Affective Neural Responses Sonified through Labeled Correlation Alignment

Sound synthesis refers to the creation of original acoustic signals with broad applications in artistic innovation, such as music creation for games and videos. Nonetheless, machine learning architectures face numerous challenges when learning musical structures from arbitrary corpora. This issue in...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 23; no. 12; p. 5574
Main Authors: Álvarez-Meza, Andrés Marino, Torres-Cardona, Héctor Fabio, Orozco-Alzate, Mauricio, Pérez-Nastar, Hernán Darío, Castellanos-Dominguez, German
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 14.06.2023
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Sound synthesis refers to the creation of original acoustic signals with broad applications in artistic innovation, such as music creation for games and videos. Nonetheless, machine learning architectures face numerous challenges when learning musical structures from arbitrary corpora. This issue involves adapting patterns borrowed from other contexts to a concrete composition objective. Using Labeled Correlation Alignment (LCA), we propose an approach to sonify neural responses to affective music-listening data, identifying the brain features that are most congruent with the simultaneously extracted auditory features. For dealing with inter/intra-subject variability, a combination of Phase Locking Value and Gaussian Functional Connectivity is employed. The proposed two-step LCA approach embraces a separate coupling stage of input features to a set of emotion label sets using Centered Kernel Alignment. This step is followed by canonical correlation analysis to select multimodal representations with higher relationships. LCA enables physiological explanation by adding a backward transformation to estimate the matching contribution of each extracted brain neural feature set. Correlation estimates and partition quality represent performance measures. The evaluation uses a Vector Quantized Variational AutoEncoder to create an acoustic envelope from the tested Affective Music-Listening database. Validation results demonstrate the ability of the developed LCA approach to generate low-level music based on neural activity elicited by emotions while maintaining the ability to distinguish between the acoustic outputs.
AbstractList Sound synthesis refers to the creation of original acoustic signals with broad applications in artistic innovation, such as music creation for games and videos. Nonetheless, machine learning architectures face numerous challenges when learning musical structures from arbitrary corpora. This issue involves adapting patterns borrowed from other contexts to a concrete composition objective. Using Labeled Correlation Alignment (LCA), we propose an approach to sonify neural responses to affective music-listening data, identifying the brain features that are most congruent with the simultaneously extracted auditory features. For dealing with inter/intra-subject variability, a combination of Phase Locking Value and Gaussian Functional Connectivity is employed. The proposed two-step LCA approach embraces a separate coupling stage of input features to a set of emotion label sets using Centered Kernel Alignment. This step is followed by canonical correlation analysis to select multimodal representations with higher relationships. LCA enables physiological explanation by adding a backward transformation to estimate the matching contribution of each extracted brain neural feature set. Correlation estimates and partition quality represent performance measures. The evaluation uses a Vector Quantized Variational AutoEncoder to create an acoustic envelope from the tested Affective Music-Listening database. Validation results demonstrate the ability of the developed LCA approach to generate low-level music based on neural activity elicited by emotions while maintaining the ability to distinguish between the acoustic outputs.
Sound synthesis refers to the creation of original acoustic signals with broad applications in artistic innovation, such as music creation for games and videos. Nonetheless, machine learning architectures face numerous challenges when learning musical structures from arbitrary corpora. This issue involves adapting patterns borrowed from other contexts to a concrete composition objective. Using Labeled Correlation Alignment (LCA), we propose an approach to sonify neural responses to affective music-listening data, identifying the brain features that are most congruent with the simultaneously extracted auditory features. For dealing with inter/intra-subject variability, a combination of Phase Locking Value and Gaussian Functional Connectivity is employed. The proposed two-step LCA approach embraces a separate coupling stage of input features to a set of emotion label sets using Centered Kernel Alignment. This step is followed by canonical correlation analysis to select multimodal representations with higher relationships. LCA enables physiological explanation by adding a backward transformation to estimate the matching contribution of each extracted brain neural feature set. Correlation estimates and partition quality represent performance measures. The evaluation uses a Vector Quantized Variational AutoEncoder to create an acoustic envelope from the tested Affective Music-Listening database. Validation results demonstrate the ability of the developed LCA approach to generate low-level music based on neural activity elicited by emotions while maintaining the ability to distinguish between the acoustic outputs.Sound synthesis refers to the creation of original acoustic signals with broad applications in artistic innovation, such as music creation for games and videos. Nonetheless, machine learning architectures face numerous challenges when learning musical structures from arbitrary corpora. This issue involves adapting patterns borrowed from other contexts to a concrete composition objective. Using Labeled Correlation Alignment (LCA), we propose an approach to sonify neural responses to affective music-listening data, identifying the brain features that are most congruent with the simultaneously extracted auditory features. For dealing with inter/intra-subject variability, a combination of Phase Locking Value and Gaussian Functional Connectivity is employed. The proposed two-step LCA approach embraces a separate coupling stage of input features to a set of emotion label sets using Centered Kernel Alignment. This step is followed by canonical correlation analysis to select multimodal representations with higher relationships. LCA enables physiological explanation by adding a backward transformation to estimate the matching contribution of each extracted brain neural feature set. Correlation estimates and partition quality represent performance measures. The evaluation uses a Vector Quantized Variational AutoEncoder to create an acoustic envelope from the tested Affective Music-Listening database. Validation results demonstrate the ability of the developed LCA approach to generate low-level music based on neural activity elicited by emotions while maintaining the ability to distinguish between the acoustic outputs.
Audience Academic
Author Torres-Cardona, Héctor Fabio
Pérez-Nastar, Hernán Darío
Álvarez-Meza, Andrés Marino
Orozco-Alzate, Mauricio
Castellanos-Dominguez, German
AuthorAffiliation 2 Transmedia Research Center, Universidad de Caldas, Manizales 170003, Colombia; hector.torres_c@ucaldas.edu.co
1 Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170003, Colombia; morozcoa@unal.edu.co (M.O.-A.); hdperezn@unal.edu.co (H.D.P.-N.); cgcastellanosd@unal.edu.co (G.C.-D.)
AuthorAffiliation_xml – name: 2 Transmedia Research Center, Universidad de Caldas, Manizales 170003, Colombia; hector.torres_c@ucaldas.edu.co
– name: 1 Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170003, Colombia; morozcoa@unal.edu.co (M.O.-A.); hdperezn@unal.edu.co (H.D.P.-N.); cgcastellanosd@unal.edu.co (G.C.-D.)
Author_xml – sequence: 1
  givenname: Andrés Marino
  orcidid: 0000-0003-0308-9576
  surname: Álvarez-Meza
  fullname: Álvarez-Meza, Andrés Marino
– sequence: 2
  givenname: Héctor Fabio
  orcidid: 0000-0001-9758-4038
  surname: Torres-Cardona
  fullname: Torres-Cardona, Héctor Fabio
– sequence: 3
  givenname: Mauricio
  surname: Orozco-Alzate
  fullname: Orozco-Alzate, Mauricio
– sequence: 4
  givenname: Hernán Darío
  surname: Pérez-Nastar
  fullname: Pérez-Nastar, Hernán Darío
– sequence: 5
  givenname: German
  orcidid: 0000-0002-0138-5489
  surname: Castellanos-Dominguez
  fullname: Castellanos-Dominguez, German
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37420740$$D View this record in MEDLINE/PubMed
BookMark eNptUttqGzEQFSWlSdw-9AfKQl_aBye67Up6Kib0YjAt9PIstNLIlllLrrQb6N9XjlOThCKERqMzR3Nm5hKdxRQBodcEXzGm8HWhjNC2FfwZuiCc8rmkFJ89sM_RZSlbjCljTL5A50xwigXHF2i58B7sGG6h-QpTNkPzHco-xQKl-ZFi8AFcM25ymtabZmV6GOr9JuUMgxlDis1iCOu4gzi-RM-9GQq8uj9n6Nenjz9vvsxX3z4vbxaruW2xGudWMN5D64TEvaPYMweedK0ihjsFralbgMdEqV5RK6nqbCeUqJbtBeeKzdDyyOuS2ep9DjuT_-hkgr5zpLzWJo_BDqC9JLwj1qmWEm6JNbRviXOqI7gFD6JyfThy7ad-B85WGbUEj0gfv8Sw0et0qwlmmErZVYZ39ww5_Z6gjHoXioVhMBHSVDSVrKVCknrO0Nsn0G2acqy1qiiqpOgYOci7OqLWpioI0af6sa3LwS7Y2ncfqn8hWskPQYcM3jzUcEr-X48r4P0RYHMqJYM_QQjWh_nRp_mp2OsnWBvGu0bXLMLwn4i_mp7FMw
CitedBy_id crossref_primary_10_3390_s25051471
Cites_doi 10.1038/s41598-019-47795-0
10.24251/HICSS.2019.630
10.1021/acsnano.9b02180
10.1016/j.inffus.2020.01.011
10.1145/3332374
10.1101/2021.08.04.455041
10.1109/TKDE.2019.2958342
10.32470/CCN.2019.1314-0
10.1038/s41597-020-0507-6
10.3390/app12031695
10.1016/j.isci.2021.102873
10.3390/s21082750
10.1145/3108242
10.1109/TNSRE.2021.3129790
10.3389/fnins.2018.00262
10.3389/fnhum.2021.643294
10.1109/ICPR.2014.552
10.3390/s21227466
10.1609/aaai.v35i1.16117
10.1016/j.neuroimage.2018.01.033
10.1109/AICCSA53542.2021.9686838
10.1109/ACCESS.2020.3008269
10.1016/j.image.2016.05.018
10.1016/j.bspc.2022.103544
10.1016/j.cognition.2021.105010
10.1016/j.compbiomed.2021.104696
10.1101/2021.11.29.470396
10.1088/1741-2552/abce70
10.1007/s11042-021-10736-z
10.1561/2200000056
10.1007/978-981-15-1398-5
10.15171/icnj.2017.01
10.1016/j.compbiomed.2022.105303
10.1371/journal.pone.0213516
10.1016/j.neuroimage.2019.06.030
10.1016/j.asoc.2021.107763
10.1109/BCI51272.2021.9385301
10.1371/journal.pone.0082491
10.3389/fnhum.2021.711407
10.3389/fnins.2018.00148
10.1016/j.patcog.2022.109216
10.1016/j.procs.2020.05.151
10.3389/fnins.2017.00550
10.1017/S0140525X08005293
10.1109/BIBM52615.2021.9669750
10.1103/PhysRevLett.100.084102
10.1007/s11571-018-9502-4
10.3390/app11020674
10.3389/fcomp.2021.661178
10.1007/s13735-018-0151-5
10.1109/GCCE46687.2019.9015274
10.1007/s00371-017-1383-8
10.1109/JSTSP.2019.2908700
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23125574
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Proquest Health and Medical Complete
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Publicly Available Content Database
CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Music
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_f81461cd95214c1ca2b51dd96105efe7
PMC10302886
A758482986
37420740
10_3390_s23125574
Genre Journal Article
GrantInformation_xml – fundername: the project: Sistema prototipo de procesamiento de bioseñales en unidades de cuidado intensivo neonatal utilizando aprendizaje de máquina
– fundername: Universidad Nacional de Colombia
– fundername: Universidad Nacional de Colombia and Universidad de Caldas
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c509t-c734be5d780bd20f3def16591a4d9e5a9e57ef0199b92c8296c6797c82cb74493
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001017701800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:45:34 EDT 2025
Tue Nov 04 02:06:55 EST 2025
Thu Sep 04 17:39:48 EDT 2025
Tue Oct 07 07:18:35 EDT 2025
Tue Nov 04 18:43:06 EST 2025
Thu Apr 03 07:03:45 EDT 2025
Tue Nov 18 20:58:05 EST 2025
Sat Nov 29 07:16:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords functional connectivity
canonical correlation analysis
centered kernel alignment
music-EEG creation
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-c734be5d780bd20f3def16591a4d9e5a9e57ef0199b92c8296c6797c82cb74493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0308-9576
0000-0002-0138-5489
0000-0001-9758-4038
OpenAccessLink https://doaj.org/article/f81461cd95214c1ca2b51dd96105efe7
PMID 37420740
PQID 2829876319
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_f81461cd95214c1ca2b51dd96105efe7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10302886
proquest_miscellaneous_2835278128
proquest_journals_2829876319
gale_infotracacademiconefile_A758482986
pubmed_primary_37420740
crossref_primary_10_3390_s23125574
crossref_citationtrail_10_3390_s23125574
PublicationCentury 2000
PublicationDate 20230614
PublicationDateYYYYMMDD 2023-06-14
PublicationDate_xml – month: 6
  year: 2023
  text: 20230614
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Bagherzadeh (ref_54) 2022; 75
Wong (ref_30) 2018; 172
ref_14
Katthi (ref_48) 2021; 29
Purwins (ref_20) 2019; 13
ref_55
ref_10
Sanyal (ref_33) 2019; 13
ref_52
Daly (ref_56) 2020; 7
ref_19
Hornero (ref_15) 2020; 8
ref_18
Milazzo (ref_13) 2021; 24
ref_16
Zhu (ref_62) 2019; 15
Yu (ref_12) 2019; 13
Leipold (ref_58) 2019; 200
ref_61
Hui (ref_36) 2021; 80
Podobnik (ref_32) 2008; 100
ref_22
ref_21
Wu (ref_25) 2018; 12
ref_63
Li (ref_65) 2022; 143
ref_29
Juslin (ref_23) 2008; 31
ref_26
Ciccarelli (ref_35) 2019; 9
Shamsi (ref_64) 2021; 18
ref_34
Wang (ref_1) 2021; 112
ref_31
Soroush (ref_17) 2017; 4
Das (ref_59) 2020; 172
ref_39
Rahman (ref_57) 2021; 136
Zhang (ref_28) 2020; 59
Mori (ref_45) 2022; 222
Wang (ref_50) 2015; 2015
Hajinoroozi (ref_40) 2016; 47
Wilson (ref_11) 2017; 33
Hildt (ref_24) 2021; 15
Yang (ref_51) 2019; 33
Orlandi (ref_60) 2021; 15
ref_47
ref_46
Ning (ref_37) 2023; 136
ref_44
Herremans (ref_5) 2017; 50
ref_41
Belo (ref_43) 2021; 3
ref_3
ref_2
ref_9
ref_8
Kingma (ref_53) 2019; 12
Miran (ref_38) 2018; 12
Dorfer (ref_42) 2018; 7
ref_4
Marion (ref_27) 2021; 41
ref_7
ref_6
(ref_49) 2017; 11
References_xml – volume: 9
  start-page: 11538
  year: 2019
  ident: ref_35
  article-title: Comparison of two-talker attention decoding from EEG with nonlinear neural networks and linear methods
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-47795-0
– ident: ref_3
  doi: 10.24251/HICSS.2019.630
– volume: 13
  start-page: 7471
  year: 2019
  ident: ref_12
  article-title: A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b02180
– volume: 59
  start-page: 103
  year: 2020
  ident: ref_28
  article-title: Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.01.011
– volume: 15
  start-page: 1
  year: 2019
  ident: ref_62
  article-title: Physiological Signals-based Emotion Recognition via High-order Correlation Learning
  publication-title: ACM Trans. Multimed. Comput. Commun. Appl. (TOMM)
  doi: 10.1145/3332374
– ident: ref_14
  doi: 10.1101/2021.08.04.455041
– volume: 33
  start-page: 2349
  year: 2019
  ident: ref_51
  article-title: A survey on canonical correlation analysis
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2958342
– ident: ref_16
– ident: ref_46
  doi: 10.32470/CCN.2019.1314-0
– volume: 7
  start-page: 177
  year: 2020
  ident: ref_56
  article-title: Neural and physiological data from participants listening to affective music
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-0507-6
– ident: ref_55
  doi: 10.3390/app12031695
– volume: 24
  start-page: 102873
  year: 2021
  ident: ref_13
  article-title: Designing and fabricating materials from fire using sonification and deep learning
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102873
– ident: ref_44
  doi: 10.3390/s21082750
– volume: 50
  start-page: 1
  year: 2017
  ident: ref_5
  article-title: A Functional Taxonomy of Music Generation Systems
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3108242
– ident: ref_4
– ident: ref_31
– volume: 29
  start-page: 2742
  year: 2021
  ident: ref_48
  article-title: Deep Correlation Analysis for Audio-EEG Decoding
  publication-title: IEEE Trans. Neural Syst. Rehabil Eng.
  doi: 10.1109/TNSRE.2021.3129790
– ident: ref_52
– volume: 12
  start-page: 262
  year: 2018
  ident: ref_38
  article-title: Real-time tracking of selective auditory attention from M/EEG: A bayesian filtering approach
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00262
– ident: ref_41
– volume: 15
  start-page: 643294
  year: 2021
  ident: ref_60
  article-title: Brain-Computer Interfaces for Children With Complex Communication Needs and Limited Mobility: A Systematic Review
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2021.643294
– ident: ref_61
  doi: 10.1109/ICPR.2014.552
– ident: ref_21
  doi: 10.3390/s21227466
– ident: ref_8
  doi: 10.1609/aaai.v35i1.16117
– ident: ref_7
– volume: 172
  start-page: 206
  year: 2018
  ident: ref_30
  article-title: Decoding the auditory brain with canonical component analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.01.033
– ident: ref_9
  doi: 10.1109/AICCSA53542.2021.9686838
– volume: 8
  start-page: 127659
  year: 2020
  ident: ref_15
  article-title: Assessment of Emotional States Through Physiological Signals and Its Application in Music Therapy for Disabled People
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3008269
– volume: 47
  start-page: 549
  year: 2016
  ident: ref_40
  article-title: EEG-based prediction of driver’s cognitive performance by deep convolutional neural network
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2016.05.018
– ident: ref_34
– volume: 75
  start-page: 103544
  year: 2022
  ident: ref_54
  article-title: Recognition of emotional states using frequency effective connectivity maps through transfer learning approach from electroencephalogram signals
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2022.103544
– volume: 222
  start-page: 105010
  year: 2022
  ident: ref_45
  article-title: Decoding peak emotional responses to music from computational acoustic and lyrical features
  publication-title: Cognition
  doi: 10.1016/j.cognition.2021.105010
– volume: 136
  start-page: 104696
  year: 2021
  ident: ref_57
  article-title: Recognition of human emotions using EEG signals: A review
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104696
– ident: ref_18
  doi: 10.1101/2021.11.29.470396
– volume: 18
  start-page: 016015
  year: 2021
  ident: ref_64
  article-title: Early classification of motor tasks using dynamic functional connectivity graphs from EEG
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abce70
– volume: 80
  start-page: 24843
  year: 2021
  ident: ref_36
  article-title: Robust deflated canonical correlation analysis via feature factoring for multi-view image classification
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-10736-z
– volume: 12
  start-page: 307
  year: 2019
  ident: ref_53
  article-title: An Introduction to Variational Autoencoders
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000056
– ident: ref_26
  doi: 10.1007/978-981-15-1398-5
– volume: 41
  start-page: 7449
  year: 2021
  ident: ref_27
  article-title: The Music of Silence: Part II: Music Listening Induces Imagery Responses
  publication-title: J. Neurosci.
– volume: 4
  start-page: 118
  year: 2017
  ident: ref_17
  article-title: A review on EEG signals based emotion recognition
  publication-title: Int. Clin. Neurosci. J.
  doi: 10.15171/icnj.2017.01
– volume: 143
  start-page: 105303
  year: 2022
  ident: ref_65
  article-title: Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105303
– ident: ref_19
  doi: 10.1371/journal.pone.0213516
– volume: 200
  start-page: 132
  year: 2019
  ident: ref_58
  article-title: Neural patterns reveal single-trial information on absolute pitch and relative pitch perception
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.06.030
– ident: ref_6
– volume: 112
  start-page: 107763
  year: 2021
  ident: ref_1
  article-title: The algorithmic composition for music copyright protection under deep learning and blockchain
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107763
– ident: ref_63
  doi: 10.1109/BCI51272.2021.9385301
– ident: ref_10
  doi: 10.1371/journal.pone.0082491
– ident: ref_2
– volume: 15
  start-page: 711407
  year: 2021
  ident: ref_24
  article-title: Affective Brain-Computer Music Interfaces –Drivers and Implications
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2021.711407
– volume: 12
  start-page: 148
  year: 2018
  ident: ref_25
  article-title: Hearing the Sound in the Brain: Influences of Different EEG References
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00148
– volume: 136
  start-page: 109216
  year: 2023
  ident: ref_37
  article-title: Hyper-sausage coverage function neuron model and learning algorithm for image classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.109216
– volume: 172
  start-page: 1033
  year: 2020
  ident: ref_59
  article-title: Measurement of effect of music on human brain and consequent impact on attentiveness and concentration during reading
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.05.151
– volume: 11
  start-page: 550
  year: 2017
  ident: ref_49
  article-title: Kernel-based relevance analysis with enhanced interpretability for detection of brain activity patterns
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00550
– volume: 31
  start-page: 559
  year: 2008
  ident: ref_23
  article-title: Emotional responses to music: The need to consider underlying mechanisms
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X08005293
– ident: ref_29
  doi: 10.1109/BIBM52615.2021.9669750
– volume: 100
  start-page: 084102
  year: 2008
  ident: ref_32
  article-title: Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.084102
– volume: 13
  start-page: 13
  year: 2019
  ident: ref_33
  article-title: Music of brain and music on brain: A novel EEG sonification approach
  publication-title: Cogn. Neurodynamics
  doi: 10.1007/s11571-018-9502-4
– ident: ref_47
  doi: 10.3390/app11020674
– volume: 3
  start-page: 1
  year: 2021
  ident: ref_43
  article-title: EEG-based auditory attention detection and its possible future applications for passive BCI
  publication-title: Front. Comput. Sci.
  doi: 10.3389/fcomp.2021.661178
– volume: 2015
  start-page: 703768
  year: 2015
  ident: ref_50
  article-title: Simultaneous channel and feature selection of fused EEG features based on sparse group lasso
  publication-title: BioMed Res. Int.
– volume: 7
  start-page: 117
  year: 2018
  ident: ref_42
  article-title: End-to-end cross-modality retrieval with CCA projections and pairwise ranking loss
  publication-title: Int. J. Multimed. Inf. Retr.
  doi: 10.1007/s13735-018-0151-5
– ident: ref_22
– ident: ref_39
  doi: 10.1109/GCCE46687.2019.9015274
– volume: 33
  start-page: 1039
  year: 2017
  ident: ref_11
  article-title: Glass half full: Sound synthesis for fluid–structure coupling using added mass operator
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-017-1383-8
– volume: 13
  start-page: 206
  year: 2019
  ident: ref_20
  article-title: Deep learning for audio signal processing
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2019.2908700
SSID ssj0023338
Score 2.3972611
Snippet Sound synthesis refers to the creation of original acoustic signals with broad applications in artistic innovation, such as music creation for games and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5574
SubjectTerms Acoustic Stimulation
Acoustics
Affect (Psychology)
Auditory Perception - physiology
Brain - physiology
Brain Mapping - methods
canonical correlation analysis
centered kernel alignment
Correlation analysis
Electroencephalography
Electroencephalography - methods
Emotions
Emotions - physiology
functional connectivity
Listening
Machine learning
Mediation
Music
Music - psychology
music-EEG creation
Neural networks
Neurophysiology
Physiology
Sound
SummonAdditionalLinks – databaseName: Proquest Health and Medical Complete
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD5o64N98FK1RqtEEfQlNMlMZjJPsi0WBSniBfYtZG51oWTrZuvv95zJbLpB8aUPC8tmFs5wLvPNzMn3AbzRZStcXrhMGGsyLrjPakMv6prSWTp0YF4HsQl5dlbP5-pLPHDrY1vlpiaGQm2Xhs7Ij-jGj9jTCvX-8ldGqlF0uxolNG7DLslmU5zL-fWGi-H-a2ATYri1P-oRyyCClnyyBgWq_r8L8taKNO2W3Fp-Tu_f1PAHcC8Cz3Q2RMpDuOW6fdjboiPch90g-vwIPs1CkwfWwZS4O_BfX4dOWten37AGeIStaRT4ST-3Glcum56QzMfQWJfOLhbnocvgMfw4_fD95GMWJRcyg8hhnRnJuHaVlXWubZl7Zp0vRKWKllvlqhY_0nmEhUqr0uDMhBFSSfxmtORcsSew0y079xRSW7G29Zq50nPuuait0LnllSfOPJmLBN5tnNCYyEdOshgXDe5LyF_N6K8EXo9DLwcSjn8NOiZPjgOINzv8sFydNzENG08nnoWxClELN4VpS10V1ioEkZXzTibwluKgoexGY0wbX1LAKRFPVjPD7RUnh6L5hxt3NzHt--ba1wm8Gh9jwtItTNu55RWNQcwrEVfVCRwMkTXazCQvEdPlCdSTmJtMavqkW_wMpOAkF1fWtXj2f7uew90SE4Oa3Qp-CDvr1ZV7AXfM7_WiX70M6fMHW6ck_g
  priority: 102
  providerName: ProQuest
Title Affective Neural Responses Sonified through Labeled Correlation Alignment
URI https://www.ncbi.nlm.nih.gov/pubmed/37420740
https://www.proquest.com/docview/2829876319
https://www.proquest.com/docview/2835278128
https://pubmed.ncbi.nlm.nih.gov/PMC10302886
https://doaj.org/article/f81461cd95214c1ca2b51dd96105efe7
Volume 23
WOSCitedRecordID wos001017701800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Health and Medical Complete
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5B4QAHxBtDiQxCgotVe73exzGtUlGJRlEBKZysfZZIlVs1aY_8dmZsx4oFEhcOtix7Drvz8Mzszn4D8MEyI0JehEw47zIueMyUo4O6jgVPiw5ltG2zCTmfq-VSL3ZafVFNWAcP3DHuINIaVeG8Rj_DXeEMs1XhvUa3X4UY2nPkudTbZKpPtUrMvDocoRKT-oM1RjEYO0s-8j4tSP-fv-IdXzSuk9xxPMeP4VEfMabTbqRP4E5onsLDHRzBZ3Aybasy8MeVEtgGUp91pa9hnX5Fo40YZ6Z9R570i7Hoanx6RH05ukq4dHqxOm_LAp7D9-PZt6PPWd8jIXPo6jeZkyW3ofJS5dazPJY-xEJUujDc61AZvGSIGMdpq5lTTAsnpJb45KzkXJcvYK-5bMIrSH1VGhNtGVjkPHKhvLC551UkkDuZiwQ-bXlXux5AnPpYXNSYSBCb64HNCbwfSK861Iy_ER2SAAYCArpuX6D461789b_En8BHEl9N5oiDcaY_VYBTImCreor5EMdpKxz-_lbCdW-n65r2kQmTr9AJvBs-o4XRtolpwuUN0WCQKjEQUgm87BRiGHMpOWofzxNQI1UZTWr8pVn9bFG8qb8bU0q8_h9seAMPGGo91bAVfB_2Ntc34S3cd7eb1fp6AnflUrZ3NYF7h7P54mzS2gveT3_N8N3i5HTx4zdMjRsZ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VLRJw4FFehgIGgeBi1V6vvd4DQqFQNWqIEBQpt8XeR4lUOSVOQfwpfiMzfjUWiFsPHCJZ8UbZtb-d-WZ39huAZwXLUxtGNki10QFPuQsyTQd1NbOGFh1iV9TFJsR0ms1m8sMG_OrOwlBaZWcTa0NtFprWyHdpx4_U0yL5-vRbQFWjaHe1K6HRwOLQ_vyBIVv1avwW3-9zxvbfHe0dBG1VgUCjc1wFWsS8sIkRWVgYFrrYWBeliYxybqRNcvwI65D5yEIyjf-a6lRIgVe6EJyT-BKa_C2044KCPTE7D_BijPca9aI4luFuhdwJGbvgA59Xlwb40wGsecBhduaau9u__r89qBtwrSXW_qiZCTdhw5bbcHVNbnEbtuqi1rdgPKqTWNDO-6RNgr_62GQK28r_hDbOIS332wJG_iQv0DMbf4_KmDSJg_7oZH5cZ1Hchs8XMqY7sFkuSnsPfJPEee6K2DLHueNpZtIiNDxxpAkowtSDl91LV7rVW6eyHycK4y7Ch-rx4cHTvulpIzLyt0ZvCDl9A9IFr79YLI9Va2aUoxXdSBuJrIzrSOesSCJjJJLkxDorPHhBuFNkvbAzOm8PYeCQSAdMjTB85AQg7P5OBy_VmrVKnWPLgyf9bTRItMuUl3ZxRm2Q0wvkjZkHdxsk932OBWfIWUMPsgHGB4Ma3innX2vRcyqHx7Isvf_vfj2GywdH7ydqMp4ePoArDCclJfZFfAc2V8sz-xAu6e-rebV8VE9dH75c9BT4DXTqgZE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VCUJw4FEeNRQwCAQXK_Z67fUeEAotEVFLFPGQysnY-2gjVU6JUxB_jV_HjF_EAnHrgUOkKN5Iu8k3M9_szn4D8DRnWWz8wHix0srjMbdeouiirmJG06ZDaPOq2YSYzZKjIznfgp_tXRgqq2x9YuWo9VLRHvmITvxIPS2QI9uURcz3J6_OvnrUQYpOWtt2GjVEDsyP75i-lS-n-_hfP2Ns8ubj3luv6TDgKQyUa0-JkOcm0iLxc818G2pjgziSQca1NFGGL2EssiCZS6ZwBrGKhRT4TuWCcxJiQvc_RErO2QCG8-m7-ecu3Qsx-6u1jMJQ-qMSmRTyd8F7EbBqFPBnONiIh_1azY3gN7n-P_9sN-BaQ7ndcW0jN2HLFNtwdUOIcRuGVbvrWzAdV-UtGAFcUi3Bb72va4hN6X5A72eRsLtNayP3MMsxZmt3jxqc1CWF7vh0cVzVV9yGTxeypjswKJaF2QFXR2GW2Tw0zHJueZzoOPc1jyypBQo_duBFC4BUNUrs1BDkNMWMjLCSdlhx4Ek39KyWH_nboNeEom4AKYZXHyxXx2njgFJLe72B0hL5GleBylgeBVpLpM-RsUY48JwwmJJfw8morLmegUsihbB0jIklJzDh9HdbqKWNwyvT3zhz4HH3GF0VnT9lhVme0xhk-wIZZeLA3RrV3ZxDtCBks74DSQ_vvUX1nxSLk0oOnRrlsSSJ7_17Xo_gMiI_PZzODu7DFYb2SRV_Ad-FwXp1bh7AJfVtvShXDxs7duHLRdvALzFCi-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Affective+Neural+Responses+Sonified+through+Labeled+Correlation+Alignment&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=%C3%81lvarez-Meza%2C+Andr%C3%A9s+Marino&rft.au=Torres-Cardona%2C+H%C3%A9ctor+Fabio&rft.au=Orozco-Alzate%2C+Mauricio&rft.au=P%C3%A9rez-Nastar%2C+Hern%C3%A1n+Dar%C3%ADo&rft.date=2023-06-14&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=12&rft_id=info:doi/10.3390%2Fs23125574&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon