Adaptation of olfactory receptor abundances for efficient coding
Olfactory receptor usage is highly heterogeneous, with some receptor types being orders of magnitude more abundant than others. We propose an explanation for this striking fact: the receptor distribution is tuned to maximally represent information about the olfactory environment in a regime of effic...
Saved in:
| Published in: | eLife Vol. 8 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
eLife Sciences Publications Ltd
26.02.2019
eLife Sciences Publication eLife Sciences Publications, Ltd |
| Subjects: | |
| ISSN: | 2050-084X, 2050-084X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Olfactory receptor usage is highly heterogeneous, with some receptor types being orders of magnitude more abundant than others. We propose an explanation for this striking fact: the receptor distribution is tuned to maximally represent information about the olfactory environment in a regime of efficient coding that is sensitive to the global context of correlated sensor responses. This model predicts that in mammals, where olfactory sensory neurons are replaced regularly, receptor abundances should continuously adapt to odor statistics. Experimentally, increased exposure to odorants leads variously, but reproducibly, to increased, decreased, or unchanged abundances of different activated receptors. We demonstrate that this diversity of effects is required for efficient coding when sensors are broadly correlated, and provide an algorithm for predicting which olfactory receptors should increase or decrease in abundance following specific environmental changes. Finally, we give simple dynamical rules for neural birth and death processes that might underlie this adaptation.
A mouse’s nose contains over 10 million receptor neurons divided into about 1,000 different types, which detect airborne chemicals – called odorants – that make up smells. Each odorant activates many different receptor types. And each receptor type responds to many different odorants. To identify a smell, the brain must therefore consider the overall pattern of activation across all receptor types. Individual receptor neurons in the mammalian nose live for about 30 days, before new cells replace them. The entire population of odorant receptor neurons turns over every few weeks, even in adults.
Studies have shown that some types of these receptor neurons are used more often than others, depending on the species, and are therefore much more abundant. Moreover, the usage patterns of different receptor types can also change when individual animals are exposed to different smells. Teşileanu et al. set out to develop a computer model that can explain these observations.
The results revealed that the nose adjusts its odorant receptor neurons to provide the brain with as much information as possible about typical smells in the environment. Because each smell consists of multiple odorants, each odorant is more likely to occur alongside certain others. For example, the odorants that make up the scent of a flower are more likely to occur together than alongside the odorants in diesel. The nose takes advantage of these relationships by adjusting the abundance of the receptor types in line with them. Teşileanu et al. show that exposure to odorants leads to reproducible increases or decreases in different receptor types, depending on what would provide the brain with most information.
The number of odorant receptor neurons in the human nose decreases with time. The current findings could help scientists understand how these changes affect our sense of smell as we age. This will require collaboration between experimental and theoretical scientists to measure the odors typical of our environments, and work out how our odorant receptor neurons detect them. |
|---|---|
| AbstractList | Olfactory receptor usage is highly heterogeneous, with some receptor types being orders of magnitude more abundant than others. We propose an explanation for this striking fact: the receptor distribution is tuned to maximally represent information about the olfactory environment in a regime of efficient coding that is sensitive to the global context of correlated sensor responses. This model predicts that in mammals, where olfactory sensory neurons are replaced regularly, receptor abundances should continuously adapt to odor statistics. Experimentally, increased exposure to odorants leads variously, but reproducibly, to increased, decreased, or unchanged abundances of different activated receptors. We demonstrate that this diversity of effects is required for efficient coding when sensors are broadly correlated, and provide an algorithm for predicting which olfactory receptors should increase or decrease in abundance following specific environmental changes. Finally, we give simple dynamical rules for neural birth and death processes that might underlie this adaptation.Olfactory receptor usage is highly heterogeneous, with some receptor types being orders of magnitude more abundant than others. We propose an explanation for this striking fact: the receptor distribution is tuned to maximally represent information about the olfactory environment in a regime of efficient coding that is sensitive to the global context of correlated sensor responses. This model predicts that in mammals, where olfactory sensory neurons are replaced regularly, receptor abundances should continuously adapt to odor statistics. Experimentally, increased exposure to odorants leads variously, but reproducibly, to increased, decreased, or unchanged abundances of different activated receptors. We demonstrate that this diversity of effects is required for efficient coding when sensors are broadly correlated, and provide an algorithm for predicting which olfactory receptors should increase or decrease in abundance following specific environmental changes. Finally, we give simple dynamical rules for neural birth and death processes that might underlie this adaptation. Olfactory receptor usage is highly heterogeneous, with some receptor types being orders of magnitude more abundant than others. We propose an explanation for this striking fact: the receptor distribution is tuned to maximally represent information about the olfactory environment in a regime of efficient coding that is sensitive to the global context of correlated sensor responses. This model predicts that in mammals, where olfactory sensory neurons are replaced regularly, receptor abundances should continuously adapt to odor statistics. Experimentally, increased exposure to odorants leads variously, but reproducibly, to increased, decreased, or unchanged abundances of different activated receptors. We demonstrate that this diversity of effects is required for efficient coding when sensors are broadly correlated, and provide an algorithm for predicting which olfactory receptors should increase or decrease in abundance following specific environmental changes. Finally, we give simple dynamical rules for neural birth and death processes that might underlie this adaptation. Olfactory receptor usage is highly heterogeneous, with some receptor types being orders of magnitude more abundant than others. We propose an explanation for this striking fact: the receptor distribution is tuned to maximally represent information about the olfactory environment in a regime of efficient coding that is sensitive to the global context of correlated sensor responses. This model predicts that in mammals, where olfactory sensory neurons are replaced regularly, receptor abundances should continuously adapt to odor statistics. Experimentally, increased exposure to odorants leads variously, but reproducibly, to increased, decreased, or unchanged abundances of different activated receptors. We demonstrate that this diversity of effects is required for efficient coding when sensors are broadly correlated, and provide an algorithm for predicting which olfactory receptors should increase or decrease in abundance following specific environmental changes. Finally, we give simple dynamical rules for neural birth and death processes that might underlie this adaptation. A mouse’s nose contains over 10 million receptor neurons divided into about 1,000 different types, which detect airborne chemicals – called odorants – that make up smells. Each odorant activates many different receptor types. And each receptor type responds to many different odorants. To identify a smell, the brain must therefore consider the overall pattern of activation across all receptor types. Individual receptor neurons in the mammalian nose live for about 30 days, before new cells replace them. The entire population of odorant receptor neurons turns over every few weeks, even in adults. Studies have shown that some types of these receptor neurons are used more often than others, depending on the species, and are therefore much more abundant. Moreover, the usage patterns of different receptor types can also change when individual animals are exposed to different smells. Teşileanu et al. set out to develop a computer model that can explain these observations. The results revealed that the nose adjusts its odorant receptor neurons to provide the brain with as much information as possible about typical smells in the environment. Because each smell consists of multiple odorants, each odorant is more likely to occur alongside certain others. For example, the odorants that make up the scent of a flower are more likely to occur together than alongside the odorants in diesel. The nose takes advantage of these relationships by adjusting the abundance of the receptor types in line with them. Teşileanu et al. show that exposure to odorants leads to reproducible increases or decreases in different receptor types, depending on what would provide the brain with most information. The number of odorant receptor neurons in the human nose decreases with time. The current findings could help scientists understand how these changes affect our sense of smell as we age. This will require collaboration between experimental and theoretical scientists to measure the odors typical of our environments, and work out how our odorant receptor neurons detect them. Olfactory receptor usage is highly heterogeneous, with some receptor types being orders of magnitude more abundant than others. We propose an explanation for this striking fact: the receptor distribution is tuned to maximally represent information about the olfactory environment in a regime of efficient coding that is sensitive to the global context of correlated sensor responses. This model predicts that in mammals, where olfactory sensory neurons are replaced regularly, receptor abundances should continuously adapt to odor statistics. Experimentally, increased exposure to odorants leads variously, but reproducibly, to increased, decreased, or unchanged abundances of different activated receptors. We demonstrate that this diversity of effects is required for efficient coding when sensors are broadly correlated, and provide an algorithm for predicting which olfactory receptors should increase or decrease in abundance following specific environmental changes. Finally, we give simple dynamical rules for neural birth and death processes that might underlie this adaptation. A mouse’s nose contains over 10 million receptor neurons divided into about 1,000 different types, which detect airborne chemicals – called odorants – that make up smells. Each odorant activates many different receptor types. And each receptor type responds to many different odorants. To identify a smell, the brain must therefore consider the overall pattern of activation across all receptor types. Individual receptor neurons in the mammalian nose live for about 30 days, before new cells replace them. The entire population of odorant receptor neurons turns over every few weeks, even in adults. Studies have shown that some types of these receptor neurons are used more often than others, depending on the species, and are therefore much more abundant. Moreover, the usage patterns of different receptor types can also change when individual animals are exposed to different smells. Teşileanu et al. set out to develop a computer model that can explain these observations. The results revealed that the nose adjusts its odorant receptor neurons to provide the brain with as much information as possible about typical smells in the environment. Because each smell consists of multiple odorants, each odorant is more likely to occur alongside certain others. For example, the odorants that make up the scent of a flower are more likely to occur together than alongside the odorants in diesel. The nose takes advantage of these relationships by adjusting the abundance of the receptor types in line with them. Teşileanu et al. show that exposure to odorants leads to reproducible increases or decreases in different receptor types, depending on what would provide the brain with most information. The number of odorant receptor neurons in the human nose decreases with time. The current findings could help scientists understand how these changes affect our sense of smell as we age. This will require collaboration between experimental and theoretical scientists to measure the odors typical of our environments, and work out how our odorant receptor neurons detect them. |
| Author | Balasubramanian, Vijay Teşileanu, Tiberiu Monasson, Rémi Cocco, Simona |
| Author_xml | – sequence: 1 givenname: Tiberiu orcidid: 0000-0003-3107-3088 surname: Teşileanu fullname: Teşileanu, Tiberiu organization: Center for Computational Biology, Flatiron Institute, New York, United States, Initiative for the Theoretical Sciences, The Graduate Center, City University of New York, New York, United States, David Rittenhouse Laboratories, University of Pennsylvania, Philadelphia, United States – sequence: 2 givenname: Simona surname: Cocco fullname: Cocco, Simona organization: Laboratoire de Physique Statistique, École Normale Supérieure and CNRS UMR 8550, PSL Research, UPMC Sorbonne Université, Paris, France – sequence: 3 givenname: Rémi orcidid: 0000-0002-4459-0204 surname: Monasson fullname: Monasson, Rémi organization: Laboratoire de Physique Théorique, École Normale Supérieure and CNRS UMR 8550, PSL Research, UPMC Sorbonne Université, Paris, France – sequence: 4 givenname: Vijay orcidid: 0000-0002-6497-3819 surname: Balasubramanian fullname: Balasubramanian, Vijay organization: Initiative for the Theoretical Sciences, The Graduate Center, City University of New York, New York, United States, David Rittenhouse Laboratories, University of Pennsylvania, Philadelphia, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30806351$$D View this record in MEDLINE/PubMed https://hal.sorbonne-universite.fr/hal-02068925$$DView record in HAL |
| BookMark | eNptkt9rFDEQx4NUbK198l0WfFHkan5v8lI8itrCgS8KvoVsMrnm2EvO7G6h_73pbS3tYfKQyeQz38kk8xodpZwAobcEn7dC8M-wigHOmaatfoFOKBZ4gRX_ffTEPkZnw7DBdbRcKaJfoWOGFZZMkBP0ZentbrRjzKnJocl9sG7M5a4p4GBXrcZ2U_I2ORiaULcQQnQR0ti47GNav0Evg-0HOHtYT9Gvb19_Xl4tVj--X18uVwsnsB4XnskOAgbiOde6U64FwjAV0CkGArd1ei4oc5oq20reCQ4cCAXGPO04sFN0Pev6bDdmV-LWljuTbTR7Ry5rY8sYXQ9GamBUtcQGxbnistNdaIMArnQLXuqqdTFr7aZuC97Vaortn4k-P0nxxqzzrZFMVw1eBT7OAjcHYVfLlbn3YYql0lTcksp-eEhW8p8JhtFs4-Cg722CPA2GEiUJZ5Kzir4_QDd5Kqk-q6EVY0rU_6zUu6e3f8z_71Mr8GkGXMnDUCA8IgSb-64x-64x-66pNDmgXZwbopYe-__G_AVhdMOV |
| CitedBy_id | crossref_primary_10_7554_eLife_54347 crossref_primary_10_1016_j_cell_2021_11_022 crossref_primary_10_1016_j_conb_2022_102620 crossref_primary_10_1016_j_conb_2021_11_007 crossref_primary_10_1016_j_neuron_2020_05_030 crossref_primary_10_7554_eLife_72081 crossref_primary_10_1016_j_cois_2024_101291 crossref_primary_10_3389_fncel_2022_1006703 crossref_primary_10_1038_s44335_024_00018_w crossref_primary_10_1371_journal_pcbi_1009479 crossref_primary_10_1002_ffj_3813 crossref_primary_10_1007_s10822_021_00434_1 crossref_primary_10_1038_s42003_020_01572_2 crossref_primary_10_1073_pnas_1906571116 crossref_primary_10_1016_j_ijbiomac_2022_09_251 crossref_primary_10_1016_j_bpc_2019_106264 crossref_primary_10_1007_s10681_021_02959_w crossref_primary_10_1103_PhysRevE_104_024415 crossref_primary_10_1103_PhysRevLett_134_147402 |
| Cites_doi | 10.1007/BF01175561 10.1073/pnas.0914916107 10.1038/nn831 10.1016/j.cell.2006.01.050 10.1073/pnas.1005846107 10.1016/j.cub.2008.08.071 10.1162/neco.1990.2.3.308 10.1017/CBO9780511804441 10.1371/journal.pone.0002640 10.1016/j.jmva.2009.04.008 10.1371/journal.pcbi.1000677 10.1038/381607a0 10.1093/chemse/bjl013 10.1073/pnas.0605321104 10.1098/rspb.2004.2993 10.1073/pnas.1600357113 10.1016/0092-8674(91)90418-X 10.1523/JNEUROSCI.4693-14.2015 10.1007/BF00203134 10.1371/journal.pcbi.1004850 10.1016/S0092-8674(00)80581-4 10.7554/eLife.21476 10.1021/cr950068a 10.1523/JNEUROSCI.12-10-03896.1992 10.1038/nn.3594 10.1016/j.neuron.2003.08.011 10.1002/0471725382 10.1016/j.cub.2005.11.075 10.1016/S0092-8674(94)90562-2 10.1515/znc-1981-9-1040 10.1073/pnas.1506855112 10.1007/978-1-4899-2519-0_23 10.1101/311514 10.1146/annurev.neuro.20.1.595 10.1016/S0092-8674(00)00021-0 10.1101/gr.169532.113 10.1016/0042-6989(93)90163-Q 10.1159/000437413 10.1002/(SICI)1097-4695(199605)30:1<67::AID-NEU7>3.0.CO;2-E 10.1038/nature13964 10.1002/ar.23029 10.1523/JNEUROSCI.0688-13.2014 10.1007/s10955-011-0166-2 10.1126/scisignal.2000016 10.1016/j.neuron.2015.09.007 10.1098/rspb.1982.0085 10.3389/fnsys.2011.00065 10.1098/rspb.1998.0303 10.1007/s10955-015-1439-y 10.1093/icb/7.3.421 10.7554/eLife.02115 10.1126/science.286.5440.711 10.1038/35090500 10.1101/160382 10.1073/pnas.1510103112 10.7554/eLife.00070 10.1007/BF00188924 10.1371/journal.pcbi.1003184 10.1038/384162a0 10.1371/journal.pone.0069862 10.7554/eLife.03722 10.15252/msb.20156639 10.1146/annurev.neuro.24.1.1193 |
| ContentType | Journal Article |
| Copyright | 2019, Teşileanu et al. 2019, Teşileanu et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License 2019, Teşileanu et al 2019 Teşileanu et al |
| Copyright_xml | – notice: 2019, Teşileanu et al. – notice: 2019, Teşileanu et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2019, Teşileanu et al 2019 Teşileanu et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM DOA |
| DOI | 10.7554/eLife.39279 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Physics |
| EISSN | 2050-084X |
| ExternalDocumentID | oai_doaj_org_article_69e32871af844846b9bf7f5e4897ed69 PMC6398974 oai:HAL:hal-02068925v1 30806351 10_7554_eLife_39279 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | New York France United States--US Paris France |
| GeographicLocations_xml | – name: New York – name: Paris France – name: United States--US – name: France |
| GrantInformation_xml | – fundername: Aspen Center for Physics grantid: PHY-160761 – fundername: United States - Israel Binational Science Foundation grantid: 2011058 – fundername: National Science Foundation grantid: PHY-1734030 – fundername: Simons Foundation grantid: 400425 – fundername: US-Israel Binational Science Foundation grantid: 2011058 – fundername: ; – fundername: ; grantid: PHY-1734030 – fundername: ; grantid: PHY-160761 – fundername: ; grantid: 400425 – fundername: ; grantid: 2011058 |
| GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RHI RNS RPM UKHRP 3V. ALIPV CGR CUY CVF ECM EIF FRP NPM RHF 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 1XC H13 VOOES 5PM |
| ID | FETCH-LOGICAL-c509t-d36bef0e1d4499b8c7e13025eb83e507070d4523c928a764b54e4e12e33d2b4e3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460207400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2050-084X |
| IngestDate | Fri Oct 03 12:39:48 EDT 2025 Tue Nov 04 01:57:23 EST 2025 Tue Oct 14 20:42:29 EDT 2025 Thu Oct 02 09:34:36 EDT 2025 Tue Oct 07 06:49:18 EDT 2025 Thu Jan 02 22:55:04 EST 2025 Tue Nov 18 22:27:57 EST 2025 Sat Nov 29 06:09:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | efficient coding mouse olfaction receptor distribution D. melanogaster physics of living systems |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 2019, Teşileanu et al. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-d36bef0e1d4499b8c7e13025eb83e507070d4523c928a764b54e4e12e33d2b4e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3107-3088 0000-0002-4459-0204 0000-0002-6497-3819 0000-0002-1852-7789 |
| OpenAccessLink | https://www.proquest.com/docview/2218385084?pq-origsite=%requestingapplication% |
| PMID | 30806351 |
| PQID | 2218385084 |
| PQPubID | 2045579 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_69e32871af844846b9bf7f5e4897ed69 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6398974 hal_primary_oai_HAL_hal_02068925v1 proquest_miscellaneous_2186143643 proquest_journals_2218385084 pubmed_primary_30806351 crossref_primary_10_7554_eLife_39279 crossref_citationtrail_10_7554_eLife_39279 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-02-26 |
| PublicationDateYYYYMMDD | 2019-02-26 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-26 day: 26 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | eLife |
| PublicationTitleAlternate | Elife |
| PublicationYear | 2019 |
| Publisher | eLife Sciences Publications Ltd eLife Sciences Publication eLife Sciences Publications, Ltd |
| Publisher_xml | – name: eLife Sciences Publications Ltd – name: eLife Sciences Publication – name: eLife Sciences Publications, Ltd |
| References | Garrigan (bib13) 2010; 6 Zhang (bib67) 2016; 12 Lewicki (bib27) 2002; 5 Mori (bib32) 1999; 286 Gross (bib15) 1982; 135 Rospars (bib41) 1989 Tan (bib56) 2015; 11 van Hateren (bib62) 1998; 265 Olshausen (bib35) 1996; 381 Shannon (bib48) 1948 Dias (bib10) 2014; 17 Smith (bib51) 2014; 297 van Hateren (bib60) 1992; 171 Stevens (bib54) 2015; 112 Laughlin (bib25) 1981; 36 Fairhall (bib11) 2001; 412 Simoncelli (bib49) 2001; 24 Pihlström (bib37) 2005; 272 DasGupta (bib8) 2008; 18 Zhao (bib68) 2013; 8 Vosshall (bib63) 2000; 102 Cadiou (bib5) 2014; 34 Dekker (bib9) 2006; 16 Zwicker (bib69) 2016; 113 Hildebrand (bib19) 1997; 20 Zarzo (bib66) 2006; 31 Krishnamurthy (bib24) 2017 Missbach (bib31) 2014; 3 Calof (bib6) 1996; 30 Maresh (bib29) 2008; 3 Ratliff (bib38) 2010; 107 Saito (bib44) 2009; 2 Chess (bib7) 1994; 78 Graziadei (bib14) 1979; 8 Yu (bib65) 2015; 40 Atick (bib1) 1990; 2 Herculano-Houzel (bib17) 2015; 86 FCI (bib12) 2018 Santoro (bib46) 2012; 1 Rossiter (bib42) 1996; 96 Rousseeuw (bib43) 1987 Hallem (bib16) 2006; 125 Niimura (bib34) 2014; 24 Huston (bib20) 2015; 88 Koulakov (bib23) 2011; 5 Moulton (bib33) 1967; 7 Stopfer (bib55) 2003; 39 Ibarra-Soria (bib21) 2017; 6 Resulaj (bib39) 2015; 35 McBride (bib30) 2014; 515 Palmer (bib36) 2015; 112 Srinivasan (bib53) 1982; 216 van Hateren (bib59) 1992; 68 Schwob (bib47) 1992; 12 Malnic (bib28) 1999; 96 Salisbury (bib45) 2016; 162 Keller (bib22) 2007; 104 Snitz (bib52) 2013; 9 Tkacik (bib58) 2010; 107 Boyd (bib3) 2004 Singh (bib50) 2018 Lewandowski (bib26) 2009; 100 Barlow (bib2) 1961 Buck (bib4) 1991; 65 Van Hateren (bib61) 1993; 33 Hermundstad (bib18) 2014; 3 Teşileanu (bib57) 2019 Wehr (bib64) 1996; 384 Rivoire (bib40) 2011; 142 |
| References_xml | – volume: 8 start-page: 197 year: 1979 ident: bib14 article-title: Neurogenesis and neuron regeneration in the olfactory system of mammals. II. Degeneration and reconstitution of the olfactory sensory neurons after axotomy publication-title: Journal of Neurocytology doi: 10.1007/BF01175561 – volume: 107 start-page: 18149 year: 2010 ident: bib58 article-title: Local statistics in natural scenes predict the saliency of synthetic textures publication-title: PNAS doi: 10.1073/pnas.0914916107 – volume: 5 start-page: 356 year: 2002 ident: bib27 article-title: Efficient coding of natural sounds publication-title: Nature Neuroscience doi: 10.1038/nn831 – volume-title: GitHub year: 2019 ident: bib57 article-title: Adaptation of olfactory receptor abundances for efficient coding – volume: 125 start-page: 143 year: 2006 ident: bib16 article-title: Coding of odors by a receptor repertoire publication-title: Cell doi: 10.1016/j.cell.2006.01.050 – volume: 107 start-page: 17368 year: 2010 ident: bib38 article-title: Retina is structured to process an excess of darkness in natural scenes publication-title: PNAS doi: 10.1073/pnas.1005846107 – volume: 18 start-page: 1668 year: 2008 ident: bib8 article-title: Learned odor discrimination in Drosophila without combinatorial odor maps in the antennal lobe publication-title: Current Biology doi: 10.1016/j.cub.2008.08.071 – volume: 2 start-page: 308 year: 1990 ident: bib1 article-title: Towards a theory of early visual processing publication-title: Neural Computation doi: 10.1162/neco.1990.2.3.308 – volume-title: Convex Optimization year: 2004 ident: bib3 doi: 10.1017/CBO9780511804441 – volume: 3 year: 2008 ident: bib29 article-title: Principles of glomerular organization in the human olfactory bulb--implications for odor processing publication-title: PLoS One doi: 10.1371/journal.pone.0002640 – volume: 100 start-page: 1989 year: 2009 ident: bib26 article-title: Generating random correlation matrices based on vines and extended onion method publication-title: Journal of Multivariate Analysis doi: 10.1016/j.jmva.2009.04.008 – volume: 6 year: 2010 ident: bib13 article-title: Design of a trichromatic cone array publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1000677 – volume: 381 start-page: 607 year: 1996 ident: bib35 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature doi: 10.1038/381607a0 – volume: 31 start-page: 713 year: 2006 ident: bib66 article-title: Identification of latent variables in a semantic odor profile database using principal component analysis publication-title: Chemical Senses doi: 10.1093/chemse/bjl013 – volume: 104 start-page: 5614 year: 2007 ident: bib22 article-title: Influence of odorant receptor repertoire on odor perception in humans and fruit flies publication-title: PNAS doi: 10.1073/pnas.0605321104 – volume: 272 start-page: 957 year: 2005 ident: bib37 article-title: Scaling of mammalian ethmoid bones can predict olfactory organ size and performance publication-title: Proceedings of the Royal Society B: Biological Sciences doi: 10.1098/rspb.2004.2993 – volume: 113 start-page: 5570 year: 2016 ident: bib69 article-title: Receptor arrays optimized for natural odor statistics publication-title: PNAS doi: 10.1073/pnas.1600357113 – volume: 65 start-page: 175 year: 1991 ident: bib4 article-title: A novel multigene family may encode odorant receptors: a molecular basis for odor recognition publication-title: Cell doi: 10.1016/0092-8674(91)90418-X – volume: 35 start-page: 11667 year: 2015 ident: bib39 article-title: Novel Behavioral Paradigm Reveals Lower Temporal Limits on Mouse Olfactory Decisions publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.4693-14.2015 – volume: 68 start-page: 23 year: 1992 ident: bib59 article-title: A theory of maximizing sensory information publication-title: Biological Cybernetics doi: 10.1007/BF00203134 – volume: 12 year: 2016 ident: bib67 article-title: A Robust Feedforward Model of the Olfactory System publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1004850 – volume: 96 start-page: 713 year: 1999 ident: bib28 article-title: Combinatorial receptor codes for odors publication-title: Cell doi: 10.1016/S0092-8674(00)80581-4 – volume: 6 year: 2017 ident: bib21 article-title: Variation in olfactory neuron repertoires is genetically controlled and environmentally modulated publication-title: eLife doi: 10.7554/eLife.21476 – volume: 96 start-page: 3201 year: 1996 ident: bib42 article-title: Structure−odor relationships publication-title: Chemical Reviews doi: 10.1021/cr950068a – volume: 12 start-page: 3896 year: 1992 ident: bib47 article-title: Olfactory sensory neurons are trophically dependent on the olfactory bulb for their prolonged survival publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.12-10-03896.1992 – volume: 17 start-page: 89 year: 2014 ident: bib10 article-title: Parental olfactory experience influences behavior and neural structure in subsequent generations publication-title: Nature Neuroscience doi: 10.1038/nn.3594 – volume: 39 start-page: 991 year: 2003 ident: bib55 article-title: Intensity versus identity coding in an olfactory system publication-title: Neuron doi: 10.1016/j.neuron.2003.08.011 – volume-title: Robust Regression and Outlier Detection year: 1987 ident: bib43 doi: 10.1002/0471725382 – start-page: 217 volume-title: Sensory Communication year: 1961 ident: bib2 – volume: 16 start-page: 101 year: 2006 ident: bib9 article-title: Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling, D. sechellia publication-title: Current Biology doi: 10.1016/j.cub.2005.11.075 – volume-title: A Mathematical Theory of Communication year: 1948 ident: bib48 – volume: 78 start-page: 823 year: 1994 ident: bib7 article-title: Allelic inactivation regulates olfactory receptor gene expression publication-title: Cell doi: 10.1016/S0092-8674(94)90562-2 – volume: 36 start-page: 910 year: 1981 ident: bib25 article-title: A simple coding procedure enhances a neuron's Information Capacity publication-title: Zeitschrift Für Naturforschung C doi: 10.1515/znc-1981-9-1040 – volume: 112 start-page: 6908 year: 2015 ident: bib36 article-title: Predictive information in a sensory population publication-title: PNAS doi: 10.1073/pnas.1506855112 – start-page: 355 volume-title: Neurobiology of Sensory Systems year: 1989 ident: bib41 doi: 10.1007/978-1-4899-2519-0_23 – volume-title: BioRxiv year: 2018 ident: bib50 article-title: A competitive binding model predicts nonlinear responses of olfactory receptors to complex mixtures doi: 10.1101/311514 – volume: 20 start-page: 595 year: 1997 ident: bib19 article-title: Mechanisms of olfactory discrimination: converging evidence for common principles across phyla publication-title: Annual Review of Neuroscience doi: 10.1146/annurev.neuro.20.1.595 – volume-title: Federation Cynologique Internationale year: 2018 ident: bib12 – volume: 102 start-page: 147 year: 2000 ident: bib63 article-title: An olfactory sensory map in the fly brain publication-title: Cell doi: 10.1016/S0092-8674(00)00021-0 – volume: 24 start-page: 1485 year: 2014 ident: bib34 article-title: Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals publication-title: Genome Research doi: 10.1101/gr.169532.113 – volume: 33 start-page: 257 year: 1993 ident: bib61 article-title: Spatiotemporal contrast sensitivity of early vision publication-title: Vision Research doi: 10.1016/0042-6989(93)90163-Q – volume: 86 start-page: 145 year: 2015 ident: bib17 article-title: Mammalian Brains Are Made of These: A Dataset of the Numbers and Densities of Neuronal and Nonneuronal Cells in the Brain of Glires, Primates, Scandentia, Eulipotyphlans, Afrotherians and Artiodactyls, and Their Relationship with Body Mass publication-title: Brain, Behavior and Evolution doi: 10.1159/000437413 – volume: 30 start-page: 67 year: 1996 ident: bib6 article-title: Neurogenesis and cell death in olfactory epithelium publication-title: Journal of Neurobiology doi: 10.1002/(SICI)1097-4695(199605)30:1<67::AID-NEU7>3.0.CO;2-E – volume: 515 start-page: 222 year: 2014 ident: bib30 article-title: Evolution of mosquito preference for humans linked to an odorant receptor publication-title: Nature doi: 10.1038/nature13964 – volume: 297 start-page: 2093 year: 2014 ident: bib51 article-title: Nasal morphometry in marmosets: loss and redistribution of olfactory surface area publication-title: The Anatomical Record doi: 10.1002/ar.23029 – volume: 34 start-page: 4857 year: 2014 ident: bib5 article-title: Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.0688-13.2014 – volume: 142 start-page: 1124 year: 2011 ident: bib40 article-title: The Value of Information for Populations in Varying Environments publication-title: Journal of Statistical Physics doi: 10.1007/s10955-011-0166-2 – volume: 2 year: 2009 ident: bib44 article-title: Odor coding by a Mammalian receptor repertoire publication-title: Science Signaling doi: 10.1126/scisignal.2000016 – volume: 135 start-page: 83 year: 1982 ident: bib15 article-title: Comparative morphometry of the nasal cavity in rats and mice publication-title: Journal of Anatomy – volume: 88 start-page: 403 year: 2015 ident: bib20 article-title: Neural Encoding of Odors during Active Sampling and in Turbulent Plumes publication-title: Neuron doi: 10.1016/j.neuron.2015.09.007 – volume: 216 start-page: 427 year: 1982 ident: bib53 article-title: Predictive coding: a fresh view of inhibition in the retina publication-title: Proceedings of the Royal Society of London. Series B, Biological sciences doi: 10.1098/rspb.1982.0085 – volume: 5 start-page: 1 year: 2011 ident: bib23 article-title: In search of the structure of human olfactory space publication-title: Frontiers in Systems Neuroscience doi: 10.3389/fnsys.2011.00065 – volume: 265 start-page: 359 year: 1998 ident: bib62 article-title: Independent component filters of natural images compared with simple cells in primary visual cortex publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences doi: 10.1098/rspb.1998.0303 – volume: 162 start-page: 1309 year: 2016 ident: bib45 article-title: Optimal Prediction in the Retina and Natural Motion Statistics publication-title: Journal of Statistical Physics doi: 10.1007/s10955-015-1439-y – volume: 7 start-page: 421 year: 1967 ident: bib33 article-title: Olfaction in mammals publication-title: American Zoologist doi: 10.1093/icb/7.3.421 – volume: 3 year: 2014 ident: bib31 article-title: Evolution of insect olfactory receptors publication-title: eLife doi: 10.7554/eLife.02115 – volume: 286 start-page: 711 year: 1999 ident: bib32 article-title: The olfactory bulb: coding and processing of odor molecule information publication-title: Science doi: 10.1126/science.286.5440.711 – volume: 412 start-page: 787 year: 2001 ident: bib11 article-title: Efficiency and ambiguity in an adaptive neural code publication-title: Nature doi: 10.1038/35090500 – volume-title: arXiv year: 2017 ident: bib24 article-title: Disorder and the neural representation of complex odors: smelling in the real world doi: 10.1101/160382 – volume: 112 start-page: 9460 year: 2015 ident: bib54 article-title: What the fly's nose tells the fly's brain publication-title: PNAS doi: 10.1073/pnas.1510103112 – volume: 1 year: 2012 ident: bib46 article-title: The activity-dependent histone variant H2BE modulates the life span of olfactory neurons publication-title: eLife doi: 10.7554/eLife.00070 – volume: 171 start-page: 157 year: 1992 ident: bib60 article-title: Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation publication-title: Journal of Comparative Physiology A doi: 10.1007/BF00188924 – volume: 9 year: 2013 ident: bib52 article-title: Predicting odor perceptual similarity from odor structure publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1003184 – volume: 384 start-page: 162 year: 1996 ident: bib64 article-title: Odour encoding by temporal sequences of firing in oscillating neural assemblies publication-title: Nature doi: 10.1038/384162a0 – volume: 40 year: 2015 ident: bib65 article-title: Drawing the border of olfactory space publication-title: Chemical Senses – volume: 8 year: 2013 ident: bib68 article-title: Activity-dependent modulation of odorant receptor gene expression in the mouse olfactory epithelium publication-title: PLoS One doi: 10.1371/journal.pone.0069862 – volume: 3 year: 2014 ident: bib18 article-title: Variance predicts salience in central sensory processing publication-title: eLife doi: 10.7554/eLife.03722 – volume: 11 year: 2015 ident: bib56 article-title: Olfactory sensory neurons transiently express multiple olfactory receptors during development publication-title: Molecular Systems Biology doi: 10.15252/msb.20156639 – volume: 24 start-page: 1193 year: 2001 ident: bib49 article-title: Natural image statistics and neural representation publication-title: Annual Review of Neuroscience doi: 10.1146/annurev.neuro.24.1.1193 |
| SSID | ssj0000748819 |
| Score | 2.3754694 |
| Snippet | Olfactory receptor usage is highly heterogeneous, with some receptor types being orders of magnitude more abundant than others. We propose an explanation for... |
| SourceID | doaj pubmedcentral hal proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| SubjectTerms | Adaptation Adaptation, Physiological Animals Biological Physics Brain research efficient coding Environmental changes Hypotheses Life Sciences Mammals Models, Neurological Neural coding Neurogenesis Neurons Neurons and Cognition Odorant receptors Odorants olfaction Olfactory receptor neurons Physics Physics of Living Systems receptor distribution Receptors, Odorant - physiology Sensory evaluation Sensory neurons Smell |
| SummonAdditionalLinks | – databaseName: Open Access: DOAJ - Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlpNBLafp0mxa15FQwWT2sx63b0pDDEnpoITcjyyOyEOwl2QTy7zMjOctuW-ilNyMLScxImm_QzDeMHQllk5Cir61uZK2dD7VPRI83Uz2a0yhMzOz6C3t25s7P_Y-tUl8UE1bogYvgjo0HRag-JIeehDad75JNDeCwFnqTU_cQ9Ww5U_kOtrgxhS8JeRZN5jEslgnQw5cUtLVlgjJTPxqWC4qD_BNk_h4ruWV8Tp6xpxNq5POy2gP2CIbn7HGpI3n3gn2Z92FV3tT5mPh4Waro3HG8zmCFXzx0lPFBIdMcUSqHTByBc_E4kvF6yX6dfP_57bSeSiPUES38uu6V6SDNQPQaXZbORQv0AtlA5xQ0ROEz61H4KnrpgjW6azRoEBIUqqDToF6xvWEc4A3jIhBKTAqCUZSoGpJsonESL3HfJCMr9vlBWm2ceMOpfMVli_4DibbNom2zaCt2tOm8KnQZf-_2lcS-6UIc17kBNd9Omm__pfmKfUKl7YxxOl-01IYY2Dgvm1tRscMHnbbT6bxuJeFCh9BUV-zj5jeeK3osCQOMN9hHOEQuCgFbxV6XLbCZSuGGQ6CGg9udzbGzlt0_w_Iic3cjIMTl67f_QwDv2BOEbz4n2JtDtre-uoH3bD_erpfXVx_ygbgHx_MOtw priority: 102 providerName: Directory of Open Access Journals |
| Title | Adaptation of olfactory receptor abundances for efficient coding |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30806351 https://www.proquest.com/docview/2218385084 https://www.proquest.com/docview/2186143643 https://hal.sorbonne-universite.fr/hal-02068925 https://pubmed.ncbi.nlm.nih.gov/PMC6398974 https://doaj.org/article/69e32871af844846b9bf7f5e4897ed69 |
| Volume | 8 |
| WOSCitedRecordID | wos000460207400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M7P dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: 7X7 dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (subscription) customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M2P dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED7WdoO97PcPb13wRp8GprFkS_LTlo6WDtJgxgbZk7HlUxsodpakhf73u5OdrNnGXvZigiUU4ZP0fSedvgM4iKV2sYjrSCepiBKTlVHmWB5vKGuCUxsr69X1x3oyMdNplvcbbss-rHK9JvqFum4t75EfCsZyQ3Qi-TD_EXHWKD5d7VNo7MAeqyRIH7qXb_ZYCB4NIV53LU8TcB7ieOaQ_HzBoVu3gMjr9RO8XHA05J9U8_eIyVsQdPLwfzv_CB705DMcdaPlMdzB5gnc69JR3jyFj6O6nHdH82HrwvayS8ZzE9KqiHP6FZYVXxzhyOuQyG6IXn-COhvaljHwGXw7Of766TTqMyxElojCKqqlqtANMa4T8nwqYzXyQWaKlZGYshLQsCYbSpsJU2qVVGmCCcYCJVmySlA-h92mbfAlhHHJZNNJLJXk-66lE6lVRhAWZKlTIoD3689d2F5-nLNgXBbkhrBtCm-bwtsmgINN5XmnuvH3akdst00Vlsr2L9rFedHPvEJlKNktLJ0hVzRRVVY57VKkcamxVtTIO7L6Vhuno3HB74hKK5OJ9DoOYH9t2KKf5Mvil1UDeLsppunJZy5lg-0V1YkNESBJvC-AF90Y2vyVJLZOfI8a11uja6sv2yXN7MJLgBOvpO4nr_7drddwn_hd5m_gq33YXS2u8A3ctder2XIxgB091f5pBrB3dDzJvwz8lgQ9z0Q-8HOJSvLPZ_n3n6K5JBk |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAioX3g9DAYPKpZJpvGuv1wcE4VGlqol6KFJvxo_ZNlJlhyQtyp_iNzKzftAA4tYDt8hebUb2t_N9452dAdjyZWR84ZdeFITCC3ScebHh8ngDWRKdFr4qbHX9JBqP9dFRfLAGP7qzMJxW2flE66jLuuBv5DuCuVyTnAjeTr953DWKd1e7FhoNLPZx-Z1CtvmbvY_0fl8Jsfvp8MPIa7sKeAWR48IrpcrRDNAvA1L7uS4i5M27EHMtMeTqN4OS7JZFLHQWqSAPAwzQFyjJ-jxASfNegaskI4S2qYIH_TcdomNNDNscA4yIqHcwmRh8TRqEU8UuEJ_tD0B0dsLZl39K298zNC9Q3u6t_-1h3Yabrbh2h81quANrWN2F6027zeU9eDcss2mTeuDWxq1Pm2ZDS5e8Pk7pl5vlfDCGM8tdEvMu2voa9HDcomaOvw9fLsX8B7Be1RU-AtfPWEwbiZmSfJ43MyIslBbEdXFolHBgu3u9adGWV-cuH6cphVmMhdRiIbVYcGCrHzxtqor8fdh7xkk_hEuB2wv17DhtPUuqYpQc9mZGU6gdqDzOTWRCpHUXYalokpeEspU5RsMk5WsUKigdi_Dcd2CzA1LaOrF5-gtFDrzob5P74T2lrML6jMb4mgSeJF3rwMMGs_1fSYpGSM_S5NEKmldsWb1TTU5siXPSzWR-8PjfZj2HjdHh5yRN9sb7T-AGadnYVhtQm7C-mJ3hU7hWnC8m89kzu05d-HrZWP8JWvR4ig |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V8hAX3g9DAYPKBckk3rXX6wOCQIlaNYpyAKm3xY9ZGqmyQ5IW5a_x65hZ26EBxK0Hbpa9Wq_tb-f7xjs7A7AbysSGIiyDJIpFEOk0C1LL6fH6siQ6LUJVuOz6o2Q81kdH6WQLfnR7YTissrOJzlCXdcH_yHuCuVyTnIh6tg2LmOwN386-BVxBildau3IaDUQOcfWd3LfFm4M9-tYvhRh-_PRhP2grDAQFEeUyKKXK0fYxLCNS_rkuEuSFvBhzLTHmTDj9kp5BFqnQWaKiPI4wwlCgpCfJI5TU7yW4nHDSchc2OFn_3yFq1sS2zZbAhEi7h6OpxdekRzhs7BwJuloBRG3HHIn5p8z9PVrzHP0Nb_7PL-4W3GhFtz9oZslt2MLqDlxtynCu7sK7QZnNmpAEv7Z-fdIUIVr5xAY4oyM_y3nDDEec-yTyfXR5N-hF-UXN3H8PPl_I8O_DdlVX-BD8MGORbSVmSvI-38yKuFBaEAemsVXCg1fdpzZFm3adq3-cGHK_GBfG4cI4XHiwu248a7KN_L3Ze8bMugmnCHcn6vlX01oco1KU7A5nVpMLHqk8zW1iY6T5mGCpqJMXhLiNPvYHI8PnyIVQOhXxWejBTgcq0xq3hfmFKA-ery-TWeK1pqzC-pTahJqEnyS968GDBr_rW0nyUkjnUufJBrI3xrJ5pZoeu9TnpKdp-NGjfw_rGVwjiJvRwfjwMVwniZu6JARqB7aX81N8AleKs-V0MX_qpqwPXy4a6j8BRDSBRw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptation+of+olfactory+receptor+abundances+for+efficient+coding&rft.jtitle=eLife&rft.au=Te%C5%9Fileanu%2C+Tiberiu&rft.au=Cocco%2C+Simona&rft.au=Monasson%2C+Remi&rft.au=Balasubramanian%2C+Vijay&rft.date=2019-02-26&rft.pub=eLife+Sciences+Publication&rft.eissn=2050-084X&rft.volume=8&rft_id=info:doi/10.7554%2FeLife.39279&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02068925v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |