Data Fusion of Dual Foot-Mounted INS Based on Human Step Length Model

Pedestrian navigation methods based on inertial sensors are commonly used to solve navigation and positioning problems when satellite signals are unavailable. To address the issue of heading angle errors accumulating over time in pedestrian navigation systems that rely solely on the Zero Velocity Up...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 24; H. 4; S. 1073
Hauptverfasser: Chen, Jianqiang, Liu, Gang, Guo, Meifeng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 07.02.2024
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Pedestrian navigation methods based on inertial sensors are commonly used to solve navigation and positioning problems when satellite signals are unavailable. To address the issue of heading angle errors accumulating over time in pedestrian navigation systems that rely solely on the Zero Velocity Update (ZUPT) algorithm, it is feasible to use the pedestrian’s motion constraints to constrain the errors. Firstly, a human step length model is built using human kinematic data collected by the motion capture system. Secondly, we propose the bipedal constraint algorithm based on the established human step length model. Real field experiments demonstrate that, by introducing the bipedal constraint algorithm, the mean biped radial errors of the experiments are reduced by 68.16% and 50.61%, respectively. The experimental results show that the proposed algorithm effectively reduces the radial error of the navigation results and improves the accuracy of the navigation.
AbstractList Pedestrian navigation methods based on inertial sensors are commonly used to solve navigation and positioning problems when satellite signals are unavailable. To address the issue of heading angle errors accumulating over time in pedestrian navigation systems that rely solely on the Zero Velocity Update (ZUPT) algorithm, it is feasible to use the pedestrian’s motion constraints to constrain the errors. Firstly, a human step length model is built using human kinematic data collected by the motion capture system. Secondly, we propose the bipedal constraint algorithm based on the established human step length model. Real field experiments demonstrate that, by introducing the bipedal constraint algorithm, the mean biped radial errors of the experiments are reduced by 68.16% and 50.61%, respectively. The experimental results show that the proposed algorithm effectively reduces the radial error of the navigation results and improves the accuracy of the navigation.
Pedestrian navigation methods based on inertial sensors are commonly used to solve navigation and positioning problems when satellite signals are unavailable. To address the issue of heading angle errors accumulating over time in pedestrian navigation systems that rely solely on the Zero Velocity Update (ZUPT) algorithm, it is feasible to use the pedestrian's motion constraints to constrain the errors. Firstly, a human step length model is built using human kinematic data collected by the motion capture system. Secondly, we propose the bipedal constraint algorithm based on the established human step length model. Real field experiments demonstrate that, by introducing the bipedal constraint algorithm, the mean biped radial errors of the experiments are reduced by 68.16% and 50.61%, respectively. The experimental results show that the proposed algorithm effectively reduces the radial error of the navigation results and improves the accuracy of the navigation.Pedestrian navigation methods based on inertial sensors are commonly used to solve navigation and positioning problems when satellite signals are unavailable. To address the issue of heading angle errors accumulating over time in pedestrian navigation systems that rely solely on the Zero Velocity Update (ZUPT) algorithm, it is feasible to use the pedestrian's motion constraints to constrain the errors. Firstly, a human step length model is built using human kinematic data collected by the motion capture system. Secondly, we propose the bipedal constraint algorithm based on the established human step length model. Real field experiments demonstrate that, by introducing the bipedal constraint algorithm, the mean biped radial errors of the experiments are reduced by 68.16% and 50.61%, respectively. The experimental results show that the proposed algorithm effectively reduces the radial error of the navigation results and improves the accuracy of the navigation.
Audience Academic
Author Liu, Gang
Guo, Meifeng
Chen, Jianqiang
AuthorAffiliation 2 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
1 Department of Precision Instrument, Tsinghua University, Beijing 100084, China; chenjq16@g.ecc.u-tokyo.ac.jp (J.C.); guomf@tsinghua.edu.cn (M.G.)
AuthorAffiliation_xml – name: 1 Department of Precision Instrument, Tsinghua University, Beijing 100084, China; chenjq16@g.ecc.u-tokyo.ac.jp (J.C.); guomf@tsinghua.edu.cn (M.G.)
– name: 2 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Author_xml – sequence: 1
  givenname: Jianqiang
  orcidid: 0000-0002-0557-7103
  surname: Chen
  fullname: Chen, Jianqiang
– sequence: 2
  givenname: Gang
  orcidid: 0000-0001-6676-6621
  surname: Liu
  fullname: Liu, Gang
– sequence: 3
  givenname: Meifeng
  surname: Guo
  fullname: Guo, Meifeng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38400230$$D View this record in MEDLINE/PubMed
BookMark eNplkstO3DAUQK2KqjzaRX-gitRNWQT8ShyvKgpMGWloF7Rry_Fj8ChjD7FTqX_PnQ4goPLCr3OPfX19iPZiig6hjwSfMCbxaaYcc4IFe4MOCKe87ijFe8_G--gw5xXGlDHWvUP7rOPbCT5Alxe66Go25ZBilXx1MemhmqVU6us0xeJsNf9xU33TGUZAXE1rHaub4jbVwsVlua2uk3XDe_TW6yG7Dw_9Efo9u_x1flUvfn6fn58tatNgWWpHu1ZIT2ljXdcLxqyTXohOaGqckb0lxgjtpTFe07b1rG05IQRbYXXf2J4dofnOa5Neqc0Y1nr8q5IO6t9CGpdKjyWYwSnwS923rGe04RKDUPimFdxLwjhuBbi-7lybqV87a1wsox5eSF_uxHCrlumPIriTlDIKhi8PhjHdTS4XtQ7ZuGHQ0aUpKyoZxUTShgD6-RW6StMY4a22FMFStg0D6mRHLTVkEKJPcLCBZt06GKi5D7B-JjooNu-IhIBPz3N4uvxjfQE43QFmTDmPzisTii5QbDCHAXJR2x-knn4QRBy_iniU_s_eA_qZwYg
CitedBy_id crossref_primary_10_1016_j_measurement_2024_115497
crossref_primary_10_56984_8ZG00E1LXFF
Cites_doi 10.1109/UPINLBS.2018.8559758
10.1109/TBME.2010.2060723
10.1109/JSEN.2021.3066840
10.1109/JSEN.2021.3050456
10.1109/IPIN.2015.7346954
10.1109/TITS.2014.2303115
10.3390/s20010214
10.1109/JSEN.2020.2989865
10.1088/1742-6596/1656/1/012009
10.1109/I2MTC.2016.7520489
10.1109/ACCESS.2020.2993534
10.1109/JSEN.2016.2631629
10.1109/ACCESS.2022.3144687
10.1109/JSEN.2019.2902422
10.1017/S0373463308005043
10.1017/S037346331700042X
10.3390/s21031002
10.1109/JSEN.2020.3029719
10.1109/ISMS.2013.46
10.1109/JSEN.2014.2363157
10.1109/RADIOELEK.2007.371487
10.3390/s19040840
10.1109/MCG.2005.140
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s24041073
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (subscription)
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_8b79ab63b325490fa27f5674f9134067
PMC10892232
A784104819
38400230
10_3390_s24041073
Genre Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2021YFA0716603
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c509t-e28679f225de8b733de9f7787a2cec9bd1cc7af9ccfa266f36641110d7dab5db3
IEDL.DBID BENPR
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001172319100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:53:36 EDT 2025
Tue Nov 04 02:05:57 EST 2025
Thu Sep 04 17:27:42 EDT 2025
Tue Oct 07 07:23:38 EDT 2025
Tue Nov 04 18:34:03 EST 2025
Wed Feb 19 02:09:51 EST 2025
Sat Nov 29 07:17:49 EST 2025
Tue Nov 18 21:41:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords MIMU
bipedal constraint algorithm
ZUPT
pedestrian navigation
human step length model
INS
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-e28679f225de8b733de9f7787a2cec9bd1cc7af9ccfa266f36641110d7dab5db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0557-7103
0000-0001-6676-6621
OpenAccessLink https://www.proquest.com/docview/2931099653?pq-origsite=%requestingapplication%
PMID 38400230
PQID 2931099653
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_8b79ab63b325490fa27f5674f9134067
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10892232
proquest_miscellaneous_2932019251
proquest_journals_2931099653
gale_infotracacademiconefile_A784104819
pubmed_primary_38400230
crossref_citationtrail_10_3390_s24041073
crossref_primary_10_3390_s24041073
PublicationCentury 2000
PublicationDate 20240207
PublicationDateYYYYMMDD 2024-02-07
PublicationDate_xml – month: 2
  year: 2024
  text: 20240207
  day: 7
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Shi (ref_27) 2021; 29
Borenstein (ref_19) 2009; 62
ref_13
Klein (ref_16) 2020; 8
ref_34
Foxlin (ref_18) 2005; 25
ref_10
ref_31
Basso (ref_8) 2017; 17
Xu (ref_29) 2015; 23
ref_17
Li (ref_33) 2015; 37
Asraf (ref_14) 2022; 22
ref_15
Zhang (ref_24) 2015; 23
Luo (ref_12) 2021; 21
Qian (ref_25) 2015; 23
Patel (ref_30) 2022; 10
Liu (ref_9) 2021; 21
Jiang (ref_1) 2017; 70
Bobkov (ref_23) 2014; 15
Shi (ref_26) 2017; 25
Skog (ref_20) 2010; 57
ref_22
Yao (ref_7) 2020; 20
Niu (ref_32) 2019; 19
ref_2
Xu (ref_28) 2016; 24
Lin (ref_11) 2020; 1656
ref_5
ref_4
Pan (ref_3) 2018; 5
ref_6
Zhang (ref_21) 2014; 15
References_xml – ident: ref_31
  doi: 10.1109/UPINLBS.2018.8559758
– volume: 24
  start-page: 325
  year: 2016
  ident: ref_28
  article-title: Improved indoor pedestrian navigation method using low-cost foot-mounted AHRS and shoulder-mounted compass
  publication-title: J. Chin. Inert. Technol.
– volume: 57
  start-page: 2657
  year: 2010
  ident: ref_20
  article-title: Zero-Velocity Detection—An Algorithm Evaluation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2060723
– ident: ref_5
– volume: 22
  start-page: 4932
  year: 2022
  ident: ref_14
  article-title: PDRNet: A Deep-Learning Pedestrian Dead Reckoning Framework
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3066840
– volume: 21
  start-page: 8479
  year: 2021
  ident: ref_9
  article-title: Kalman Filter-Based Data Fusion of Wi-Fi RTT and PDR for Indoor Localization
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3050456
– ident: ref_10
  doi: 10.1109/IPIN.2015.7346954
– volume: 29
  start-page: 8
  year: 2021
  ident: ref_27
  article-title: Error correcting method based on adaptive step-length constraint for dual MIMU pedestrian navigation system
  publication-title: J. Chin. Inert. Technol.
– volume: 15
  start-page: 1714
  year: 2014
  ident: ref_23
  article-title: Pedestrian Simultaneous Localization and Mapping in Multistory Buildings Using Inertial Sensors
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2014.2303115
– ident: ref_15
  doi: 10.3390/s20010214
– volume: 20
  start-page: 9685
  year: 2020
  ident: ref_7
  article-title: A Robust Step Detection and Stride Length Estimation for Pedestrian Dead Reckoning Using a Smartphone
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2989865
– volume: 1656
  start-page: 012009
  year: 2020
  ident: ref_11
  article-title: Deep heading estimation for pedestrian dead reckoning
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1656/1/012009
– volume: 23
  start-page: 24
  year: 2015
  ident: ref_25
  article-title: Pedestrian navigation method based on kinematic mechanism of human lower limb
  publication-title: J. Chin. Inert. Technol.
– ident: ref_22
  doi: 10.1109/I2MTC.2016.7520489
– volume: 25
  start-page: 6
  year: 2017
  ident: ref_26
  article-title: Dual-MIMU navigation position correction method by inequality constrained Kalman filter
  publication-title: J. Chin. Inert. Technol.
– volume: 23
  start-page: 714
  year: 2015
  ident: ref_29
  article-title: Indoor pedestrian navigation based on double-IMU framework
  publication-title: J. Chin. Inert. Technol.
– volume: 8
  start-page: 85706
  year: 2020
  ident: ref_16
  article-title: StepNet—Deep Learning Approaches for Step Length Estimation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2993534
– volume: 17
  start-page: 534
  year: 2017
  ident: ref_8
  article-title: Pedestrian Dead Reckoning Based on Frequency Self-Synchronization and Body Kinematics
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2016.2631629
– volume: 23
  start-page: 457
  year: 2015
  ident: ref_24
  article-title: Yaw error self-observation algorithm for pedestrian navigation via foot-mounted inertial navigation system
  publication-title: J. Chin. Inert. Technol.
– volume: 10
  start-page: 17565
  year: 2022
  ident: ref_30
  article-title: Multi-IMU Based Alternate Navigation Frameworks: Performance & Comparison for UAS
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3144687
– volume: 19
  start-page: 4577
  year: 2019
  ident: ref_32
  article-title: Data Fusion of Dual Foot-Mounted IMU for Pedestrian Navigation
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2902422
– ident: ref_6
– volume: 62
  start-page: 41
  year: 2009
  ident: ref_19
  article-title: Heuristic Reduction of Gyro Drift for Personnel Tracking Systems
  publication-title: J. Navig.
  doi: 10.1017/S0373463308005043
– volume: 70
  start-page: 1183
  year: 2017
  ident: ref_1
  article-title: Seamless Indoor-Outdoor Navigation based on GNSS, INS and Terrestrial Ranging Techniques
  publication-title: J. Navig.
  doi: 10.1017/S037346331700042X
– ident: ref_4
  doi: 10.3390/s21031002
– volume: 21
  start-page: 4280
  year: 2021
  ident: ref_12
  article-title: Learning-Based Complex Motion Patterns Recognition for Pedestrian Dead Reckoning
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3029719
– ident: ref_34
  doi: 10.1109/ISMS.2013.46
– ident: ref_17
– volume: 15
  start-page: 1421
  year: 2014
  ident: ref_21
  article-title: A Handheld Inertial Pedestrian Navigation System with Accurate Step Modes and Device Poses Recognition
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2014.2363157
– ident: ref_2
  doi: 10.1109/RADIOELEK.2007.371487
– ident: ref_13
  doi: 10.3390/s19040840
– volume: 37
  start-page: 237
  year: 2015
  ident: ref_33
  article-title: Dual MIMU Pedestrian Navigation Scheme Based on Equality Constraint Kalman Filtering
  publication-title: Piezoelectrics Acoustooptics
– volume: 5
  start-page: 1
  year: 2018
  ident: ref_3
  article-title: A Survey of Autonomous Navigation Technology for Individual Soldier
  publication-title: Navig. Position. Timing
– volume: 25
  start-page: 38
  year: 2005
  ident: ref_18
  article-title: Pedestrian Tracking with Shoe-Mounted Inertial Sensors
  publication-title: IEEE Comput. Graph. Appl.
  doi: 10.1109/MCG.2005.140
SSID ssj0023338
Score 2.4238493
Snippet Pedestrian navigation methods based on inertial sensors are commonly used to solve navigation and positioning problems when satellite signals are unavailable....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1073
SubjectTerms Accelerometers
Accuracy
Algorithms
Analysis
Attitudes
Biomechanical Phenomena
bipedal constraint algorithm
Deep learning
Electronics in navigation
Foot
Gait
human step length model
Humans
Hypothesis testing
INS
Kinematics
MIMU
Motion
Motion capture
Navigation systems
pedestrian navigation
Pedestrians
Radio frequency identification
Sensors
ZUPT
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEB9K6UEP0mrVaJVVBL2EvuxudpNja_vw0BYPFnpb9tMWSiJ9ef37nUnywgsKXrw8QjIPNjOZj1928huAT2UspXa1yKWoXC4L_KlETHik8bTC-Bf6D4Uv9NVVdXNTf98a9UU9YQM98KC448rp2jolnCAos0iW61QqLRNtGWOopeiLVc8GTI1QSyDyGniEBIL64xXmLYlAR8yyT0_S_2co3spF8z7JrcSz3IdnY8XIToaVHsBObJ7D0y0ewRdwfmY7y5ZrevPF2sTO1viHZdt2-SWNgoiBIUZnp5iwAkOJ_sU9o_4udhGbn90to4lo94dwvTz_8fVbPs5HyD2m-S6PnNjyEnpkiKgmIUKsk0YPtNxHX7tQeK9tqr1HrSmVhFISQ9si6GBdGZx4CbtN28TXwAQXvnDJW8kjprVolS7Qm6lFP0jHZQZfNnozfiQPpxkW9wZBBKnYTCrO4OMk-mtgzPib0CkpfxIgkuv-BJrejKY3_zJ9Bp_JdIZcERfj7fhFAd4SkVqZE9pTJT6cOoOjjXXN6KMrg4UObQuqElfzYbqM3kVbJraJ7bqX4VQEl0UGr4aHYVqzQGxMCC6DavaYzG5qfqW5u-0ZvItFVWNdxt_8DzW8hSccK62-lVwfwW73sI7vYM8_dnerh_e9X_wGliIPFQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Data Fusion of Dual Foot-Mounted INS Based on Human Step Length Model
URI https://www.ncbi.nlm.nih.gov/pubmed/38400230
https://www.proquest.com/docview/2931099653
https://www.proquest.com/docview/2932019251
https://pubmed.ncbi.nlm.nih.gov/PMC10892232
https://doaj.org/article/8b79ab63b325490fa27f5674f9134067
Volume 24
WOSCitedRecordID wos001172319100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RlAMceBcMJVoQElysxl7ba59QQxOB1EQRAimcrH25rVTZJXE48tuZ2WxMLBAXLqtoPZF2PTuvnfE3AG9SmyZCFTxMeK7CJMIh57bCXwKnM9R_xn0ofC7m83y5LBb-wm3tyyp3OtEpatNouiM_QbNESZws5e9vvofUNYqyq76FxgEcElJZMoDD8WS--NyFXBwjsC2eEMfg_mSN9ivBgIf3rJAD6_9TJe_ZpH695J4Bmt7_36U_gHve9WSn27PyEG7Z-hHc3QMkfAyTM9lKNt3QFRprKna2wT9Mm6YNZ9RTwhqGwT4bo-UzDClcBoBRoRg7t_VFe8motdr1E_g6nXz58DH0jRZCjf5CG9qYYPcqFG1jcyU4N7aoBIqyjLXVhTKR1kJWhdaVRINe8SxLUEeOjDBSpUbxIxjUTW2fAeMx15GqtExii_bRykxEqBao1t8kKk4CeLd78aX2KOTUDOO6xGiEeFR2PArgdUd6s4Xe-BvRmLjXERBatptoVhelF74S91RIlXHFKRwe4SZElWYiqajsAM11AG-J9yXJNC5GS_9pAm6J0LHKU0rOErBOEcDxjsWlF_Z1-Zu_AbzqHqOYUu5F1rbZOJqYvOk0CuDp9jR1a-YYZFMoGEDeO2e9TfWf1FeXDgo8GuUFOnjx83-v6wXcidEZc9Xm4hgG7WpjX8Jt_aO9Wq-GcCCWwo350AvQ0N1N4Dj7OcG5xafZ4tsvykAlgQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFIly4E0xFFgQCC5WY-_aax8QakmjRk2iSBSpnMx6d91WquySOCD-FL-RGb9IBOLWAxfLssfWjv15vh3P7AzAq8AGQqYxdwWPUld4uIm4zXBP4uEQ7Z-pFgqP5XQanZzEsw342a6FobTK1iZWhtoUmv6R7yItURAnDPj7y68udY2i6GrbQqOGxZH98R1dtsW70QDf72vfHx4cfzh0m64CrkZyLF3rU425DHFsbJRKzo2NM4m4Vb62Ok6Np7VUWax1ppC9Mh6GAg1C30ij0sCkHO97DTYFgj3qweZsNJl97lw8jh5fXb-I87i_u0C-FOhg8TXWq5oD_EkBKxy4np-5QnjD2__bo7oDt5qpNdurv4W7sGHze3BzpeDifTgYqFKx4ZJ-EbIiY4MlXjAsitKdUM8Ma9ho-pHtI7MbhhJVhINRIhwb2_y0PGPUOu7iAXy6Ej0eQi8vcvsIGPe59tJMK-Fb5H-rQukhEmgtgxGpLxx4277oRDdV1qnZx0WC3hZhIukw4cDLTvSyLi3yN6F9QksnQNXAqwPF_DRpjEuCOsUqDXnKyd3voxIyC0IpMkqrwOmIA28IawnZLByMVs3SC1SJqn8lexR8psJBsQM7LaSSxpgtkt94cuBFdxrNEMWWVG6LZSXjk7cQeA5s1-jtxswjUbm6DkRruF5Tav1Mfn5WlTr3-lGME1j_8b_H9RxuHB5Pxsl4ND16Als-TjyrzHq5A71yvrRP4br-Vp4v5s-aD5bBl6sG_i9893-4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFqFy4E0xFFgQCC5WYu_aax8QakkjoqZRJEAqJ7PeR1upskvigPhr_DpmHNskAnHrgYtl2WNrx_52HjuzMwAvIhsJmafcFzzJfRHgIeHW4ZnEyzHKP1NvFB7LySQ5Pk6nG_Cz3QtDaZWtTKwFtSk1rZH3UC1RECeOeM81aRHTwfDtxVefOkhRpLVtp7GEyKH98R3dt_mb0QD_9cswHB58fPfebzoM-BoVZeXbkOrNOcS0sUkuOTc2dRIxrEJtdZqbQGupXKq1U6jJHI9jgcKhb6RReWRyju-9AltokgucY1vT0dH0c-fucfT-lrWMOE_7vTnqToHOFl_TgHWjgD_VwYo-XM_VXFF-w5v_82e7BTcak5vtLefIbdiwxR24vlKI8S4cDFSl2HBBS4esdGywwAeGZVn5R9RLwxo2mnxg-6jxDUOKOvLBKEGOjW1xUp0yail3fg8-XQof92GzKAv7ABgPuQ5yp5UILdoFVsUyQHFIexyMyEPhwev2p2e6qb5OTUDOM_TCCB9Zhw8PnnekF8uSI38j2ifkdARUJby-UM5OskboZMhTqvKY55yWAfrIhHRRLIWjdAs0Uzx4RbjLSJbhYLRqtmQgS1QVLNujoDQVFEo92G3hlTVCbp79xpYHz7rbKJ4o5qQKWy5qmpC8iCjwYGeJ5G7MPBG1C-xBsobxNabW7xRnp3UJ9KCfpGjYhg__Pa6ncA3Rno1Hk8NHsB2iPVon3Mtd2KxmC_sYrupv1dl89qSZuwy-XDbufwHwsIh4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Fusion+of+Dual+Foot-Mounted+INS+Based+on+Human+Step+Length+Model&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Jianqiang&rft.au=Liu%2C+Gang&rft.au=Guo%2C+Meifeng&rft.date=2024-02-07&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=4&rft_id=info:doi/10.3390%2Fs24041073&rft.externalDocID=A784104819
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon