Adaptation of olfactory receptor abundances for efficient coding

Olfactory receptor usage is highly heterogeneous, with some receptor types being orders of magnitude more abundant than others. We propose an explanation for this striking fact: the receptor distribution is tuned to maximally represent information about the olfactory environment in a regime of effic...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:eLife Ročník 8
Hlavní autori: Teşileanu, Tiberiu, Cocco, Simona, Monasson, Rémi, Balasubramanian, Vijay
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England eLife Sciences Publications Ltd 26.02.2019
eLife Sciences Publication
eLife Sciences Publications, Ltd
Predmet:
ISSN:2050-084X, 2050-084X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Olfactory receptor usage is highly heterogeneous, with some receptor types being orders of magnitude more abundant than others. We propose an explanation for this striking fact: the receptor distribution is tuned to maximally represent information about the olfactory environment in a regime of efficient coding that is sensitive to the global context of correlated sensor responses. This model predicts that in mammals, where olfactory sensory neurons are replaced regularly, receptor abundances should continuously adapt to odor statistics. Experimentally, increased exposure to odorants leads variously, but reproducibly, to increased, decreased, or unchanged abundances of different activated receptors. We demonstrate that this diversity of effects is required for efficient coding when sensors are broadly correlated, and provide an algorithm for predicting which olfactory receptors should increase or decrease in abundance following specific environmental changes. Finally, we give simple dynamical rules for neural birth and death processes that might underlie this adaptation. A mouse’s nose contains over 10 million receptor neurons divided into about 1,000 different types, which detect airborne chemicals – called odorants – that make up smells. Each odorant activates many different receptor types. And each receptor type responds to many different odorants. To identify a smell, the brain must therefore consider the overall pattern of activation across all receptor types. Individual receptor neurons in the mammalian nose live for about 30 days, before new cells replace them. The entire population of odorant receptor neurons turns over every few weeks, even in adults. Studies have shown that some types of these receptor neurons are used more often than others, depending on the species, and are therefore much more abundant. Moreover, the usage patterns of different receptor types can also change when individual animals are exposed to different smells. Teşileanu et al. set out to develop a computer model that can explain these observations. The results revealed that the nose adjusts its odorant receptor neurons to provide the brain with as much information as possible about typical smells in the environment. Because each smell consists of multiple odorants, each odorant is more likely to occur alongside certain others. For example, the odorants that make up the scent of a flower are more likely to occur together than alongside the odorants in diesel. The nose takes advantage of these relationships by adjusting the abundance of the receptor types in line with them. Teşileanu et al. show that exposure to odorants leads to reproducible increases or decreases in different receptor types, depending on what would provide the brain with most information. The number of odorant receptor neurons in the human nose decreases with time. The current findings could help scientists understand how these changes affect our sense of smell as we age. This will require collaboration between experimental and theoretical scientists to measure the odors typical of our environments, and work out how our odorant receptor neurons detect them.
AbstractList Olfactory receptor usage is highly heterogeneous, with some receptor types being orders of magnitude more abundant than others. We propose an explanation for this striking fact: the receptor distribution is tuned to maximally represent information about the olfactory environment in a regime of efficient coding that is sensitive to the global context of correlated sensor responses. This model predicts that in mammals, where olfactory sensory neurons are replaced regularly, receptor abundances should continuously adapt to odor statistics. Experimentally, increased exposure to odorants leads variously, but reproducibly, to increased, decreased, or unchanged abundances of different activated receptors. We demonstrate that this diversity of effects is required for efficient coding when sensors are broadly correlated, and provide an algorithm for predicting which olfactory receptors should increase or decrease in abundance following specific environmental changes. Finally, we give simple dynamical rules for neural birth and death processes that might underlie this adaptation.Olfactory receptor usage is highly heterogeneous, with some receptor types being orders of magnitude more abundant than others. We propose an explanation for this striking fact: the receptor distribution is tuned to maximally represent information about the olfactory environment in a regime of efficient coding that is sensitive to the global context of correlated sensor responses. This model predicts that in mammals, where olfactory sensory neurons are replaced regularly, receptor abundances should continuously adapt to odor statistics. Experimentally, increased exposure to odorants leads variously, but reproducibly, to increased, decreased, or unchanged abundances of different activated receptors. We demonstrate that this diversity of effects is required for efficient coding when sensors are broadly correlated, and provide an algorithm for predicting which olfactory receptors should increase or decrease in abundance following specific environmental changes. Finally, we give simple dynamical rules for neural birth and death processes that might underlie this adaptation.
Olfactory receptor usage is highly heterogeneous, with some receptor types being orders of magnitude more abundant than others. We propose an explanation for this striking fact: the receptor distribution is tuned to maximally represent information about the olfactory environment in a regime of efficient coding that is sensitive to the global context of correlated sensor responses. This model predicts that in mammals, where olfactory sensory neurons are replaced regularly, receptor abundances should continuously adapt to odor statistics. Experimentally, increased exposure to odorants leads variously, but reproducibly, to increased, decreased, or unchanged abundances of different activated receptors. We demonstrate that this diversity of effects is required for efficient coding when sensors are broadly correlated, and provide an algorithm for predicting which olfactory receptors should increase or decrease in abundance following specific environmental changes. Finally, we give simple dynamical rules for neural birth and death processes that might underlie this adaptation.
Olfactory receptor usage is highly heterogeneous, with some receptor types being orders of magnitude more abundant than others. We propose an explanation for this striking fact: the receptor distribution is tuned to maximally represent information about the olfactory environment in a regime of efficient coding that is sensitive to the global context of correlated sensor responses. This model predicts that in mammals, where olfactory sensory neurons are replaced regularly, receptor abundances should continuously adapt to odor statistics. Experimentally, increased exposure to odorants leads variously, but reproducibly, to increased, decreased, or unchanged abundances of different activated receptors. We demonstrate that this diversity of effects is required for efficient coding when sensors are broadly correlated, and provide an algorithm for predicting which olfactory receptors should increase or decrease in abundance following specific environmental changes. Finally, we give simple dynamical rules for neural birth and death processes that might underlie this adaptation. A mouse’s nose contains over 10 million receptor neurons divided into about 1,000 different types, which detect airborne chemicals – called odorants – that make up smells. Each odorant activates many different receptor types. And each receptor type responds to many different odorants. To identify a smell, the brain must therefore consider the overall pattern of activation across all receptor types. Individual receptor neurons in the mammalian nose live for about 30 days, before new cells replace them. The entire population of odorant receptor neurons turns over every few weeks, even in adults. Studies have shown that some types of these receptor neurons are used more often than others, depending on the species, and are therefore much more abundant. Moreover, the usage patterns of different receptor types can also change when individual animals are exposed to different smells. Teşileanu et al. set out to develop a computer model that can explain these observations. The results revealed that the nose adjusts its odorant receptor neurons to provide the brain with as much information as possible about typical smells in the environment. Because each smell consists of multiple odorants, each odorant is more likely to occur alongside certain others. For example, the odorants that make up the scent of a flower are more likely to occur together than alongside the odorants in diesel. The nose takes advantage of these relationships by adjusting the abundance of the receptor types in line with them. Teşileanu et al. show that exposure to odorants leads to reproducible increases or decreases in different receptor types, depending on what would provide the brain with most information. The number of odorant receptor neurons in the human nose decreases with time. The current findings could help scientists understand how these changes affect our sense of smell as we age. This will require collaboration between experimental and theoretical scientists to measure the odors typical of our environments, and work out how our odorant receptor neurons detect them.
Olfactory receptor usage is highly heterogeneous, with some receptor types being orders of magnitude more abundant than others. We propose an explanation for this striking fact: the receptor distribution is tuned to maximally represent information about the olfactory environment in a regime of efficient coding that is sensitive to the global context of correlated sensor responses. This model predicts that in mammals, where olfactory sensory neurons are replaced regularly, receptor abundances should continuously adapt to odor statistics. Experimentally, increased exposure to odorants leads variously, but reproducibly, to increased, decreased, or unchanged abundances of different activated receptors. We demonstrate that this diversity of effects is required for efficient coding when sensors are broadly correlated, and provide an algorithm for predicting which olfactory receptors should increase or decrease in abundance following specific environmental changes. Finally, we give simple dynamical rules for neural birth and death processes that might underlie this adaptation. A mouse’s nose contains over 10 million receptor neurons divided into about 1,000 different types, which detect airborne chemicals – called odorants – that make up smells. Each odorant activates many different receptor types. And each receptor type responds to many different odorants. To identify a smell, the brain must therefore consider the overall pattern of activation across all receptor types. Individual receptor neurons in the mammalian nose live for about 30 days, before new cells replace them. The entire population of odorant receptor neurons turns over every few weeks, even in adults. Studies have shown that some types of these receptor neurons are used more often than others, depending on the species, and are therefore much more abundant. Moreover, the usage patterns of different receptor types can also change when individual animals are exposed to different smells. Teşileanu et al. set out to develop a computer model that can explain these observations. The results revealed that the nose adjusts its odorant receptor neurons to provide the brain with as much information as possible about typical smells in the environment. Because each smell consists of multiple odorants, each odorant is more likely to occur alongside certain others. For example, the odorants that make up the scent of a flower are more likely to occur together than alongside the odorants in diesel. The nose takes advantage of these relationships by adjusting the abundance of the receptor types in line with them. Teşileanu et al. show that exposure to odorants leads to reproducible increases or decreases in different receptor types, depending on what would provide the brain with most information. The number of odorant receptor neurons in the human nose decreases with time. The current findings could help scientists understand how these changes affect our sense of smell as we age. This will require collaboration between experimental and theoretical scientists to measure the odors typical of our environments, and work out how our odorant receptor neurons detect them.
Author Balasubramanian, Vijay
Teşileanu, Tiberiu
Monasson, Rémi
Cocco, Simona
Author_xml – sequence: 1
  givenname: Tiberiu
  orcidid: 0000-0003-3107-3088
  surname: Teşileanu
  fullname: Teşileanu, Tiberiu
  organization: Center for Computational Biology, Flatiron Institute, New York, United States, Initiative for the Theoretical Sciences, The Graduate Center, City University of New York, New York, United States, David Rittenhouse Laboratories, University of Pennsylvania, Philadelphia, United States
– sequence: 2
  givenname: Simona
  surname: Cocco
  fullname: Cocco, Simona
  organization: Laboratoire de Physique Statistique, École Normale Supérieure and CNRS UMR 8550, PSL Research, UPMC Sorbonne Université, Paris, France
– sequence: 3
  givenname: Rémi
  orcidid: 0000-0002-4459-0204
  surname: Monasson
  fullname: Monasson, Rémi
  organization: Laboratoire de Physique Théorique, École Normale Supérieure and CNRS UMR 8550, PSL Research, UPMC Sorbonne Université, Paris, France
– sequence: 4
  givenname: Vijay
  orcidid: 0000-0002-6497-3819
  surname: Balasubramanian
  fullname: Balasubramanian, Vijay
  organization: Initiative for the Theoretical Sciences, The Graduate Center, City University of New York, New York, United States, David Rittenhouse Laboratories, University of Pennsylvania, Philadelphia, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30806351$$D View this record in MEDLINE/PubMed
https://hal.sorbonne-universite.fr/hal-02068925$$DView record in HAL
BookMark eNptkt9rFDEQx4NUbK198l0WfFHkan5v8lI8itrCgS8KvoVsMrnm2EvO7G6h_73pbS3tYfKQyeQz38kk8xodpZwAobcEn7dC8M-wigHOmaatfoFOKBZ4gRX_ffTEPkZnw7DBdbRcKaJfoWOGFZZMkBP0ZentbrRjzKnJocl9sG7M5a4p4GBXrcZ2U_I2ORiaULcQQnQR0ti47GNav0Evg-0HOHtYT9Gvb19_Xl4tVj--X18uVwsnsB4XnskOAgbiOde6U64FwjAV0CkGArd1ei4oc5oq20reCQ4cCAXGPO04sFN0Pev6bDdmV-LWljuTbTR7Ry5rY8sYXQ9GamBUtcQGxbnistNdaIMArnQLXuqqdTFr7aZuC97Vaortn4k-P0nxxqzzrZFMVw1eBT7OAjcHYVfLlbn3YYql0lTcksp-eEhW8p8JhtFs4-Cg722CPA2GEiUJZ5Kzir4_QDd5Kqk-q6EVY0rU_6zUu6e3f8z_71Mr8GkGXMnDUCA8IgSb-64x-64x-66pNDmgXZwbopYe-__G_AVhdMOV
CitedBy_id crossref_primary_10_7554_eLife_54347
crossref_primary_10_1016_j_cell_2021_11_022
crossref_primary_10_1016_j_conb_2022_102620
crossref_primary_10_1016_j_conb_2021_11_007
crossref_primary_10_1016_j_neuron_2020_05_030
crossref_primary_10_7554_eLife_72081
crossref_primary_10_1016_j_cois_2024_101291
crossref_primary_10_3389_fncel_2022_1006703
crossref_primary_10_1038_s44335_024_00018_w
crossref_primary_10_1371_journal_pcbi_1009479
crossref_primary_10_1002_ffj_3813
crossref_primary_10_1007_s10822_021_00434_1
crossref_primary_10_1038_s42003_020_01572_2
crossref_primary_10_1073_pnas_1906571116
crossref_primary_10_1016_j_ijbiomac_2022_09_251
crossref_primary_10_1016_j_bpc_2019_106264
crossref_primary_10_1007_s10681_021_02959_w
crossref_primary_10_1103_PhysRevE_104_024415
crossref_primary_10_1103_PhysRevLett_134_147402
Cites_doi 10.1007/BF01175561
10.1073/pnas.0914916107
10.1038/nn831
10.1016/j.cell.2006.01.050
10.1073/pnas.1005846107
10.1016/j.cub.2008.08.071
10.1162/neco.1990.2.3.308
10.1017/CBO9780511804441
10.1371/journal.pone.0002640
10.1016/j.jmva.2009.04.008
10.1371/journal.pcbi.1000677
10.1038/381607a0
10.1093/chemse/bjl013
10.1073/pnas.0605321104
10.1098/rspb.2004.2993
10.1073/pnas.1600357113
10.1016/0092-8674(91)90418-X
10.1523/JNEUROSCI.4693-14.2015
10.1007/BF00203134
10.1371/journal.pcbi.1004850
10.1016/S0092-8674(00)80581-4
10.7554/eLife.21476
10.1021/cr950068a
10.1523/JNEUROSCI.12-10-03896.1992
10.1038/nn.3594
10.1016/j.neuron.2003.08.011
10.1002/0471725382
10.1016/j.cub.2005.11.075
10.1016/S0092-8674(94)90562-2
10.1515/znc-1981-9-1040
10.1073/pnas.1506855112
10.1007/978-1-4899-2519-0_23
10.1101/311514
10.1146/annurev.neuro.20.1.595
10.1016/S0092-8674(00)00021-0
10.1101/gr.169532.113
10.1016/0042-6989(93)90163-Q
10.1159/000437413
10.1002/(SICI)1097-4695(199605)30:1<67::AID-NEU7>3.0.CO;2-E
10.1038/nature13964
10.1002/ar.23029
10.1523/JNEUROSCI.0688-13.2014
10.1007/s10955-011-0166-2
10.1126/scisignal.2000016
10.1016/j.neuron.2015.09.007
10.1098/rspb.1982.0085
10.3389/fnsys.2011.00065
10.1098/rspb.1998.0303
10.1007/s10955-015-1439-y
10.1093/icb/7.3.421
10.7554/eLife.02115
10.1126/science.286.5440.711
10.1038/35090500
10.1101/160382
10.1073/pnas.1510103112
10.7554/eLife.00070
10.1007/BF00188924
10.1371/journal.pcbi.1003184
10.1038/384162a0
10.1371/journal.pone.0069862
10.7554/eLife.03722
10.15252/msb.20156639
10.1146/annurev.neuro.24.1.1193
ContentType Journal Article
Copyright 2019, Teşileanu et al.
2019, Teşileanu et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
2019, Teşileanu et al 2019 Teşileanu et al
Copyright_xml – notice: 2019, Teşileanu et al.
– notice: 2019, Teşileanu et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2019, Teşileanu et al 2019 Teşileanu et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.7554/eLife.39279
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Publicly Available Content Database
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_69e32871af844846b9bf7f5e4897ed69
PMC6398974
oai:HAL:hal-02068925v1
30806351
10_7554_eLife_39279
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations New York
France
United States--US
Paris France
GeographicLocations_xml – name: New York
– name: Paris France
– name: United States--US
– name: France
GrantInformation_xml – fundername: Aspen Center for Physics
  grantid: PHY-160761
– fundername: United States - Israel Binational Science Foundation
  grantid: 2011058
– fundername: National Science Foundation
  grantid: PHY-1734030
– fundername: Simons Foundation
  grantid: 400425
– fundername: US-Israel Binational Science Foundation
  grantid: 2011058
– fundername: ;
– fundername: ;
  grantid: PHY-1734030
– fundername: ;
  grantid: PHY-160761
– fundername: ;
  grantid: 400425
– fundername: ;
  grantid: 2011058
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
3V.
ALIPV
CGR
CUY
CVF
ECM
EIF
FRP
NPM
RHF
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
1XC
H13
VOOES
5PM
ID FETCH-LOGICAL-c509t-d36bef0e1d4499b8c7e13025eb83e507070d4523c928a764b54e4e12e33d2b4e3
IEDL.DBID DOA
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460207400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-084X
IngestDate Fri Oct 03 12:39:48 EDT 2025
Tue Nov 04 01:57:23 EST 2025
Tue Oct 14 20:42:29 EDT 2025
Thu Oct 02 09:34:36 EDT 2025
Tue Oct 07 06:49:18 EDT 2025
Thu Jan 02 22:55:04 EST 2025
Tue Nov 18 22:27:57 EST 2025
Sat Nov 29 06:09:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords efficient coding
mouse
olfaction
receptor distribution
D. melanogaster
physics of living systems
Language English
License http://creativecommons.org/licenses/by/4.0
2019, Teşileanu et al.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-d36bef0e1d4499b8c7e13025eb83e507070d4523c928a764b54e4e12e33d2b4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3107-3088
0000-0002-4459-0204
0000-0002-6497-3819
0000-0002-1852-7789
OpenAccessLink https://doaj.org/article/69e32871af844846b9bf7f5e4897ed69
PMID 30806351
PQID 2218385084
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_69e32871af844846b9bf7f5e4897ed69
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6398974
hal_primary_oai_HAL_hal_02068925v1
proquest_miscellaneous_2186143643
proquest_journals_2218385084
pubmed_primary_30806351
crossref_primary_10_7554_eLife_39279
crossref_citationtrail_10_7554_eLife_39279
PublicationCentury 2000
PublicationDate 2019-02-26
PublicationDateYYYYMMDD 2019-02-26
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-26
  day: 26
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2019
Publisher eLife Sciences Publications Ltd
eLife Sciences Publication
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Sciences Publications Ltd
– name: eLife Sciences Publication
– name: eLife Sciences Publications, Ltd
References Garrigan (bib13) 2010; 6
Zhang (bib67) 2016; 12
Lewicki (bib27) 2002; 5
Mori (bib32) 1999; 286
Gross (bib15) 1982; 135
Rospars (bib41) 1989
Tan (bib56) 2015; 11
van Hateren (bib62) 1998; 265
Olshausen (bib35) 1996; 381
Shannon (bib48) 1948
Dias (bib10) 2014; 17
Smith (bib51) 2014; 297
van Hateren (bib60) 1992; 171
Stevens (bib54) 2015; 112
Laughlin (bib25) 1981; 36
Fairhall (bib11) 2001; 412
Simoncelli (bib49) 2001; 24
Pihlström (bib37) 2005; 272
DasGupta (bib8) 2008; 18
Zhao (bib68) 2013; 8
Vosshall (bib63) 2000; 102
Cadiou (bib5) 2014; 34
Dekker (bib9) 2006; 16
Zwicker (bib69) 2016; 113
Hildebrand (bib19) 1997; 20
Zarzo (bib66) 2006; 31
Krishnamurthy (bib24) 2017
Missbach (bib31) 2014; 3
Calof (bib6) 1996; 30
Maresh (bib29) 2008; 3
Ratliff (bib38) 2010; 107
Saito (bib44) 2009; 2
Chess (bib7) 1994; 78
Graziadei (bib14) 1979; 8
Yu (bib65) 2015; 40
Atick (bib1) 1990; 2
Herculano-Houzel (bib17) 2015; 86
FCI (bib12) 2018
Santoro (bib46) 2012; 1
Rossiter (bib42) 1996; 96
Rousseeuw (bib43) 1987
Hallem (bib16) 2006; 125
Niimura (bib34) 2014; 24
Huston (bib20) 2015; 88
Koulakov (bib23) 2011; 5
Moulton (bib33) 1967; 7
Stopfer (bib55) 2003; 39
Ibarra-Soria (bib21) 2017; 6
Resulaj (bib39) 2015; 35
McBride (bib30) 2014; 515
Palmer (bib36) 2015; 112
Srinivasan (bib53) 1982; 216
van Hateren (bib59) 1992; 68
Schwob (bib47) 1992; 12
Malnic (bib28) 1999; 96
Salisbury (bib45) 2016; 162
Keller (bib22) 2007; 104
Snitz (bib52) 2013; 9
Tkacik (bib58) 2010; 107
Boyd (bib3) 2004
Singh (bib50) 2018
Lewandowski (bib26) 2009; 100
Barlow (bib2) 1961
Buck (bib4) 1991; 65
Van Hateren (bib61) 1993; 33
Hermundstad (bib18) 2014; 3
Teşileanu (bib57) 2019
Wehr (bib64) 1996; 384
Rivoire (bib40) 2011; 142
References_xml – volume: 8
  start-page: 197
  year: 1979
  ident: bib14
  article-title: Neurogenesis and neuron regeneration in the olfactory system of mammals. II. Degeneration and reconstitution of the olfactory sensory neurons after axotomy
  publication-title: Journal of Neurocytology
  doi: 10.1007/BF01175561
– volume: 107
  start-page: 18149
  year: 2010
  ident: bib58
  article-title: Local statistics in natural scenes predict the saliency of synthetic textures
  publication-title: PNAS
  doi: 10.1073/pnas.0914916107
– volume: 5
  start-page: 356
  year: 2002
  ident: bib27
  article-title: Efficient coding of natural sounds
  publication-title: Nature Neuroscience
  doi: 10.1038/nn831
– volume-title: GitHub
  year: 2019
  ident: bib57
  article-title: Adaptation of olfactory receptor abundances for efficient coding
– volume: 125
  start-page: 143
  year: 2006
  ident: bib16
  article-title: Coding of odors by a receptor repertoire
  publication-title: Cell
  doi: 10.1016/j.cell.2006.01.050
– volume: 107
  start-page: 17368
  year: 2010
  ident: bib38
  article-title: Retina is structured to process an excess of darkness in natural scenes
  publication-title: PNAS
  doi: 10.1073/pnas.1005846107
– volume: 18
  start-page: 1668
  year: 2008
  ident: bib8
  article-title: Learned odor discrimination in Drosophila without combinatorial odor maps in the antennal lobe
  publication-title: Current Biology
  doi: 10.1016/j.cub.2008.08.071
– volume: 2
  start-page: 308
  year: 1990
  ident: bib1
  article-title: Towards a theory of early visual processing
  publication-title: Neural Computation
  doi: 10.1162/neco.1990.2.3.308
– volume-title: Convex Optimization
  year: 2004
  ident: bib3
  doi: 10.1017/CBO9780511804441
– volume: 3
  year: 2008
  ident: bib29
  article-title: Principles of glomerular organization in the human olfactory bulb--implications for odor processing
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0002640
– volume: 100
  start-page: 1989
  year: 2009
  ident: bib26
  article-title: Generating random correlation matrices based on vines and extended onion method
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2009.04.008
– volume: 6
  year: 2010
  ident: bib13
  article-title: Design of a trichromatic cone array
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1000677
– volume: 381
  start-page: 607
  year: 1996
  ident: bib35
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
  doi: 10.1038/381607a0
– volume: 31
  start-page: 713
  year: 2006
  ident: bib66
  article-title: Identification of latent variables in a semantic odor profile database using principal component analysis
  publication-title: Chemical Senses
  doi: 10.1093/chemse/bjl013
– volume: 104
  start-page: 5614
  year: 2007
  ident: bib22
  article-title: Influence of odorant receptor repertoire on odor perception in humans and fruit flies
  publication-title: PNAS
  doi: 10.1073/pnas.0605321104
– volume: 272
  start-page: 957
  year: 2005
  ident: bib37
  article-title: Scaling of mammalian ethmoid bones can predict olfactory organ size and performance
  publication-title: Proceedings of the Royal Society B: Biological Sciences
  doi: 10.1098/rspb.2004.2993
– volume: 113
  start-page: 5570
  year: 2016
  ident: bib69
  article-title: Receptor arrays optimized for natural odor statistics
  publication-title: PNAS
  doi: 10.1073/pnas.1600357113
– volume: 65
  start-page: 175
  year: 1991
  ident: bib4
  article-title: A novel multigene family may encode odorant receptors: a molecular basis for odor recognition
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90418-X
– volume: 35
  start-page: 11667
  year: 2015
  ident: bib39
  article-title: Novel Behavioral Paradigm Reveals Lower Temporal Limits on Mouse Olfactory Decisions
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.4693-14.2015
– volume: 68
  start-page: 23
  year: 1992
  ident: bib59
  article-title: A theory of maximizing sensory information
  publication-title: Biological Cybernetics
  doi: 10.1007/BF00203134
– volume: 12
  year: 2016
  ident: bib67
  article-title: A Robust Feedforward Model of the Olfactory System
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1004850
– volume: 96
  start-page: 713
  year: 1999
  ident: bib28
  article-title: Combinatorial receptor codes for odors
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80581-4
– volume: 6
  year: 2017
  ident: bib21
  article-title: Variation in olfactory neuron repertoires is genetically controlled and environmentally modulated
  publication-title: eLife
  doi: 10.7554/eLife.21476
– volume: 96
  start-page: 3201
  year: 1996
  ident: bib42
  article-title: Structure−odor relationships
  publication-title: Chemical Reviews
  doi: 10.1021/cr950068a
– volume: 12
  start-page: 3896
  year: 1992
  ident: bib47
  article-title: Olfactory sensory neurons are trophically dependent on the olfactory bulb for their prolonged survival
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.12-10-03896.1992
– volume: 17
  start-page: 89
  year: 2014
  ident: bib10
  article-title: Parental olfactory experience influences behavior and neural structure in subsequent generations
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.3594
– volume: 39
  start-page: 991
  year: 2003
  ident: bib55
  article-title: Intensity versus identity coding in an olfactory system
  publication-title: Neuron
  doi: 10.1016/j.neuron.2003.08.011
– volume-title: Robust Regression and Outlier Detection
  year: 1987
  ident: bib43
  doi: 10.1002/0471725382
– start-page: 217
  volume-title: Sensory Communication
  year: 1961
  ident: bib2
– volume: 16
  start-page: 101
  year: 2006
  ident: bib9
  article-title: Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling, D. sechellia
  publication-title: Current Biology
  doi: 10.1016/j.cub.2005.11.075
– volume-title: A Mathematical Theory of Communication
  year: 1948
  ident: bib48
– volume: 78
  start-page: 823
  year: 1994
  ident: bib7
  article-title: Allelic inactivation regulates olfactory receptor gene expression
  publication-title: Cell
  doi: 10.1016/S0092-8674(94)90562-2
– volume: 36
  start-page: 910
  year: 1981
  ident: bib25
  article-title: A simple coding procedure enhances a neuron's Information Capacity
  publication-title: Zeitschrift Für Naturforschung C
  doi: 10.1515/znc-1981-9-1040
– volume: 112
  start-page: 6908
  year: 2015
  ident: bib36
  article-title: Predictive information in a sensory population
  publication-title: PNAS
  doi: 10.1073/pnas.1506855112
– start-page: 355
  volume-title: Neurobiology of Sensory Systems
  year: 1989
  ident: bib41
  doi: 10.1007/978-1-4899-2519-0_23
– volume-title: BioRxiv
  year: 2018
  ident: bib50
  article-title: A competitive binding model predicts nonlinear responses of olfactory receptors to complex mixtures
  doi: 10.1101/311514
– volume: 20
  start-page: 595
  year: 1997
  ident: bib19
  article-title: Mechanisms of olfactory discrimination: converging evidence for common principles across phyla
  publication-title: Annual Review of Neuroscience
  doi: 10.1146/annurev.neuro.20.1.595
– volume-title: Federation Cynologique Internationale
  year: 2018
  ident: bib12
– volume: 102
  start-page: 147
  year: 2000
  ident: bib63
  article-title: An olfactory sensory map in the fly brain
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00021-0
– volume: 24
  start-page: 1485
  year: 2014
  ident: bib34
  article-title: Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals
  publication-title: Genome Research
  doi: 10.1101/gr.169532.113
– volume: 33
  start-page: 257
  year: 1993
  ident: bib61
  article-title: Spatiotemporal contrast sensitivity of early vision
  publication-title: Vision Research
  doi: 10.1016/0042-6989(93)90163-Q
– volume: 86
  start-page: 145
  year: 2015
  ident: bib17
  article-title: Mammalian Brains Are Made of These: A Dataset of the Numbers and Densities of Neuronal and Nonneuronal Cells in the Brain of Glires, Primates, Scandentia, Eulipotyphlans, Afrotherians and Artiodactyls, and Their Relationship with Body Mass
  publication-title: Brain, Behavior and Evolution
  doi: 10.1159/000437413
– volume: 30
  start-page: 67
  year: 1996
  ident: bib6
  article-title: Neurogenesis and cell death in olfactory epithelium
  publication-title: Journal of Neurobiology
  doi: 10.1002/(SICI)1097-4695(199605)30:1<67::AID-NEU7>3.0.CO;2-E
– volume: 515
  start-page: 222
  year: 2014
  ident: bib30
  article-title: Evolution of mosquito preference for humans linked to an odorant receptor
  publication-title: Nature
  doi: 10.1038/nature13964
– volume: 297
  start-page: 2093
  year: 2014
  ident: bib51
  article-title: Nasal morphometry in marmosets: loss and redistribution of olfactory surface area
  publication-title: The Anatomical Record
  doi: 10.1002/ar.23029
– volume: 34
  start-page: 4857
  year: 2014
  ident: bib5
  article-title: Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0688-13.2014
– volume: 142
  start-page: 1124
  year: 2011
  ident: bib40
  article-title: The Value of Information for Populations in Varying Environments
  publication-title: Journal of Statistical Physics
  doi: 10.1007/s10955-011-0166-2
– volume: 2
  year: 2009
  ident: bib44
  article-title: Odor coding by a Mammalian receptor repertoire
  publication-title: Science Signaling
  doi: 10.1126/scisignal.2000016
– volume: 135
  start-page: 83
  year: 1982
  ident: bib15
  article-title: Comparative morphometry of the nasal cavity in rats and mice
  publication-title: Journal of Anatomy
– volume: 88
  start-page: 403
  year: 2015
  ident: bib20
  article-title: Neural Encoding of Odors during Active Sampling and in Turbulent Plumes
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.09.007
– volume: 216
  start-page: 427
  year: 1982
  ident: bib53
  article-title: Predictive coding: a fresh view of inhibition in the retina
  publication-title: Proceedings of the Royal Society of London. Series B, Biological sciences
  doi: 10.1098/rspb.1982.0085
– volume: 5
  start-page: 1
  year: 2011
  ident: bib23
  article-title: In search of the structure of human olfactory space
  publication-title: Frontiers in Systems Neuroscience
  doi: 10.3389/fnsys.2011.00065
– volume: 265
  start-page: 359
  year: 1998
  ident: bib62
  article-title: Independent component filters of natural images compared with simple cells in primary visual cortex
  publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences
  doi: 10.1098/rspb.1998.0303
– volume: 162
  start-page: 1309
  year: 2016
  ident: bib45
  article-title: Optimal Prediction in the Retina and Natural Motion Statistics
  publication-title: Journal of Statistical Physics
  doi: 10.1007/s10955-015-1439-y
– volume: 7
  start-page: 421
  year: 1967
  ident: bib33
  article-title: Olfaction in mammals
  publication-title: American Zoologist
  doi: 10.1093/icb/7.3.421
– volume: 3
  year: 2014
  ident: bib31
  article-title: Evolution of insect olfactory receptors
  publication-title: eLife
  doi: 10.7554/eLife.02115
– volume: 286
  start-page: 711
  year: 1999
  ident: bib32
  article-title: The olfactory bulb: coding and processing of odor molecule information
  publication-title: Science
  doi: 10.1126/science.286.5440.711
– volume: 412
  start-page: 787
  year: 2001
  ident: bib11
  article-title: Efficiency and ambiguity in an adaptive neural code
  publication-title: Nature
  doi: 10.1038/35090500
– volume-title: arXiv
  year: 2017
  ident: bib24
  article-title: Disorder and the neural representation of complex odors: smelling in the real world
  doi: 10.1101/160382
– volume: 112
  start-page: 9460
  year: 2015
  ident: bib54
  article-title: What the fly's nose tells the fly's brain
  publication-title: PNAS
  doi: 10.1073/pnas.1510103112
– volume: 1
  year: 2012
  ident: bib46
  article-title: The activity-dependent histone variant H2BE modulates the life span of olfactory neurons
  publication-title: eLife
  doi: 10.7554/eLife.00070
– volume: 171
  start-page: 157
  year: 1992
  ident: bib60
  article-title: Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation
  publication-title: Journal of Comparative Physiology A
  doi: 10.1007/BF00188924
– volume: 9
  year: 2013
  ident: bib52
  article-title: Predicting odor perceptual similarity from odor structure
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1003184
– volume: 384
  start-page: 162
  year: 1996
  ident: bib64
  article-title: Odour encoding by temporal sequences of firing in oscillating neural assemblies
  publication-title: Nature
  doi: 10.1038/384162a0
– volume: 40
  year: 2015
  ident: bib65
  article-title: Drawing the border of olfactory space
  publication-title: Chemical Senses
– volume: 8
  year: 2013
  ident: bib68
  article-title: Activity-dependent modulation of odorant receptor gene expression in the mouse olfactory epithelium
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0069862
– volume: 3
  year: 2014
  ident: bib18
  article-title: Variance predicts salience in central sensory processing
  publication-title: eLife
  doi: 10.7554/eLife.03722
– volume: 11
  year: 2015
  ident: bib56
  article-title: Olfactory sensory neurons transiently express multiple olfactory receptors during development
  publication-title: Molecular Systems Biology
  doi: 10.15252/msb.20156639
– volume: 24
  start-page: 1193
  year: 2001
  ident: bib49
  article-title: Natural image statistics and neural representation
  publication-title: Annual Review of Neuroscience
  doi: 10.1146/annurev.neuro.24.1.1193
SSID ssj0000748819
Score 2.3754694
Snippet Olfactory receptor usage is highly heterogeneous, with some receptor types being orders of magnitude more abundant than others. We propose an explanation for...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Adaptation
Adaptation, Physiological
Animals
Biological Physics
Brain research
efficient coding
Environmental changes
Hypotheses
Life Sciences
Mammals
Models, Neurological
Neural coding
Neurogenesis
Neurons
Neurons and Cognition
Odorant receptors
Odorants
olfaction
Olfactory receptor neurons
Physics
Physics of Living Systems
receptor distribution
Receptors, Odorant - physiology
Sensory evaluation
Sensory neurons
Smell
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDI9ggMQL42tQGCigPSFVuyZpkzzBDTHtYZr2ANLeqiZx2ElTe9zdJu2_x057ZcfQXnirUiu16jj-OXZsxvYaO2mEbHze6DjJlYgWdc7JvJJQAKoTBB9Sswl9cmLOzuzpcOC2HNIq13ti2qhD5-mMfF-QLTcIJ9Tn-a-cukZRdHVooXGfPaAqCTKl7p2OZyxoHg1avP5ankbDuQ_Hswjo5wtK3bphiFK9fjQv55QNeRtq_p0xecMEHW7_L_NP2ZMBfPJpv1qesXvQPmeP-naU1y_Yl2lo5n1onneRdxd9M55rjrsizPGJN44ujlDmNUewyyHVn0Bmue_IBr5kPw6_ff96lA8dFnKPQGGVB1k5iBMogkLPxxmvgQKZJTgjoaRKQJOg0FX1VphGV8qVChQUAqQMwimQO2yr7Vp4zXhEEWv0tSEoq8rCuGgKKAswKkIJXmTs0_p3134oP05dMC5qdENINnWSTZ1kk7G9kXjeV934N9kByW0koVLZaaBb_KwHzauRJUluYRMNuqKqctZFHUtQxmoIFU7yEaW-McfR9LimMYTSlbGivCoytrsWbD0o-bL-I9WMfRhfo3pSzKVpobtEmsIgAJKI-zL2ql9D46ckonXEezi53lhdG7xsvmln56kEOOJKZF-9uZutt-wx4jubbuBXu2xrtbiEd-yhv1rNlov3SVd-Ax5kH3Y
  priority: 102
  providerName: ProQuest
Title Adaptation of olfactory receptor abundances for efficient coding
URI https://www.ncbi.nlm.nih.gov/pubmed/30806351
https://www.proquest.com/docview/2218385084
https://www.proquest.com/docview/2186143643
https://hal.sorbonne-universite.fr/hal-02068925
https://pubmed.ncbi.nlm.nih.gov/PMC6398974
https://doaj.org/article/69e32871af844846b9bf7f5e4897ed69
Volume 8
WOSCitedRecordID wos000460207400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M7P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M2P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9wwDBddu8FeRvfVZeuObPRpEHr-SGy_7VpaWmiPMDa4PYU4kelBSY72Wuh_P9lOj7ttsJe9iBAb20iW9ROWJYCD2oxrLuomq5UbZ5I7QzpnRVYIZEjqhG3ThmITajrVs5kp10p9-ZiwmB44Mu6wMCg8qq-dJk9CFtZYp1yOUhuFbRGe7hHqWXOmwhmsaGMyEx_kKTKZh3gxd0gePvdBW2smKGTqJ8Ny5eMg_wSZv8dKrhmf0114MaDGdBJX-xK2sHsFz2IdyYfX8HXS1ot4p572Lu2vYxWdh5SOM1zQV1pb_-LDh0ynhFJTDIkjaK606b3xegM_Tk--H59lQ2mErCELv8xaUVh0Y2StJJfF6kahv4HM0WqBuU_hM24l-ZiN4bpWhbS5RImMoxAttxLFW9ju-g7fQepINoqcZGylkTnT1mmGOUMtHebY8AS-PHKraoa84b58xXVF_oNnbRVYWwXWJnCw6ryI6TL-3u3Is33Vxee4Dj9I8tUg-epfkk_gMwltY4yzyUXl_xEGLrTh-T1LYP9RptWgnbcV97hQEzSVCXxaNZNe-cuSusP-jvowTchFEGBLYC9ugdVUgjYcATUaXG1sjo21bLZ086uQu5sAIS1fvv8fDPgAzwm-mfDAvtiH7eXNHX6Ep839cn57M4InaqYC1SPYOTqZlt9GQUmIXvLSU0V0pzy_LH_-AlQqGBQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioX3o-FAgGVS6XQje0k9gHB8qi26rLqoUi9mSQetytVybK7Ldo_xW9k7DzoAuLWA7dVYnlHyef5vonHMwBbmepnjGdFmKW2HwpmFa25nIcJxwhpOaEpjG82kY7H8uhIHazBj_YsjEurbH2id9SmKtw38h3muFySnBBvp99C1zXK7a62LTRqWOzj8juFbPM3ex_p_b5ibPfT4Ydh2HQVCAsix0VoeJKj7WNkBKn9XBYpus27GHPJMXbVb_pGUHhWKCazNBF5LFBgxJBzw3KBnOa9AldJRjDpUwUPum86RMeSGLY-BpgSUe_gaGLxNWkQlyp2gfh8fwCisxOXffmntP09Q_MC5e3e-t8e1m242YjrYFCvhjuwhuVduF6321zeg3cDk03r1IOgskF1WjcbWgbk9XFKv4IsdwdjXGZ5QGI-QF9fgx5OUFSO4-_Dl0sx_wGsl1WJjyCwBOFUJAqNUCKOZG5lhHGEUliMsWA92G5fry6a8uquy8eppjDLYUF7LGiPhR5sdYOndVWRvw9773DSDXGlwP2FanasG8-iySTuwt7MSgq1RZKr3KY2RiFViiahSV4SylbmGA5G2l2jUCGRisXnUQ82WyDpxonN9S8U9eBFd5vcj9tTykqszmhMJEngcdK1PXhYY7b7K07RCOlZmjxdQfOKLat3ysmJL3FOupnMF4__bdZz2Bgefh7p0d54_wncIC2rfLWBZBPWF7MzfArXivPFZD575tdpAF8vG-s_AZF8euc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V8hAX3g9DgQWVC5JJvLu21wcEgRK1ahTlAFJvxo9ZGqmyQ5IW5a_x65hZ26EBxK0Hbpa9Wq-83873jXd2BmA3S_qZVFnhZ7Ht-1rahNZcrvxIYYC0nLAsSldsIh6PzdFRMtmCH91ZGA6r7GyiM9RlXfA_8p5kLjckJ3TPtmERk73h29k3nytI8U5rV06jgcghrr6T-7Z4c7BHc_1SyuHHTx_2_bbCgF8QUS79UkU52j4GpSbln5siRt7ICzE3CkPOhNMvNblqRSJNFkc6DzVqDCQqVcpco6J-L8HlmJOWu7DByfr_DlGzIbZtjgTGRNo9HE0tviY9wmFj50jQ1QogajvmSMw_Ze7v0Zrn6G9483_-cLfgRiu6xaBZJbdhC6s7cLUpw7m6C-8GZTZrQhJEbUV90hQhWgliA5zRlchyPjDDEeeCRL5Al3eDPpQoaub-e_D5QoZ_H7arusKHICxBm-Y_wVInOgxMbk2AYYBGWwyxkB686qY6Ldq061z94yQl94txkTpcpA4XHuyuG8-abCN_b_aeMbNuwinC3Y16_jVtLU5KQ1LsDmfWkAuuozzJbWxD1CaJsYyokxeEuI0-9gejlO-RCxGZRIZngQc7HajS1rgt0l-I8uD5-jGZJd5ryiqsT6lNYEj4KdK7Hjxo8Lt-lSIvhXQudR5vIHtjLJtPqumxS31OepqGrx_9e1jP4BpBPB0djA8fw3WSuIlLQhDtwPZyfopP4Epxtpwu5k_dkhXw5aKh_hOlj4Ok
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptation+of+olfactory+receptor+abundances+for+efficient+coding&rft.jtitle=eLife&rft.au=Tiberiu+Te%C5%9Fileanu&rft.au=Simona+Cocco&rft.au=R%C3%A9mi+Monasson&rft.au=Vijay+Balasubramanian&rft.date=2019-02-26&rft.pub=eLife+Sciences+Publications+Ltd&rft.eissn=2050-084X&rft.volume=8&rft_id=info:doi/10.7554%2FeLife.39279&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_69e32871af844846b9bf7f5e4897ed69
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon