Lightweight LSTM-Based Adaptive CQI Feedback Scheme for IoT Devices
As the number of Internet of things (IoT) devices increases exponentially, scheduling and managing the radio resources for IoT devices has become more important. To efficiently allocate radio resources, the base station (BS) needs the channel state information (CSI) of devices every time. Hence, eac...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 23; číslo 10; s. 4929 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
20.05.2023
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | As the number of Internet of things (IoT) devices increases exponentially, scheduling and managing the radio resources for IoT devices has become more important. To efficiently allocate radio resources, the base station (BS) needs the channel state information (CSI) of devices every time. Hence, each device needs to periodically (or aperiodically) report its channel quality indicator (CQI) to the BS. The BS determines the modulation and coding scheme (MCS) based on the CQI reported by the IoT device. However, the more a device reports its CQI, the more the feedback overhead increases. In this paper, we propose a long short-term memory (LSTM)-based CQI feedback scheme, where the IoT device aperiodically reports its CQI relying on an LSTM-based channel prediction. Additionally, because the memory capacity of IoT devices is generally small, the complexity of the machine learning model must be reduced. Hence, we propose a lightweight LSTM model to reduce the complexity. The simulation results show that the proposed lightweight LSTM-based CSI scheme dramatically reduces the feedback overhead compared with that of the existing periodic feedback scheme. Moreover, the proposed lightweight LSTM model significantly reduces the complexity without sacrificing performance. |
|---|---|
| AbstractList | As the number of Internet of things (IoT) devices increases exponentially, scheduling and managing the radio resources for IoT devices has become more important. To efficiently allocate radio resources, the base station (BS) needs the channel state information (CSI) of devices every time. Hence, each device needs to periodically (or aperiodically) report its channel quality indicator (CQI) to the BS. The BS determines the modulation and coding scheme (MCS) based on the CQI reported by the IoT device. However, the more a device reports its CQI, the more the feedback overhead increases. In this paper, we propose a long short-term memory (LSTM)-based CQI feedback scheme, where the IoT device aperiodically reports its CQI relying on an LSTM-based channel prediction. Additionally, because the memory capacity of IoT devices is generally small, the complexity of the machine learning model must be reduced. Hence, we propose a lightweight LSTM model to reduce the complexity. The simulation results show that the proposed lightweight LSTM-based CSI scheme dramatically reduces the feedback overhead compared with that of the existing periodic feedback scheme. Moreover, the proposed lightweight LSTM model significantly reduces the complexity without sacrificing performance. As the number of Internet of things (IoT) devices increases exponentially, scheduling and managing the radio resources for IoT devices has become more important. To efficiently allocate radio resources, the base station (BS) needs the channel state information (CSI) of devices every time. Hence, each device needs to periodically (or aperiodically) report its channel quality indicator (CQI) to the BS. The BS determines the modulation and coding scheme (MCS) based on the CQI reported by the IoT device. However, the more a device reports its CQI, the more the feedback overhead increases. In this paper, we propose a long short-term memory (LSTM)-based CQI feedback scheme, where the IoT device aperiodically reports its CQI relying on an LSTM-based channel prediction. Additionally, because the memory capacity of IoT devices is generally small, the complexity of the machine learning model must be reduced. Hence, we propose a lightweight LSTM model to reduce the complexity. The simulation results show that the proposed lightweight LSTM-based CSI scheme dramatically reduces the feedback overhead compared with that of the existing periodic feedback scheme. Moreover, the proposed lightweight LSTM model significantly reduces the complexity without sacrificing performance.As the number of Internet of things (IoT) devices increases exponentially, scheduling and managing the radio resources for IoT devices has become more important. To efficiently allocate radio resources, the base station (BS) needs the channel state information (CSI) of devices every time. Hence, each device needs to periodically (or aperiodically) report its channel quality indicator (CQI) to the BS. The BS determines the modulation and coding scheme (MCS) based on the CQI reported by the IoT device. However, the more a device reports its CQI, the more the feedback overhead increases. In this paper, we propose a long short-term memory (LSTM)-based CQI feedback scheme, where the IoT device aperiodically reports its CQI relying on an LSTM-based channel prediction. Additionally, because the memory capacity of IoT devices is generally small, the complexity of the machine learning model must be reduced. Hence, we propose a lightweight LSTM model to reduce the complexity. The simulation results show that the proposed lightweight LSTM-based CSI scheme dramatically reduces the feedback overhead compared with that of the existing periodic feedback scheme. Moreover, the proposed lightweight LSTM model significantly reduces the complexity without sacrificing performance. |
| Audience | Academic |
| Author | Kim, Il-Min So, Jaewoo Han, Noel |
| AuthorAffiliation | 1 Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea 2 Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada |
| AuthorAffiliation_xml | – name: 2 Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada – name: 1 Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea |
| Author_xml | – sequence: 1 givenname: Noel orcidid: 0000-0002-7369-9698 surname: Han fullname: Han, Noel – sequence: 2 givenname: Il-Min orcidid: 0000-0003-1339-8057 surname: Kim fullname: Kim, Il-Min – sequence: 3 givenname: Jaewoo orcidid: 0000-0001-7868-7197 surname: So fullname: So, Jaewoo |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37430843$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1vEzEQhi1URD_gwB9AK3GBw7b22ru2TygECpGCEGo4W97ZceKwuw7rTVD_fR1SorbiYlvjZ1573plzctKHHgl5zegl55pexYIzKnShn5EzJgqRq6KgJw_Op-Q8xjWlBedcvSCnXApOleBnZDr3y9X4B_drNr9ZfMs_2ohNNmnsZvQ7zKY_Ztk1YlNb-JXdwAo7zFwYsllYZJ9w5wHjS_Lc2Tbiq_v9gvy8_ryYfs3n37_MppN5DiXVYw6Va7hQVQnOldQ2sqhoAxZAlFJRKUVlUVeOg2LIQUgQ1JUamXBYVjUU_ILMDrpNsGuzGXxnh1sTrDd_A2FYGjuMHlo0yGrllGqorkWSSSY5VTkFSoLSjNOk9eGgtdnWHTaA_TjY9pHo45ver8wy7AyjyU9NRVJ4d68whN9bjKPpfARsW9tj2EZTKF4pKSWTCX37BF2H7dAnrxLFtEgtYjxRlwdqaVMFvnchPZz8sQ12HlLHnU_xiUxm6pJzlhLePKzh-Pl_3U3A-wMAQ4hxQHdEGDX7yTHHyUns1RMW_GhHH_bl-_Y_GXde9cEH |
| CitedBy_id | crossref_primary_10_3390_s23167227 crossref_primary_10_3390_fi15100339 crossref_primary_10_3390_electronics13030474 |
| Cites_doi | 10.1109/LWC.2018.2818160 10.1109/TWC.2020.2968430 10.1109/ACCESS.2018.2825255 10.1017/9781108684163 10.1109/LWC.2022.3157263 10.1109/LCOMM.2018.2882829 10.1016/j.icte.2021.11.007 10.1109/ACCESS.2021.3117341 10.1109/TCOMM.2018.2821126 10.1109/LCOMM.2021.3076504 10.1109/WOCC53213.2021.9603019 10.1109/ICC40277.2020.9149229 10.1109/TCOMM.2022.3217777 10.1109/LWC.2021.3083331 10.1109/ACCESS.2020.2963896 10.1109/TCOMM.2020.3006575 10.1109/LWC.2021.3117032 10.1109/TWC.2021.3103120 10.1109/ACCESS.2019.2924673 10.1109/LCOMM.2019.2907622 10.1109/LWC.2019.2895039 10.1109/LCOMM.2021.3098419 10.3390/rs14163947 10.1049/iet-com.2019.1030 10.1109/ICFHR-2018.2018.00028 10.1109/JLT.2019.2963276 10.1109/WCNC.2019.8885616 10.1109/LWC.2021.3100493 10.1109/LWC.2020.2964550 10.1109/LWC.2018.2874264 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/s23104929 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_e1b8f88d09b440f390f86f8c87c89130 PMC10220904 A750995331 37430843 10_3390_s23104929 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: 2022R1F1A1062696 – fundername: National Research Foundation of Korea (NRF) grantid: 2022R1F1A1062696 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c509t-c6fd34865cff50ad7260dcacc457807746ae96f3c81e3c47c40f59e14fe56bc23 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000996876000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:40:32 EDT 2025 Tue Nov 04 02:06:54 EST 2025 Fri Sep 05 14:45:36 EDT 2025 Tue Oct 07 07:23:52 EDT 2025 Tue Nov 04 17:55:04 EST 2025 Wed Feb 19 02:22:13 EST 2025 Sat Nov 29 07:17:50 EST 2025 Tue Nov 18 21:51:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | modulation and coding scheme feedback overhead channel quality indicator feedback lightweight model long short-term memory |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-c6fd34865cff50ad7260dcacc457807746ae96f3c81e3c47c40f59e14fe56bc23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7868-7197 0000-0003-1339-8057 0000-0002-7369-9698 |
| OpenAccessLink | https://doaj.org/article/e1b8f88d09b440f390f86f8c87c89130 |
| PMID | 37430843 |
| PQID | 2819482213 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e1b8f88d09b440f390f86f8c87c89130 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10220904 proquest_miscellaneous_2836877717 proquest_journals_2819482213 gale_infotracacademiconefile_A750995331 pubmed_primary_37430843 crossref_primary_10_3390_s23104929 crossref_citationtrail_10_3390_s23104929 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-20 |
| PublicationDateYYYYMMDD | 2023-05-20 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Liao (ref_24) 2019; 7 Xue (ref_5) 2018; 6 Li (ref_27) 2020; 8 Mashhadi (ref_31) 2021; 25 ref_36 ref_35 ref_12 ref_34 ref_10 ref_32 ref_30 Guo (ref_13) 2020; 19 Zhang (ref_25) 2020; 14 Hong (ref_33) 2022; 8 Jo (ref_20) 2021; 10 Mukherjee (ref_9) 2019; 23 ref_16 Zhang (ref_8) 2021; 9 Liu (ref_28) 2022; 21 Chou (ref_4) 2020; 38 Mamat (ref_7) 2018; 66 Li (ref_21) 2022; 11 Wen (ref_11) 2018; 7 Guo (ref_15) 2022; 70 Ji (ref_18) 2021; 10 Wang (ref_22) 2019; 8 Elzanaty (ref_6) 2020; 68 Jang (ref_14) 2019; 8 Lu (ref_23) 2019; 23 Cao (ref_19) 2021; 8 Li (ref_26) 2020; 9 ref_1 ref_3 ref_2 ref_29 Sun (ref_17) 2021; 10 |
| References_xml | – volume: 7 start-page: 748 year: 2018 ident: ref_11 article-title: Deep learning for massive MIMO CSI feedback publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2018.2818160 – volume: 19 start-page: 2827 year: 2020 ident: ref_13 article-title: Convolutional neural network-based multiple-rate compressive sensing for massive MIMO CSI feedback: Design, simulation, and analysis publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2020.2968430 – volume: 6 start-page: 20652 year: 2018 ident: ref_5 article-title: Adaptive coded modulation based on continuous phase modulation for inter-satellite links of global navigation satellite systems publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2825255 – ident: ref_36 doi: 10.1017/9781108684163 – volume: 11 start-page: 1092 year: 2022 ident: ref_21 article-title: CVLNet: A complex-valued lightweight network for CSI feedback publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2022.3157263 – volume: 23 start-page: 188 year: 2019 ident: ref_23 article-title: MIMO channel information feedback using deep recurrent network publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2018.2882829 – ident: ref_3 – volume: 8 start-page: 544 year: 2022 ident: ref_33 article-title: Machine learning-based adaptive CSI feedback interval publication-title: ICT Express doi: 10.1016/j.icte.2021.11.007 – ident: ref_34 – volume: 9 start-page: 136811 year: 2021 ident: ref_8 article-title: Feedback interval optimization for MISO LiFi systems publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3117341 – volume: 66 start-page: 3407 year: 2018 ident: ref_7 article-title: On optimizing feedback interval for temporally correlated MIMO channels with transmit beamforming and finite-rate feedback publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2018.2821126 – ident: ref_16 – volume: 8 start-page: 2624 year: 2021 ident: ref_19 article-title: Lightweight convolutional neural networks for CSI feedback in massive MIMO publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2021.3076504 – ident: ref_1 – ident: ref_2 doi: 10.1109/WOCC53213.2021.9603019 – ident: ref_12 doi: 10.1109/ICC40277.2020.9149229 – volume: 70 start-page: 8017 year: 2022 ident: ref_15 article-title: Overview of deep learning-based CSI feedback massive MIMO systems publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2022.3217777 – volume: 10 start-page: 1840 year: 2021 ident: ref_17 article-title: A lightweight deep network for efficient CSI feedback in massive MIMO systems publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2021.3083331 – volume: 8 start-page: 7295 year: 2020 ident: ref_27 article-title: A novel CSI feedback approach for massive MIMO using LSTM-attention CNN publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2963896 – volume: 68 start-page: 6388 year: 2020 ident: ref_6 article-title: Adaptive coded modulation for IM/DD free-space optical backhauling: A probabilistic shaping approach publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2020.3006575 – ident: ref_29 – volume: 10 start-page: 2776 year: 2021 ident: ref_20 article-title: Adaptive lightweight CNN-based CSI feedback for massive MIMO systems publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2021.3117032 – volume: 21 start-page: 1214 year: 2022 ident: ref_28 article-title: A Markovian model-driven deep learning framework for massive MIMO CSI feedback publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2021.3103120 – ident: ref_10 – volume: 7 start-page: 86810 year: 2019 ident: ref_24 article-title: CSI feedback based on deep learning for massive MIMO systems publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2924673 – volume: 23 start-page: 946 year: 2019 ident: ref_9 article-title: Dynamic feedback-based adaptive modulation for energy-efficient communication publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2019.2907622 – volume: 8 start-page: 833 year: 2019 ident: ref_14 article-title: Deep autoencoder based CSI feedback with feedback errors and feedback delay in FDD massive MIMO systems publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2019.2895039 – volume: 25 start-page: 3291 year: 2021 ident: ref_31 article-title: Deep reinforcement learning based adaptive modulation with outdated CSI publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LCOMM.2021.3098419 – ident: ref_32 doi: 10.3390/rs14163947 – volume: 14 start-page: 3089 year: 2020 ident: ref_25 article-title: Massive MIMO CSI reconstruction using CNN-LSTM and attention mechanism publication-title: IET Commun. doi: 10.1049/iet-com.2019.1030 – ident: ref_35 doi: 10.1109/ICFHR-2018.2018.00028 – volume: 38 start-page: 2242 year: 2020 ident: ref_4 article-title: Adaptive coding and modulation for robust optical access networks publication-title: J. Light. Technol. doi: 10.1109/JLT.2019.2963276 – ident: ref_30 doi: 10.1109/WCNC.2019.8885616 – volume: 10 start-page: 2318 year: 2021 ident: ref_18 article-title: CLNet: Complex input lightweight neural network designed for massive MIMO CSI feedback publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2021.3100493 – volume: 9 start-page: 653 year: 2020 ident: ref_26 article-title: Spatio-temporal representation with deep neural recurrent network in MIMO CSI feedback publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2020.2964550 – volume: 8 start-page: 416 year: 2019 ident: ref_22 article-title: Deep learning-based CSI feedback approach for time-varying massive MIMO channels publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2018.2874264 |
| SSID | ssj0023338 |
| Score | 2.429576 |
| Snippet | As the number of Internet of things (IoT) devices increases exponentially, scheduling and managing the radio resources for IoT devices has become more... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 4929 |
| SubjectTerms | Accuracy Analysis Artificial intelligence channel quality indicator feedback Codes Communication feedback overhead Internet of Things lightweight model long short-term memory Machine learning modulation and coding scheme Neural networks Performance evaluation Wireless telecommunications equipment |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELeg44E98P0RGMggJHiJ5sRO4jyhtqxiUqkGK9LeIudswzRIStvBv89dkmatQLzwGjvROef78p1_x9irLCttKZ0NS5uLUJkkCTFWcaHxUjkvZSLS5qLwNJvN9NlZftIduK26ssqNTmwUta2BzsgPKeGj0JpF8u3iR0hdoyi72rXQuM72CKlMDdje6Gh28qkPuSRGYC2ekMTg_nBF3ozKG3_yygo1YP1_quQtm7RbL7llgCa3_5f0O-xW53ryYbtX7rJrrrrH9rcACe-z8ZRi9V_NcSmfns4_hCO0cpYPrVmQXuTjj8d8ggavNHDBT5Hh3x1Ht5cf13P-zjVa5wH7PDmaj9-HXZuFENBbWIeQeiuVThPwPhHGZhjiWDAACqVZoHuYGpenXoKOnASVgRI-yV2kvEvSEmL5kA2qunKPGdfaQKSMycBJBQmYUhmbuLjMII9iLwL2ZvPbC-gwyKkVxrcCYxHiUNFzKGAv-6mLFnjjb5NGxLt-AmFlNw_q5ZeiE73CRaX2WluRlwpJxw94nXoNOgPK0SJRr4nzBUk0EoMrby8m4JIIG6sYklNFVbhRwA42DC46UV8VV9wN2It-GIWUMi-mcvUlzZEpAS9GWcAetXupp1miDye0wrf1zi7bWdTuSHX-tQECp2hd5EI9-TddT9nNGEWBah5iccAG6-Wle8ZuwM_1-Wr5vBOZ39QDIH8 priority: 102 providerName: ProQuest |
| Title | Lightweight LSTM-Based Adaptive CQI Feedback Scheme for IoT Devices |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37430843 https://www.proquest.com/docview/2819482213 https://www.proquest.com/docview/2836877717 https://pubmed.ncbi.nlm.nih.gov/PMC10220904 https://doaj.org/article/e1b8f88d09b440f390f86f8c87c89130 |
| Volume | 23 |
| WOSCitedRecordID | wos000996876000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest_Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVg4cAeEN8bWCqDkOASrRM7sXNsSysqtVVhi1ROkTO2xQpIV9su3PjtjJ00tAKJC5ccHEeyZzye92L7mZBXUlam4tbElSlYLHSWxchVbKwdF9ZxnrE8HBSeyvlcrVbFYu-qL78nrJEHbgx3ZpNKOaUMKyohmEOK7lTuFCgJfoUtsHVEPTsy1VItjsyr0RHi-MXZxqMYUQQc-Tv7BJH-P6fivVx0uE9yL_GM75G7LWKk_aal98kNWz8gx3s6gg_JcOop9o_wl5NOz5ezeIDJydC-0Zd-OqPD9xM6xjxVafhCz9FP3yxFtEon6yV9a8Nk8Yh8HI-Ww3dxeztCDJjktzHkznCh8gycy5g2EpmJAQ0gMAgZorpc2yJ3HFRiOQgJaL2ssIlwNssrSPljclSva3tCqFIaEqG1BMsFZKAroU1m00pCkaSOReTNzmoltNLh_gaLryVSCG_gsjNwRF52VS8bvYy_VRp403cVvMR1KEDHl63jy385PiKvveNKH4jYGOx5c54Au-Qlrcq-x0J-82wSkdOdb8s2QjelX0AUiI4SHpEX3WuMLb9gomu7vvZ1eO71EhMZkSfNUOjazBF6MSXwa3UwSA46dfimvvgc9Ls9yWYFE0__hxmekTspjne_oSFlp-Roe3Vtn5Pb8H17sbnqkZtyJcNT9citwWi--NALkYLP2c8Rli0ms8WnXykDFvM |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VKRJw4P0wFFgQCC5W1961vT4glKZEjepEQQ1SOZn1PqAC4pCkVPwpfiMztuMmAnHrgau9tmbtb7-Z2cc3hDxPksIU3Bq_MCnzhYoiH3IV6yvHhXWcRyyuDgpnyWgkj4_T8Rb5tToLg9sqV5xYEbUpNc6R7-KCjwBvFvA3s-8-Vo3C1dVVCY0aFof25xmkbIvXg334vy_CsP920jvwm6oCvgbnuPR17AwXMo60cxFTJoGI3miltQDwMoiGYmXT2HEtA8u1SLRgLkptIJyN4kKj0AFQ_rYAsMsO2R4PhuMPbYrHIeOr9Ys4T9nuAqMnkVbx67nXq4oD_OkC1nzg5v7MNYfXv_6_faob5FoTWtNuPRZuki07vUWurgku3ia9DOcizqrpYJodTYb-HnhxQ7tGzZD3ae_dgPbBoRdKf6FHAOhvlkJYTwflhO7bilXvkPcX0ou7pDMtp_Y-oVIqHQilEm250JFWhVAmsmGR6DQIHfPIq9VvznWjsY6lPr7mkGshIvIWER551jad1cIif2u0h1hpG6AWeHWhnH_KG2rJbVBIJ6VhaSHAdHiBk7GTWiYa16DBqJeItBwZC4yBntcHL6BLqP2VdzFoxF3GgUd2VoDKGypb5Odo8sjT9jaQEK4sqaktT7ENj1FYMkg8cq_GbmszhxiVSQFPyw1Ub3Rq88705HMldI6zESxl4sG_7XpCLh9MhlmeDUaHD8mVEIYh7u8I2Q7pLOen9hG5pH8sTxbzx81wpeTjRcP-NyRFfqQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VLUJw4P0wFFgQCC5W1t61vT4glCZERE2joAapPZn1PqAC7JCkVPw1fh0ztuMmAnHrgau9tmbtb-ab2Z2dIeR5kuQm59b4uUmZL1QU-RCrWF85LqzjPGJxdVB4lIzH8ugonWyRX6uzMJhWubKJlaE2pcY18g5u-Ahgs4B3XJMWMekP3sy--9hBCndaV-00aojs259nEL4tXg_78K9fhOHg7bT3zm86DPgaiHLp69gZLmQcaecipkwC3r3RSmsBQGbgGcXKprHjWgaWa5FowVyU2kA4G8W5xqIHYP53wCUXoGM7k-HB5LgN9zhEf3UtI85T1lmgJyXSypc9Z8CqUcCfdLDGh5u5mmvkN7j-P3-2G-Ra43LTbq0jN8mWLW6Rq2uFGG-T3gjXKM6qZWI6Opwe-HvA7oZ2jZohH9De-yEdANHnSn-hhwD0b5aCu0-H5ZT2bWVt75APFzKLu2S7KAt7n1AplQ6EUom2XOhIq1woE9kwT3QahI555NXql2e6qb2OLUC-ZhCDITqyFh0eedYOndUFR_42aA9x0w7AGuHVhXL-KWtMTmaDXDopDUtzAaLDC5yMndQy0bg3DUK9RNRlaMlAGJh5fSADpoQ1wbIuOpOYfRx4ZHcFrqwxcYvsHFkeedreBuOEO06qsOUpjuExFpwMEo_cq3HcysxBZ5gU8LTcQPjGpDbvFCefqwLouErBUiYe_FuuJ-QyYD0bDcf7D8mVEDQS0z5Ctku2l_NT-4hc0j-WJ4v540ZzKfl40aj_DZO4h2Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightweight+LSTM-Based+Adaptive+CQI+Feedback+Scheme+for+IoT+Devices&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Noel+Han&rft.au=Il-Min+Kim&rft.au=Jaewoo+So&rft.date=2023-05-20&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=10&rft.spage=4929&rft_id=info:doi/10.3390%2Fs23104929&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e1b8f88d09b440f390f86f8c87c89130 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |