A Low-Carbon and Economic Dispatch Strategy for a Multi-Microgrid Based on a Meteorological Classification to Handle the Uncertainty of Wind Power

In a modern power system, reducing carbon emissions has become a significant goal in mitigating the impact of global warming. Therefore, renewable energy sources, particularly wind-power generation, have been extensively implemented in the system. Despite the advantages of wind power, its uncertaint...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 23; no. 11; p. 5350
Main Authors: Liu, Yang, Li, Xueling, Liu, Yamei
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 05.06.2023
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In a modern power system, reducing carbon emissions has become a significant goal in mitigating the impact of global warming. Therefore, renewable energy sources, particularly wind-power generation, have been extensively implemented in the system. Despite the advantages of wind power, its uncertainty and randomness lead to critical security, stability, and economic issues in the power system. Recently, multi-microgrid systems (MMGSs) have been considered as a suitable wind-power deployment candidate. Although wind power can be efficiently utilized by MMGSs, uncertainty and randomness still have a significant impact on the dispatching and operation of the system. Therefore, to address the wind power uncertainty issue and achieve an optimal dispatching strategy for MMGSs, this paper presents an adjustable robust optimization (ARO) model based on meteorological clustering. Firstly, the maximum relevance minimum redundancy (MRMR) method and the CURE clustering algorithm are employed for meteorological classification in order to better identify wind patterns. Secondly, a conditional generative adversarial network (CGAN) is adopted to enrich the wind-power datasets with different meteorological patterns, resulting in the construction of ambiguity sets. Thirdly, the uncertainty sets that are finally employed by the ARO framework to establish a two-stage cooperative dispatching model for MMGS can be derived from the ambiguity sets. Additionally, stepped carbon trading is introduced to control the carbon emissions of MMGSs. Finally, the alternative direction method of multipliers (ADMM) and the column and constraint generation (C&CG) algorithm are adopted to achieve a decentralized solution for the dispatching model of MMGSs. Case studies indicate that the presented model has a great performance in improving the wind-power description accuracy, increasing cost efficiency, and reducing system carbon emissions. However, the case studies also report that the approach consumes a relative long running time. Therefore, in future research, the solution algorithm will be further improved for the purpose of raising the efficiency of the solution.
AbstractList In a modern power system, reducing carbon emissions has become a significant goal in mitigating the impact of global warming. Therefore, renewable energy sources, particularly wind-power generation, have been extensively implemented in the system. Despite the advantages of wind power, its uncertainty and randomness lead to critical security, stability, and economic issues in the power system. Recently, multi-microgrid systems (MMGSs) have been considered as a suitable wind-power deployment candidate. Although wind power can be efficiently utilized by MMGSs, uncertainty and randomness still have a significant impact on the dispatching and operation of the system. Therefore, to address the wind power uncertainty issue and achieve an optimal dispatching strategy for MMGSs, this paper presents an adjustable robust optimization (ARO) model based on meteorological clustering. Firstly, the maximum relevance minimum redundancy (MRMR) method and the CURE clustering algorithm are employed for meteorological classification in order to better identify wind patterns. Secondly, a conditional generative adversarial network (CGAN) is adopted to enrich the wind-power datasets with different meteorological patterns, resulting in the construction of ambiguity sets. Thirdly, the uncertainty sets that are finally employed by the ARO framework to establish a two-stage cooperative dispatching model for MMGS can be derived from the ambiguity sets. Additionally, stepped carbon trading is introduced to control the carbon emissions of MMGSs. Finally, the alternative direction method of multipliers (ADMM) and the column and constraint generation (C&CG) algorithm are adopted to achieve a decentralized solution for the dispatching model of MMGSs. Case studies indicate that the presented model has a great performance in improving the wind-power description accuracy, increasing cost efficiency, and reducing system carbon emissions. However, the case studies also report that the approach consumes a relative long running time. Therefore, in future research, the solution algorithm will be further improved for the purpose of raising the efficiency of the solution.
In a modern power system, reducing carbon emissions has become a significant goal in mitigating the impact of global warming. Therefore, renewable energy sources, particularly wind-power generation, have been extensively implemented in the system. Despite the advantages of wind power, its uncertainty and randomness lead to critical security, stability, and economic issues in the power system. Recently, multi-microgrid systems (MMGSs) have been considered as a suitable wind-power deployment candidate. Although wind power can be efficiently utilized by MMGSs, uncertainty and randomness still have a significant impact on the dispatching and operation of the system. Therefore, to address the wind power uncertainty issue and achieve an optimal dispatching strategy for MMGSs, this paper presents an adjustable robust optimization (ARO) model based on meteorological clustering. Firstly, the maximum relevance minimum redundancy (MRMR) method and the CURE clustering algorithm are employed for meteorological classification in order to better identify wind patterns. Secondly, a conditional generative adversarial network (CGAN) is adopted to enrich the wind-power datasets with different meteorological patterns, resulting in the construction of ambiguity sets. Thirdly, the uncertainty sets that are finally employed by the ARO framework to establish a two-stage cooperative dispatching model for MMGS can be derived from the ambiguity sets. Additionally, stepped carbon trading is introduced to control the carbon emissions of MMGSs. Finally, the alternative direction method of multipliers (ADMM) and the column and constraint generation (C&CG) algorithm are adopted to achieve a decentralized solution for the dispatching model of MMGSs. Case studies indicate that the presented model has a great performance in improving the wind-power description accuracy, increasing cost efficiency, and reducing system carbon emissions. However, the case studies also report that the approach consumes a relative long running time. Therefore, in future research, the solution algorithm will be further improved for the purpose of raising the efficiency of the solution.In a modern power system, reducing carbon emissions has become a significant goal in mitigating the impact of global warming. Therefore, renewable energy sources, particularly wind-power generation, have been extensively implemented in the system. Despite the advantages of wind power, its uncertainty and randomness lead to critical security, stability, and economic issues in the power system. Recently, multi-microgrid systems (MMGSs) have been considered as a suitable wind-power deployment candidate. Although wind power can be efficiently utilized by MMGSs, uncertainty and randomness still have a significant impact on the dispatching and operation of the system. Therefore, to address the wind power uncertainty issue and achieve an optimal dispatching strategy for MMGSs, this paper presents an adjustable robust optimization (ARO) model based on meteorological clustering. Firstly, the maximum relevance minimum redundancy (MRMR) method and the CURE clustering algorithm are employed for meteorological classification in order to better identify wind patterns. Secondly, a conditional generative adversarial network (CGAN) is adopted to enrich the wind-power datasets with different meteorological patterns, resulting in the construction of ambiguity sets. Thirdly, the uncertainty sets that are finally employed by the ARO framework to establish a two-stage cooperative dispatching model for MMGS can be derived from the ambiguity sets. Additionally, stepped carbon trading is introduced to control the carbon emissions of MMGSs. Finally, the alternative direction method of multipliers (ADMM) and the column and constraint generation (C&CG) algorithm are adopted to achieve a decentralized solution for the dispatching model of MMGSs. Case studies indicate that the presented model has a great performance in improving the wind-power description accuracy, increasing cost efficiency, and reducing system carbon emissions. However, the case studies also report that the approach consumes a relative long running time. Therefore, in future research, the solution algorithm will be further improved for the purpose of raising the efficiency of the solution.
Audience Academic
Author Liu, Yamei
Liu, Yang
Li, Xueling
AuthorAffiliation 2 Key Laboratory of Intelligent Electric Power Grid of Sichuan Province, Sichuan University, Chengdu 610065, China
1 College of Electrical Engineering, Sichuan University, Chengdu 610065, China; yang.liu@scu.edu.cn (Y.L.); shirley_neenee@163.com (X.L.)
AuthorAffiliation_xml – name: 2 Key Laboratory of Intelligent Electric Power Grid of Sichuan Province, Sichuan University, Chengdu 610065, China
– name: 1 College of Electrical Engineering, Sichuan University, Chengdu 610065, China; yang.liu@scu.edu.cn (Y.L.); shirley_neenee@163.com (X.L.)
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-7935-7146
  surname: Liu
  fullname: Liu, Yang
– sequence: 2
  givenname: Xueling
  surname: Li
  fullname: Li, Xueling
– sequence: 3
  givenname: Yamei
  surname: Liu
  fullname: Liu, Yamei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37300077$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQhleoiH7AgT-ALHGBw7b-XO-eUAiFVkoEElQcV7Ne78bVZh1shyp_g1_MJClRWyEfPLKfeWc8fk-zo9GPNsteM3ouREUvIheMKaHos-yESS7zknN69CA-zk5jvKWUCyHKF9mx0IJSqvVJ9mdCZv4un0Jo_EhgbMml8aNfOkM-ubiCZBbkewqQbL8hnQ8EyHw9JJfPnQm-D64lHyHalmyzydwm64MffO8MDGQ6QIyuwzg5vE-eXGGFwZK0sORmNDYkcGPaEN-Rnw5rf_N3NrzMnncwRPvqfj_Lbj5f_phe5bOvX66nk1luFK1S3ha0EVBI0FbyUhlTyU4KsLSUVaMkBhwa4Ea1DKTmsqJKtRVXjGvdSsXFWXa912093Nar4JYQNrUHV-8OfOhrCMmZwdaFLsquxFl3vJC0KkpRSdlQLapKMw2AWh_2Wqt1s7StsSPObHgk-vhmdIu6979rRrkqUAgV3t0rBP9rbWOqly4aOwwwWr-ONS-5LCquVYHo2yforV-HEWe1o6gqmWBIne-pHvAFbuw8Fja4Wou_iwbqHJ5PtNo2wKjChDcP33Bo_p9ZEHi_B_DnYwy2OyCM1lsj1gcjInvxhDUu7WyAXbjhPxl_ASb13LA
CitedBy_id crossref_primary_10_1515_nleng_2025_0134
crossref_primary_10_3390_en17081954
crossref_primary_10_3390_en18174635
crossref_primary_10_3390_pr12010218
crossref_primary_10_3390_en18143679
crossref_primary_10_1038_s41598_025_05145_3
crossref_primary_10_3390_en17081878
Cites_doi 10.1016/j.epsr.2020.106412
10.1016/j.ijepes.2022.107963
10.1016/j.ijepes.2021.107898
10.1109/TSTE.2017.2728098
10.1109/TPWRS.2019.2891057
10.1016/j.ijepes.2022.108902
10.1049/joe.2018.5488
10.14710/ijred.2022.43838
10.1016/j.energy.2020.117273
10.1155/2022/9569224
10.1049/iet-gtd.2018.5239
10.1007/s40095-022-00503-7
10.1109/ACCESS.2018.2875936
10.1016/j.apenergy.2021.118034
10.1016/j.renene.2022.11.006
10.1016/j.ijepes.2022.108558
10.1016/S0306-4379(01)00008-4
10.1109/TPWRS.2021.3096144
10.1016/j.ijepes.2021.107891
10.3390/electronics12010214
10.1016/j.segan.2022.100969
10.1109/TIE.2017.2787605
10.1109/TPWRS.2016.2531739
10.1016/j.apenergy.2021.117024
10.1049/iet-rpg.2019.0263
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23115350
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_6768f8339f26409683944b07399717aa
PMC10256073
A752560105
37300077
10_3390_s23115350
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c509t-d60b3a64a7e4285cc94f43ae0849b54ae02aba2c5d1a47249055d9251277d4523
IEDL.DBID DOA
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001006414400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:04:05 EDT 2025
Tue Nov 04 02:06:55 EST 2025
Thu Sep 04 18:04:35 EDT 2025
Tue Oct 07 07:31:06 EDT 2025
Tue Nov 04 17:19:17 EST 2025
Thu Apr 03 07:13:25 EDT 2025
Sat Nov 29 07:17:08 EST 2025
Tue Nov 18 22:16:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords adjustable robust optimization
low-carbon operation
uncertainty
economic operation
meteorological classification
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-d60b3a64a7e4285cc94f43ae0849b54ae02aba2c5d1a47249055d9251277d4523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7935-7146
OpenAccessLink https://doaj.org/article/6768f8339f26409683944b07399717aa
PMID 37300077
PQID 2824058131
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_6768f8339f26409683944b07399717aa
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10256073
proquest_miscellaneous_2824692756
proquest_journals_2824058131
gale_infotracacademiconefile_A752560105
pubmed_primary_37300077
crossref_primary_10_3390_s23115350
crossref_citationtrail_10_3390_s23115350
PublicationCentury 2000
PublicationDate 2023-06-05
PublicationDateYYYYMMDD 2023-06-05
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-05
  day: 05
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ning (ref_19) 2022; 37
Zhang (ref_22) 2020; 186
Jiang (ref_18) 2018; 6
Bauer (ref_5) 2023; 33
Guha (ref_25) 2001; 26
Zhang (ref_3) 2023; 144
Zhai (ref_14) 2022; 139
Li (ref_20) 2016; 31
Shayan (ref_2) 2022; 11
Wei (ref_7) 2021; 295
Wang (ref_17) 2022; 306
Qin (ref_21) 2019; 13
Yang (ref_24) 2023; 147
Liu (ref_1) 2022; 137
ref_23
Hou (ref_15) 2019; 13
Wu (ref_11) 2022; 138
Shayan (ref_9) 2022; 201
Li (ref_10) 2018; 9
Wang (ref_13) 2020; 198
ref_26
Chen (ref_12) 2019; 66
Shayan (ref_4) 2023; 14
Xu (ref_8) 2019; 2019
Ning (ref_16) 2019; 34
Gupta (ref_6) 2022; 2022
References_xml – volume: 186
  start-page: 106412
  year: 2020
  ident: ref_22
  article-title: Bi-level distributed day-ahead schedule for islanded multi-microgrids in a carbon trading market
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2020.106412
– volume: 139
  start-page: 107963
  year: 2022
  ident: ref_14
  article-title: Distributed adjustable robust optimal power-gas flow considering wind power uncertainty
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.107963
– volume: 138
  start-page: 107898
  year: 2022
  ident: ref_11
  article-title: Data-driven adjustable robust Day-ahead economic dispatch strategy considering uncertainties of wind power generation and electric vehicles
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.107898
– volume: 9
  start-page: 273
  year: 2018
  ident: ref_10
  article-title: Optimal Stochastic Operation of Integrated Low-Carbon Electric Power, Natural Gas, and Heat Delivery System
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2017.2728098
– volume: 34
  start-page: 2409
  year: 2019
  ident: ref_16
  article-title: Data-Driven Adaptive Robust Unit Commitment Under Wind Power Uncertainty: A Bayesian Nonparametric Approach
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2891057
– ident: ref_26
– volume: 147
  start-page: 108902
  year: 2023
  ident: ref_24
  article-title: Coordinated optimization scheduling operation of integrated energy system considering demand response and carbon trading mechanism
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108902
– volume: 2019
  start-page: 5423
  year: 2019
  ident: ref_8
  article-title: Application of cluster analysis in short-term wind power forecasting model
  publication-title: J. Eng.
  doi: 10.1049/joe.2018.5488
– volume: 11
  start-page: 471
  year: 2022
  ident: ref_2
  article-title: Sustainable Design of a Near-Zero-Emissions Building Assisted by a Smart Hybrid Renewable Microgrid
  publication-title: Int. J. Renew. Energy Dev.
  doi: 10.14710/ijred.2022.43838
– volume: 198
  start-page: 117273
  year: 2020
  ident: ref_13
  article-title: A stochastic-robust coordinated optimization model for CCHP micro-grid considering multi-energy operation and power trading with electricity markets under uncertainties
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117273
– volume: 2022
  start-page: 9569224
  year: 2022
  ident: ref_6
  article-title: Probabilistic Load Flow of an Islanded Microgrid with WTGS and PV Uncertainties Containing Electric Vehicle Charging Loads
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1155/2022/9569224
– volume: 13
  start-page: 896
  year: 2019
  ident: ref_15
  article-title: Data-driven multi-time scale robust scheduling framework of hydrothermal power system considering cascade hydropower station and wind penetration
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2018.5239
– volume: 14
  start-page: 35
  year: 2023
  ident: ref_4
  article-title: A novel approach of synchronization of the sustainable grid with an intelligent local hybrid renewable energy control
  publication-title: Int. J. Energy Environ. Eng.
  doi: 10.1007/s40095-022-00503-7
– volume: 6
  start-page: 62193
  year: 2018
  ident: ref_18
  article-title: Scenario Generation for Wind Power Using Improved Generative Adversarial Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2875936
– volume: 306
  start-page: 118034
  year: 2022
  ident: ref_17
  article-title: Wasserstein and multivariate linear affine based distributionally robust optimization for CCHP-P2G scheduling considering multiple uncertainties
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118034
– volume: 201
  start-page: 179
  year: 2022
  ident: ref_9
  article-title: Multi-microgrid optimization and energy management under boost voltage converter with Markov prediction chain and dynamic decision algorithm
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.11.006
– volume: 144
  start-page: 108558
  year: 2023
  ident: ref_3
  article-title: An optimal dispatch model for virtual power plant that incorporates carbon trading and green certificate trading
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108558
– volume: 26
  start-page: 35
  year: 2001
  ident: ref_25
  article-title: Cure: An efficient clustering algorithm for large databases
  publication-title: Inf. Syst.
  doi: 10.1016/S0306-4379(01)00008-4
– volume: 37
  start-page: 191
  year: 2022
  ident: ref_19
  article-title: Deep Learning Based Distributionally Robust Joint Chance Constrained Economic Dispatch Under Wind Power Uncertainty
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2021.3096144
– volume: 137
  start-page: 107891
  year: 2022
  ident: ref_1
  article-title: Research on bidding strategy of virtual power plant considering carbon-electricity integrated market mechanism
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.107891
– ident: ref_23
  doi: 10.3390/electronics12010214
– volume: 33
  start-page: 100969
  year: 2023
  ident: ref_5
  article-title: Analytical uncertainty propagation for multi-period stochastic optimal power flow
  publication-title: Sustain. Energy Grids Netw.
  doi: 10.1016/j.segan.2022.100969
– volume: 66
  start-page: 1379
  year: 2019
  ident: ref_12
  article-title: Adaptive Robust Day-Ahead Dispatch for Urban Energy Systems
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2787605
– volume: 31
  start-page: 4330
  year: 2016
  ident: ref_20
  article-title: A Two-Tier Wind Power Time Series Model Considering Day-to-Day Weather Transition and Intraday Wind Power Fluctuations
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2016.2531739
– volume: 295
  start-page: 117024
  year: 2021
  ident: ref_7
  article-title: An optimal scheduling strategy for peer-to-peer trading in interconnected microgrids based on RO and Nash bargaining
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117024
– volume: 13
  start-page: 3050
  year: 2019
  ident: ref_21
  article-title: Weather division-based wind power forecasting model with feature selection
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2019.0263
SSID ssj0023338
Score 2.4410188
Snippet In a modern power system, reducing carbon emissions has become a significant goal in mitigating the impact of global warming. Therefore, renewable energy...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5350
SubjectTerms adjustable robust optimization
Air quality management
Algorithms
Alternative energy sources
Analysis
Carbon
Case studies
Classification
Clustering
Consumption
Economic aspects
economic operation
Efficiency
Electric power production
Emissions (Pollution)
Emissions trading
Feature selection
Global warming
Green technology
low-carbon operation
meteorological classification
Optimization
Probability distribution
Random variables
Renewable Energy - economics
Renewable resources
Uncertainty
Wind
Wind power
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcKAH3o9AQQNCgovVJHZi54S2haoHWvVAxd4s51UioaTNpqD-DX4xM46T7grEhT2tNo7WkT_PzBfPfMPYW_R6URyXMS-yOuRSpym3GObyCn1bWVPZgMpdswl1fKyXy-zEv3Bb-bTKySY6Q112Bb0j30VqgLGFjkT04fyCU9coOl31LTRuslvUNptwrpbXhEsg_xrVhARS-91VTNIygkrs13yQk-r_0yCveaTNbMk193Nw738nfp_d9YEnLEakPGA3qvYh216TI3zEfi3gc_eT79s-71qwbQlT2TJ8bNDy4AKDV7O9Agx2wYKr3-VHlNV31jcl7KFTLIHuhiMMx7t-sq3gum9SXpKDAgwdHDqBB8AIFE4Rei41YbiCroavDf73CfVve8xODz592T_kvmcDLzD0GHiZhrnA1baqQmKTFEUmaylsFWqZ5YnEL7HNbVwkZWSlQu4XIiYyCrKUKiWy4idsq-3a6hlVk-Mn0qmwOpehlDYVqtZxZMOK8nVkwN5Pq2gKL2hOfTW-GyQ2tOBmXvCAvZmHno8qHn8btEdQmAeQ8Lb7oevPjN_HJkV6Vmu8scZIEumfpsLinI47MyTG1gbsHQHJkHnAyRTWVzngI5HQllmoZCTBScB2JrwYbzdW5hosAXs9X8YdT8c4tq26y3FMmpFsf8CejtCc5yyo_UCoVMD0Bmg3HmrzStt8c6rikYt-lXj-73m9YHdi3FkuWy7ZYVtDf1m9ZLeLH0Oz6l-5_fcbPVE4gw
  priority: 102
  providerName: ProQuest
Title A Low-Carbon and Economic Dispatch Strategy for a Multi-Microgrid Based on a Meteorological Classification to Handle the Uncertainty of Wind Power
URI https://www.ncbi.nlm.nih.gov/pubmed/37300077
https://www.proquest.com/docview/2824058131
https://www.proquest.com/docview/2824692756
https://pubmed.ncbi.nlm.nih.gov/PMC10256073
https://doaj.org/article/6768f8339f26409683944b07399717aa
Volume 23
WOSCitedRecordID wos001006414400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC509eAexLfRdShF0EvYJN1Jd44z6ywrOEMQF8dT6LzWAUmWmVllL_4If7FVnQcZFLw4hzAkHeikqru-j1R9BfCaop4fBEXg5nHluVJHkWsI5rolxbai4rIBldlmE2q51KtVnIxafXFOWCsP3L6444jwcKWFiCsK3YS3NVdyZvx9KSYmYiw08lTck6mOagliXq2OEN3pHW8DFpURXFw_ij5WpP_PrXgUi_bzJEeB5_Qe3O0QI07bmd6HG2X9AA5HOoIP4dcUPzQ_3BOzyZoaTV1gX2-M79a0ZZBlsJOhvUZCqWjQFt66C07Hu9isC5xRNCuQ78YF4ehm02-KaNtmckKRtSHuGjyzygxI0BHPyWdsTsHuGpsKPxPDx4Qbrz2C89P5p5Mzt2u24OaEGXZuEXmZIDMZVRIjCfM8lpUUpvS0jLNQ0p_AZCbIw8I3UhFp88iYMaMjpQpJdPYxHNRNXT7lMnD6-ToSRmfSk9JEQlU68I1XcqKNdOBtb4Q075TIuSHGt5QYCdsrHezlwKth6GUrv_G3QTO25DCAFbPtCfKjtPOj9F9-5MAb9oOU1zVNJjddeQI9EitkpVMVtuw1dOCod5W0W_DblJgrQV_tC9-Bl8NlWqr8_cXUZXPVjoli1tt34EnrWcOcBfcN8JRyQO_53N5D7V-p11-tHLhvYasSz_7Ha3gOdwJaPjYZLjyCg93mqnwBt_Pvu_V2M4GbaqXsUU_g1my-TD5O7MKj4-LnnM4l7xfJl9_-_i6m
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBQk48H4YCiwIBBertnftXR8QSluqVE2iHlqRm1m_iiVkF8elyt_gh_AbmVk_mgjErQdysuK1PHbm9WVnvgF4g1HP9bzUs5Mwd2yhgsDWmObaGca2NKe2ARmbYRNyNlPzeXi0Ab_6Xhgqq-x9onHUaZXQf-TbCA0wt1Audz-efbdpahTtrvYjNFq1OMyWFwjZFh8O9vD3fet5-5-Od8d2N1XATjA4NnYaODFHebTMMPX2kyQUueA6c5QIY1_ggadj7SV-6mohEZ04KHVIaYCUqfCJ6ABd_jX045LAnpxfAjyOeK9lL-I8dLYXHlHZcGrpX4l5ZjTAnwFgJQKuV2euhLv9O__bi7oLt7vEmo1aS7gHG1l5H26t0C0-gJ8jNqku7F1dx1XJdJmyvi2b7RXoWVGBWcfWu2SYzDPNTH-yPaWqxdO6SNkOBv2U0dVsinCjqvvYwcx0Uaq7MqrOmoqNDYEFwwybnaBpmdKLZsmqnH0u8N5HNJ_uIZxcyUt5BJtlVWZPqFseP64KuFaxcITQAZe58lztZFSPJCx432tNlHSE7TQ35FuEwI0ULBoUzILXw9KzlqXkb4t2SPWGBUQsbr6o6tOo81NRgPAzV3hhjpkywltFjdMxbeeGCPy1tuAdKW5E7g-FSXTXxYGPRERi0Uj6Lcj3Ldjq9TPq_OIiulROC14Np9Gj0TaVLrPqvF0ThDSWwILHrSkMMnMar-BIaYFaM5K1h1o_UxZfDWu6a7J7yZ_-W66XcGN8PJ1Ek4PZ4TO46aFVm8pAfws2m_o8ew7Xkx9NsahfGNtn8OWqbeg3BqqTSA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKUJw4A01FFgQCC5W7N211z4glDZEjdpEOVBRTmb9aiMhuzgpVf4GP4dfx8z6QSIQtx7wybLX8q4zj2-yM98AvEKv53KecjsJc8eWge_bGmGunaFvS3MqG1CxaTahptPg5CScbcHPthaG0ipbm2gMdVom9B95H0MDxBaBK9x-3qRFzIaj9-ffbOogRTutbTuNWkQOs9Ulhm-Ld-Mh_tavOR99-Lh_YDcdBuwEHeXSTn0nFjg3rTKE4V6ShDKXQmdOIMPYk3jCdax54qWulgojFQdXEBIkUCqVHpEeoPnfRkgueQ-2Z-PJ7HMX7gmM_mouIyFCp7_gRGwjqMB_zQOaRgF_uoM1f7iZq7nm_Ea3_-fPdgduNZCbDWoduQtbWXEPbq4RMd6HHwN2VF7a-7qKy4LpImVtwTYbztHmomizhsd3xRDmM81M5bI9oXzG02qesj2EAymjp9kEA5Gyar0KM31HKSPLKAFbluzAUFswxN7sGJXOJGUsV6zM2ac5vntGnesewPGVfJSH0CvKItuhOno83MAXOoilI6X2hcoD7mono0wlacHbVoKipKFyp44iXyMM6UjYok7YLHjZDT2v-Uv-NmiPxLAbQJTj5kJZnUaNBYt8DEzzAB_MEUNj4BtQSXVMG72hcpXWFrwhIY7IMOJkEt3Ud-CSiGIsGiivDv89C3ZbWY0ai7mIfguqBS-622jraANLF1l5UY_xQ2pYYMGjWi26OQtqvOAoZUGwoTAbi9q8U8zPDJ-6a3C_Eo__Pa_ncB1VJzoaTw-fwA2OCm5SBr1d6C2ri-wpXEu-L-eL6lljCBh8uWol-gUsE52X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Low-Carbon+and+Economic+Dispatch+Strategy+for+a+Multi-Microgrid+Based+on+a+Meteorological+Classification+to+Handle+the+Uncertainty+of+Wind+Power&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Yang&rft.au=Li%2C+Xueling&rft.au=Liu%2C+Yamei&rft.date=2023-06-05&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=23&rft.issue=11&rft_id=info:doi/10.3390%2Fs23115350&rft_id=info%3Apmid%2F37300077&rft.externalDocID=PMC10256073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon