFhJv2N3093dG9po1LfSS62pgpdFInz5L8w1jHyE0CAuxEq1zpUAIAGF89CIWUWPMOKNim4pN6PNzc3nZXGyV-qI3Yb08cO-4o-hVBa2qZSygNDGnayUAp3WlncKzBu2-uW42ZGqgWgqZV68jpJDUH60QiBBbGzNBnyTS__dWvIVF03eSW8Bz9pw9G06MfNb3dJc9gm6PPd3SEXzBfp2mDD7x3dHnAZ6SasWMkqb4CcAd_wZJHzWkT4F8kFS94rObq8Vyvr6-5djIT5aLDji9EKK2i77QzEv28-z0x_FXMdRMEAGhfy2g9HltygpcXWjInW7aRjboMQi4tcW6BhV8UbRRtwqCl0V02ihfxjYHNDPqFdvp8O_eMF4VdItZBZw2ZIFBmlDkVfSV8bJyKqiMfd740oZBUJzqWtxYJBbkdju6PWMfRtO7XkXjX0ZfaEJGAxK-Tj9gONghHOz_wiFjn2g6LbkVOxPckGWAQyKhKzszxCCRZmL3DzYzbod1u7JKYjAho5N5xt6Pzbji6BrFdbC4TzaSFH1lnbHXfYCMfVZNiQxX41jMJHQmg5q2dPPrpOqNR3NK56rfPoQb9tmTAk9fBLLSHLCd9fIeDtnj8Hs9Xy3fpbXyB2soGmE priority: 102 providerName: Directory of Open Access Journals |
| Title | Energy-Saving Multi-Agent Deep Reinforcement Learning Algorithm for Drone Routing Problem |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39460178 https://www.proquest.com/docview/3120766610 https://www.proquest.com/docview/3121065316 https://pubmed.ncbi.nlm.nih.gov/PMC11511266 https://doaj.org/article/fb35ed361f2e48f09579eea7757a3575 |
| Volume | 24 |
| WOSCitedRecordID | wos001341385200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QCH8iwEysogJLhETeIkdk5oS7eCQ1dRAWl7ihxnvK1UstvdLUd-OzOON90ViAuXHOKRMs6MPQ97vmHsHZgCzYLNwkbrNEQTAKGqbR3axErUGa2EbVyzCTkeq8mkKH3CbemvVa73RLdRNzNDOfJDEScYcqM1iT7Or0PqGkWnq76Fxl22S22zSc_l5DbgEhh_dWhCAkP7wyWaI7SwhdqyQQ6q_88NecMibd-W3DA_Jw__l_FHbM87nnzYacpjdgfaJ-zBBhzhU3Y-coWA4VdNWQbuanPDIdVe8WOAOT8DB7NqXEaRe2TWKR9eTfF7q4sfHAf58WLWAqeLRjRWdv1qnrHvJ6Nvnz6HvvVCaNCDWIWQ1lGu0gx0nkiItCyaIi4KADC4Q9o8B2HqJGmsbASYOk6slkrUqW0iQDIl9tlOi597wXiW0GFoZlD6GEyaWJkkymydqTrOtDAiYB_WwqiMxyWn9hhXFcYnJLeql1vA3vak8w6M429ERyTRnoDws92L2WJa-eVY2Vpk0Ig8tgmkykZ0WAmgpcykFujBBuw96UNFvxWZMdoXK-CUCC-rGioKRDFaRfYP1mKv_PJfVrcyD9ibfhgXLp3G6BZmN44mJmDgOA_Y807Dep5FkWKgLHEuakv3tia1PdJeXjhwcPTwqSosf_lvvl6x-wm6Z2SFY3XAdlaLG3jN7pmfq8vlYuCWkXuqAds9Go3Ls4HLVuDz9NcI35VfTsvz3787LrI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwELbGQAIe-P0jMMAgELxES-wkdh4QKnTTpo1qgiGVp-A4527SaEvbgfin-Bu5c5KuEYi3PfBaW6kv-XyfP9t3x9hzsDnSgkvDypgkRAqAUJeuDJ1wCjFjtHSVLzahBgM9HOYHa-xXGwtD1ypbn-gddTWxtEe-KWOBkhvZJHoz_RZS1Sg6XW1LaNSw2IOfP1CyzV_v9vH7vhBie-vw3U7YVBUILZLjIoSkjDKdpGAyoSAyKq_yOM8BwOLkd1kG0pZCVE5VEmwZC2eUlmXiqgiwm5b43AvsIvpxRWJPDc8EnkS9V2cvkjKPNudIf8joue5wni8N8CcBrDBg93bmCt1tX__fXtQNdq1ZWPNePRNusjUY32JXV9It3maft3ygY_jR0C4K97HHYY9iy3gfYMo_gE8ja_2OKW8yz45472SE9i2OvnJs5P3ZZAycLlJR20Fdj-cO-3Qutt1l62P8u_uMp4IOe1OL6EaxbGNtRZS6MtVlnBppZcBetR-_sE3edSr_cVKg_iKcFEucBOzZsuu0Tjbyt05vCUHLDpQf3P8wmY2Kxt0UrpQpVDKLnYBEu4gOYwGMUqkyElfoAXtJ-CvoteJgrGmCMdAkygdW9DQJbVTjOPyNFmZF497mxRnGAvZ02YyOiU6bzBgmp75PTImP4yxg92pEL8cs8yRDKkBbdAfrHaO6LePjI5_8HBUMRb1lD_49rifs8s7h-_1if3ew95BdEbgUpRVHrDfY-mJ2Co_YJft9cTyfPfZTmLMv5z0VfgMdyoed |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKFy4E0JFFgQCC5W7F0_1geEAmlEVIgiHlJ7Muv1bFqpJCFJQfw1fh0ztmMSgbj1wNU7inecb-eb2d2ZAXiCNiVacJFXGBN6RAHo6dzlnpMuIcwYrVxRNptIhkN9eJiOtuDnKheGr1WubGJpqIup5T3yjgokhdzEJn7H1dciRr3-y9lXjztI8Unrqp1GBZED_PGdwrfFi0GP_uunUvb3P75-49UdBjxLRLn0MMz9WIcRmlgm6JskLdIgTRHRkiFwcYzK5lIWLikU2jyQziRa5aErfCQxreh3L8A2ueShbMH2aPBudNSEe4qiv6qWkVKp31kQGRK_p3qDActGAX_SwRofbt7VXCO__tX_-bNdgyu1yy261Rq5Dls4uQGX1wox3oSj_TIF0vtgeH9FlFnJXpezzkQPcSbeY1lg1pZ7qaKuSTsW3dMx6bc8_iJoUPTm0wkKvmLFY6OqU88t-HQuut2G1oRedwdEJPkYOLKEewqjbaCt9COXRzoPIqOsasPzFRAyW1dk58YgpxlFZoyZrMFMGx43orOqDMnfhF4xmhoBrhxePpjOx1ltiDKXqwgLFQdOYqidz8e0iCZJosQo8t3b8IyxmPFnpclYU6dpkEpcKSzrag7BKU6n6e-tIJfVhm-R_cZbGx41w2Sy-BzKTHB6VsoEXBI5iNuwW6G7mbNKw5hIgnTRG7jfUGpzZHJyXJZFp9iG8-Hiu_-e10O4RCsgezsYHtyDHUk-Krsigd6D1nJ-hvfhov22PFnMH9TrWcDn814LvwA6DpHs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Saving+Multi-Agent+Deep+Reinforcement+Learning+Algorithm+for+Drone+Routing+Problem&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Shu%2C+Xiulan&rft.au=Lin%2C+Anping&rft.au=Wen%2C+Xupeng&rft.date=2024-10-18&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=20&rft_id=info:doi/10.3390%2Fs24206698&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |