Energy-Saving Multi-Agent Deep Reinforcement Learning Algorithm for Drone Routing Problem

With the rapid advancement of drone technology, the efficient distribution of drones has garnered significant attention. Central to this discourse is the energy consumption of drones, a critical metric for assessing energy-efficient distribution strategies. Accordingly, this study delves into the en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 24; H. 20; S. 6698
Hauptverfasser: Shu, Xiulan, Lin, Anping, Wen, Xupeng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 18.10.2024
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the rapid advancement of drone technology, the efficient distribution of drones has garnered significant attention. Central to this discourse is the energy consumption of drones, a critical metric for assessing energy-efficient distribution strategies. Accordingly, this study delves into the energy consumption factors affecting drone distribution. A primary challenge in drone distribution lies in devising optimal, energy-efficient routes for drones. However, traditional routing algorithms, predominantly heuristic-based, exhibit certain limitations. These algorithms often rely on heuristic rules and expert knowledge, which can constrain their ability to escape local optima. Motivated by these shortcomings, we propose a novel multi-agent deep reinforcement learning algorithm that integrates a drone energy consumption model, namely EMADRL. The EMADRL algorithm first formulates the drone routing problem within a multi-agent reinforcement learning framework. It subsequently designs a strategy network model comprising multiple agent networks, tailored to address the node adjacency and masking complexities typical of multi-depot vehicle routing problem. Training utilizes strategy gradient algorithms and attention mechanisms. Furthermore, local and sampling search strategies are introduced to enhance solution quality. Extensive experimentation demonstrates that EMADRL consistently achieves high-quality solutions swiftly. A comparative analysis against contemporary algorithms reveals EMADRL’s superior energy efficiency, with average energy savings of 5.96% and maximum savings reaching 12.45%. Thus, this approach offers a promising new avenue for optimizing energy consumption in last-mile distribution scenarios.
AbstractList With the rapid advancement of drone technology, the efficient distribution of drones has garnered significant attention. Central to this discourse is the energy consumption of drones, a critical metric for assessing energy-efficient distribution strategies. Accordingly, this study delves into the energy consumption factors affecting drone distribution. A primary challenge in drone distribution lies in devising optimal, energy-efficient routes for drones. However, traditional routing algorithms, predominantly heuristic-based, exhibit certain limitations. These algorithms often rely on heuristic rules and expert knowledge, which can constrain their ability to escape local optima. Motivated by these shortcomings, we propose a novel multi-agent deep reinforcement learning algorithm that integrates a drone energy consumption model, namely EMADRL. The EMADRL algorithm first formulates the drone routing problem within a multi-agent reinforcement learning framework. It subsequently designs a strategy network model comprising multiple agent networks, tailored to address the node adjacency and masking complexities typical of multi-depot vehicle routing problem. Training utilizes strategy gradient algorithms and attention mechanisms. Furthermore, local and sampling search strategies are introduced to enhance solution quality. Extensive experimentation demonstrates that EMADRL consistently achieves high-quality solutions swiftly. A comparative analysis against contemporary algorithms reveals EMADRL's superior energy efficiency, with average energy savings of 5.96% and maximum savings reaching 12.45%. Thus, this approach offers a promising new avenue for optimizing energy consumption in last-mile distribution scenarios.With the rapid advancement of drone technology, the efficient distribution of drones has garnered significant attention. Central to this discourse is the energy consumption of drones, a critical metric for assessing energy-efficient distribution strategies. Accordingly, this study delves into the energy consumption factors affecting drone distribution. A primary challenge in drone distribution lies in devising optimal, energy-efficient routes for drones. However, traditional routing algorithms, predominantly heuristic-based, exhibit certain limitations. These algorithms often rely on heuristic rules and expert knowledge, which can constrain their ability to escape local optima. Motivated by these shortcomings, we propose a novel multi-agent deep reinforcement learning algorithm that integrates a drone energy consumption model, namely EMADRL. The EMADRL algorithm first formulates the drone routing problem within a multi-agent reinforcement learning framework. It subsequently designs a strategy network model comprising multiple agent networks, tailored to address the node adjacency and masking complexities typical of multi-depot vehicle routing problem. Training utilizes strategy gradient algorithms and attention mechanisms. Furthermore, local and sampling search strategies are introduced to enhance solution quality. Extensive experimentation demonstrates that EMADRL consistently achieves high-quality solutions swiftly. A comparative analysis against contemporary algorithms reveals EMADRL's superior energy efficiency, with average energy savings of 5.96% and maximum savings reaching 12.45%. Thus, this approach offers a promising new avenue for optimizing energy consumption in last-mile distribution scenarios.
With the rapid advancement of drone technology, the efficient distribution of drones has garnered significant attention. Central to this discourse is the energy consumption of drones, a critical metric for assessing energy-efficient distribution strategies. Accordingly, this study delves into the energy consumption factors affecting drone distribution. A primary challenge in drone distribution lies in devising optimal, energy-efficient routes for drones. However, traditional routing algorithms, predominantly heuristic-based, exhibit certain limitations. These algorithms often rely on heuristic rules and expert knowledge, which can constrain their ability to escape local optima. Motivated by these shortcomings, we propose a novel multi-agent deep reinforcement learning algorithm that integrates a drone energy consumption model, namely EMADRL. The EMADRL algorithm first formulates the drone routing problem within a multi-agent reinforcement learning framework. It subsequently designs a strategy network model comprising multiple agent networks, tailored to address the node adjacency and masking complexities typical of multi-depot vehicle routing problem. Training utilizes strategy gradient algorithms and attention mechanisms. Furthermore, local and sampling search strategies are introduced to enhance solution quality. Extensive experimentation demonstrates that EMADRL consistently achieves high-quality solutions swiftly. A comparative analysis against contemporary algorithms reveals EMADRL’s superior energy efficiency, with average energy savings of 5.96% and maximum savings reaching 12.45%. Thus, this approach offers a promising new avenue for optimizing energy consumption in last-mile distribution scenarios.
Audience Academic
Author Lin, Anping
Wen, Xupeng
Shu, Xiulan
AuthorAffiliation 1 School of Intelligent Manufacturing Engineering, Zhanjiang University of Science and Technology, Zhanjiang 524000, China; xiulanshu8383@163.com
2 School of Physics and Electronic Electrical Engineering, Xiangnan University, Chenzhou 423000, China
3 China Nanhu Academy of Electronic and Information Technology, Jiaxing 314107, China; xupengwen0411@163.com
AuthorAffiliation_xml – name: 1 School of Intelligent Manufacturing Engineering, Zhanjiang University of Science and Technology, Zhanjiang 524000, China; xiulanshu8383@163.com
– name: 3 China Nanhu Academy of Electronic and Information Technology, Jiaxing 314107, China; xupengwen0411@163.com
– name: 2 School of Physics and Electronic Electrical Engineering, Xiangnan University, Chenzhou 423000, China
Author_xml – sequence: 1
  givenname: Xiulan
  surname: Shu
  fullname: Shu, Xiulan
– sequence: 2
  givenname: Anping
  surname: Lin
  fullname: Lin, Anping
– sequence: 3
  givenname: Xupeng
  surname: Wen
  fullname: Wen, Xupeng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39460178$$D View this record in MEDLINE/PubMed
BookMark eNptkktv1DAQxy1URB9w4AugSFzgkNav2M4JrdoClRaBChw4WY4zTr1K7MVJKvXb47Bl1VbIB1szv_nPy8foIMQACL0m-JSxGp-NlFMsRK2eoSPCKS8VpfjgwfsQHY_jBmPKGFMv0CGrucBEqiP06zJA6u7K7-bWh674MveTL1cdhKm4ANgW1-CDi8nCsJjWYFJYuFXfxeSnm6HIzuIi5XqK6zhPi-9bik0Pw0v03Jl-hFf39wn6-fHyx_nncv3109X5al3aCtdTCbzBQvEKjKASsJF1W5O6BgBbMeWEAGYbSlsnWwa2IdQZqVjDXYshY4qdoKudbhvNRm-TH0y609F4_dcQU6dNmrztQbuGVdAyQRwFrhyuK5kTGSkraVglq6z1Yae1nZsBWpt7TqZ_JPrYE_yN7uKtJqQihAqRFd7dK6T4e4Zx0oMfLfS9CRDnUTNCCRYVIwv69gm6iXMKeVYLhaUQguBMne6ozuQOlmXkxDafFgZv89ydz_aVIpwTRRXLAW8e9rAv_t_OM_B-B9gUxzGB2yME6-U_6f1_yuzZE9b6yUw-Lu37_j8RfwA9JstX
CitedBy_id crossref_primary_10_1016_j_engappai_2025_112078
crossref_primary_10_3390_fi17040158
crossref_primary_10_3390_math13172734
crossref_primary_10_1145_3769070
Cites_doi 10.1016/j.ejor.2021.10.032
10.1109/TASE.2014.2326952
10.1109/TASE.2024.3398663
10.1109/TNSM.2023.3243543
10.3390/s21227735
10.1016/j.cor.2021.105211
10.1109/TNNLS.2021.3068828
10.3390/s23167305
10.1038/nature14236
10.1109/DSW.2018.8439919
10.1016/j.trc.2010.07.008
10.3390/s23239540
10.1016/j.engappai.2007.06.001
10.1287/opre.12.4.568
10.1038/nature24270
10.3390/s22082909
10.1109/TSMC.2016.2582745
10.1109/ICEENG45378.2020.9171757
10.1109/TMC.2024.3403890
10.1109/TVT.2020.3040537
10.3390/s23031463
10.1016/j.eswa.2015.08.030
10.1016/j.trc.2022.103763
10.1109/TVT.2023.3328266
10.1109/CSCWD.2014.6846809
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s24206698
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (NC Live)
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_fb35ed361f2e48f09579eea7757a3575
PMC11511266
A814418283
39460178
10_3390_s24206698
Genre Journal Article
GrantInformation_xml – fundername: Chenzhou Low Carbon Intelligent Manufacturing Technology Research and Development Center
– fundername: Applied Characteristic Disciplines of Electronic Science and Technology of Xiangnan University
  grantid: XNXY20221210
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c509t-e4b06845ea627e0a79d9199eeec538f66e3cb22df7d3ecb12fa783b4fd0e99e83
IEDL.DBID 7X7
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001341385200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Thu Oct 30 06:30:51 EDT 2025
Tue Nov 04 02:04:56 EST 2025
Sun Nov 09 09:33:55 EST 2025
Tue Oct 07 07:44:20 EDT 2025
Tue Nov 04 18:13:48 EST 2025
Thu Apr 03 07:07:01 EDT 2025
Sat Nov 29 07:12:09 EST 2025
Tue Nov 18 22:44:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords drone routing
energy savings
deep reinforcement learning
multiple agents
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-e4b06845ea627e0a79d9199eeec538f66e3cb22df7d3ecb12fa783b4fd0e99e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3120766610?pq-origsite=%requestingapplication%
PMID 39460178
PQID 3120766610
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_fb35ed361f2e48f09579eea7757a3575
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11511266
proquest_miscellaneous_3121065316
proquest_journals_3120766610
gale_infotracacademiconefile_A814418283
pubmed_primary_39460178
crossref_primary_10_3390_s24206698
crossref_citationtrail_10_3390_s24206698
PublicationCentury 2000
PublicationDate 20241018
PublicationDateYYYYMMDD 2024-10-18
PublicationDate_xml – month: 10
  year: 2024
  text: 20241018
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Silver (ref_20) 2017; 550
ref_36
ref_13
ref_34
ref_33
ref_32
ref_31
ref_30
Zhang (ref_37) 2022; 300
Dorling (ref_40) 2016; 47
Xu (ref_15) 2013; 28
ref_38
Ho (ref_11) 2008; 21
Mnih (ref_19) 2015; 518
Bettinelli (ref_8) 2011; 19
Hong (ref_7) 2020; 69
Enayatifar (ref_10) 2016; 43
Zeng (ref_16) 2014; 29
ref_25
ref_24
ref_23
ref_21
Wen (ref_17) 2022; 141
ref_41
ref_1
Clarke (ref_12) 1964; 12
Wu (ref_35) 2021; 33
ref_3
ref_2
ref_29
ref_27
Zou (ref_28) 2023; 73
ref_26
ref_9
ref_5
Wang (ref_14) 2011; 19
ref_4
Fan (ref_18) 2021; 129
(ref_39) 2014; 11
ref_6
Qu (ref_22) 2023; 20
References_xml – volume: 300
  start-page: 418
  year: 2022
  ident: ref_37
  article-title: A deep reinforcement learning based hyper-heuristic for combinatorial optimisation with uncertainties
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2021.10.032
– volume: 19
  start-page: 99
  year: 2011
  ident: ref_14
  article-title: A modified variable neighborhood search algorithm for multi depot vehicle routing problem with time windows
  publication-title: Chin. J. Manag. Sci.
– ident: ref_32
– volume: 11
  start-page: 647
  year: 2014
  ident: ref_39
  article-title: Guest editorial can drones deliver?
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2014.2326952
– ident: ref_24
– ident: ref_21
  doi: 10.1109/TASE.2024.3398663
– ident: ref_26
– ident: ref_34
– volume: 20
  start-page: 1093
  year: 2023
  ident: ref_22
  article-title: Environmentally-aware and energy-efficient multi-drone coordination and networking for disaster response
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2023.3243543
– ident: ref_3
  doi: 10.3390/s21227735
– volume: 129
  start-page: 105211
  year: 2021
  ident: ref_18
  article-title: Time-dependent multi-depot green vehicle routing problem with time windows considering temporal-spatial distance
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105211
– volume: 33
  start-page: 5057
  year: 2021
  ident: ref_35
  article-title: Learning improvement heuristics for solving routing problems
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3068828
– ident: ref_6
  doi: 10.3390/s23167305
– volume: 518
  start-page: 529
  year: 2015
  ident: ref_19
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 28
  start-page: 1587
  year: 2013
  ident: ref_15
  article-title: A memetic algorithm for solving two-echelon vehicle routing problem
  publication-title: Control Decis.
– ident: ref_30
  doi: 10.1109/DSW.2018.8439919
– volume: 19
  start-page: 723
  year: 2011
  ident: ref_8
  article-title: A branch-and-cut-and-price algorithm for the multi-depot heterogeneous vehicle routing problem with time windows
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2010.07.008
– ident: ref_23
– ident: ref_2
  doi: 10.3390/s23239540
– volume: 29
  start-page: 2183
  year: 2014
  ident: ref_16
  article-title: Cumulative multi-depot vehicle routing problem in emergency logistics
  publication-title: J. Control Decis.
– ident: ref_25
– ident: ref_31
– volume: 21
  start-page: 548
  year: 2008
  ident: ref_11
  article-title: A hybrid genetic algorithm for the multi-depot vehicle routing problem
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2007.06.001
– ident: ref_29
– ident: ref_33
– volume: 12
  start-page: 568
  year: 1964
  ident: ref_12
  article-title: Scheduling of vehicles from a central depot to a number of delivery points
  publication-title: Oper. Res.
  doi: 10.1287/opre.12.4.568
– volume: 550
  start-page: 354
  year: 2017
  ident: ref_20
  article-title: Mastering the game of go without human knowledge
  publication-title: Nature
  doi: 10.1038/nature24270
– ident: ref_4
  doi: 10.3390/s22082909
– volume: 47
  start-page: 70
  year: 2016
  ident: ref_40
  article-title: Vehicle routing problems for drone delivery
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2016.2582745
– ident: ref_5
  doi: 10.1109/ICEENG45378.2020.9171757
– ident: ref_41
– ident: ref_13
– ident: ref_27
  doi: 10.1109/TMC.2024.3403890
– volume: 69
  start-page: 14803
  year: 2020
  ident: ref_7
  article-title: Least-energy path planning with building accurate power consumption model of rotary unmanned aerial vehicle
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3040537
– ident: ref_38
– ident: ref_36
– ident: ref_1
  doi: 10.3390/s23031463
– volume: 43
  start-page: 117
  year: 2016
  ident: ref_10
  article-title: A cooperative coevolutionary algorithm for the multi-depot vehicle routing problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.08.030
– volume: 141
  start-page: 103763
  year: 2022
  ident: ref_17
  article-title: Heterogeneous multi-drone routing problem for parcel delivery
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2022.103763
– volume: 73
  start-page: 3404
  year: 2023
  ident: ref_28
  article-title: Imbalance cost-aware energy scheduling for prosumers towards uam charging: A matching and multi-agent drl approach
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2023.3328266
– ident: ref_9
  doi: 10.1109/CSCWD.2014.6846809
SSID ssj0023338
Score 2.4554596
Snippet With the rapid advancement of drone technology, the efficient distribution of drones has garnered significant attention. Central to this discourse is the...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6698
SubjectTerms Algorithms
Data mining
Deep learning
deep reinforcement learning
drone routing
Drones
Energy conservation
Energy consumption
Energy efficiency
Energy management systems
energy savings
Energy use
Genetic algorithms
Heuristic
Learning strategies
Logistics
Machine learning
Methods
multiple agents
Neural networks
Optimization
Planning
Traveling salesman problem
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl9NAeSpO-3CRFLYX2ImJZtiUft3nQUwh9QHoSkjxKFhJv2N3093dG9po1LfSS62pgpdFInz5L8w1jHyE0CAuxEq1zpUAIAGF89CIWUWPMOKNim4pN6PNzc3nZXGyV-qI3Yb08cO-4o-hVBa2qZSygNDGnayUAp3WlncKzBu2-uW42ZGqgWgqZV68jpJDUH60QiBBbGzNBnyTS__dWvIVF03eSW8Bz9pw9G06MfNb3dJc9gm6PPd3SEXzBfp2mDD7x3dHnAZ6SasWMkqb4CcAd_wZJHzWkT4F8kFS94rObq8Vyvr6-5djIT5aLDji9EKK2i77QzEv28-z0x_FXMdRMEAGhfy2g9HltygpcXWjInW7aRjboMQi4tcW6BhV8UbRRtwqCl0V02ihfxjYHNDPqFdvp8O_eMF4VdItZBZw2ZIFBmlDkVfSV8bJyKqiMfd740oZBUJzqWtxYJBbkdju6PWMfRtO7XkXjX0ZfaEJGAxK-Tj9gONghHOz_wiFjn2g6LbkVOxPckGWAQyKhKzszxCCRZmL3DzYzbod1u7JKYjAho5N5xt6Pzbji6BrFdbC4TzaSFH1lnbHXfYCMfVZNiQxX41jMJHQmg5q2dPPrpOqNR3NK56rfPoQb9tmTAk9fBLLSHLCd9fIeDtnj8Hs9Xy3fpbXyB2soGmE
  priority: 102
  providerName: Directory of Open Access Journals
Title Energy-Saving Multi-Agent Deep Reinforcement Learning Algorithm for Drone Routing Problem
URI https://www.ncbi.nlm.nih.gov/pubmed/39460178
https://www.proquest.com/docview/3120766610
https://www.proquest.com/docview/3121065316
https://pubmed.ncbi.nlm.nih.gov/PMC11511266
https://doaj.org/article/fb35ed361f2e48f09579eea7757a3575
Volume 24
WOSCitedRecordID wos001341385200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QCH8iwEysogJLhETeIkdk5oS7eCQ1dRAWl7ihxnvK1UstvdLUd-OzOON90ViAuXHOKRMs6MPQ97vmHsHZgCzYLNwkbrNEQTAKGqbR3axErUGa2EbVyzCTkeq8mkKH3CbemvVa73RLdRNzNDOfJDEScYcqM1iT7Or0PqGkWnq76Fxl22S22zSc_l5DbgEhh_dWhCAkP7wyWaI7SwhdqyQQ6q_88NecMibd-W3DA_Jw__l_FHbM87nnzYacpjdgfaJ-zBBhzhU3Y-coWA4VdNWQbuanPDIdVe8WOAOT8DB7NqXEaRe2TWKR9eTfF7q4sfHAf58WLWAqeLRjRWdv1qnrHvJ6Nvnz6HvvVCaNCDWIWQ1lGu0gx0nkiItCyaIi4KADC4Q9o8B2HqJGmsbASYOk6slkrUqW0iQDIl9tlOi597wXiW0GFoZlD6GEyaWJkkymydqTrOtDAiYB_WwqiMxyWn9hhXFcYnJLeql1vA3vak8w6M429ERyTRnoDws92L2WJa-eVY2Vpk0Ig8tgmkykZ0WAmgpcykFujBBuw96UNFvxWZMdoXK-CUCC-rGioKRDFaRfYP1mKv_PJfVrcyD9ibfhgXLp3G6BZmN44mJmDgOA_Y807Dep5FkWKgLHEuakv3tia1PdJeXjhwcPTwqSosf_lvvl6x-wm6Z2SFY3XAdlaLG3jN7pmfq8vlYuCWkXuqAds9Go3Ls4HLVuDz9NcI35VfTsvz3787LrI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwELbGQAIe-P0jMMAgELxES-wkdh4QKnTTpo1qgiGVp-A4527SaEvbgfin-Bu5c5KuEYi3PfBaW6kv-XyfP9t3x9hzsDnSgkvDypgkRAqAUJeuDJ1wCjFjtHSVLzahBgM9HOYHa-xXGwtD1ypbn-gddTWxtEe-KWOBkhvZJHoz_RZS1Sg6XW1LaNSw2IOfP1CyzV_v9vH7vhBie-vw3U7YVBUILZLjIoSkjDKdpGAyoSAyKq_yOM8BwOLkd1kG0pZCVE5VEmwZC2eUlmXiqgiwm5b43AvsIvpxRWJPDc8EnkS9V2cvkjKPNudIf8joue5wni8N8CcBrDBg93bmCt1tX__fXtQNdq1ZWPNePRNusjUY32JXV9It3maft3ygY_jR0C4K97HHYY9iy3gfYMo_gE8ja_2OKW8yz45472SE9i2OvnJs5P3ZZAycLlJR20Fdj-cO-3Qutt1l62P8u_uMp4IOe1OL6EaxbGNtRZS6MtVlnBppZcBetR-_sE3edSr_cVKg_iKcFEucBOzZsuu0Tjbyt05vCUHLDpQf3P8wmY2Kxt0UrpQpVDKLnYBEu4gOYwGMUqkyElfoAXtJ-CvoteJgrGmCMdAkygdW9DQJbVTjOPyNFmZF497mxRnGAvZ02YyOiU6bzBgmp75PTImP4yxg92pEL8cs8yRDKkBbdAfrHaO6LePjI5_8HBUMRb1lD_49rifs8s7h-_1if3ew95BdEbgUpRVHrDfY-mJ2Co_YJft9cTyfPfZTmLMv5z0VfgMdyoed
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKFy4E0JFFgQCC5W7F0_1geEAmlEVIgiHlJ7Muv1bFqpJCFJQfw1fh0ztmMSgbj1wNU7inecb-eb2d2ZAXiCNiVacJFXGBN6RAHo6dzlnpMuIcwYrVxRNptIhkN9eJiOtuDnKheGr1WubGJpqIup5T3yjgokhdzEJn7H1dciRr3-y9lXjztI8Unrqp1GBZED_PGdwrfFi0GP_uunUvb3P75-49UdBjxLRLn0MMz9WIcRmlgm6JskLdIgTRHRkiFwcYzK5lIWLikU2jyQziRa5aErfCQxreh3L8A2ueShbMH2aPBudNSEe4qiv6qWkVKp31kQGRK_p3qDActGAX_SwRofbt7VXCO__tX_-bNdgyu1yy261Rq5Dls4uQGX1wox3oSj_TIF0vtgeH9FlFnJXpezzkQPcSbeY1lg1pZ7qaKuSTsW3dMx6bc8_iJoUPTm0wkKvmLFY6OqU88t-HQuut2G1oRedwdEJPkYOLKEewqjbaCt9COXRzoPIqOsasPzFRAyW1dk58YgpxlFZoyZrMFMGx43orOqDMnfhF4xmhoBrhxePpjOx1ltiDKXqwgLFQdOYqidz8e0iCZJosQo8t3b8IyxmPFnpclYU6dpkEpcKSzrag7BKU6n6e-tIJfVhm-R_cZbGx41w2Sy-BzKTHB6VsoEXBI5iNuwW6G7mbNKw5hIgnTRG7jfUGpzZHJyXJZFp9iG8-Hiu_-e10O4RCsgezsYHtyDHUk-Krsigd6D1nJ-hvfhov22PFnMH9TrWcDn814LvwA6DpHs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Saving+Multi-Agent+Deep+Reinforcement+Learning+Algorithm+for+Drone+Routing+Problem&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Shu%2C+Xiulan&rft.au=Lin%2C+Anping&rft.au=Wen%2C+Xupeng&rft.date=2024-10-18&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=20&rft_id=info:doi/10.3390%2Fs24206698&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon