Lightweight LSTM-Based Adaptive CQI Feedback Scheme for IoT Devices

As the number of Internet of things (IoT) devices increases exponentially, scheduling and managing the radio resources for IoT devices has become more important. To efficiently allocate radio resources, the base station (BS) needs the channel state information (CSI) of devices every time. Hence, eac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 23; číslo 10; s. 4929
Hlavní autoři: Han, Noel, Kim, Il-Min, So, Jaewoo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 20.05.2023
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As the number of Internet of things (IoT) devices increases exponentially, scheduling and managing the radio resources for IoT devices has become more important. To efficiently allocate radio resources, the base station (BS) needs the channel state information (CSI) of devices every time. Hence, each device needs to periodically (or aperiodically) report its channel quality indicator (CQI) to the BS. The BS determines the modulation and coding scheme (MCS) based on the CQI reported by the IoT device. However, the more a device reports its CQI, the more the feedback overhead increases. In this paper, we propose a long short-term memory (LSTM)-based CQI feedback scheme, where the IoT device aperiodically reports its CQI relying on an LSTM-based channel prediction. Additionally, because the memory capacity of IoT devices is generally small, the complexity of the machine learning model must be reduced. Hence, we propose a lightweight LSTM model to reduce the complexity. The simulation results show that the proposed lightweight LSTM-based CSI scheme dramatically reduces the feedback overhead compared with that of the existing periodic feedback scheme. Moreover, the proposed lightweight LSTM model significantly reduces the complexity without sacrificing performance.
AbstractList As the number of Internet of things (IoT) devices increases exponentially, scheduling and managing the radio resources for IoT devices has become more important. To efficiently allocate radio resources, the base station (BS) needs the channel state information (CSI) of devices every time. Hence, each device needs to periodically (or aperiodically) report its channel quality indicator (CQI) to the BS. The BS determines the modulation and coding scheme (MCS) based on the CQI reported by the IoT device. However, the more a device reports its CQI, the more the feedback overhead increases. In this paper, we propose a long short-term memory (LSTM)-based CQI feedback scheme, where the IoT device aperiodically reports its CQI relying on an LSTM-based channel prediction. Additionally, because the memory capacity of IoT devices is generally small, the complexity of the machine learning model must be reduced. Hence, we propose a lightweight LSTM model to reduce the complexity. The simulation results show that the proposed lightweight LSTM-based CSI scheme dramatically reduces the feedback overhead compared with that of the existing periodic feedback scheme. Moreover, the proposed lightweight LSTM model significantly reduces the complexity without sacrificing performance.
As the number of Internet of things (IoT) devices increases exponentially, scheduling and managing the radio resources for IoT devices has become more important. To efficiently allocate radio resources, the base station (BS) needs the channel state information (CSI) of devices every time. Hence, each device needs to periodically (or aperiodically) report its channel quality indicator (CQI) to the BS. The BS determines the modulation and coding scheme (MCS) based on the CQI reported by the IoT device. However, the more a device reports its CQI, the more the feedback overhead increases. In this paper, we propose a long short-term memory (LSTM)-based CQI feedback scheme, where the IoT device aperiodically reports its CQI relying on an LSTM-based channel prediction. Additionally, because the memory capacity of IoT devices is generally small, the complexity of the machine learning model must be reduced. Hence, we propose a lightweight LSTM model to reduce the complexity. The simulation results show that the proposed lightweight LSTM-based CSI scheme dramatically reduces the feedback overhead compared with that of the existing periodic feedback scheme. Moreover, the proposed lightweight LSTM model significantly reduces the complexity without sacrificing performance.As the number of Internet of things (IoT) devices increases exponentially, scheduling and managing the radio resources for IoT devices has become more important. To efficiently allocate radio resources, the base station (BS) needs the channel state information (CSI) of devices every time. Hence, each device needs to periodically (or aperiodically) report its channel quality indicator (CQI) to the BS. The BS determines the modulation and coding scheme (MCS) based on the CQI reported by the IoT device. However, the more a device reports its CQI, the more the feedback overhead increases. In this paper, we propose a long short-term memory (LSTM)-based CQI feedback scheme, where the IoT device aperiodically reports its CQI relying on an LSTM-based channel prediction. Additionally, because the memory capacity of IoT devices is generally small, the complexity of the machine learning model must be reduced. Hence, we propose a lightweight LSTM model to reduce the complexity. The simulation results show that the proposed lightweight LSTM-based CSI scheme dramatically reduces the feedback overhead compared with that of the existing periodic feedback scheme. Moreover, the proposed lightweight LSTM model significantly reduces the complexity without sacrificing performance.
Audience Academic
Author Kim, Il-Min
So, Jaewoo
Han, Noel
AuthorAffiliation 1 Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea
2 Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
AuthorAffiliation_xml – name: 2 Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
– name: 1 Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea
Author_xml – sequence: 1
  givenname: Noel
  orcidid: 0000-0002-7369-9698
  surname: Han
  fullname: Han, Noel
– sequence: 2
  givenname: Il-Min
  orcidid: 0000-0003-1339-8057
  surname: Kim
  fullname: Kim, Il-Min
– sequence: 3
  givenname: Jaewoo
  orcidid: 0000-0001-7868-7197
  surname: So
  fullname: So, Jaewoo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37430843$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQhi1URD_gwB9AK3GBw7b22ru2TygECpGCEGo4W97ZceKwuw7rTVD_fR1SorbiYlvjZ1573plzctKHHgl5zegl55pexYIzKnShn5EzJgqRq6KgJw_Op-Q8xjWlBedcvSCnXApOleBnZDr3y9X4B_drNr9ZfMs_2ohNNmnsZvQ7zKY_Ztk1YlNb-JXdwAo7zFwYsllYZJ9w5wHjS_Lc2Tbiq_v9gvy8_ryYfs3n37_MppN5DiXVYw6Va7hQVQnOldQ2sqhoAxZAlFJRKUVlUVeOg2LIQUgQ1JUamXBYVjUU_ILMDrpNsGuzGXxnh1sTrDd_A2FYGjuMHlo0yGrllGqorkWSSSY5VTkFSoLSjNOk9eGgtdnWHTaA_TjY9pHo45ver8wy7AyjyU9NRVJ4d68whN9bjKPpfARsW9tj2EZTKF4pKSWTCX37BF2H7dAnrxLFtEgtYjxRlwdqaVMFvnchPZz8sQ12HlLHnU_xiUxm6pJzlhLePKzh-Pl_3U3A-wMAQ4hxQHdEGDX7yTHHyUns1RMW_GhHH_bl-_Y_GXde9cEH
CitedBy_id crossref_primary_10_3390_s23167227
crossref_primary_10_3390_fi15100339
crossref_primary_10_3390_electronics13030474
Cites_doi 10.1109/LWC.2018.2818160
10.1109/TWC.2020.2968430
10.1109/ACCESS.2018.2825255
10.1017/9781108684163
10.1109/LWC.2022.3157263
10.1109/LCOMM.2018.2882829
10.1016/j.icte.2021.11.007
10.1109/ACCESS.2021.3117341
10.1109/TCOMM.2018.2821126
10.1109/LCOMM.2021.3076504
10.1109/WOCC53213.2021.9603019
10.1109/ICC40277.2020.9149229
10.1109/TCOMM.2022.3217777
10.1109/LWC.2021.3083331
10.1109/ACCESS.2020.2963896
10.1109/TCOMM.2020.3006575
10.1109/LWC.2021.3117032
10.1109/TWC.2021.3103120
10.1109/ACCESS.2019.2924673
10.1109/LCOMM.2019.2907622
10.1109/LWC.2019.2895039
10.1109/LCOMM.2021.3098419
10.3390/rs14163947
10.1049/iet-com.2019.1030
10.1109/ICFHR-2018.2018.00028
10.1109/JLT.2019.2963276
10.1109/WCNC.2019.8885616
10.1109/LWC.2021.3100493
10.1109/LWC.2020.2964550
10.1109/LWC.2018.2874264
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s23104929
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database

MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_e1b8f88d09b440f390f86f8c87c89130
PMC10220904
A750995331
37430843
10_3390_s23104929
Genre Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: 2022R1F1A1062696
– fundername: National Research Foundation of Korea (NRF)
  grantid: 2022R1F1A1062696
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c509t-c6fd34865cff50ad7260dcacc457807746ae96f3c81e3c47c40f59e14fe56bc23
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000996876000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:40:32 EDT 2025
Tue Nov 04 02:06:54 EST 2025
Fri Sep 05 14:45:36 EDT 2025
Tue Oct 07 07:23:52 EDT 2025
Tue Nov 04 17:55:04 EST 2025
Wed Feb 19 02:22:13 EST 2025
Sat Nov 29 07:17:50 EST 2025
Tue Nov 18 21:51:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords modulation and coding scheme
feedback overhead
channel quality indicator feedback
lightweight model
long short-term memory
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-c6fd34865cff50ad7260dcacc457807746ae96f3c81e3c47c40f59e14fe56bc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7868-7197
0000-0003-1339-8057
0000-0002-7369-9698
OpenAccessLink https://doaj.org/article/e1b8f88d09b440f390f86f8c87c89130
PMID 37430843
PQID 2819482213
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_e1b8f88d09b440f390f86f8c87c89130
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10220904
proquest_miscellaneous_2836877717
proquest_journals_2819482213
gale_infotracacademiconefile_A750995331
pubmed_primary_37430843
crossref_primary_10_3390_s23104929
crossref_citationtrail_10_3390_s23104929
PublicationCentury 2000
PublicationDate 2023-05-20
PublicationDateYYYYMMDD 2023-05-20
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-20
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Liao (ref_24) 2019; 7
Xue (ref_5) 2018; 6
Li (ref_27) 2020; 8
Mashhadi (ref_31) 2021; 25
ref_36
ref_35
ref_12
ref_34
ref_10
ref_32
ref_30
Guo (ref_13) 2020; 19
Zhang (ref_25) 2020; 14
Hong (ref_33) 2022; 8
Jo (ref_20) 2021; 10
Mukherjee (ref_9) 2019; 23
ref_16
Zhang (ref_8) 2021; 9
Liu (ref_28) 2022; 21
Chou (ref_4) 2020; 38
Mamat (ref_7) 2018; 66
Li (ref_21) 2022; 11
Wen (ref_11) 2018; 7
Guo (ref_15) 2022; 70
Ji (ref_18) 2021; 10
Wang (ref_22) 2019; 8
Elzanaty (ref_6) 2020; 68
Jang (ref_14) 2019; 8
Lu (ref_23) 2019; 23
Cao (ref_19) 2021; 8
Li (ref_26) 2020; 9
ref_1
ref_3
ref_2
ref_29
Sun (ref_17) 2021; 10
References_xml – volume: 7
  start-page: 748
  year: 2018
  ident: ref_11
  article-title: Deep learning for massive MIMO CSI feedback
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2018.2818160
– volume: 19
  start-page: 2827
  year: 2020
  ident: ref_13
  article-title: Convolutional neural network-based multiple-rate compressive sensing for massive MIMO CSI feedback: Design, simulation, and analysis
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2020.2968430
– volume: 6
  start-page: 20652
  year: 2018
  ident: ref_5
  article-title: Adaptive coded modulation based on continuous phase modulation for inter-satellite links of global navigation satellite systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2825255
– ident: ref_36
  doi: 10.1017/9781108684163
– volume: 11
  start-page: 1092
  year: 2022
  ident: ref_21
  article-title: CVLNet: A complex-valued lightweight network for CSI feedback
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2022.3157263
– volume: 23
  start-page: 188
  year: 2019
  ident: ref_23
  article-title: MIMO channel information feedback using deep recurrent network
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2018.2882829
– ident: ref_3
– volume: 8
  start-page: 544
  year: 2022
  ident: ref_33
  article-title: Machine learning-based adaptive CSI feedback interval
  publication-title: ICT Express
  doi: 10.1016/j.icte.2021.11.007
– ident: ref_34
– volume: 9
  start-page: 136811
  year: 2021
  ident: ref_8
  article-title: Feedback interval optimization for MISO LiFi systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3117341
– volume: 66
  start-page: 3407
  year: 2018
  ident: ref_7
  article-title: On optimizing feedback interval for temporally correlated MIMO channels with transmit beamforming and finite-rate feedback
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2018.2821126
– ident: ref_16
– volume: 8
  start-page: 2624
  year: 2021
  ident: ref_19
  article-title: Lightweight convolutional neural networks for CSI feedback in massive MIMO
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2021.3076504
– ident: ref_1
– ident: ref_2
  doi: 10.1109/WOCC53213.2021.9603019
– ident: ref_12
  doi: 10.1109/ICC40277.2020.9149229
– volume: 70
  start-page: 8017
  year: 2022
  ident: ref_15
  article-title: Overview of deep learning-based CSI feedback massive MIMO systems
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2022.3217777
– volume: 10
  start-page: 1840
  year: 2021
  ident: ref_17
  article-title: A lightweight deep network for efficient CSI feedback in massive MIMO systems
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2021.3083331
– volume: 8
  start-page: 7295
  year: 2020
  ident: ref_27
  article-title: A novel CSI feedback approach for massive MIMO using LSTM-attention CNN
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2963896
– volume: 68
  start-page: 6388
  year: 2020
  ident: ref_6
  article-title: Adaptive coded modulation for IM/DD free-space optical backhauling: A probabilistic shaping approach
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2020.3006575
– ident: ref_29
– volume: 10
  start-page: 2776
  year: 2021
  ident: ref_20
  article-title: Adaptive lightweight CNN-based CSI feedback for massive MIMO systems
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2021.3117032
– volume: 21
  start-page: 1214
  year: 2022
  ident: ref_28
  article-title: A Markovian model-driven deep learning framework for massive MIMO CSI feedback
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2021.3103120
– ident: ref_10
– volume: 7
  start-page: 86810
  year: 2019
  ident: ref_24
  article-title: CSI feedback based on deep learning for massive MIMO systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2924673
– volume: 23
  start-page: 946
  year: 2019
  ident: ref_9
  article-title: Dynamic feedback-based adaptive modulation for energy-efficient communication
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2019.2907622
– volume: 8
  start-page: 833
  year: 2019
  ident: ref_14
  article-title: Deep autoencoder based CSI feedback with feedback errors and feedback delay in FDD massive MIMO systems
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2019.2895039
– volume: 25
  start-page: 3291
  year: 2021
  ident: ref_31
  article-title: Deep reinforcement learning based adaptive modulation with outdated CSI
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LCOMM.2021.3098419
– ident: ref_32
  doi: 10.3390/rs14163947
– volume: 14
  start-page: 3089
  year: 2020
  ident: ref_25
  article-title: Massive MIMO CSI reconstruction using CNN-LSTM and attention mechanism
  publication-title: IET Commun.
  doi: 10.1049/iet-com.2019.1030
– ident: ref_35
  doi: 10.1109/ICFHR-2018.2018.00028
– volume: 38
  start-page: 2242
  year: 2020
  ident: ref_4
  article-title: Adaptive coding and modulation for robust optical access networks
  publication-title: J. Light. Technol.
  doi: 10.1109/JLT.2019.2963276
– ident: ref_30
  doi: 10.1109/WCNC.2019.8885616
– volume: 10
  start-page: 2318
  year: 2021
  ident: ref_18
  article-title: CLNet: Complex input lightweight neural network designed for massive MIMO CSI feedback
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2021.3100493
– volume: 9
  start-page: 653
  year: 2020
  ident: ref_26
  article-title: Spatio-temporal representation with deep neural recurrent network in MIMO CSI feedback
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2020.2964550
– volume: 8
  start-page: 416
  year: 2019
  ident: ref_22
  article-title: Deep learning-based CSI feedback approach for time-varying massive MIMO channels
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2018.2874264
SSID ssj0023338
Score 2.429576
Snippet As the number of Internet of things (IoT) devices increases exponentially, scheduling and managing the radio resources for IoT devices has become more...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4929
SubjectTerms Accuracy
Analysis
Artificial intelligence
channel quality indicator feedback
Codes
Communication
feedback overhead
Internet of Things
lightweight model
long short-term memory
Machine learning
modulation and coding scheme
Neural networks
Performance evaluation
Wireless telecommunications equipment
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELeg44E98P0RGMggJHiJ5sRO4jyhtqxiUqkGK9LeIudswzRIStvBv89dkmatQLzwGjvROef78p1_x9irLCttKZ0NS5uLUJkkCTFWcaHxUjkvZSLS5qLwNJvN9NlZftIduK26ssqNTmwUta2BzsgPKeGj0JpF8u3iR0hdoyi72rXQuM72CKlMDdje6Gh28qkPuSRGYC2ekMTg_nBF3ozKG3_yygo1YP1_quQtm7RbL7llgCa3_5f0O-xW53ryYbtX7rJrrrrH9rcACe-z8ZRi9V_NcSmfns4_hCO0cpYPrVmQXuTjj8d8ggavNHDBT5Hh3x1Ht5cf13P-zjVa5wH7PDmaj9-HXZuFENBbWIeQeiuVThPwPhHGZhjiWDAACqVZoHuYGpenXoKOnASVgRI-yV2kvEvSEmL5kA2qunKPGdfaQKSMycBJBQmYUhmbuLjMII9iLwL2ZvPbC-gwyKkVxrcCYxHiUNFzKGAv-6mLFnjjb5NGxLt-AmFlNw_q5ZeiE73CRaX2WluRlwpJxw94nXoNOgPK0SJRr4nzBUk0EoMrby8m4JIIG6sYklNFVbhRwA42DC46UV8VV9wN2It-GIWUMi-mcvUlzZEpAS9GWcAetXupp1miDye0wrf1zi7bWdTuSHX-tQECp2hd5EI9-TddT9nNGEWBah5iccAG6-Wle8ZuwM_1-Wr5vBOZ39QDIH8
  priority: 102
  providerName: ProQuest
Title Lightweight LSTM-Based Adaptive CQI Feedback Scheme for IoT Devices
URI https://www.ncbi.nlm.nih.gov/pubmed/37430843
https://www.proquest.com/docview/2819482213
https://www.proquest.com/docview/2836877717
https://pubmed.ncbi.nlm.nih.gov/PMC10220904
https://doaj.org/article/e1b8f88d09b440f390f86f8c87c89130
Volume 23
WOSCitedRecordID wos000996876000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest_Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVg4cAeEN8bWCqDkOASrRM7sXNsSysqtVVhi1ROkTO2xQpIV9su3PjtjJ00tAKJC5ccHEeyZzye92L7mZBXUlam4tbElSlYLHSWxchVbKwdF9ZxnrE8HBSeyvlcrVbFYu-qL78nrJEHbgx3ZpNKOaUMKyohmEOK7lTuFCgJfoUtsHVEPTsy1VItjsyr0RHi-MXZxqMYUQQc-Tv7BJH-P6fivVx0uE9yL_GM75G7LWKk_aal98kNWz8gx3s6gg_JcOop9o_wl5NOz5ezeIDJydC-0Zd-OqPD9xM6xjxVafhCz9FP3yxFtEon6yV9a8Nk8Yh8HI-Ww3dxeztCDJjktzHkznCh8gycy5g2EpmJAQ0gMAgZorpc2yJ3HFRiOQgJaL2ssIlwNssrSPljclSva3tCqFIaEqG1BMsFZKAroU1m00pCkaSOReTNzmoltNLh_gaLryVSCG_gsjNwRF52VS8bvYy_VRp403cVvMR1KEDHl63jy385PiKvveNKH4jYGOx5c54Au-Qlrcq-x0J-82wSkdOdb8s2QjelX0AUiI4SHpEX3WuMLb9gomu7vvZ1eO71EhMZkSfNUOjazBF6MSXwa3UwSA46dfimvvgc9Ls9yWYFE0__hxmekTspjne_oSFlp-Roe3Vtn5Pb8H17sbnqkZtyJcNT9citwWi--NALkYLP2c8Rli0ms8WnXykDFvM
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VKRJw4P0wFFgQCC5W1961vT4glKZEjepEQQ1SOZn1PqAC4pCkVPwpfiMztuMmAnHrgau9tmbtb7-Z2cc3hDxPksIU3Bq_MCnzhYoiH3IV6yvHhXWcRyyuDgpnyWgkj4_T8Rb5tToLg9sqV5xYEbUpNc6R7-KCjwBvFvA3s-8-Vo3C1dVVCY0aFof25xmkbIvXg334vy_CsP920jvwm6oCvgbnuPR17AwXMo60cxFTJoGI3miltQDwMoiGYmXT2HEtA8u1SLRgLkptIJyN4kKj0AFQ_rYAsMsO2R4PhuMPbYrHIeOr9Ys4T9nuAqMnkVbx67nXq4oD_OkC1nzg5v7MNYfXv_6_faob5FoTWtNuPRZuki07vUWurgku3ia9DOcizqrpYJodTYb-HnhxQ7tGzZD3ae_dgPbBoRdKf6FHAOhvlkJYTwflhO7bilXvkPcX0ou7pDMtp_Y-oVIqHQilEm250JFWhVAmsmGR6DQIHfPIq9VvznWjsY6lPr7mkGshIvIWER551jad1cIif2u0h1hpG6AWeHWhnH_KG2rJbVBIJ6VhaSHAdHiBk7GTWiYa16DBqJeItBwZC4yBntcHL6BLqP2VdzFoxF3GgUd2VoDKGypb5Odo8sjT9jaQEK4sqaktT7ENj1FYMkg8cq_GbmszhxiVSQFPyw1Ub3Rq88705HMldI6zESxl4sG_7XpCLh9MhlmeDUaHD8mVEIYh7u8I2Q7pLOen9hG5pH8sTxbzx81wpeTjRcP-NyRFfqQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VLUJw4P0wFFgQCC5W1t61vT4glCZERE2joAapPZn1PqAC7JCkVPw1fh0ztuMmAnHrgau9tmbtb-ab2Z2dIeR5kuQm59b4uUmZL1QU-RCrWF85LqzjPGJxdVB4lIzH8ugonWyRX6uzMJhWubKJlaE2pcY18g5u-Ahgs4B3XJMWMekP3sy--9hBCndaV-00aojs259nEL4tXg_78K9fhOHg7bT3zm86DPgaiHLp69gZLmQcaecipkwC3r3RSmsBQGbgGcXKprHjWgaWa5FowVyU2kA4G8W5xqIHYP53wCUXoGM7k-HB5LgN9zhEf3UtI85T1lmgJyXSypc9Z8CqUcCfdLDGh5u5mmvkN7j-P3-2G-Ra43LTbq0jN8mWLW6Rq2uFGG-T3gjXKM6qZWI6Opwe-HvA7oZ2jZohH9De-yEdANHnSn-hhwD0b5aCu0-H5ZT2bWVt75APFzKLu2S7KAt7n1AplQ6EUom2XOhIq1woE9kwT3QahI555NXql2e6qb2OLUC-ZhCDITqyFh0eedYOndUFR_42aA9x0w7AGuHVhXL-KWtMTmaDXDopDUtzAaLDC5yMndQy0bg3DUK9RNRlaMlAGJh5fSADpoQ1wbIuOpOYfRx4ZHcFrqwxcYvsHFkeedreBuOEO06qsOUpjuExFpwMEo_cq3HcysxBZ5gU8LTcQPjGpDbvFCefqwLouErBUiYe_FuuJ-QyYD0bDcf7D8mVEDQS0z5Ctku2l_NT-4hc0j-WJ4v540ZzKfl40aj_DZO4h2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightweight+LSTM-Based+Adaptive+CQI+Feedback+Scheme+for+IoT+Devices&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Noel+Han&rft.au=Il-Min+Kim&rft.au=Jaewoo+So&rft.date=2023-05-20&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=10&rft.spage=4929&rft_id=info:doi/10.3390%2Fs23104929&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e1b8f88d09b440f390f86f8c87c89130
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon