Predicting osteoarthritis in adults using statistical data mining and machine learning

Background: Osteoarthritis (OA) has traditionally been considered a disease of older adults (⩾65 years old), but it may appear in younger adults. However, the risk factors for OA in younger adults need to be further evaluated. Objectives: To develop a prediction model for identifying risk factors of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Therapeutic advances in musculoskeletal disease Ročník 14; s. 1759720X221104935
Hlavní autoři: Bertoncelli, Carlo M., Altamura, Paola, Bagui, Sikha, Bagui, Subhash, Vieira, Edgar Ramos, Costantini, Stefania, Monticone, Marco, Solla, Federico, Bertoncelli, Domenico
Médium: Journal Article
Jazyk:angličtina
Vydáno: London, England SAGE Publications 2022
SAGE PUBLICATIONS, INC
SAGE Publishing
Témata:
ISSN:1759-720X, 1759-7218
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background: Osteoarthritis (OA) has traditionally been considered a disease of older adults (⩾65 years old), but it may appear in younger adults. However, the risk factors for OA in younger adults need to be further evaluated. Objectives: To develop a prediction model for identifying risk factors of OA in subjects aged 20–50 years and compare the performance of different machine learning models. Methods: We included data from 52,512 participants of the National Health and Nutrition Examination Survey; of those, we analyzed only subjects aged 20–50 years (n = 19,133), with or without OA. The supervised machine learning model ‘Deep PredictMed’ based on logistic regression, deep neural network (DNN), and support vector machine was used for identifying demographic and personal characteristics that are associated with OA. Finally, we compared the performance of the different models. Results: Being a female (p < 0.001), older age (p < 0.001), a smoker (p < 0.001), higher body mass index (p < 0.001), high blood pressure (p < 0.001), race/ethnicity (lowest risk among Mexican Americans, p = 0.01), and physical and mental limitations (p < 0.001) were associated with having OA. Best predictive performance yielded a 75% area under the receiver operating characteristic curve. Conclusion: Sex (female), age (older), smoking (yes), body mass index (higher), blood pressure (high), race/ethnicity, and physical and mental limitations are risk factors for having OA in adults aged 20–50 years. The best predictive performance was achieved using DNN algorithms.
AbstractList Osteoarthritis (OA) has traditionally been considered a disease of older adults (⩾65 years old), but it may appear in younger adults. However, the risk factors for OA in younger adults need to be further evaluated.BackgroundOsteoarthritis (OA) has traditionally been considered a disease of older adults (⩾65 years old), but it may appear in younger adults. However, the risk factors for OA in younger adults need to be further evaluated.To develop a prediction model for identifying risk factors of OA in subjects aged 20-50 years and compare the performance of different machine learning models.ObjectivesTo develop a prediction model for identifying risk factors of OA in subjects aged 20-50 years and compare the performance of different machine learning models.We included data from 52,512 participants of the National Health and Nutrition Examination Survey; of those, we analyzed only subjects aged 20-50 years (n = 19,133), with or without OA. The supervised machine learning model 'Deep PredictMed' based on logistic regression, deep neural network (DNN), and support vector machine was used for identifying demographic and personal characteristics that are associated with OA. Finally, we compared the performance of the different models.MethodsWe included data from 52,512 participants of the National Health and Nutrition Examination Survey; of those, we analyzed only subjects aged 20-50 years (n = 19,133), with or without OA. The supervised machine learning model 'Deep PredictMed' based on logistic regression, deep neural network (DNN), and support vector machine was used for identifying demographic and personal characteristics that are associated with OA. Finally, we compared the performance of the different models.Being a female (p < 0.001), older age (p < 0.001), a smoker (p < 0.001), higher body mass index (p < 0.001), high blood pressure (p < 0.001), race/ethnicity (lowest risk among Mexican Americans, p = 0.01), and physical and mental limitations (p < 0.001) were associated with having OA. Best predictive performance yielded a 75% area under the receiver operating characteristic curve.ResultsBeing a female (p < 0.001), older age (p < 0.001), a smoker (p < 0.001), higher body mass index (p < 0.001), high blood pressure (p < 0.001), race/ethnicity (lowest risk among Mexican Americans, p = 0.01), and physical and mental limitations (p < 0.001) were associated with having OA. Best predictive performance yielded a 75% area under the receiver operating characteristic curve.Sex (female), age (older), smoking (yes), body mass index (higher), blood pressure (high), race/ethnicity, and physical and mental limitations are risk factors for having OA in adults aged 20-50 years. The best predictive performance was achieved using DNN algorithms.ConclusionSex (female), age (older), smoking (yes), body mass index (higher), blood pressure (high), race/ethnicity, and physical and mental limitations are risk factors for having OA in adults aged 20-50 years. The best predictive performance was achieved using DNN algorithms.
Background: Osteoarthritis (OA) has traditionally been considered a disease of older adults (⩾65 years old), but it may appear in younger adults. However, the risk factors for OA in younger adults need to be further evaluated. Objectives: To develop a prediction model for identifying risk factors of OA in subjects aged 20–50 years and compare the performance of different machine learning models. Methods: We included data from 52,512 participants of the National Health and Nutrition Examination Survey; of those, we analyzed only subjects aged 20–50 years (n = 19,133), with or without OA. The supervised machine learning model ‘Deep PredictMed’ based on logistic regression, deep neural network (DNN), and support vector machine was used for identifying demographic and personal characteristics that are associated with OA. Finally, we compared the performance of the different models. Results: Being a female (p < 0.001), older age (p < 0.001), a smoker (p < 0.001), higher body mass index (p < 0.001), high blood pressure (p < 0.001), race/ethnicity (lowest risk among Mexican Americans, p = 0.01), and physical and mental limitations (p < 0.001) were associated with having OA. Best predictive performance yielded a 75% area under the receiver operating characteristic curve. Conclusion: Sex (female), age (older), smoking (yes), body mass index (higher), blood pressure (high), race/ethnicity, and physical and mental limitations are risk factors for having OA in adults aged 20–50 years. The best predictive performance was achieved using DNN algorithms.
Background: Osteoarthritis (OA) has traditionally been considered a disease of older adults (⩾65 years old), but it may appear in younger adults. However, the risk factors for OA in younger adults need to be further evaluated. Objectives: To develop a prediction model for identifying risk factors of OA in subjects aged 20–50 years and compare the performance of different machine learning models. Methods: We included data from 52,512 participants of the National Health and Nutrition Examination Survey; of those, we analyzed only subjects aged 20–50 years (n = 19,133), with or without OA. The supervised machine learning model ‘Deep PredictMed’ based on logistic regression, deep neural network (DNN), and support vector machine was used for identifying demographic and personal characteristics that are associated with OA. Finally, we compared the performance of the different models. Results: Being a female (p < 0.001), older age (p < 0.001), a smoker (p < 0.001), higher body mass index (p < 0.001), high blood pressure (p < 0.001), race/ethnicity (lowest risk among Mexican Americans, p = 0.01), and physical and mental limitations (p < 0.001) were associated with having OA. Best predictive performance yielded a 75% area under the receiver operating characteristic curve. Conclusion: Sex (female), age (older), smoking (yes), body mass index (higher), blood pressure (high), race/ethnicity, and physical and mental limitations are risk factors for having OA in adults aged 20–50 years. The best predictive performance was achieved using DNN algorithms.
Author Solla, Federico
Bagui, Subhash
Altamura, Paola
Vieira, Edgar Ramos
Monticone, Marco
Costantini, Stefania
Bertoncelli, Domenico
Bertoncelli, Carlo M.
Bagui, Sikha
Author_xml – sequence: 1
  givenname: Carlo M.
  orcidid: 0000-0002-9689-0209
  surname: Bertoncelli
  fullname: Bertoncelli, Carlo M.
  email: bertoncelli@unice.fr
  organization: Department of Information Engineering Computer Science and Mathematics, University of L’Aquila, L’Aquila, Italy
– sequence: 2
  givenname: Paola
  surname: Altamura
  fullname: Altamura, Paola
  organization: Department of Medicinal Chemistry and Pharmaceutical Technology, University of Chieti, Chieti, Italy
– sequence: 3
  givenname: Sikha
  surname: Bagui
  fullname: Bagui, Sikha
  organization: Department of Computer Science, Hal Marcus College of Science and Engineering, University of West Florida, Pensacola, FL, USA
– sequence: 4
  givenname: Subhash
  surname: Bagui
  fullname: Bagui, Subhash
  organization: Department of Computer Science, Hal Marcus College of Science and Engineering, University of West Florida, Pensacola, FL, USA
– sequence: 5
  givenname: Edgar Ramos
  surname: Vieira
  fullname: Vieira, Edgar Ramos
  organization: Department of Physical Therapy, Florida International University, Miami, FL, USA
– sequence: 6
  givenname: Stefania
  surname: Costantini
  fullname: Costantini, Stefania
  organization: Department of Information Engineering Computer Science and Mathematics, University of L’Aquila, L’Aquila, Italy
– sequence: 7
  givenname: Marco
  surname: Monticone
  fullname: Monticone, Marco
  organization: Neurorehabilitation Unit, Department of Neuroscience and Rehabilitation, G. Brotzu Hospital, University of Cagliari, Cagliari, Italy
– sequence: 8
  givenname: Federico
  surname: Solla
  fullname: Solla, Federico
  organization: Department of Pediatric Orthopaedic Surgery, Lenval University Pediatric Hospital of Nice, Nice, France
– sequence: 9
  givenname: Domenico
  surname: Bertoncelli
  fullname: Bertoncelli, Domenico
  email: bertoncelli@unice.fr
  organization: Department of Information Engineering Computer Science and Mathematics, University of L’Aquila, L’Aquila, Italy
BookMark eNp9kstrFTEUxoNU7EP_AHcDbtzcmmTymGwEKT4KBV2odBfO5HFvLjNJTTIF_3sz3qq0oquE73zfL49zTtFRTNEh9Jzgc0KkfEUkV5Lia0oJwUz1_BE6WbWNpGQ4-r3H18fotJQ9xkJhRZ6g454PXCkqT9DXT9nZYGqI2y6V6hLkusuhhtKF2IFdplq6pazlUqHJNRiYOgsVujnEVYdouxnMLkTXTQ7yKj5Fjz1MxT27W8_Ql3dvP1982Fx9fH958eZqYzhWdWOxpNZR8M4P3oAaCBsFZkw6149-7L2xvZfCCcExYCDCG8F6zygH3orQn6HLA9cm2OubHGbI33WCoH8KKW91e1Awk9NcKqska3BKmOJEuYYFLvyA2TDasbFeH1g3yzg7a1ysGaZ70PuVGHZ6m261ogoTLBrg5R0gp2-LK1XPoRg3TRBdWoqmon05Zxj3zfrigXWflhzbV-lmGXhrHB6aSx5cJqdSsvPahLUJaT0_TJpgvc6B_msOWpI8SP56xv8y54dMga37c59_B34Amq7Dhg
CitedBy_id crossref_primary_10_3390_healthcare11091206
crossref_primary_10_3390_toxins15010020
crossref_primary_10_1016_j_cmpb_2023_107548
crossref_primary_10_1038_s41598_025_99411_z
crossref_primary_10_4103_jpbs_jpbs_1000_23
crossref_primary_10_1016_j_heliyon_2024_e24526
crossref_primary_10_3390_biomedicines13071644
crossref_primary_10_2147_JIR_S535311
Cites_doi 10.1007/s11999-009-0834-6
10.1016/j.compeleceng.2013.11.024
10.1136/annrheumdis-2013-204627
10.1016/j.cger.2010.03.001
10.2307/1912529
10.1038/s41584-018-0130-5
10.1136/bmj.b605
10.1056/NEJMra1814259
10.1093/ije/dyy187
10.1002/ncp.10309
10.1007/978-1-4842-3790-8_5
10.1055/s-0039-1685525
10.1097/BOR.0000000000000479
10.1016/j.joca.2009.08.010
10.3390/ijerph16071281
10.1177/0883073818822358
10.1097/PAP.0000000000000072
10.1093/bmb/lds038
10.2519/jospt.2017.7286
10.2105/AJPH.2017.304179
10.1136/heartjnl-2011-301247
10.1016/j.rehab.2016.04.003
10.1177/1460458219898568
10.1302/0301-620X.102B3.BJJ-2019-0337.R1
10.3390/medicina58010069
10.1016/j.joca.2021.10.007
10.1177/0883073817701047
10.1002/acr.20067
10.1016/j.pediatrneurol.2017.10.019
10.1007/978-0-387-75936-4
10.1097/BOR.0000000000000161
ContentType Journal Article
Copyright The Author(s), 2022
The Author(s), 2022. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s), 2022.
The Author(s), 2022 2022 SAGE Publications Ltd unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses
Copyright_xml – notice: The Author(s), 2022
– notice: The Author(s), 2022. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s), 2022.
– notice: The Author(s), 2022 2022 SAGE Publications Ltd unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses
DBID AFRWT
AAYXX
CITATION
3V.
7RV
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
KB0
M0S
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1177/1759720X221104935
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1759-7218
ExternalDocumentID oai_doaj_org_article_579d9744472149519ee66a56f8048bdb
PMC9290106
10_1177_1759720X221104935
10.1177_1759720X221104935
GroupedDBID ---
-TM
.WF
01A
0R~
4.4
53G
54M
7RV
7X7
8FI
8FJ
AABMB
AADUE
AAKDD
AAQDB
AARDL
AARIX
AASGM
ABAWP
ABEIX
ABFWQ
ABJIS
ABKRH
ABQXT
ABRHV
ABUWG
ABVFX
ACARO
ACDSZ
ACDXX
ACGFS
ACOFE
ACROE
ACRPL
ADBBV
ADEBD
ADNMO
ADOGD
ADYCS
ADZZY
AEFTW
AEQLS
AERKM
AEUHG
AEWDL
AEXNY
AFCOW
AFEET
AFKRA
AFKRG
AFRWT
AFUIA
AFWMB
AGNHF
AGQPQ
AHHFK
AJUZI
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARTOV
ASPBG
AUTPY
AVWKF
AYAKG
AZFZN
B8M
BAWUL
BDDNI
BENPR
BKEYQ
BKSCU
BPHCQ
BSEHC
BVXVI
CAG
CCPQU
CDWPY
CFDXU
COF
DC-
DC.
DIK
DOPDO
EBS
EJD
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
GX1
H13
HF~
HMCUK
HVGLF
HYE
HZ~
J8X
K.F
N9A
NAPCQ
O9-
OK1
P.B
PHGZM
PHGZT
PIMPY
PQQKQ
ROL
RPM
S01
SAUOL
SCDPB
SCNPE
SFC
UKHRP
ZONMY
ZPPRI
ZRKOI
ZSSAH
AAYXX
ACHEB
AFFHD
CITATION
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c509t-d072de2afef8fca9814b60447ee3bfb3fcd3f76e6650a0a16fc643f425a53fca3
IEDL.DBID BENPR
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000827739800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1759-720X
IngestDate Fri Oct 03 12:52:28 EDT 2025
Tue Nov 04 01:52:01 EST 2025
Sun Nov 09 13:24:49 EST 2025
Tue Oct 07 06:56:34 EDT 2025
Tue Nov 18 21:23:53 EST 2025
Sat Nov 29 08:11:51 EST 2025
Tue Jun 17 22:29:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords statistical data mining
arthritis
machine learning
osteoarthritis
Language English
License This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-d072de2afef8fca9814b60447ee3bfb3fcd3f76e6650a0a16fc643f425a53fca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9689-0209
OpenAccessLink https://www.proquest.com/docview/2758575908?pq-origsite=%requestingapplication%
PMID 35859927
PQID 2758575908
PQPubID 4450846
ParticipantIDs doaj_primary_oai_doaj_org_article_579d9744472149519ee66a56f8048bdb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9290106
proquest_miscellaneous_2692754003
proquest_journals_2758575908
crossref_citationtrail_10_1177_1759720X221104935
crossref_primary_10_1177_1759720X221104935
sage_journals_10_1177_1759720X221104935
PublicationCentury 2000
PublicationDate 2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: London
– name: Sage UK: London, England
PublicationTitle Therapeutic advances in musculoskeletal disease
PublicationYear 2022
Publisher SAGE Publications
SAGE PUBLICATIONS, INC
SAGE Publishing
Publisher_xml – name: SAGE Publications
– name: SAGE PUBLICATIONS, INC
– name: SAGE Publishing
References Keenan, Holland, Maempel 2020
Ackerman, Kemp, Crossley 2017; 47
Litwic, Edwards, Dennison 2013; 105
Deveza, Nelson, Loeser 2019; 37
Blagojevic, Jinks, Jeffery 2010; 18
Lim, Kim, Cheon 2019; 16
Collins, Reitsma, Altman 2014; 350
Bertoncelli, Bertoncelli, Elbaum 2018; 79
Nelson, Braga, Renner 2010; 62
Vina, Kwoh 2018; 30
Park, Mendy, Vieira 2018; 108
De l Escalopier, Anract, Biau 2016; 9
Roos, Risberg, Little 2021; 29
Rajkomar, Dean, Kohane 2019; 380
Jamshidi, Pelletier, Martel-Pelletier 2019; 15
Moons, Kengne, Grobbee 2012; 98
Bertoncelli, Altamura, Vieira 2020; 26
Kurtz, Lau, Ong 2009; 467
Bertoncelli, Altamura, Vieira 2019; 35
Cross, Smith, Hoy 2014; 73
Bertoncelli, Altamura, Vieira 2019; 34
Bertoncelli, Solla, Loughenbury 2017; 32
Moons, Altman, Reitsma 2015; 22
Bertoncelli, Altamura, Vieira 2019; 50
Mendy, Park, Vieira 2018; 47
Zhang, Jordan 2010; 26
Altman, Vergouwe, Royston 2009; 338
Girish, Sahin 2014; 40
Amarappa, Sathyanarayana 2014; 3
Byrd 2019; 97
Tognolo, Maccarone, De Trane 2022; 58
Gourieroux, Holly, Monfort 1982; 50
Allen, Golightly 2015; 27
Baratloo, Hosseini, Negida 2015; 3
Baratloo A (bibr20-1759720X221104935) 2015; 3
bibr23-1759720X221104935
bibr13-1759720X221104935
Jindal I (bibr28-1759720X221104935)
bibr10-1759720X221104935
bibr43-1759720X221104935
bibr3-1759720X221104935
Byrd Z (bibr25-1759720X221104935) 2019; 97
bibr30-1759720X221104935
bibr16-1759720X221104935
bibr40-1759720X221104935
bibr46-1759720X221104935
bibr6-1759720X221104935
bibr29-1759720X221104935
bibr33-1759720X221104935
bibr39-1759720X221104935
bibr26-1759720X221104935
bibr9-1759720X221104935
National Institute for Health and Care Excellence (bibr31-1759720X221104935) 2014
bibr36-1759720X221104935
bibr21-1759720X221104935
bibr44-1759720X221104935
Amarappa S (bibr19-1759720X221104935) 2014; 3
bibr24-1759720X221104935
bibr11-1759720X221104935
bibr34-1759720X221104935
bibr14-1759720X221104935
bibr41-1759720X221104935
bibr27-1759720X221104935
bibr37-1759720X221104935
Deveza LA (bibr4-1759720X221104935) 2019; 37
Gulli A (bibr18-1759720X221104935) 2017
bibr45-1759720X221104935
bibr7-1759720X221104935
bibr1-1759720X221104935
Collins GS (bibr42-1759720X221104935) 2014; 350
bibr15-1759720X221104935
Nelson AE (bibr38-1759720X221104935) 2010; 62
Kleinbaum DG (bibr17-1759720X221104935) 2002
bibr8-1759720X221104935
bibr35-1759720X221104935
bibr22-1759720X221104935
bibr32-1759720X221104935
bibr5-1759720X221104935
bibr12-1759720X221104935
bibr2-1759720X221104935
References_xml – volume: 50
  start-page: 63
  year: 1982
  end-page: 80
  article-title: Likelihood ratio test, Wald test, and Kuhn-Tucker test in linear models with inequality constraints on the regression parameters
  publication-title: Econ: J Econ Soc
– volume: 26
  start-page: 2105
  year: 2020
  end-page: 2118
  article-title: PredictMed: a logistic regression-based model to predict health conditions in cerebral palsy
  publication-title: Health Inform J
– volume: 22
  start-page: 303
  year: 2015
  end-page: 305
  article-title: New guideline for the reporting of studies developing, validating, or updating a multivariable clinical prediction model: the TRIPOD statement
  publication-title: Adv Anat Pathol
– volume: 47
  start-page: 1821
  year: 2018
  end-page: 1829
  article-title: Osteoarthritis and risk of mortality in the USA: a population-based cohort study
  publication-title: Int J Epidemiol
– volume: 18
  start-page: 24
  year: 2010
  end-page: 33
  article-title: Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis
  publication-title: Osteoarthritis Cartilage
– volume: 98
  start-page: 691
  year: 2012
  end-page: 698
  article-title: Risk prediction models: II – external validation, model updating, and impact assessment
  publication-title: Heart
– volume: 105
  start-page: 185
  year: 2013
  end-page: 199
  article-title: Epidemiology and burden of osteoarthritis
  publication-title: Br Med Bull
– volume: 9
  start-page: 227
  year: 2016
  end-page: 233
  article-title: Surgical treatments for osteoarthritis
  publication-title: Ann Phys Rehabil Med
– volume: 97
  start-page: 872
  year: 2019
  end-page: 881
  article-title: What is the effect of importance weighting in deep learning
  publication-title: Int Conf Mach Learn
– start-page: 301
  year: 2020
  end-page: 309
  article-title: Correlations between radiological classification systems and confirmed cartilage loss in severe knee osteoarthritis
  publication-title: Bone Joint J
– volume: 37
  start-page: 64
  year: 2019
  end-page: 72
  article-title: Phenotypes of osteoarthritis: current state and future implications
  publication-title: Clin Exp Rheumatol
– volume: 380
  start-page: 1347
  year: 2019
  end-page: 1358
  article-title: Machine learning in medicine
  publication-title: N Engl J Med
– volume: 338
  year: 2009
  article-title: Prognosis and prognostic research: validating a prognostic model
  publication-title: BMJ
– volume: 108
  start-page: 256
  year: 2018
  end-page: 258
  article-title: Various types of arthritis in the United States: prevalence and age-related trends from 1999 to 2014
  publication-title: Am J Public Health
– volume: 30
  start-page: 160
  year: 2018
  end-page: 167
  article-title: Epidemiology of osteoarthritis: literature update
  publication-title: Curr Opin Rheumatol
– volume: 79
  start-page: 14
  year: 2018
  end-page: 20
  article-title: Validation of a clinical prediction model for the development of neuromuscular scoliosis
  publication-title: Pediatr Neurol
– volume: 62
  start-page: 190
  year: 2010
  end-page: 197
  article-title: Characterization of individual radiographic features of hip osteoarthritis in African American and White women and men: the Johnston County Osteoarthritis Project
  publication-title: Arthritis Care Res
– volume: 15
  start-page: 49
  year: 2019
  end-page: 60
  article-title: Machine-learning-based patient-specific prediction models for knee osteoarthritis
  publication-title: Nat Rev Rheumatol
– volume: 3
  start-page: 435
  year: 2014
  end-page: 445
  article-title: Data classification using support vector machine (SVM), a simplified approach
  publication-title: Int J Electron Comput Sci Eng
– volume: 3
  start-page: 48
  year: 2015
  end-page: 49
  article-title: Part 1: simple definition and calculation of accuracy, sensitivity and specificity
  publication-title: Emerg
– volume: 29
  start-page: 1627
  year: 2021
  end-page: 1629
  article-title: Prevention and early treatment, a future focus for OA research
  publication-title: Osteoart Cart
– volume: 73
  start-page: 1316
  year: 2014
  end-page: 1322
  article-title: The global burden of rheumatoid arthritis: estimates from the Global Burden of Disease 2010 study
  publication-title: Ann Rheum Dis
– volume: 26
  start-page: 355
  year: 2010
  end-page: 369
  article-title: Epidemiology of osteoarthritis
  publication-title: Clin Geriatr Med
– volume: 35
  start-page: 149
  year: 2019
  end-page: 156
  article-title: Predictive model for gastrostomy placement in adolescents with developmental disabilities and cerebral palsy
  publication-title: Nutr Clin Pract
– volume: 467
  start-page: 2606
  year: 2009
  end-page: 2612
  article-title: Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030
  publication-title: Clin Orthop Relat Res
– volume: 50
  start-page: 178
  year: 2019
  end-page: 187
  article-title: Using artificial intelligence to identify factors associated with autism spectrum disorder in adolescents with cerebral palsy
  publication-title: Neuropediatrics
– volume: 40
  start-page: 16
  year: 2014
  end-page: 28
  article-title: A survey on feature selection methods
  publication-title: Comput Electr Eng
– volume: 47
  start-page: 67
  year: 2017
  end-page: 79
  article-title: Hip and knee osteoarthritis affects younger people, too
  publication-title: J Orthop Sports Phys Ther
– volume: 34
  start-page: 221
  year: 2019
  end-page: 229
  article-title: Identifying factors associated with intellectual disabilities in teenagers with cerebral palsy using a predictive learning model
  publication-title: J Child Neurol
– volume: 32
  start-page: 657
  year: 2017
  end-page: 662
  article-title: Risk factors for developing scoliosis in cerebral palsy: a cross sectional descriptive study
  publication-title: J Child Neurol
– volume: 16
  year: 2019
  article-title: A deep neural network-based method for early detection of osteoarthritis using statistical data
  publication-title: Int J Environ Res Publ Health
– volume: 27
  start-page: 276
  year: 2015
  end-page: 283
  article-title: State of the evidence
  publication-title: Curr Opin Rheumatol
– volume: 350
  year: 2014
  article-title: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement
  publication-title: BMJ
– volume: 58
  start-page: 69
  year: 2022
  article-title: Therapeutic exercise and conservative injection treatment for early knee osteoarthritis in athletes: a scoping review
  publication-title: Medicina
– ident: bibr2-1759720X221104935
  doi: 10.1007/s11999-009-0834-6
– ident: bibr15-1759720X221104935
  doi: 10.1016/j.compeleceng.2013.11.024
– ident: bibr32-1759720X221104935
  doi: 10.1136/annrheumdis-2013-204627
– ident: bibr40-1759720X221104935
  doi: 10.1016/j.cger.2010.03.001
– ident: bibr21-1759720X221104935
  doi: 10.2307/1912529
– ident: bibr3-1759720X221104935
  doi: 10.1038/s41584-018-0130-5
– ident: bibr26-1759720X221104935
– ident: bibr46-1759720X221104935
  doi: 10.1136/bmj.b605
– ident: bibr6-1759720X221104935
  doi: 10.1056/NEJMra1814259
– ident: bibr14-1759720X221104935
  doi: 10.1093/ije/dyy187
– ident: bibr10-1759720X221104935
  doi: 10.1002/ncp.10309
– ident: bibr24-1759720X221104935
  doi: 10.1007/978-1-4842-3790-8_5
– ident: bibr12-1759720X221104935
  doi: 10.1055/s-0039-1685525
– volume: 97
  start-page: 872
  year: 2019
  ident: bibr25-1759720X221104935
  publication-title: Int Conf Mach Learn
– ident: bibr41-1759720X221104935
  doi: 10.1097/BOR.0000000000000479
– ident: bibr37-1759720X221104935
  doi: 10.1016/j.joca.2009.08.010
– ident: bibr5-1759720X221104935
  doi: 10.3390/ijerph16071281
– ident: bibr11-1759720X221104935
  doi: 10.1177/0883073818822358
– volume-title: Proceedings of the 2016 IEEE 16th international conference on data mining (ICDM)
  ident: bibr28-1759720X221104935
– ident: bibr13-1759720X221104935
  doi: 10.1097/PAP.0000000000000072
– ident: bibr22-1759720X221104935
– ident: bibr36-1759720X221104935
  doi: 10.1093/bmb/lds038
– ident: bibr1-1759720X221104935
  doi: 10.2519/jospt.2017.7286
– ident: bibr33-1759720X221104935
  doi: 10.2105/AJPH.2017.304179
– ident: bibr45-1759720X221104935
  doi: 10.1136/heartjnl-2011-301247
– volume-title: Logistic regression
  year: 2002
  ident: bibr17-1759720X221104935
– ident: bibr27-1759720X221104935
– volume: 350
  year: 2014
  ident: bibr42-1759720X221104935
  publication-title: BMJ
– volume-title: Deep learning with Keras
  year: 2017
  ident: bibr18-1759720X221104935
– ident: bibr35-1759720X221104935
  doi: 10.1016/j.rehab.2016.04.003
– volume: 37
  start-page: 64
  year: 2019
  ident: bibr4-1759720X221104935
  publication-title: Clin Exp Rheumatol
– ident: bibr7-1759720X221104935
  doi: 10.1177/1460458219898568
– ident: bibr34-1759720X221104935
  doi: 10.1302/0301-620X.102B3.BJJ-2019-0337.R1
– ident: bibr16-1759720X221104935
– ident: bibr43-1759720X221104935
  doi: 10.3390/medicina58010069
– volume: 3
  start-page: 435
  year: 2014
  ident: bibr19-1759720X221104935
  publication-title: Int J Electron Comput Sci Eng
– ident: bibr44-1759720X221104935
  doi: 10.1016/j.joca.2021.10.007
– ident: bibr8-1759720X221104935
  doi: 10.1177/0883073817701047
– volume-title: Osteoarthritis: care and management in adults
  year: 2014
  ident: bibr31-1759720X221104935
– ident: bibr23-1759720X221104935
– volume: 62
  start-page: 190
  year: 2010
  ident: bibr38-1759720X221104935
  publication-title: Arthritis Care Res
  doi: 10.1002/acr.20067
– volume: 3
  start-page: 48
  year: 2015
  ident: bibr20-1759720X221104935
  publication-title: Emerg
– ident: bibr30-1759720X221104935
– ident: bibr9-1759720X221104935
  doi: 10.1016/j.pediatrneurol.2017.10.019
– ident: bibr29-1759720X221104935
  doi: 10.1007/978-0-387-75936-4
– ident: bibr39-1759720X221104935
  doi: 10.1097/BOR.0000000000000161
SSID ssj0069091
Score 2.310499
Snippet Background: Osteoarthritis (OA) has traditionally been considered a disease of older adults (⩾65 years old), but it may appear in younger adults. However, the...
Background: Osteoarthritis (OA) has traditionally been considered a disease of older adults (⩾65 years old), but it may appear in younger adults. However, the...
Osteoarthritis (OA) has traditionally been considered a disease of older adults (⩾65 years old), but it may appear in younger adults. However, the risk factors...
SourceID doaj
pubmedcentral
proquest
crossref
sage
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1759720X221104935
SubjectTerms Arthritis
Blood pressure
Body mass index
Ethnicity
Machine learning
Musculoskeletal diseases
Original Research
Osteoarthritis
Risk factors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9KGWUvo1s35jYbKhQGA4M_ZNl6bMtKH9aSh7bkzegzCSxOSZv-_b2TlaTZ2PbSN2PJtnQ6Sb_znX4HcCJ8gTC-UKkVhqOBYupUclWnxA3GeYUIOUQT3v2sr6-b0UgOX6T6opiwnh64Fxwa7NIi5uUcTRUE87l0TghVCd-g7mmrafVF1LMypvo1GE0-mUcfJtEr4R4p6yIbFWTucBlyu212oUDWv4Uwf4-PfBHkFfadi314FwEjO-0b-h52XPcB9q6iS_wA7oYLuqboZUYHNubYpUlgKmLTjgV6jQdG0e1jRoeHAi8zvo8iQ9ksZIdgqrNsFoIqHYtZJMYf4fbix835ZRqTJaQG9_zH1GZ1YV2hvPONN0o2OdciQ7E5V2qvS29s6WuBwqsylalceINgxOOUVRUWqvIT7Hbzzn0Gltncal6ZpnQVt0Y3iHK0MI1Wyua5bBLIVsJrTWQSp4QWv9o8kof_Ie8Evq8fue9pNP5V-YxGZF2RGLDDDdSLNupF-z-9SGCwGs82TsuHtiDrqKY07wkcr4txQpGXRHVuvsQ6QmI1XNrKBOotPdhq0HZJN50Eam5JbulMJPCNNGbz4b_29fA1-noEbws6lRH-DA1g93GxdF_gjXlCpVp8DTPjGTvFDjs
  priority: 102
  providerName: Directory of Open Access Journals
Title Predicting osteoarthritis in adults using statistical data mining and machine learning
URI https://journals.sagepub.com/doi/full/10.1177/1759720X221104935
https://www.proquest.com/docview/2758575908
https://www.proquest.com/docview/2692754003
https://pubmed.ncbi.nlm.nih.gov/PMC9290106
https://doaj.org/article/579d9744472149519ee66a56f8048bdb
Volume 14
WOSCitedRecordID wos000827739800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1759-7218
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069091
  issn: 1759-720X
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1759-7218
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069091
  issn: 1759-720X
  databaseCode: 7X7
  dateStart: 20091001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1759-7218
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069091
  issn: 1759-720X
  databaseCode: 7RV
  dateStart: 20091001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1759-7218
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069091
  issn: 1759-720X
  databaseCode: BENPR
  dateStart: 20091001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1759-7218
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069091
  issn: 1759-720X
  databaseCode: PIMPY
  dateStart: 20091001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDiFe-J4IjMpISEhIEYnj2MkTYmgTSKyKJqjKU-T4o5vEktFu_P3ceW5LQeyFlyixnQ_nzuc73_l3AK-k56jGc51aaQQaKEaltdAqJWwwIUrUkEM04fSzmkyq2axu4oLbMoZVrmRiENR2MLRG_paTYqsoQ_e7ix8pZY0i72pMobEDu4RUJkawe3A4aU5WshhNv5AzD-fIOlU8m0W_JkEuURkVcTKBRB3yvW1mpgDgv6V1_hkz-VvgV5iLju7_by8ewL2ohbL312zzEG65_hHcOY5-9scwbRZ0TiHRjHaBDMhgpwH-iJ31LGB2LBmFzM8Z7UgKYM_4PAo3Zech5QTTvWXnIVLTsZiaYv4Evh4dfvnwMY0ZGFKDisRlajPFrePaO195o-sqF53MhFDOFZ3vCm9s4ZV0EvU8nelceoMajkc5oEus1MUejPqhd0-BZTa3nShNVbhSWNNVqDp10lSd1hZJVyWQrf5-ayI8OWXJ-N7mEZH8L4Il8GZ9y8U1NsdNjQ-IpOuGBKsdCobFvI2jtC1VbdHAwg5yshzz2mHXdCl9hYKus10C-yuytnGsL9sNTRN4ua7GUUquF9274QrbyBqbobwsElBbjLT1Qds1_dlpwPuuydedyQReE8ttXvzPvj67-TOfw11OmzjCQtI-jC4XV-4F3DY_kV0WY9hRJ1M6zlQ4VuM4qMZhvQKvmk_Hzbdf-owmdA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAwEv3BGBAUYCISFFJI5jxw8IcZs2rasmNKq-Bcd2ukksGe0G4k_xGznHTVoKYm974K2y3TRuPp9LfPx9AE9lzTGM5yZ20gpMUKyKtTAqJm4wIXKMkEM14WighsNiPNZ7a_CzPwtDZZW9TQyG2rWW3pG_5BTYKlLofn38NSbVKNpd7SU05rDY8T--Y8o2e7X9Hp_vM843P-y_24o7VYHYonM8iV2iuPPc1L4uamt0kYpKJkIo77OqrrLauqxW0kuMXUxiUllb9No1Ytvk2GkyvO4FuIh2PKUSMvVx1Ft-TDSDQh96ZB0rnoy7XVQieKI2auKUcAkd1OWWfjDIBazEuH9WaP5WZhY83-b1_-0_uwHXuhibvZkvipuw5ptbcHm3qyK4DaO9KX2mgm9GZ1xaXD4HgdyJHTYsMJLMGB0ImDA6bxWorPF6VEzLjoKgBjONY0ehDtWzTnhjcgc-ncus7sJ60zb-HrDEpa4SuS0ynwtnqwIDw0raojLGpakuIkj6p13ajnydNEC-lGnHt_4XQCJ4sfjK8Zx55KzBbwlCi4FEGh4a2umk7GxQmSvtMH3ECXLKi1PtcWoml3WBZrxyVQQbPYzKzpLNyiWGIniy6EYbRBtLpvHtKY6RGoehN8giUCvAXbmh1Z7m8CCwmWvayU9kBM8J4ssf_udc7599m4_hytb-7qAcbA93HsBVTsdVwiuzDVg_mZ76h3DJfkPoTB-Fxcvg83kj_xeweH--
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+osteoarthritis+in+adults+using+statistical+data+mining+and+machine+learning&rft.jtitle=Therapeutic+advances+in+musculoskeletal+disease&rft.au=Bertoncelli%2C+Carlo+M.&rft.au=Altamura%2C+Paola&rft.au=Bagui%2C+Sikha&rft.au=Bagui%2C+Subhash&rft.date=2022&rft.pub=SAGE+Publications&rft.issn=1759-720X&rft.eissn=1759-7218&rft.volume=14&rft_id=info:doi/10.1177%2F1759720X221104935&rft.externalDocID=10.1177_1759720X221104935
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-720X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-720X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-720X&client=summon