Affective Neural Responses Sonified through Labeled Correlation Alignment
Sound synthesis refers to the creation of original acoustic signals with broad applications in artistic innovation, such as music creation for games and videos. Nonetheless, machine learning architectures face numerous challenges when learning musical structures from arbitrary corpora. This issue in...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 23; no. 12; p. 5574 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
14.06.2023
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Sound synthesis refers to the creation of original acoustic signals with broad applications in artistic innovation, such as music creation for games and videos. Nonetheless, machine learning architectures face numerous challenges when learning musical structures from arbitrary corpora. This issue involves adapting patterns borrowed from other contexts to a concrete composition objective. Using Labeled Correlation Alignment (LCA), we propose an approach to sonify neural responses to affective music-listening data, identifying the brain features that are most congruent with the simultaneously extracted auditory features. For dealing with inter/intra-subject variability, a combination of Phase Locking Value and Gaussian Functional Connectivity is employed. The proposed two-step LCA approach embraces a separate coupling stage of input features to a set of emotion label sets using Centered Kernel Alignment. This step is followed by canonical correlation analysis to select multimodal representations with higher relationships. LCA enables physiological explanation by adding a backward transformation to estimate the matching contribution of each extracted brain neural feature set. Correlation estimates and partition quality represent performance measures. The evaluation uses a Vector Quantized Variational AutoEncoder to create an acoustic envelope from the tested Affective Music-Listening database. Validation results demonstrate the ability of the developed LCA approach to generate low-level music based on neural activity elicited by emotions while maintaining the ability to distinguish between the acoustic outputs. |
|---|---|
| AbstractList | Sound synthesis refers to the creation of original acoustic signals with broad applications in artistic innovation, such as music creation for games and videos. Nonetheless, machine learning architectures face numerous challenges when learning musical structures from arbitrary corpora. This issue involves adapting patterns borrowed from other contexts to a concrete composition objective. Using Labeled Correlation Alignment (LCA), we propose an approach to sonify neural responses to affective music-listening data, identifying the brain features that are most congruent with the simultaneously extracted auditory features. For dealing with inter/intra-subject variability, a combination of Phase Locking Value and Gaussian Functional Connectivity is employed. The proposed two-step LCA approach embraces a separate coupling stage of input features to a set of emotion label sets using Centered Kernel Alignment. This step is followed by canonical correlation analysis to select multimodal representations with higher relationships. LCA enables physiological explanation by adding a backward transformation to estimate the matching contribution of each extracted brain neural feature set. Correlation estimates and partition quality represent performance measures. The evaluation uses a Vector Quantized Variational AutoEncoder to create an acoustic envelope from the tested Affective Music-Listening database. Validation results demonstrate the ability of the developed LCA approach to generate low-level music based on neural activity elicited by emotions while maintaining the ability to distinguish between the acoustic outputs. Sound synthesis refers to the creation of original acoustic signals with broad applications in artistic innovation, such as music creation for games and videos. Nonetheless, machine learning architectures face numerous challenges when learning musical structures from arbitrary corpora. This issue involves adapting patterns borrowed from other contexts to a concrete composition objective. Using Labeled Correlation Alignment (LCA), we propose an approach to sonify neural responses to affective music-listening data, identifying the brain features that are most congruent with the simultaneously extracted auditory features. For dealing with inter/intra-subject variability, a combination of Phase Locking Value and Gaussian Functional Connectivity is employed. The proposed two-step LCA approach embraces a separate coupling stage of input features to a set of emotion label sets using Centered Kernel Alignment. This step is followed by canonical correlation analysis to select multimodal representations with higher relationships. LCA enables physiological explanation by adding a backward transformation to estimate the matching contribution of each extracted brain neural feature set. Correlation estimates and partition quality represent performance measures. The evaluation uses a Vector Quantized Variational AutoEncoder to create an acoustic envelope from the tested Affective Music-Listening database. Validation results demonstrate the ability of the developed LCA approach to generate low-level music based on neural activity elicited by emotions while maintaining the ability to distinguish between the acoustic outputs.Sound synthesis refers to the creation of original acoustic signals with broad applications in artistic innovation, such as music creation for games and videos. Nonetheless, machine learning architectures face numerous challenges when learning musical structures from arbitrary corpora. This issue involves adapting patterns borrowed from other contexts to a concrete composition objective. Using Labeled Correlation Alignment (LCA), we propose an approach to sonify neural responses to affective music-listening data, identifying the brain features that are most congruent with the simultaneously extracted auditory features. For dealing with inter/intra-subject variability, a combination of Phase Locking Value and Gaussian Functional Connectivity is employed. The proposed two-step LCA approach embraces a separate coupling stage of input features to a set of emotion label sets using Centered Kernel Alignment. This step is followed by canonical correlation analysis to select multimodal representations with higher relationships. LCA enables physiological explanation by adding a backward transformation to estimate the matching contribution of each extracted brain neural feature set. Correlation estimates and partition quality represent performance measures. The evaluation uses a Vector Quantized Variational AutoEncoder to create an acoustic envelope from the tested Affective Music-Listening database. Validation results demonstrate the ability of the developed LCA approach to generate low-level music based on neural activity elicited by emotions while maintaining the ability to distinguish between the acoustic outputs. |
| Audience | Academic |
| Author | Torres-Cardona, Héctor Fabio Pérez-Nastar, Hernán Darío Álvarez-Meza, Andrés Marino Orozco-Alzate, Mauricio Castellanos-Dominguez, German |
| AuthorAffiliation | 2 Transmedia Research Center, Universidad de Caldas, Manizales 170003, Colombia; hector.torres_c@ucaldas.edu.co 1 Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170003, Colombia; morozcoa@unal.edu.co (M.O.-A.); hdperezn@unal.edu.co (H.D.P.-N.); cgcastellanosd@unal.edu.co (G.C.-D.) |
| AuthorAffiliation_xml | – name: 2 Transmedia Research Center, Universidad de Caldas, Manizales 170003, Colombia; hector.torres_c@ucaldas.edu.co – name: 1 Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170003, Colombia; morozcoa@unal.edu.co (M.O.-A.); hdperezn@unal.edu.co (H.D.P.-N.); cgcastellanosd@unal.edu.co (G.C.-D.) |
| Author_xml | – sequence: 1 givenname: Andrés Marino orcidid: 0000-0003-0308-9576 surname: Álvarez-Meza fullname: Álvarez-Meza, Andrés Marino – sequence: 2 givenname: Héctor Fabio orcidid: 0000-0001-9758-4038 surname: Torres-Cardona fullname: Torres-Cardona, Héctor Fabio – sequence: 3 givenname: Mauricio surname: Orozco-Alzate fullname: Orozco-Alzate, Mauricio – sequence: 4 givenname: Hernán Darío surname: Pérez-Nastar fullname: Pérez-Nastar, Hernán Darío – sequence: 5 givenname: German orcidid: 0000-0002-0138-5489 surname: Castellanos-Dominguez fullname: Castellanos-Dominguez, German |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37420740$$D View this record in MEDLINE/PubMed |
| BookMark | eNptUttqGzEQFSWlSdw-9AfKQl_aBye67Up6Kib0YjAt9PIstNLIlllLrrQb6N9XjlOThCKERqMzR3Nm5hKdxRQBodcEXzGm8HWhjNC2FfwZuiCc8rmkFJ89sM_RZSlbjCljTL5A50xwigXHF2i58B7sGG6h-QpTNkPzHco-xQKl-ZFi8AFcM25ymtabZmV6GOr9JuUMgxlDis1iCOu4gzi-RM-9GQq8uj9n6Nenjz9vvsxX3z4vbxaruW2xGudWMN5D64TEvaPYMweedK0ihjsFralbgMdEqV5RK6nqbCeUqJbtBeeKzdDyyOuS2ep9DjuT_-hkgr5zpLzWJo_BDqC9JLwj1qmWEm6JNbRviXOqI7gFD6JyfThy7ad-B85WGbUEj0gfv8Sw0et0qwlmmErZVYZ39ww5_Z6gjHoXioVhMBHSVDSVrKVCknrO0Nsn0G2acqy1qiiqpOgYOci7OqLWpioI0af6sa3LwS7Y2ncfqn8hWskPQYcM3jzUcEr-X48r4P0RYHMqJYM_QQjWh_nRp_mp2OsnWBvGu0bXLMLwn4i_mp7FMw |
| CitedBy_id | crossref_primary_10_3390_s25051471 |
| Cites_doi | 10.1038/s41598-019-47795-0 10.24251/HICSS.2019.630 10.1021/acsnano.9b02180 10.1016/j.inffus.2020.01.011 10.1145/3332374 10.1101/2021.08.04.455041 10.1109/TKDE.2019.2958342 10.32470/CCN.2019.1314-0 10.1038/s41597-020-0507-6 10.3390/app12031695 10.1016/j.isci.2021.102873 10.3390/s21082750 10.1145/3108242 10.1109/TNSRE.2021.3129790 10.3389/fnins.2018.00262 10.3389/fnhum.2021.643294 10.1109/ICPR.2014.552 10.3390/s21227466 10.1609/aaai.v35i1.16117 10.1016/j.neuroimage.2018.01.033 10.1109/AICCSA53542.2021.9686838 10.1109/ACCESS.2020.3008269 10.1016/j.image.2016.05.018 10.1016/j.bspc.2022.103544 10.1016/j.cognition.2021.105010 10.1016/j.compbiomed.2021.104696 10.1101/2021.11.29.470396 10.1088/1741-2552/abce70 10.1007/s11042-021-10736-z 10.1561/2200000056 10.1007/978-981-15-1398-5 10.15171/icnj.2017.01 10.1016/j.compbiomed.2022.105303 10.1371/journal.pone.0213516 10.1016/j.neuroimage.2019.06.030 10.1016/j.asoc.2021.107763 10.1109/BCI51272.2021.9385301 10.1371/journal.pone.0082491 10.3389/fnhum.2021.711407 10.3389/fnins.2018.00148 10.1016/j.patcog.2022.109216 10.1016/j.procs.2020.05.151 10.3389/fnins.2017.00550 10.1017/S0140525X08005293 10.1109/BIBM52615.2021.9669750 10.1103/PhysRevLett.100.084102 10.1007/s11571-018-9502-4 10.3390/app11020674 10.3389/fcomp.2021.661178 10.1007/s13735-018-0151-5 10.1109/GCCE46687.2019.9015274 10.1007/s00371-017-1383-8 10.1109/JSTSP.2019.2908700 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s23125574 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Proquest Health and Medical Complete ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Music |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_f81461cd95214c1ca2b51dd96105efe7 PMC10302886 A758482986 37420740 10_3390_s23125574 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: the project: Sistema prototipo de procesamiento de bioseñales en unidades de cuidado intensivo neonatal utilizando aprendizaje de máquina – fundername: Universidad Nacional de Colombia – fundername: Universidad Nacional de Colombia and Universidad de Caldas |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c509t-c734be5d780bd20f3def16591a4d9e5a9e57ef0199b92c8296c6797c82cb74493 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001017701800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:45:34 EDT 2025 Tue Nov 04 02:06:55 EST 2025 Thu Sep 04 17:39:48 EDT 2025 Tue Oct 07 07:18:35 EDT 2025 Tue Nov 04 18:43:06 EST 2025 Thu Apr 03 07:03:45 EDT 2025 Tue Nov 18 20:58:05 EST 2025 Sat Nov 29 07:16:24 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | functional connectivity canonical correlation analysis centered kernel alignment music-EEG creation |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-c734be5d780bd20f3def16591a4d9e5a9e57ef0199b92c8296c6797c82cb74493 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0308-9576 0000-0002-0138-5489 0000-0001-9758-4038 |
| OpenAccessLink | https://doaj.org/article/f81461cd95214c1ca2b51dd96105efe7 |
| PMID | 37420740 |
| PQID | 2829876319 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f81461cd95214c1ca2b51dd96105efe7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10302886 proquest_miscellaneous_2835278128 proquest_journals_2829876319 gale_infotracacademiconefile_A758482986 pubmed_primary_37420740 crossref_primary_10_3390_s23125574 crossref_citationtrail_10_3390_s23125574 |
| PublicationCentury | 2000 |
| PublicationDate | 20230614 |
| PublicationDateYYYYMMDD | 2023-06-14 |
| PublicationDate_xml | – month: 6 year: 2023 text: 20230614 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Bagherzadeh (ref_54) 2022; 75 Wong (ref_30) 2018; 172 ref_14 Katthi (ref_48) 2021; 29 Purwins (ref_20) 2019; 13 ref_55 ref_10 Sanyal (ref_33) 2019; 13 ref_52 Daly (ref_56) 2020; 7 ref_19 Hornero (ref_15) 2020; 8 ref_18 Milazzo (ref_13) 2021; 24 ref_16 Zhu (ref_62) 2019; 15 Yu (ref_12) 2019; 13 Leipold (ref_58) 2019; 200 ref_61 Hui (ref_36) 2021; 80 Podobnik (ref_32) 2008; 100 ref_22 ref_21 Wu (ref_25) 2018; 12 ref_63 Li (ref_65) 2022; 143 ref_29 Juslin (ref_23) 2008; 31 ref_26 Ciccarelli (ref_35) 2019; 9 Shamsi (ref_64) 2021; 18 ref_34 Wang (ref_1) 2021; 112 ref_31 Soroush (ref_17) 2017; 4 Das (ref_59) 2020; 172 ref_39 Rahman (ref_57) 2021; 136 Zhang (ref_28) 2020; 59 Mori (ref_45) 2022; 222 Wang (ref_50) 2015; 2015 Hajinoroozi (ref_40) 2016; 47 Wilson (ref_11) 2017; 33 Hildt (ref_24) 2021; 15 Yang (ref_51) 2019; 33 Orlandi (ref_60) 2021; 15 ref_47 ref_46 Ning (ref_37) 2023; 136 ref_44 Herremans (ref_5) 2017; 50 ref_41 Belo (ref_43) 2021; 3 ref_3 ref_2 ref_9 ref_8 Kingma (ref_53) 2019; 12 Miran (ref_38) 2018; 12 Dorfer (ref_42) 2018; 7 ref_4 Marion (ref_27) 2021; 41 ref_7 ref_6 (ref_49) 2017; 11 |
| References_xml | – volume: 9 start-page: 11538 year: 2019 ident: ref_35 article-title: Comparison of two-talker attention decoding from EEG with nonlinear neural networks and linear methods publication-title: Sci. Rep. doi: 10.1038/s41598-019-47795-0 – ident: ref_3 doi: 10.24251/HICSS.2019.630 – volume: 13 start-page: 7471 year: 2019 ident: ref_12 article-title: A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence publication-title: ACS Nano doi: 10.1021/acsnano.9b02180 – volume: 59 start-page: 103 year: 2020 ident: ref_28 article-title: Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.01.011 – volume: 15 start-page: 1 year: 2019 ident: ref_62 article-title: Physiological Signals-based Emotion Recognition via High-order Correlation Learning publication-title: ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) doi: 10.1145/3332374 – ident: ref_14 doi: 10.1101/2021.08.04.455041 – volume: 33 start-page: 2349 year: 2019 ident: ref_51 article-title: A survey on canonical correlation analysis publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2958342 – ident: ref_16 – ident: ref_46 doi: 10.32470/CCN.2019.1314-0 – volume: 7 start-page: 177 year: 2020 ident: ref_56 article-title: Neural and physiological data from participants listening to affective music publication-title: Sci. Data doi: 10.1038/s41597-020-0507-6 – ident: ref_55 doi: 10.3390/app12031695 – volume: 24 start-page: 102873 year: 2021 ident: ref_13 article-title: Designing and fabricating materials from fire using sonification and deep learning publication-title: iScience doi: 10.1016/j.isci.2021.102873 – ident: ref_44 doi: 10.3390/s21082750 – volume: 50 start-page: 1 year: 2017 ident: ref_5 article-title: A Functional Taxonomy of Music Generation Systems publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3108242 – ident: ref_4 – ident: ref_31 – volume: 29 start-page: 2742 year: 2021 ident: ref_48 article-title: Deep Correlation Analysis for Audio-EEG Decoding publication-title: IEEE Trans. Neural Syst. Rehabil Eng. doi: 10.1109/TNSRE.2021.3129790 – ident: ref_52 – volume: 12 start-page: 262 year: 2018 ident: ref_38 article-title: Real-time tracking of selective auditory attention from M/EEG: A bayesian filtering approach publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00262 – ident: ref_41 – volume: 15 start-page: 643294 year: 2021 ident: ref_60 article-title: Brain-Computer Interfaces for Children With Complex Communication Needs and Limited Mobility: A Systematic Review publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2021.643294 – ident: ref_61 doi: 10.1109/ICPR.2014.552 – ident: ref_21 doi: 10.3390/s21227466 – ident: ref_8 doi: 10.1609/aaai.v35i1.16117 – ident: ref_7 – volume: 172 start-page: 206 year: 2018 ident: ref_30 article-title: Decoding the auditory brain with canonical component analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.01.033 – ident: ref_9 doi: 10.1109/AICCSA53542.2021.9686838 – volume: 8 start-page: 127659 year: 2020 ident: ref_15 article-title: Assessment of Emotional States Through Physiological Signals and Its Application in Music Therapy for Disabled People publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3008269 – volume: 47 start-page: 549 year: 2016 ident: ref_40 article-title: EEG-based prediction of driver’s cognitive performance by deep convolutional neural network publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2016.05.018 – ident: ref_34 – volume: 75 start-page: 103544 year: 2022 ident: ref_54 article-title: Recognition of emotional states using frequency effective connectivity maps through transfer learning approach from electroencephalogram signals publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2022.103544 – volume: 222 start-page: 105010 year: 2022 ident: ref_45 article-title: Decoding peak emotional responses to music from computational acoustic and lyrical features publication-title: Cognition doi: 10.1016/j.cognition.2021.105010 – volume: 136 start-page: 104696 year: 2021 ident: ref_57 article-title: Recognition of human emotions using EEG signals: A review publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104696 – ident: ref_18 doi: 10.1101/2021.11.29.470396 – volume: 18 start-page: 016015 year: 2021 ident: ref_64 article-title: Early classification of motor tasks using dynamic functional connectivity graphs from EEG publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abce70 – volume: 80 start-page: 24843 year: 2021 ident: ref_36 article-title: Robust deflated canonical correlation analysis via feature factoring for multi-view image classification publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-10736-z – volume: 12 start-page: 307 year: 2019 ident: ref_53 article-title: An Introduction to Variational Autoencoders publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000056 – ident: ref_26 doi: 10.1007/978-981-15-1398-5 – volume: 41 start-page: 7449 year: 2021 ident: ref_27 article-title: The Music of Silence: Part II: Music Listening Induces Imagery Responses publication-title: J. Neurosci. – volume: 4 start-page: 118 year: 2017 ident: ref_17 article-title: A review on EEG signals based emotion recognition publication-title: Int. Clin. Neurosci. J. doi: 10.15171/icnj.2017.01 – volume: 143 start-page: 105303 year: 2022 ident: ref_65 article-title: Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105303 – ident: ref_19 doi: 10.1371/journal.pone.0213516 – volume: 200 start-page: 132 year: 2019 ident: ref_58 article-title: Neural patterns reveal single-trial information on absolute pitch and relative pitch perception publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.06.030 – ident: ref_6 – volume: 112 start-page: 107763 year: 2021 ident: ref_1 article-title: The algorithmic composition for music copyright protection under deep learning and blockchain publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107763 – ident: ref_63 doi: 10.1109/BCI51272.2021.9385301 – ident: ref_10 doi: 10.1371/journal.pone.0082491 – ident: ref_2 – volume: 15 start-page: 711407 year: 2021 ident: ref_24 article-title: Affective Brain-Computer Music Interfaces –Drivers and Implications publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2021.711407 – volume: 12 start-page: 148 year: 2018 ident: ref_25 article-title: Hearing the Sound in the Brain: Influences of Different EEG References publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00148 – volume: 136 start-page: 109216 year: 2023 ident: ref_37 article-title: Hyper-sausage coverage function neuron model and learning algorithm for image classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.109216 – volume: 172 start-page: 1033 year: 2020 ident: ref_59 article-title: Measurement of effect of music on human brain and consequent impact on attentiveness and concentration during reading publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.05.151 – volume: 11 start-page: 550 year: 2017 ident: ref_49 article-title: Kernel-based relevance analysis with enhanced interpretability for detection of brain activity patterns publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00550 – volume: 31 start-page: 559 year: 2008 ident: ref_23 article-title: Emotional responses to music: The need to consider underlying mechanisms publication-title: Behav. Brain Sci. doi: 10.1017/S0140525X08005293 – ident: ref_29 doi: 10.1109/BIBM52615.2021.9669750 – volume: 100 start-page: 084102 year: 2008 ident: ref_32 article-title: Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.084102 – volume: 13 start-page: 13 year: 2019 ident: ref_33 article-title: Music of brain and music on brain: A novel EEG sonification approach publication-title: Cogn. Neurodynamics doi: 10.1007/s11571-018-9502-4 – ident: ref_47 doi: 10.3390/app11020674 – volume: 3 start-page: 1 year: 2021 ident: ref_43 article-title: EEG-based auditory attention detection and its possible future applications for passive BCI publication-title: Front. Comput. Sci. doi: 10.3389/fcomp.2021.661178 – volume: 2015 start-page: 703768 year: 2015 ident: ref_50 article-title: Simultaneous channel and feature selection of fused EEG features based on sparse group lasso publication-title: BioMed Res. Int. – volume: 7 start-page: 117 year: 2018 ident: ref_42 article-title: End-to-end cross-modality retrieval with CCA projections and pairwise ranking loss publication-title: Int. J. Multimed. Inf. Retr. doi: 10.1007/s13735-018-0151-5 – ident: ref_22 – ident: ref_39 doi: 10.1109/GCCE46687.2019.9015274 – volume: 33 start-page: 1039 year: 2017 ident: ref_11 article-title: Glass half full: Sound synthesis for fluid–structure coupling using added mass operator publication-title: Vis. Comput. doi: 10.1007/s00371-017-1383-8 – volume: 13 start-page: 206 year: 2019 ident: ref_20 article-title: Deep learning for audio signal processing publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2019.2908700 |
| SSID | ssj0023338 |
| Score | 2.3972611 |
| Snippet | Sound synthesis refers to the creation of original acoustic signals with broad applications in artistic innovation, such as music creation for games and... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 5574 |
| SubjectTerms | Acoustic Stimulation Acoustics Affect (Psychology) Auditory Perception - physiology Brain - physiology Brain Mapping - methods canonical correlation analysis centered kernel alignment Correlation analysis Electroencephalography Electroencephalography - methods Emotions Emotions - physiology functional connectivity Listening Machine learning Mediation Music Music - psychology music-EEG creation Neural networks Neurophysiology Physiology Sound |
| SummonAdditionalLinks | – databaseName: Proquest Health and Medical Complete dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD5o64N98FK1RqtEEfQlNMlMZjJPsi0WBSniBfYtZG51oWTrZuvv95zJbLpB8aUPC8tmFs5wLvPNzMn3AbzRZStcXrhMGGsyLrjPakMv6prSWTp0YF4HsQl5dlbP5-pLPHDrY1vlpiaGQm2Xhs7Ij-jGj9jTCvX-8ldGqlF0uxolNG7DLslmU5zL-fWGi-H-a2ATYri1P-oRyyCClnyyBgWq_r8L8taKNO2W3Fp-Tu_f1PAHcC8Cz3Q2RMpDuOW6fdjboiPch90g-vwIPs1CkwfWwZS4O_BfX4dOWten37AGeIStaRT4ST-3Glcum56QzMfQWJfOLhbnocvgMfw4_fD95GMWJRcyg8hhnRnJuHaVlXWubZl7Zp0vRKWKllvlqhY_0nmEhUqr0uDMhBFSSfxmtORcsSew0y079xRSW7G29Zq50nPuuait0LnllSfOPJmLBN5tnNCYyEdOshgXDe5LyF_N6K8EXo9DLwcSjn8NOiZPjgOINzv8sFydNzENG08nnoWxClELN4VpS10V1ioEkZXzTibwluKgoexGY0wbX1LAKRFPVjPD7RUnh6L5hxt3NzHt--ba1wm8Gh9jwtItTNu55RWNQcwrEVfVCRwMkTXazCQvEdPlCdSTmJtMavqkW_wMpOAkF1fWtXj2f7uew90SE4Oa3Qp-CDvr1ZV7AXfM7_WiX70M6fMHW6ck_g priority: 102 providerName: ProQuest |
| Title | Affective Neural Responses Sonified through Labeled Correlation Alignment |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37420740 https://www.proquest.com/docview/2829876319 https://www.proquest.com/docview/2835278128 https://pubmed.ncbi.nlm.nih.gov/PMC10302886 https://doaj.org/article/f81461cd95214c1ca2b51dd96105efe7 |
| Volume | 23 |
| WOSCitedRecordID | wos001017701800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Health and Medical Complete customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5B4QAHxBtDiQxCgotVe73exzGtUlGJRlEBKZysfZZIlVs1aY_8dmZsx4oFEhcOtix7Drvz8Mzszn4D8MEyI0JehEw47zIueMyUo4O6jgVPiw5ltG2zCTmfq-VSL3ZafVFNWAcP3DHuINIaVeG8Rj_DXeEMs1XhvUa3X4UY2nPkudTbZKpPtUrMvDocoRKT-oM1RjEYO0s-8j4tSP-fv-IdXzSuk9xxPMeP4VEfMabTbqRP4E5onsLDHRzBZ3Aybasy8MeVEtgGUp91pa9hnX5Fo40YZ6Z9R570i7Hoanx6RH05ukq4dHqxOm_LAp7D9-PZt6PPWd8jIXPo6jeZkyW3ofJS5dazPJY-xEJUujDc61AZvGSIGMdpq5lTTAsnpJb45KzkXJcvYK-5bMIrSH1VGhNtGVjkPHKhvLC551UkkDuZiwQ-bXlXux5AnPpYXNSYSBCb64HNCbwfSK861Iy_ER2SAAYCArpuX6D461789b_En8BHEl9N5oiDcaY_VYBTImCreor5EMdpKxz-_lbCdW-n65r2kQmTr9AJvBs-o4XRtolpwuUN0WCQKjEQUgm87BRiGHMpOWofzxNQI1UZTWr8pVn9bFG8qb8bU0q8_h9seAMPGGo91bAVfB_2Ntc34S3cd7eb1fp6AnflUrZ3NYF7h7P54mzS2gveT3_N8N3i5HTx4zdMjRsZ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VLRJw4FFehgIGgeBi1V6vvd4DQqFQNWqIEBQpt8XeR4lUOSVOQfwpfiMzfjUWiFsPHCJZ8UbZtb-d-WZ39huAZwXLUxtGNki10QFPuQsyTQd1NbOGFh1iV9TFJsR0ms1m8sMG_OrOwlBaZWcTa0NtFprWyHdpx4_U0yL5-vRbQFWjaHe1K6HRwOLQ_vyBIVv1avwW3-9zxvbfHe0dBG1VgUCjc1wFWsS8sIkRWVgYFrrYWBeliYxybqRNcvwI65D5yEIyjf-a6lRIgVe6EJyT-BKa_C2044KCPTE7D_BijPca9aI4luFuhdwJGbvgA59Xlwb40wGsecBhduaau9u__r89qBtwrSXW_qiZCTdhw5bbcHVNbnEbtuqi1rdgPKqTWNDO-6RNgr_62GQK28r_hDbOIS332wJG_iQv0DMbf4_KmDSJg_7oZH5cZ1Hchs8XMqY7sFkuSnsPfJPEee6K2DLHueNpZtIiNDxxpAkowtSDl91LV7rVW6eyHycK4y7Ch-rx4cHTvulpIzLyt0ZvCDl9A9IFr79YLI9Va2aUoxXdSBuJrIzrSOesSCJjJJLkxDorPHhBuFNkvbAzOm8PYeCQSAdMjTB85AQg7P5OBy_VmrVKnWPLgyf9bTRItMuUl3ZxRm2Q0wvkjZkHdxsk932OBWfIWUMPsgHGB4Ma3innX2vRcyqHx7Isvf_vfj2GywdH7ydqMp4ePoArDCclJfZFfAc2V8sz-xAu6e-rebV8VE9dH75c9BT4DXTqgZE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VCUJw4FEeNRQwCAQXK_Z67fUeEAotEVFLFPGQysnY-2gjVU6JUxB_jV_HjF_EAnHrgUOkKN5Iu8k3M9_szn4D8DRnWWz8wHix0srjMbdeouiirmJG06ZDaPOq2YSYzZKjIznfgp_tXRgqq2x9YuWo9VLRHvmITvxIPS2QI9uURcz3J6_OvnrUQYpOWtt2GjVEDsyP75i-lS-n-_hfP2Ns8ubj3luv6TDgKQyUa0-JkOcm0iLxc818G2pjgziSQca1NFGGL2EssiCZS6ZwBrGKhRT4TuWCcxJiQvc_RErO2QCG8-m7-ecu3Qsx-6u1jMJQ-qMSmRTyd8F7EbBqFPBnONiIh_1azY3gN7n-P_9sN-BaQ7ndcW0jN2HLFNtwdUOIcRuGVbvrWzAdV-UtGAFcUi3Bb72va4hN6X5A72eRsLtNayP3MMsxZmt3jxqc1CWF7vh0cVzVV9yGTxeypjswKJaF2QFXR2GW2Tw0zHJueZzoOPc1jyypBQo_duBFC4BUNUrs1BDkNMWMjLCSdlhx4Ek39KyWH_nboNeEom4AKYZXHyxXx2njgFJLe72B0hL5GleBylgeBVpLpM-RsUY48JwwmJJfw8morLmegUsihbB0jIklJzDh9HdbqKWNwyvT3zhz4HH3GF0VnT9lhVme0xhk-wIZZeLA3RrV3ZxDtCBks74DSQ_vvUX1nxSLk0oOnRrlsSSJ7_17Xo_gMiI_PZzODu7DFYb2SRV_Ad-FwXp1bh7AJfVtvShXDxs7duHLRdvALzFCi-A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Affective+Neural+Responses+Sonified+through+Labeled+Correlation+Alignment&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=%C3%81lvarez-Meza%2C+Andr%C3%A9s+Marino&rft.au=Torres-Cardona%2C+H%C3%A9ctor+Fabio&rft.au=Orozco-Alzate%2C+Mauricio&rft.au=P%C3%A9rez-Nastar%2C+Hern%C3%A1n+Dar%C3%ADo&rft.date=2023-06-14&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=12&rft_id=info:doi/10.3390%2Fs23125574&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |