Predicting osteoarthritis in adults using statistical data mining and machine learning
Background: Osteoarthritis (OA) has traditionally been considered a disease of older adults (⩾65 years old), but it may appear in younger adults. However, the risk factors for OA in younger adults need to be further evaluated. Objectives: To develop a prediction model for identifying risk factors of...
Uloženo v:
| Vydáno v: | Therapeutic advances in musculoskeletal disease Ročník 14; s. 1759720X221104935 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London, England
SAGE Publications
2022
SAGE PUBLICATIONS, INC SAGE Publishing |
| Témata: | |
| ISSN: | 1759-720X, 1759-7218 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Background:
Osteoarthritis (OA) has traditionally been considered a disease of older adults (⩾65 years old), but it may appear in younger adults. However, the risk factors for OA in younger adults need to be further evaluated.
Objectives:
To develop a prediction model for identifying risk factors of OA in subjects aged 20–50 years and compare the performance of different machine learning models.
Methods:
We included data from 52,512 participants of the National Health and Nutrition Examination Survey; of those, we analyzed only subjects aged 20–50 years (n = 19,133), with or without OA. The supervised machine learning model ‘Deep PredictMed’ based on logistic regression, deep neural network (DNN), and support vector machine was used for identifying demographic and personal characteristics that are associated with OA. Finally, we compared the performance of the different models.
Results:
Being a female (p < 0.001), older age (p < 0.001), a smoker (p < 0.001), higher body mass index (p < 0.001), high blood pressure (p < 0.001), race/ethnicity (lowest risk among Mexican Americans, p = 0.01), and physical and mental limitations (p < 0.001) were associated with having OA. Best predictive performance yielded a 75% area under the receiver operating characteristic curve.
Conclusion:
Sex (female), age (older), smoking (yes), body mass index (higher), blood pressure (high), race/ethnicity, and physical and mental limitations are risk factors for having OA in adults aged 20–50 years. The best predictive performance was achieved using DNN algorithms. |
|---|---|
| AbstractList | Osteoarthritis (OA) has traditionally been considered a disease of older adults (⩾65 years old), but it may appear in younger adults. However, the risk factors for OA in younger adults need to be further evaluated.BackgroundOsteoarthritis (OA) has traditionally been considered a disease of older adults (⩾65 years old), but it may appear in younger adults. However, the risk factors for OA in younger adults need to be further evaluated.To develop a prediction model for identifying risk factors of OA in subjects aged 20-50 years and compare the performance of different machine learning models.ObjectivesTo develop a prediction model for identifying risk factors of OA in subjects aged 20-50 years and compare the performance of different machine learning models.We included data from 52,512 participants of the National Health and Nutrition Examination Survey; of those, we analyzed only subjects aged 20-50 years (n = 19,133), with or without OA. The supervised machine learning model 'Deep PredictMed' based on logistic regression, deep neural network (DNN), and support vector machine was used for identifying demographic and personal characteristics that are associated with OA. Finally, we compared the performance of the different models.MethodsWe included data from 52,512 participants of the National Health and Nutrition Examination Survey; of those, we analyzed only subjects aged 20-50 years (n = 19,133), with or without OA. The supervised machine learning model 'Deep PredictMed' based on logistic regression, deep neural network (DNN), and support vector machine was used for identifying demographic and personal characteristics that are associated with OA. Finally, we compared the performance of the different models.Being a female (p < 0.001), older age (p < 0.001), a smoker (p < 0.001), higher body mass index (p < 0.001), high blood pressure (p < 0.001), race/ethnicity (lowest risk among Mexican Americans, p = 0.01), and physical and mental limitations (p < 0.001) were associated with having OA. Best predictive performance yielded a 75% area under the receiver operating characteristic curve.ResultsBeing a female (p < 0.001), older age (p < 0.001), a smoker (p < 0.001), higher body mass index (p < 0.001), high blood pressure (p < 0.001), race/ethnicity (lowest risk among Mexican Americans, p = 0.01), and physical and mental limitations (p < 0.001) were associated with having OA. Best predictive performance yielded a 75% area under the receiver operating characteristic curve.Sex (female), age (older), smoking (yes), body mass index (higher), blood pressure (high), race/ethnicity, and physical and mental limitations are risk factors for having OA in adults aged 20-50 years. The best predictive performance was achieved using DNN algorithms.ConclusionSex (female), age (older), smoking (yes), body mass index (higher), blood pressure (high), race/ethnicity, and physical and mental limitations are risk factors for having OA in adults aged 20-50 years. The best predictive performance was achieved using DNN algorithms. Background: Osteoarthritis (OA) has traditionally been considered a disease of older adults (⩾65 years old), but it may appear in younger adults. However, the risk factors for OA in younger adults need to be further evaluated. Objectives: To develop a prediction model for identifying risk factors of OA in subjects aged 20–50 years and compare the performance of different machine learning models. Methods: We included data from 52,512 participants of the National Health and Nutrition Examination Survey; of those, we analyzed only subjects aged 20–50 years (n = 19,133), with or without OA. The supervised machine learning model ‘Deep PredictMed’ based on logistic regression, deep neural network (DNN), and support vector machine was used for identifying demographic and personal characteristics that are associated with OA. Finally, we compared the performance of the different models. Results: Being a female (p < 0.001), older age (p < 0.001), a smoker (p < 0.001), higher body mass index (p < 0.001), high blood pressure (p < 0.001), race/ethnicity (lowest risk among Mexican Americans, p = 0.01), and physical and mental limitations (p < 0.001) were associated with having OA. Best predictive performance yielded a 75% area under the receiver operating characteristic curve. Conclusion: Sex (female), age (older), smoking (yes), body mass index (higher), blood pressure (high), race/ethnicity, and physical and mental limitations are risk factors for having OA in adults aged 20–50 years. The best predictive performance was achieved using DNN algorithms. Background: Osteoarthritis (OA) has traditionally been considered a disease of older adults (⩾65 years old), but it may appear in younger adults. However, the risk factors for OA in younger adults need to be further evaluated. Objectives: To develop a prediction model for identifying risk factors of OA in subjects aged 20–50 years and compare the performance of different machine learning models. Methods: We included data from 52,512 participants of the National Health and Nutrition Examination Survey; of those, we analyzed only subjects aged 20–50 years (n = 19,133), with or without OA. The supervised machine learning model ‘Deep PredictMed’ based on logistic regression, deep neural network (DNN), and support vector machine was used for identifying demographic and personal characteristics that are associated with OA. Finally, we compared the performance of the different models. Results: Being a female (p < 0.001), older age (p < 0.001), a smoker (p < 0.001), higher body mass index (p < 0.001), high blood pressure (p < 0.001), race/ethnicity (lowest risk among Mexican Americans, p = 0.01), and physical and mental limitations (p < 0.001) were associated with having OA. Best predictive performance yielded a 75% area under the receiver operating characteristic curve. Conclusion: Sex (female), age (older), smoking (yes), body mass index (higher), blood pressure (high), race/ethnicity, and physical and mental limitations are risk factors for having OA in adults aged 20–50 years. The best predictive performance was achieved using DNN algorithms. |
| Author | Solla, Federico Bagui, Subhash Altamura, Paola Vieira, Edgar Ramos Monticone, Marco Costantini, Stefania Bertoncelli, Domenico Bertoncelli, Carlo M. Bagui, Sikha |
| Author_xml | – sequence: 1 givenname: Carlo M. orcidid: 0000-0002-9689-0209 surname: Bertoncelli fullname: Bertoncelli, Carlo M. email: bertoncelli@unice.fr organization: Department of Information Engineering Computer Science and Mathematics, University of L’Aquila, L’Aquila, Italy – sequence: 2 givenname: Paola surname: Altamura fullname: Altamura, Paola organization: Department of Medicinal Chemistry and Pharmaceutical Technology, University of Chieti, Chieti, Italy – sequence: 3 givenname: Sikha surname: Bagui fullname: Bagui, Sikha organization: Department of Computer Science, Hal Marcus College of Science and Engineering, University of West Florida, Pensacola, FL, USA – sequence: 4 givenname: Subhash surname: Bagui fullname: Bagui, Subhash organization: Department of Computer Science, Hal Marcus College of Science and Engineering, University of West Florida, Pensacola, FL, USA – sequence: 5 givenname: Edgar Ramos surname: Vieira fullname: Vieira, Edgar Ramos organization: Department of Physical Therapy, Florida International University, Miami, FL, USA – sequence: 6 givenname: Stefania surname: Costantini fullname: Costantini, Stefania organization: Department of Information Engineering Computer Science and Mathematics, University of L’Aquila, L’Aquila, Italy – sequence: 7 givenname: Marco surname: Monticone fullname: Monticone, Marco organization: Neurorehabilitation Unit, Department of Neuroscience and Rehabilitation, G. Brotzu Hospital, University of Cagliari, Cagliari, Italy – sequence: 8 givenname: Federico surname: Solla fullname: Solla, Federico organization: Department of Pediatric Orthopaedic Surgery, Lenval University Pediatric Hospital of Nice, Nice, France – sequence: 9 givenname: Domenico surname: Bertoncelli fullname: Bertoncelli, Domenico email: bertoncelli@unice.fr organization: Department of Information Engineering Computer Science and Mathematics, University of L’Aquila, L’Aquila, Italy |
| BookMark | eNp9kstrFTEUxoNU7EP_AHcDbtzcmmTymGwEKT4KBV2odBfO5HFvLjNJTTIF_3sz3qq0oquE73zfL49zTtFRTNEh9Jzgc0KkfEUkV5Lia0oJwUz1_BE6WbWNpGQ4-r3H18fotJQ9xkJhRZ6g454PXCkqT9DXT9nZYGqI2y6V6hLkusuhhtKF2IFdplq6pazlUqHJNRiYOgsVujnEVYdouxnMLkTXTQ7yKj5Fjz1MxT27W8_Ql3dvP1982Fx9fH958eZqYzhWdWOxpNZR8M4P3oAaCBsFZkw6149-7L2xvZfCCcExYCDCG8F6zygH3orQn6HLA9cm2OubHGbI33WCoH8KKW91e1Awk9NcKqska3BKmOJEuYYFLvyA2TDasbFeH1g3yzg7a1ysGaZ70PuVGHZ6m261ogoTLBrg5R0gp2-LK1XPoRg3TRBdWoqmon05Zxj3zfrigXWflhzbV-lmGXhrHB6aSx5cJqdSsvPahLUJaT0_TJpgvc6B_msOWpI8SP56xv8y54dMga37c59_B34Amq7Dhg |
| CitedBy_id | crossref_primary_10_3390_healthcare11091206 crossref_primary_10_3390_toxins15010020 crossref_primary_10_1016_j_cmpb_2023_107548 crossref_primary_10_1038_s41598_025_99411_z crossref_primary_10_4103_jpbs_jpbs_1000_23 crossref_primary_10_1016_j_heliyon_2024_e24526 crossref_primary_10_3390_biomedicines13071644 crossref_primary_10_2147_JIR_S535311 |
| Cites_doi | 10.1007/s11999-009-0834-6 10.1016/j.compeleceng.2013.11.024 10.1136/annrheumdis-2013-204627 10.1016/j.cger.2010.03.001 10.2307/1912529 10.1038/s41584-018-0130-5 10.1136/bmj.b605 10.1056/NEJMra1814259 10.1093/ije/dyy187 10.1002/ncp.10309 10.1007/978-1-4842-3790-8_5 10.1055/s-0039-1685525 10.1097/BOR.0000000000000479 10.1016/j.joca.2009.08.010 10.3390/ijerph16071281 10.1177/0883073818822358 10.1097/PAP.0000000000000072 10.1093/bmb/lds038 10.2519/jospt.2017.7286 10.2105/AJPH.2017.304179 10.1136/heartjnl-2011-301247 10.1016/j.rehab.2016.04.003 10.1177/1460458219898568 10.1302/0301-620X.102B3.BJJ-2019-0337.R1 10.3390/medicina58010069 10.1016/j.joca.2021.10.007 10.1177/0883073817701047 10.1002/acr.20067 10.1016/j.pediatrneurol.2017.10.019 10.1007/978-0-387-75936-4 10.1097/BOR.0000000000000161 |
| ContentType | Journal Article |
| Copyright | The Author(s), 2022 The Author(s), 2022. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s), 2022. The Author(s), 2022 2022 SAGE Publications Ltd unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses |
| Copyright_xml | – notice: The Author(s), 2022 – notice: The Author(s), 2022. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s), 2022. – notice: The Author(s), 2022 2022 SAGE Publications Ltd unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses |
| DBID | AFRWT AAYXX CITATION 3V. 7RV 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. KB0 M0S NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1177/1759720X221104935 |
| DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef ProQuest Central (Corporate) Nursing & Allied Health Database ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7RV name: Nursing & Allied Health Database url: https://search.proquest.com/nahs sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1759-7218 |
| ExternalDocumentID | oai_doaj_org_article_579d9744472149519ee66a56f8048bdb PMC9290106 10_1177_1759720X221104935 10.1177_1759720X221104935 |
| GroupedDBID | --- -TM .WF 01A 0R~ 4.4 53G 54M 7RV 7X7 8FI 8FJ AABMB AADUE AAKDD AAQDB AARDL AARIX AASGM ABAWP ABEIX ABFWQ ABJIS ABKRH ABQXT ABRHV ABUWG ABVFX ACARO ACDSZ ACDXX ACGFS ACOFE ACROE ACRPL ADBBV ADEBD ADNMO ADOGD ADYCS ADZZY AEFTW AEQLS AERKM AEUHG AEWDL AEXNY AFCOW AFEET AFKRA AFKRG AFRWT AFUIA AFWMB AGNHF AGQPQ AHHFK AJUZI ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARTOV ASPBG AUTPY AVWKF AYAKG AZFZN B8M BAWUL BDDNI BENPR BKEYQ BKSCU BPHCQ BSEHC BVXVI CAG CCPQU CDWPY CFDXU COF DC- DC. DIK DOPDO EBS EJD EMOBN F5P FEDTE FYUFA GROUPED_DOAJ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION GX1 H13 HF~ HMCUK HVGLF HYE HZ~ J8X K.F N9A NAPCQ O9- OK1 P.B PHGZM PHGZT PIMPY PQQKQ ROL RPM S01 SAUOL SCDPB SCNPE SFC UKHRP ZONMY ZPPRI ZRKOI ZSSAH AAYXX ACHEB AFFHD CITATION PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c509t-d072de2afef8fca9814b60447ee3bfb3fcd3f76e6650a0a16fc643f425a53fca3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000827739800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1759-720X |
| IngestDate | Fri Oct 03 12:52:28 EDT 2025 Tue Nov 04 01:52:01 EST 2025 Sun Nov 09 13:24:49 EST 2025 Tue Oct 07 06:56:34 EDT 2025 Tue Nov 18 21:23:53 EST 2025 Sat Nov 29 08:11:51 EST 2025 Tue Jun 17 22:29:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | statistical data mining arthritis machine learning osteoarthritis |
| Language | English |
| License | This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-d072de2afef8fca9814b60447ee3bfb3fcd3f76e6650a0a16fc643f425a53fca3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9689-0209 |
| OpenAccessLink | https://www.proquest.com/docview/2758575908?pq-origsite=%requestingapplication% |
| PMID | 35859927 |
| PQID | 2758575908 |
| PQPubID | 4450846 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_579d9744472149519ee66a56f8048bdb pubmedcentral_primary_oai_pubmedcentral_nih_gov_9290106 proquest_miscellaneous_2692754003 proquest_journals_2758575908 crossref_citationtrail_10_1177_1759720X221104935 crossref_primary_10_1177_1759720X221104935 sage_journals_10_1177_1759720X221104935 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-00-00 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | London, England |
| PublicationPlace_xml | – name: London, England – name: London – name: Sage UK: London, England |
| PublicationTitle | Therapeutic advances in musculoskeletal disease |
| PublicationYear | 2022 |
| Publisher | SAGE Publications SAGE PUBLICATIONS, INC SAGE Publishing |
| Publisher_xml | – name: SAGE Publications – name: SAGE PUBLICATIONS, INC – name: SAGE Publishing |
| References | Keenan, Holland, Maempel 2020 Ackerman, Kemp, Crossley 2017; 47 Litwic, Edwards, Dennison 2013; 105 Deveza, Nelson, Loeser 2019; 37 Blagojevic, Jinks, Jeffery 2010; 18 Lim, Kim, Cheon 2019; 16 Collins, Reitsma, Altman 2014; 350 Bertoncelli, Bertoncelli, Elbaum 2018; 79 Nelson, Braga, Renner 2010; 62 Vina, Kwoh 2018; 30 Park, Mendy, Vieira 2018; 108 De l Escalopier, Anract, Biau 2016; 9 Roos, Risberg, Little 2021; 29 Rajkomar, Dean, Kohane 2019; 380 Jamshidi, Pelletier, Martel-Pelletier 2019; 15 Moons, Kengne, Grobbee 2012; 98 Bertoncelli, Altamura, Vieira 2020; 26 Kurtz, Lau, Ong 2009; 467 Bertoncelli, Altamura, Vieira 2019; 35 Cross, Smith, Hoy 2014; 73 Bertoncelli, Altamura, Vieira 2019; 34 Bertoncelli, Solla, Loughenbury 2017; 32 Moons, Altman, Reitsma 2015; 22 Bertoncelli, Altamura, Vieira 2019; 50 Mendy, Park, Vieira 2018; 47 Zhang, Jordan 2010; 26 Altman, Vergouwe, Royston 2009; 338 Girish, Sahin 2014; 40 Amarappa, Sathyanarayana 2014; 3 Byrd 2019; 97 Tognolo, Maccarone, De Trane 2022; 58 Gourieroux, Holly, Monfort 1982; 50 Allen, Golightly 2015; 27 Baratloo, Hosseini, Negida 2015; 3 Baratloo A (bibr20-1759720X221104935) 2015; 3 bibr23-1759720X221104935 bibr13-1759720X221104935 Jindal I (bibr28-1759720X221104935) bibr10-1759720X221104935 bibr43-1759720X221104935 bibr3-1759720X221104935 Byrd Z (bibr25-1759720X221104935) 2019; 97 bibr30-1759720X221104935 bibr16-1759720X221104935 bibr40-1759720X221104935 bibr46-1759720X221104935 bibr6-1759720X221104935 bibr29-1759720X221104935 bibr33-1759720X221104935 bibr39-1759720X221104935 bibr26-1759720X221104935 bibr9-1759720X221104935 National Institute for Health and Care Excellence (bibr31-1759720X221104935) 2014 bibr36-1759720X221104935 bibr21-1759720X221104935 bibr44-1759720X221104935 Amarappa S (bibr19-1759720X221104935) 2014; 3 bibr24-1759720X221104935 bibr11-1759720X221104935 bibr34-1759720X221104935 bibr14-1759720X221104935 bibr41-1759720X221104935 bibr27-1759720X221104935 bibr37-1759720X221104935 Deveza LA (bibr4-1759720X221104935) 2019; 37 Gulli A (bibr18-1759720X221104935) 2017 bibr45-1759720X221104935 bibr7-1759720X221104935 bibr1-1759720X221104935 Collins GS (bibr42-1759720X221104935) 2014; 350 bibr15-1759720X221104935 Nelson AE (bibr38-1759720X221104935) 2010; 62 Kleinbaum DG (bibr17-1759720X221104935) 2002 bibr8-1759720X221104935 bibr35-1759720X221104935 bibr22-1759720X221104935 bibr32-1759720X221104935 bibr5-1759720X221104935 bibr12-1759720X221104935 bibr2-1759720X221104935 |
| References_xml | – volume: 50 start-page: 63 year: 1982 end-page: 80 article-title: Likelihood ratio test, Wald test, and Kuhn-Tucker test in linear models with inequality constraints on the regression parameters publication-title: Econ: J Econ Soc – volume: 26 start-page: 2105 year: 2020 end-page: 2118 article-title: PredictMed: a logistic regression-based model to predict health conditions in cerebral palsy publication-title: Health Inform J – volume: 22 start-page: 303 year: 2015 end-page: 305 article-title: New guideline for the reporting of studies developing, validating, or updating a multivariable clinical prediction model: the TRIPOD statement publication-title: Adv Anat Pathol – volume: 47 start-page: 1821 year: 2018 end-page: 1829 article-title: Osteoarthritis and risk of mortality in the USA: a population-based cohort study publication-title: Int J Epidemiol – volume: 18 start-page: 24 year: 2010 end-page: 33 article-title: Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis publication-title: Osteoarthritis Cartilage – volume: 98 start-page: 691 year: 2012 end-page: 698 article-title: Risk prediction models: II – external validation, model updating, and impact assessment publication-title: Heart – volume: 105 start-page: 185 year: 2013 end-page: 199 article-title: Epidemiology and burden of osteoarthritis publication-title: Br Med Bull – volume: 9 start-page: 227 year: 2016 end-page: 233 article-title: Surgical treatments for osteoarthritis publication-title: Ann Phys Rehabil Med – volume: 97 start-page: 872 year: 2019 end-page: 881 article-title: What is the effect of importance weighting in deep learning publication-title: Int Conf Mach Learn – start-page: 301 year: 2020 end-page: 309 article-title: Correlations between radiological classification systems and confirmed cartilage loss in severe knee osteoarthritis publication-title: Bone Joint J – volume: 37 start-page: 64 year: 2019 end-page: 72 article-title: Phenotypes of osteoarthritis: current state and future implications publication-title: Clin Exp Rheumatol – volume: 380 start-page: 1347 year: 2019 end-page: 1358 article-title: Machine learning in medicine publication-title: N Engl J Med – volume: 338 year: 2009 article-title: Prognosis and prognostic research: validating a prognostic model publication-title: BMJ – volume: 108 start-page: 256 year: 2018 end-page: 258 article-title: Various types of arthritis in the United States: prevalence and age-related trends from 1999 to 2014 publication-title: Am J Public Health – volume: 30 start-page: 160 year: 2018 end-page: 167 article-title: Epidemiology of osteoarthritis: literature update publication-title: Curr Opin Rheumatol – volume: 79 start-page: 14 year: 2018 end-page: 20 article-title: Validation of a clinical prediction model for the development of neuromuscular scoliosis publication-title: Pediatr Neurol – volume: 62 start-page: 190 year: 2010 end-page: 197 article-title: Characterization of individual radiographic features of hip osteoarthritis in African American and White women and men: the Johnston County Osteoarthritis Project publication-title: Arthritis Care Res – volume: 15 start-page: 49 year: 2019 end-page: 60 article-title: Machine-learning-based patient-specific prediction models for knee osteoarthritis publication-title: Nat Rev Rheumatol – volume: 3 start-page: 435 year: 2014 end-page: 445 article-title: Data classification using support vector machine (SVM), a simplified approach publication-title: Int J Electron Comput Sci Eng – volume: 3 start-page: 48 year: 2015 end-page: 49 article-title: Part 1: simple definition and calculation of accuracy, sensitivity and specificity publication-title: Emerg – volume: 29 start-page: 1627 year: 2021 end-page: 1629 article-title: Prevention and early treatment, a future focus for OA research publication-title: Osteoart Cart – volume: 73 start-page: 1316 year: 2014 end-page: 1322 article-title: The global burden of rheumatoid arthritis: estimates from the Global Burden of Disease 2010 study publication-title: Ann Rheum Dis – volume: 26 start-page: 355 year: 2010 end-page: 369 article-title: Epidemiology of osteoarthritis publication-title: Clin Geriatr Med – volume: 35 start-page: 149 year: 2019 end-page: 156 article-title: Predictive model for gastrostomy placement in adolescents with developmental disabilities and cerebral palsy publication-title: Nutr Clin Pract – volume: 467 start-page: 2606 year: 2009 end-page: 2612 article-title: Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030 publication-title: Clin Orthop Relat Res – volume: 50 start-page: 178 year: 2019 end-page: 187 article-title: Using artificial intelligence to identify factors associated with autism spectrum disorder in adolescents with cerebral palsy publication-title: Neuropediatrics – volume: 40 start-page: 16 year: 2014 end-page: 28 article-title: A survey on feature selection methods publication-title: Comput Electr Eng – volume: 47 start-page: 67 year: 2017 end-page: 79 article-title: Hip and knee osteoarthritis affects younger people, too publication-title: J Orthop Sports Phys Ther – volume: 34 start-page: 221 year: 2019 end-page: 229 article-title: Identifying factors associated with intellectual disabilities in teenagers with cerebral palsy using a predictive learning model publication-title: J Child Neurol – volume: 32 start-page: 657 year: 2017 end-page: 662 article-title: Risk factors for developing scoliosis in cerebral palsy: a cross sectional descriptive study publication-title: J Child Neurol – volume: 16 year: 2019 article-title: A deep neural network-based method for early detection of osteoarthritis using statistical data publication-title: Int J Environ Res Publ Health – volume: 27 start-page: 276 year: 2015 end-page: 283 article-title: State of the evidence publication-title: Curr Opin Rheumatol – volume: 350 year: 2014 article-title: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement publication-title: BMJ – volume: 58 start-page: 69 year: 2022 article-title: Therapeutic exercise and conservative injection treatment for early knee osteoarthritis in athletes: a scoping review publication-title: Medicina – ident: bibr2-1759720X221104935 doi: 10.1007/s11999-009-0834-6 – ident: bibr15-1759720X221104935 doi: 10.1016/j.compeleceng.2013.11.024 – ident: bibr32-1759720X221104935 doi: 10.1136/annrheumdis-2013-204627 – ident: bibr40-1759720X221104935 doi: 10.1016/j.cger.2010.03.001 – ident: bibr21-1759720X221104935 doi: 10.2307/1912529 – ident: bibr3-1759720X221104935 doi: 10.1038/s41584-018-0130-5 – ident: bibr26-1759720X221104935 – ident: bibr46-1759720X221104935 doi: 10.1136/bmj.b605 – ident: bibr6-1759720X221104935 doi: 10.1056/NEJMra1814259 – ident: bibr14-1759720X221104935 doi: 10.1093/ije/dyy187 – ident: bibr10-1759720X221104935 doi: 10.1002/ncp.10309 – ident: bibr24-1759720X221104935 doi: 10.1007/978-1-4842-3790-8_5 – ident: bibr12-1759720X221104935 doi: 10.1055/s-0039-1685525 – volume: 97 start-page: 872 year: 2019 ident: bibr25-1759720X221104935 publication-title: Int Conf Mach Learn – ident: bibr41-1759720X221104935 doi: 10.1097/BOR.0000000000000479 – ident: bibr37-1759720X221104935 doi: 10.1016/j.joca.2009.08.010 – ident: bibr5-1759720X221104935 doi: 10.3390/ijerph16071281 – ident: bibr11-1759720X221104935 doi: 10.1177/0883073818822358 – volume-title: Proceedings of the 2016 IEEE 16th international conference on data mining (ICDM) ident: bibr28-1759720X221104935 – ident: bibr13-1759720X221104935 doi: 10.1097/PAP.0000000000000072 – ident: bibr22-1759720X221104935 – ident: bibr36-1759720X221104935 doi: 10.1093/bmb/lds038 – ident: bibr1-1759720X221104935 doi: 10.2519/jospt.2017.7286 – ident: bibr33-1759720X221104935 doi: 10.2105/AJPH.2017.304179 – ident: bibr45-1759720X221104935 doi: 10.1136/heartjnl-2011-301247 – volume-title: Logistic regression year: 2002 ident: bibr17-1759720X221104935 – ident: bibr27-1759720X221104935 – volume: 350 year: 2014 ident: bibr42-1759720X221104935 publication-title: BMJ – volume-title: Deep learning with Keras year: 2017 ident: bibr18-1759720X221104935 – ident: bibr35-1759720X221104935 doi: 10.1016/j.rehab.2016.04.003 – volume: 37 start-page: 64 year: 2019 ident: bibr4-1759720X221104935 publication-title: Clin Exp Rheumatol – ident: bibr7-1759720X221104935 doi: 10.1177/1460458219898568 – ident: bibr34-1759720X221104935 doi: 10.1302/0301-620X.102B3.BJJ-2019-0337.R1 – ident: bibr16-1759720X221104935 – ident: bibr43-1759720X221104935 doi: 10.3390/medicina58010069 – volume: 3 start-page: 435 year: 2014 ident: bibr19-1759720X221104935 publication-title: Int J Electron Comput Sci Eng – ident: bibr44-1759720X221104935 doi: 10.1016/j.joca.2021.10.007 – ident: bibr8-1759720X221104935 doi: 10.1177/0883073817701047 – volume-title: Osteoarthritis: care and management in adults year: 2014 ident: bibr31-1759720X221104935 – ident: bibr23-1759720X221104935 – volume: 62 start-page: 190 year: 2010 ident: bibr38-1759720X221104935 publication-title: Arthritis Care Res doi: 10.1002/acr.20067 – volume: 3 start-page: 48 year: 2015 ident: bibr20-1759720X221104935 publication-title: Emerg – ident: bibr30-1759720X221104935 – ident: bibr9-1759720X221104935 doi: 10.1016/j.pediatrneurol.2017.10.019 – ident: bibr29-1759720X221104935 doi: 10.1007/978-0-387-75936-4 – ident: bibr39-1759720X221104935 doi: 10.1097/BOR.0000000000000161 |
| SSID | ssj0069091 |
| Score | 2.310499 |
| Snippet | Background:
Osteoarthritis (OA) has traditionally been considered a disease of older adults (⩾65 years old), but it may appear in younger adults. However, the... Background: Osteoarthritis (OA) has traditionally been considered a disease of older adults (⩾65 years old), but it may appear in younger adults. However, the... Osteoarthritis (OA) has traditionally been considered a disease of older adults (⩾65 years old), but it may appear in younger adults. However, the risk factors... |
| SourceID | doaj pubmedcentral proquest crossref sage |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1759720X221104935 |
| SubjectTerms | Arthritis Blood pressure Body mass index Ethnicity Machine learning Musculoskeletal diseases Original Research Osteoarthritis Risk factors |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9KGWUvo1s35jYbKhQGA4M_ZNl6bMtKH9aSh7bkzegzCSxOSZv-_b2TlaTZ2PbSN2PJtnQ6Sb_znX4HcCJ8gTC-UKkVhqOBYupUclWnxA3GeYUIOUQT3v2sr6-b0UgOX6T6opiwnh64Fxwa7NIi5uUcTRUE87l0TghVCd-g7mmrafVF1LMypvo1GE0-mUcfJtEr4R4p6yIbFWTucBlyu212oUDWv4Uwf4-PfBHkFfadi314FwEjO-0b-h52XPcB9q6iS_wA7oYLuqboZUYHNubYpUlgKmLTjgV6jQdG0e1jRoeHAi8zvo8iQ9ksZIdgqrNsFoIqHYtZJMYf4fbix835ZRqTJaQG9_zH1GZ1YV2hvPONN0o2OdciQ7E5V2qvS29s6WuBwqsylalceINgxOOUVRUWqvIT7Hbzzn0Gltncal6ZpnQVt0Y3iHK0MI1Wyua5bBLIVsJrTWQSp4QWv9o8kof_Ie8Evq8fue9pNP5V-YxGZF2RGLDDDdSLNupF-z-9SGCwGs82TsuHtiDrqKY07wkcr4txQpGXRHVuvsQ6QmI1XNrKBOotPdhq0HZJN50Eam5JbulMJPCNNGbz4b_29fA1-noEbws6lRH-DA1g93GxdF_gjXlCpVp8DTPjGTvFDjs priority: 102 providerName: Directory of Open Access Journals |
| Title | Predicting osteoarthritis in adults using statistical data mining and machine learning |
| URI | https://journals.sagepub.com/doi/full/10.1177/1759720X221104935 https://www.proquest.com/docview/2758575908 https://www.proquest.com/docview/2692754003 https://pubmed.ncbi.nlm.nih.gov/PMC9290106 https://doaj.org/article/579d9744472149519ee66a56f8048bdb |
| Volume | 14 |
| WOSCitedRecordID | wos000827739800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1759-7218 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069091 issn: 1759-720X databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1759-7218 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069091 issn: 1759-720X databaseCode: 7X7 dateStart: 20091001 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1759-7218 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069091 issn: 1759-720X databaseCode: 7RV dateStart: 20091001 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1759-7218 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069091 issn: 1759-720X databaseCode: BENPR dateStart: 20091001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1759-7218 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069091 issn: 1759-720X databaseCode: PIMPY dateStart: 20091001 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDiFe-J4IjMpISEhIEYnj2MkTYmgTSKyKJqjKU-T4o5vEktFu_P3ceW5LQeyFlyixnQ_nzuc73_l3AK-k56jGc51aaQQaKEaltdAqJWwwIUrUkEM04fSzmkyq2axu4oLbMoZVrmRiENR2MLRG_paTYqsoQ_e7ix8pZY0i72pMobEDu4RUJkawe3A4aU5WshhNv5AzD-fIOlU8m0W_JkEuURkVcTKBRB3yvW1mpgDgv6V1_hkz-VvgV5iLju7_by8ewL2ohbL312zzEG65_hHcOY5-9scwbRZ0TiHRjHaBDMhgpwH-iJ31LGB2LBmFzM8Z7UgKYM_4PAo3Zech5QTTvWXnIVLTsZiaYv4Evh4dfvnwMY0ZGFKDisRlajPFrePaO195o-sqF53MhFDOFZ3vCm9s4ZV0EvU8nelceoMajkc5oEus1MUejPqhd0-BZTa3nShNVbhSWNNVqDp10lSd1hZJVyWQrf5-ayI8OWXJ-N7mEZH8L4Il8GZ9y8U1NsdNjQ-IpOuGBKsdCobFvI2jtC1VbdHAwg5yshzz2mHXdCl9hYKus10C-yuytnGsL9sNTRN4ua7GUUquF9274QrbyBqbobwsElBbjLT1Qds1_dlpwPuuydedyQReE8ttXvzPvj67-TOfw11OmzjCQtI-jC4XV-4F3DY_kV0WY9hRJ1M6zlQ4VuM4qMZhvQKvmk_Hzbdf-owmdA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAwEv3BGBAUYCISFFJI5jxw8IcZs2rasmNKq-Bcd2ukksGe0G4k_xGznHTVoKYm974K2y3TRuPp9LfPx9AE9lzTGM5yZ20gpMUKyKtTAqJm4wIXKMkEM14WighsNiPNZ7a_CzPwtDZZW9TQyG2rWW3pG_5BTYKlLofn38NSbVKNpd7SU05rDY8T--Y8o2e7X9Hp_vM843P-y_24o7VYHYonM8iV2iuPPc1L4uamt0kYpKJkIo77OqrrLauqxW0kuMXUxiUllb9No1Ytvk2GkyvO4FuIh2PKUSMvVx1Ft-TDSDQh96ZB0rnoy7XVQieKI2auKUcAkd1OWWfjDIBazEuH9WaP5WZhY83-b1_-0_uwHXuhibvZkvipuw5ptbcHm3qyK4DaO9KX2mgm9GZ1xaXD4HgdyJHTYsMJLMGB0ImDA6bxWorPF6VEzLjoKgBjONY0ehDtWzTnhjcgc-ncus7sJ60zb-HrDEpa4SuS0ynwtnqwIDw0raojLGpakuIkj6p13ajnydNEC-lGnHt_4XQCJ4sfjK8Zx55KzBbwlCi4FEGh4a2umk7GxQmSvtMH3ECXLKi1PtcWoml3WBZrxyVQQbPYzKzpLNyiWGIniy6EYbRBtLpvHtKY6RGoehN8giUCvAXbmh1Z7m8CCwmWvayU9kBM8J4ssf_udc7599m4_hytb-7qAcbA93HsBVTsdVwiuzDVg_mZ76h3DJfkPoTB-Fxcvg83kj_xeweH-- |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+osteoarthritis+in+adults+using+statistical+data+mining+and+machine+learning&rft.jtitle=Therapeutic+advances+in+musculoskeletal+disease&rft.au=Bertoncelli%2C+Carlo+M.&rft.au=Altamura%2C+Paola&rft.au=Bagui%2C+Sikha&rft.au=Bagui%2C+Subhash&rft.date=2022&rft.pub=SAGE+Publications&rft.issn=1759-720X&rft.eissn=1759-7218&rft.volume=14&rft_id=info:doi/10.1177%2F1759720X221104935&rft.externalDocID=10.1177_1759720X221104935 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-720X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-720X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-720X&client=summon |