Implementation of a Sequence-to-Sequence Stacked Sparse Long Short-Term Memory Autoencoder for Anomaly Detection on Multivariate Timeseries Data of Industrial Blower Ball Bearing Units

The advent of Industry 4.0 introduced new ways for businesses to evolve by implementing maintenance policies leading to advancements in terms of productivity, efficiency, and financial performance. In line with the growing emphasis on sustainability, industries implement predictive techniques based...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 23; číslo 14; s. 6502
Hlavní autoři: Karapalidou, Elisavet, Alexandris, Nikolaos, Antoniou, Efstathios, Vologiannidis, Stavros, Kalomiros, John, Varsamis, Dimitrios
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 18.07.2023
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The advent of Industry 4.0 introduced new ways for businesses to evolve by implementing maintenance policies leading to advancements in terms of productivity, efficiency, and financial performance. In line with the growing emphasis on sustainability, industries implement predictive techniques based on Artificial Intelligence for the purpose of mitigating machine and equipment failures by predicting anomalies during their production process. In this work, a new dataset that was made publicly available, collected from an industrial blower, is presented, analyzed and modeled using a Sequence-to-Sequence Stacked Sparse Long Short-Term Memory Autoencoder. Specifically the right and left mounted ball bearing units were measured during several months of normal operational condition as well as during an encumbered operational state. An anomaly detection model was developed for the purpose of analyzing the operational behavior of the two bearing units. A stacked sparse Long Short-Term Memory Autoencoder was successfully trained on the data obtained from the left unit under normal operating conditions, learning the underlying patterns and statistical connections of the data. The model was evaluated by means of the Mean Squared Error using data from the unit’s encumbered state, as well as using data collected from the right unit. The model performed satisfactorily throughout its evaluation on all collected datasets. Also, the model proved its capability for generalization along with adaptability on assessing the behavior of equipment similar to the one it was trained on.
AbstractList The advent of Industry 4.0 introduced new ways for businesses to evolve by implementing maintenance policies leading to advancements in terms of productivity, efficiency, and financial performance. In line with the growing emphasis on sustainability, industries implement predictive techniques based on Artificial Intelligence for the purpose of mitigating machine and equipment failures by predicting anomalies during their production process. In this work, a new dataset that was made publicly available, collected from an industrial blower, is presented, analyzed and modeled using a Sequence-to-Sequence Stacked Sparse Long Short-Term Memory Autoencoder. Specifically the right and left mounted ball bearing units were measured during several months of normal operational condition as well as during an encumbered operational state. An anomaly detection model was developed for the purpose of analyzing the operational behavior of the two bearing units. A stacked sparse Long Short-Term Memory Autoencoder was successfully trained on the data obtained from the left unit under normal operating conditions, learning the underlying patterns and statistical connections of the data. The model was evaluated by means of the Mean Squared Error using data from the unit’s encumbered state, as well as using data collected from the right unit. The model performed satisfactorily throughout its evaluation on all collected datasets. Also, the model proved its capability for generalization along with adaptability on assessing the behavior of equipment similar to the one it was trained on.
The advent of Industry 4.0 introduced new ways for businesses to evolve by implementing maintenance policies leading to advancements in terms of productivity, efficiency, and financial performance. In line with the growing emphasis on sustainability, industries implement predictive techniques based on Artificial Intelligence for the purpose of mitigating machine and equipment failures by predicting anomalies during their production process. In this work, a new dataset that was made publicly available, collected from an industrial blower, is presented, analyzed and modeled using a Sequence-to-Sequence Stacked Sparse Long Short-Term Memory Autoencoder. Specifically the right and left mounted ball bearing units were measured during several months of normal operational condition as well as during an encumbered operational state. An anomaly detection model was developed for the purpose of analyzing the operational behavior of the two bearing units. A stacked sparse Long Short-Term Memory Autoencoder was successfully trained on the data obtained from the left unit under normal operating conditions, learning the underlying patterns and statistical connections of the data. The model was evaluated by means of the Mean Squared Error using data from the unit's encumbered state, as well as using data collected from the right unit. The model performed satisfactorily throughout its evaluation on all collected datasets. Also, the model proved its capability for generalization along with adaptability on assessing the behavior of equipment similar to the one it was trained on.The advent of Industry 4.0 introduced new ways for businesses to evolve by implementing maintenance policies leading to advancements in terms of productivity, efficiency, and financial performance. In line with the growing emphasis on sustainability, industries implement predictive techniques based on Artificial Intelligence for the purpose of mitigating machine and equipment failures by predicting anomalies during their production process. In this work, a new dataset that was made publicly available, collected from an industrial blower, is presented, analyzed and modeled using a Sequence-to-Sequence Stacked Sparse Long Short-Term Memory Autoencoder. Specifically the right and left mounted ball bearing units were measured during several months of normal operational condition as well as during an encumbered operational state. An anomaly detection model was developed for the purpose of analyzing the operational behavior of the two bearing units. A stacked sparse Long Short-Term Memory Autoencoder was successfully trained on the data obtained from the left unit under normal operating conditions, learning the underlying patterns and statistical connections of the data. The model was evaluated by means of the Mean Squared Error using data from the unit's encumbered state, as well as using data collected from the right unit. The model performed satisfactorily throughout its evaluation on all collected datasets. Also, the model proved its capability for generalization along with adaptability on assessing the behavior of equipment similar to the one it was trained on.
Audience Academic
Author Karapalidou, Elisavet
Kalomiros, John
Alexandris, Nikolaos
Vologiannidis, Stavros
Varsamis, Dimitrios
Antoniou, Efstathios
AuthorAffiliation 2 Department of Informatics and Electronics Engineering, International Hellenic University, 57400 Thessaloniki, Greece
1 Department of Computer, Informatics and Telecommunications Engineering, International Hellenic University, 62124 Serres, Greece; eliskara3@ihu.gr (E.K.)
AuthorAffiliation_xml – name: 1 Department of Computer, Informatics and Telecommunications Engineering, International Hellenic University, 62124 Serres, Greece; eliskara3@ihu.gr (E.K.)
– name: 2 Department of Informatics and Electronics Engineering, International Hellenic University, 57400 Thessaloniki, Greece
Author_xml – sequence: 1
  givenname: Elisavet
  surname: Karapalidou
  fullname: Karapalidou, Elisavet
– sequence: 2
  givenname: Nikolaos
  surname: Alexandris
  fullname: Alexandris, Nikolaos
– sequence: 3
  givenname: Efstathios
  surname: Antoniou
  fullname: Antoniou, Efstathios
– sequence: 4
  givenname: Stavros
  orcidid: 0000-0003-2945-0841
  surname: Vologiannidis
  fullname: Vologiannidis, Stavros
– sequence: 5
  givenname: John
  orcidid: 0000-0002-1790-0975
  surname: Kalomiros
  fullname: Kalomiros, John
– sequence: 6
  givenname: Dimitrios
  surname: Varsamis
  fullname: Varsamis, Dimitrios
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37514798$$D View this record in MEDLINE/PubMed
BookMark eNplkslu2zAQhoUiRbO0h75AQaCX9qBEXLSdCifpYsBBD3bOBEWOHLoU6ZBUirxZH690FQdJCoHQgPzmnxnyP84OrLOQZe9xcUppW5wFQjGryoK8yo4wIyxvCCkOnsSH2XEIm6IglNLmTXZI6xKzum2Osj_zYWtgABtF1M4i1yOBlnA7gpWQR5fvY7SMQv4ChZZb4QOghbNrtLxxPuYr8AO6gsH5ezQbo0u4U-BR7zyaWTcIc48uIYKcKlh0NZqo74TXIgJa6QECeA0BXYoodh3MrRpDTMcGnRv3O0mdC5NiSCmp6rXVMbzNXvfCBHj38D_Jrr99XV38yBc_v88vZotclkUbc8natpOqaktSdm1dd1ipthNYyApXpOmgZ1IyEBURUEPfMVpWJWCopYRWSUpPsvmkq5zY8K3Xg_D33AnN_204v-bCRy0NcFrXCpcUcK9KxlTXAWmwqllFZF_SRiatL5PWduwGUDLduhfmmejzE6tv-NrdcVzQhjGy6-bTg4J36V1C5IMOEowRFtwYOElYkRYrE_rxBbpxo7fprnYUxYRVNU7U6UStRZpA296lwjJ9CgYtk816nfZnddmm6k2x6-DD0xkem99bKgFnEyC9C8FDz6WezJWUtUmz8J1p-aNpU8bnFxl70f_Zv6Su7xo
CitedBy_id crossref_primary_10_3390_s23218984
crossref_primary_10_1016_j_talanta_2025_127650
crossref_primary_10_1016_j_ifacol_2024_08_148
crossref_primary_10_3390_electronics13153081
crossref_primary_10_3390_s23198022
Cites_doi 10.3390/app12178541
10.1016/j.ymssp.2023.110109
10.1162/neco.1997.9.8.1735
10.1016/j.ijpe.2020.107776
10.3390/app10196789
10.1016/j.dsp.2022.103704
10.3390/ma13245755
10.3390/su142114536
10.1109/ASE.2017.8115698
10.1016/j.cie.2020.106889
10.1007/s10489-021-03004-y
10.1016/j.dib.2022.108473
10.1016/j.artmed.2022.102387
10.1016/j.techfore.2019.119790
10.1016/j.procir.2014.02.001
10.1145/3097983.3098052
10.1016/j.renene.2021.03.078
10.1016/j.compind.2021.103498
10.3390/su12198211
10.3390/s21041470
10.3390/app12168081
10.1016/j.asoc.2021.107443
10.3390/app13074136
10.1016/j.cie.2019.106024
10.1007/s00371-019-01673-y
10.1109/CVPRW56347.2022.00216
10.1016/j.measurement.2021.109094
10.1016/B978-075067531-4/50006-3
10.14778/3538598.3538602
10.1016/j.aei.2022.101778
10.1016/j.egyai.2022.100145
10.3390/s21030972
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23146502
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_377d153e1fd544dbbe281d7462cf538c
PMC10384423
A759233803
37514798
10_3390_s23146502
Genre Journal Article
GrantInformation_xml – fundername: Operational Program Central Macedonia 2014 2020 and the European Regional Development Fund and Greece
  grantid: KMP6-0078707
– fundername: EPAnEk—NSRF 2014-2020, Region of Central Macedonia
  grantid: KMP6-0078707
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c509t-c499bcd69525b977b1dd9ba1ac61628bef4cc4ea62ae7efb43565e1e7cce9dc33
IEDL.DBID 7X7
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001036586700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 18:38:52 EDT 2025
Tue Nov 04 02:06:22 EST 2025
Thu Oct 02 05:26:55 EDT 2025
Tue Oct 07 07:29:48 EDT 2025
Tue Nov 04 18:38:20 EST 2025
Wed Feb 19 02:07:29 EST 2025
Sat Nov 29 07:11:45 EST 2025
Tue Nov 18 20:54:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords deep learning
anomaly detection
autoencoder
industrial data
predictive maintenance
long short-term memory
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-c499bcd69525b977b1dd9ba1ac61628bef4cc4ea62ae7efb43565e1e7cce9dc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2945-0841
0000-0002-1790-0975
0000-0002-5844-7556
OpenAccessLink https://www.proquest.com/docview/2843124671?pq-origsite=%requestingapplication%
PMID 37514798
PQID 2843124671
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_377d153e1fd544dbbe281d7462cf538c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10384423
proquest_miscellaneous_2844084445
proquest_journals_2843124671
gale_infotracacademiconefile_A759233803
pubmed_primary_37514798
crossref_citationtrail_10_3390_s23146502
crossref_primary_10_3390_s23146502
PublicationCentury 2000
PublicationDate 20230718
PublicationDateYYYYMMDD 2023-07-18
PublicationDate_xml – month: 7
  year: 2023
  text: 20230718
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Srivastava (ref_35) 2014; 15
Lee (ref_6) 2014; 16
Radaideh (ref_30) 2022; 43
ref_36
ref_13
ref_12
ref_33
ref_10
Cugno (ref_2) 2020; 150
Hochreiter (ref_22) 1997; 9
ref_18
ref_17
ref_39
Serradilla (ref_11) 2022; 52
ref_38
ref_37
Rao (ref_15) 2023; 189
Radaideh (ref_29) 2022; 130
Lindemann (ref_25) 2021; 131
Carvalho (ref_23) 2019; 137
Miele (ref_26) 2022; 8
Ali (ref_32) 2019; 35
Zonta (ref_7) 2020; 150
Dou (ref_34) 2022; 132
Maleki (ref_16) 2021; 108
ref_24
Bai (ref_1) 2020; 229
ref_21
Ghani (ref_14) 2016; 4
ref_20
ref_42
ref_41
ref_40
Xiang (ref_28) 2021; 175
ref_3
Chen (ref_27) 2021; 172
(ref_31) 2022; 54
ref_9
ref_8
ref_5
ref_4
Schmidl (ref_19) 2022; 15
References_xml – ident: ref_13
  doi: 10.3390/app12178541
– volume: 189
  start-page: 110109
  year: 2023
  ident: ref_15
  article-title: A speed normalized autoencoder for rotating machinery fault detection under varying speed conditions
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2023.110109
– ident: ref_5
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_22
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 229
  start-page: 107776
  year: 2020
  ident: ref_1
  article-title: Industry 4.0 technologies assessment: A sustainability perspective
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2020.107776
– ident: ref_36
  doi: 10.3390/app10196789
– volume: 130
  start-page: 103704
  year: 2022
  ident: ref_29
  article-title: Time series anomaly detection in power electronics signals with recurrent and ConvLSTM autoencoders
  publication-title: Digital Signal Process.
  doi: 10.1016/j.dsp.2022.103704
– ident: ref_12
  doi: 10.3390/ma13245755
– ident: ref_24
  doi: 10.3390/su142114536
– ident: ref_18
  doi: 10.1109/ASE.2017.8115698
– ident: ref_39
– ident: ref_40
– volume: 150
  start-page: 106889
  year: 2020
  ident: ref_7
  article-title: Predictive maintenance in the Industry 4.0: A systematic literature review
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106889
– ident: ref_37
– volume: 52
  start-page: 10934
  year: 2022
  ident: ref_11
  article-title: Deep learning models for predictive maintenance: A survey, comparison, challenges and prospects
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-03004-y
– volume: 43
  start-page: 108473
  year: 2022
  ident: ref_30
  article-title: Real electronic signal data from particle accelerator power systems for machine learning anomaly detection
  publication-title: Data Brief
  doi: 10.1016/j.dib.2022.108473
– ident: ref_42
– volume: 132
  start-page: 102387
  year: 2022
  ident: ref_34
  article-title: A deep LSTM autoencoder-based framework for predictive maintenance of a proton radiotherapy delivery system
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2022.102387
– volume: 150
  start-page: 119790
  year: 2020
  ident: ref_2
  article-title: Smart factory performance and Industry 4.0
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2019.119790
– volume: 16
  start-page: 3
  year: 2014
  ident: ref_6
  article-title: Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2014.02.001
– ident: ref_20
  doi: 10.1145/3097983.3098052
– volume: 172
  start-page: 829
  year: 2021
  ident: ref_27
  article-title: Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.03.078
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_35
  article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 131
  start-page: 103498
  year: 2021
  ident: ref_25
  article-title: A survey on anomaly detection for technical systems using LSTM networks
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2021.103498
– ident: ref_3
  doi: 10.3390/su12198211
– ident: ref_4
– ident: ref_8
  doi: 10.3390/s21041470
– ident: ref_10
  doi: 10.3390/app12168081
– ident: ref_41
– volume: 108
  start-page: 107443
  year: 2021
  ident: ref_16
  article-title: Unsupervised anomaly detection with LSTM autoencoders using statistical data-filtering
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107443
– ident: ref_17
  doi: 10.3390/app13074136
– volume: 137
  start-page: 106024
  year: 2019
  ident: ref_23
  article-title: A systematic literature review of machine learning methods applied to predictive maintenance
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.106024
– volume: 35
  start-page: 1013
  year: 2019
  ident: ref_32
  article-title: TimeCluster: Dimension reduction applied to temporal data for visual analytics
  publication-title: Visual Comput.
  doi: 10.1007/s00371-019-01673-y
– ident: ref_38
– ident: ref_21
  doi: 10.1109/CVPRW56347.2022.00216
– volume: 175
  start-page: 109094
  year: 2021
  ident: ref_28
  article-title: Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109094
– ident: ref_9
  doi: 10.1016/B978-075067531-4/50006-3
– volume: 4
  start-page: 47
  year: 2016
  ident: ref_14
  article-title: Detection of Shaft Misalignment Using Machinery Fault Simulator (MFS)
  publication-title: J. Adv. Res. Appl. Sci. Eng. Technol.
– volume: 15
  start-page: 1779
  year: 2022
  ident: ref_19
  article-title: Anomaly detection in time series: A comprehensive evaluation
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3538598.3538602
– volume: 54
  start-page: 101778
  year: 2022
  ident: ref_31
  article-title: PredMaX: Predictive maintenance with explainable deep convolutional autoencoders
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2022.101778
– volume: 8
  start-page: 100145
  year: 2022
  ident: ref_26
  article-title: Deep anomaly detection in horizontal axis wind turbines using Graph Convolutional Autoencoders for Multivariate Time series
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2022.100145
– ident: ref_33
  doi: 10.3390/s21030972
SSID ssj0023338
Score 2.439418
Snippet The advent of Industry 4.0 introduced new ways for businesses to evolve by implementing maintenance policies leading to advancements in terms of productivity,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6502
SubjectTerms anomaly detection
Artificial intelligence
autoencoder
Datasets
Deep learning
Failure
industrial data
Industry 4.0
long short-term memory
Machine learning
Machinery
Manufacturing
Mediation
Neural networks
predictive maintenance
Preventive maintenance
Production costs
Sustainable development
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3fa9RAEMcXKT7og_jb1CqrCPoSetnfebyzFh9qEa5K38JmdmIL16RccoX-Z_55zia58w4FX3w4CJeFbLIzu59JZr_D2LsKbFZWE58CCEyVCzr1E8AUjQNtnNGifzXw_cSenrrz8_zrVqmvmBM2yAMPD-5QWhvIKzGrglYqlCUKQiyrjICKnBXi7Dux-TqYGkMtSZHXoCMkKag_bIliFLGI2Fl9epH-P6firbVoN09ya-E5fsgejMTIp0NPH7E7WD9m97d0BJ-wn73G79W4jajmTcU9n49J0mnXpOtjTmxJbhv4_JoCWuQnTf2Dzy8IwdMzmqL5l5h3e8unq66JApcBl5yglk_r5sovbvkRdn3mFl2h5v3W3RsKtYlWeb-TJGomt_zIdz724HdRED5bxFpsfOYXdEyuRZ3mEXbbp-zb8aezj5_TsSRDCkQWXQoUIJUQTK6FLgkdyyyEvPSZB5MZ4UqsFIBCb4RHi1VJMGY0ZmgBMA8g5TO2Vzc1vmBceSkIJkplQKpKeIeowWcaQw4ur3zCPqyHqoBRrzyWzVgUFLfEUS02o5qwt5um14NIx98azeJ4bxpEXe3-D7K2YrS24l_WlrD30VqK6P3UGfDjJga6paijVUytJmKWbiITdrA2qGKcFtqCWEASUBmbJezN5jQ5dPxK42tsVn0bNaGf0gl7Ptjfps_SEt_a3CXM7Vjmzk3tnqkvL3rR8CiEr4id9__HY3jJ7glysviOO3MHbK9brvAVuws33WW7fN274i_DNz7z
  priority: 102
  providerName: Directory of Open Access Journals
Title Implementation of a Sequence-to-Sequence Stacked Sparse Long Short-Term Memory Autoencoder for Anomaly Detection on Multivariate Timeseries Data of Industrial Blower Ball Bearing Units
URI https://www.ncbi.nlm.nih.gov/pubmed/37514798
https://www.proquest.com/docview/2843124671
https://www.proquest.com/docview/2844084445
https://pubmed.ncbi.nlm.nih.gov/PMC10384423
https://doaj.org/article/377d153e1fd544dbbe281d7462cf538c
Volume 23
WOSCitedRecordID wos001036586700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BywEOvAuGEi0ICS5WY3vXuz6hhKYCqYkiUlA4WevZdVsptUPsVOqF38XPY3bjOIlAXDjEsuyVMpbn8c149htC3uYggizvKh8gND6TmvuqC8Y3sQQey5iHrjTw7VSMRnI6TcZNwa1q2irXPtE5al2CrZEfoRuNMBbFIvgw_-HbqVH262ozQuM22bdjs62ei-km4Yow_1qxCUWY2h9ViGUYIpJwJwY5qv4_HfJWRNrtltwKPycP_lfwh-R-Azxpb6Upj8gtUzwm97boCJ-QX44q-KrZjVTQMqeKTppea78u_fU5RYiK1q_pZI55saGnZXFOJxeI5P0z9PR0aNt3b2hvWZeWJ1ObBUVsTHtFeaVmN_TY1K4BDP-hoG4H8DVm7Ah6qduQYqmXK3qsamUl2MwWof2ZHelG-2qG52ihKDS1mLl6Sr6eDM4-fvKbyQ4-IECpfcA8KwMdJzzkGSLQLNA6yVSgIA7iUGYmZwDMqDhURpg8Q0wXcxMYAWASDVF0QPaKsjDPCWUqChGTZCyGiOWhksZwUAE3OgGZ5Moj79fvOoWG9txO35ilmP5YtUhbtfDIm3bpfMX18bdFfasw7QJLz-0ulIvztLH2NBJCYygxQa45YzrLTIh5gWBxCDlGGPDIO6tuqXUiKAyoZi8EPpKl40p7giPwjmQ38sjhWqvSxrtU6UalPPK6vY1-wX7sUYUpl24N6-KPcY88WylwK3MkECaLRHpE7qj2zkPt3ikuLxz3uOXTZwjBX_xbrpfkboj2Z4vggTwke_ViaV6RO3BdX1aLjrNSd5Qdst8fjMZfOq4YgsfhzwFeG38ejr__Bk1uUx4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VBQk48H4YCiwIRC9W4_Xaax8QSghVq6YRUgrKzaxnx22l1A6JU5Q_xZmfx6xj5yEQtx44RLLilTLezHwz33oejL3JQHlp1tIugEBXRiZwdQvQxTCCIIzCQFRHA197qt-PhsP48xb72dTC2LTKBhMroDYF2DPyPYJRn3xRqLwP4--unRpl3642IzQWanGE8x9E2abvD7v0_74VYv_TyccDt54q4AI5x9IFivFTMGEciCCl6Cf1jIlT7WkIvVBEKWYSQKIOhUaFWUrxRBighwoAYwP2AJQg_xrhuLJkTw1XBM8nvrfoXuT7cWtvSrGTpAhIbPi8ajTAnw5gzQNuZmeuubv9O__bRt1lt-vAmrcXlnCPbWF-n91aa7f4gP2qWiFf1NVWOS8yrvmgziV3y8JtrjmF4IRuhg_GxPuR94r8lA_OiKm4J-TJ-LFNT57z9qwsbB9QgxNOsT9v58WFHs15F8sqwY1-IedVhfOlJjsvkVcFN7a19JR3damtBKvZKbwzsiPreEeP6Jp2kITmlhNMH7IvV7J1j9h2XuT4hHGpfUExVypD8GUmdIQYgPYCNDFEcaYdttvoVgJ1W3c7XWSUEL2zapgs1dBhr5dLx4teJn9b1LEKulxg249XXxST06RGs8RXypCrRC8zgZQmTVEQ71EyFJCRBwWHvbPqnViQJGFA17Ue9Ei23VjSVgERCz9q-Q7babQ4qdFzmqxU2GGvlrcJ9-zLLJ1jMavWyBZ9ZOCwxwuDWcrsK6IBKo4cFm2Y0sZDbd7Jz8-q3up2XoAkivH033K9ZDcOTo57Se-wf_SM3RRk-_bA34t22HY5meFzdh0uy_Pp5EWFEJx9u2pL-w0Akq2G
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VKUJw4P0wFFgQCC6rxOv164BQQoiImkaRUlB7MuvdcVsptUPsFOWfIX4ds47tJgJx64FDJCteyev1zDfz7c6DkNeJ8u046UimFAcmAu0y2VHAwAuU6wWey8utga8jfzwOjo7CyQ75VefCmLDKGhNLoNaZMnvkbYRRB22R59vtpAqLmPQHH-bfmekgZU5a63YaaxHZh9UPpG_5-2Efv_UbzgefDj9-ZlWHAabQUBZMob8fK-2FLndj9IRiW-swlrZUnu3xIIZEKCVAelyCD0mMvoXngg2-UhBqZTZDEf530SUXvEV2J8ODyXFD9xxkf-taRo4Tdto5elIC_SG-ZQHLRgF_moMNe7gdq7lh_Aa3_-dlu0NuVS437a515C7ZgfQeublRiPE--VkWST6v8rBSmiVU0mkVZc6KjNXXFJ1zxD1Np3O5yIGOsvSETk-Rw7BDtHH0wAQur2h3WWSmQqiGBUVWQLtpdi5nK9qHogx9wyektMx9vpCIAAXQMhXHFJ3OaV8W0szgsqsK7c1MMzvakzO8xhXESVPDFvIH5MuVLN1D0kqzFB4TKqTD0RuLhacckXAZALhK2i7oUAVhIi3yrpazSFUF303fkVmExM-IZNSIpEVeNUPn6yonfxvUM8LaDDCFycs_ssVJVOFc5Pi-RiMKdqJdIXQcA0dG5AuPqwRtq7LIWyPqkYFPnIySVRYIvpIpRBZ1fRcphxN0HIvs1RIdVbiaR5fibJGXzW1ERHPMJVPIluUY0cGfcC3yaK08zZwdHwmCHwYWCbbUauultu-kZ6dl1XXTSUAg-Xjy73m9INdRwaLRcLz_lNzgCAPmJMAO9kirWCzhGbmmLoqzfPG8ggtKvl21qv0G7ni31Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+a+Sequence-to-Sequence+Stacked+Sparse+Long+Short-Term+Memory+Autoencoder+for+Anomaly+Detection+on+Multivariate+Timeseries+Data+of+Industrial+Blower+Ball+Bearing+Units&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Karapalidou%2C+Elisavet&rft.au=Alexandris%2C+Nikolaos&rft.au=Antoniou%2C+Efstathios&rft.au=Vologiannidis%2C+Stavros&rft.date=2023-07-18&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=14&rft.spage=6502&rft_id=info:doi/10.3390%2Fs23146502&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon