Implementation of a Sequence-to-Sequence Stacked Sparse Long Short-Term Memory Autoencoder for Anomaly Detection on Multivariate Timeseries Data of Industrial Blower Ball Bearing Units
The advent of Industry 4.0 introduced new ways for businesses to evolve by implementing maintenance policies leading to advancements in terms of productivity, efficiency, and financial performance. In line with the growing emphasis on sustainability, industries implement predictive techniques based...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 23; číslo 14; s. 6502 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
18.07.2023
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The advent of Industry 4.0 introduced new ways for businesses to evolve by implementing maintenance policies leading to advancements in terms of productivity, efficiency, and financial performance. In line with the growing emphasis on sustainability, industries implement predictive techniques based on Artificial Intelligence for the purpose of mitigating machine and equipment failures by predicting anomalies during their production process. In this work, a new dataset that was made publicly available, collected from an industrial blower, is presented, analyzed and modeled using a Sequence-to-Sequence Stacked Sparse Long Short-Term Memory Autoencoder. Specifically the right and left mounted ball bearing units were measured during several months of normal operational condition as well as during an encumbered operational state. An anomaly detection model was developed for the purpose of analyzing the operational behavior of the two bearing units. A stacked sparse Long Short-Term Memory Autoencoder was successfully trained on the data obtained from the left unit under normal operating conditions, learning the underlying patterns and statistical connections of the data. The model was evaluated by means of the Mean Squared Error using data from the unit’s encumbered state, as well as using data collected from the right unit. The model performed satisfactorily throughout its evaluation on all collected datasets. Also, the model proved its capability for generalization along with adaptability on assessing the behavior of equipment similar to the one it was trained on. |
|---|---|
| AbstractList | The advent of Industry 4.0 introduced new ways for businesses to evolve by implementing maintenance policies leading to advancements in terms of productivity, efficiency, and financial performance. In line with the growing emphasis on sustainability, industries implement predictive techniques based on Artificial Intelligence for the purpose of mitigating machine and equipment failures by predicting anomalies during their production process. In this work, a new dataset that was made publicly available, collected from an industrial blower, is presented, analyzed and modeled using a Sequence-to-Sequence Stacked Sparse Long Short-Term Memory Autoencoder. Specifically the right and left mounted ball bearing units were measured during several months of normal operational condition as well as during an encumbered operational state. An anomaly detection model was developed for the purpose of analyzing the operational behavior of the two bearing units. A stacked sparse Long Short-Term Memory Autoencoder was successfully trained on the data obtained from the left unit under normal operating conditions, learning the underlying patterns and statistical connections of the data. The model was evaluated by means of the Mean Squared Error using data from the unit’s encumbered state, as well as using data collected from the right unit. The model performed satisfactorily throughout its evaluation on all collected datasets. Also, the model proved its capability for generalization along with adaptability on assessing the behavior of equipment similar to the one it was trained on. The advent of Industry 4.0 introduced new ways for businesses to evolve by implementing maintenance policies leading to advancements in terms of productivity, efficiency, and financial performance. In line with the growing emphasis on sustainability, industries implement predictive techniques based on Artificial Intelligence for the purpose of mitigating machine and equipment failures by predicting anomalies during their production process. In this work, a new dataset that was made publicly available, collected from an industrial blower, is presented, analyzed and modeled using a Sequence-to-Sequence Stacked Sparse Long Short-Term Memory Autoencoder. Specifically the right and left mounted ball bearing units were measured during several months of normal operational condition as well as during an encumbered operational state. An anomaly detection model was developed for the purpose of analyzing the operational behavior of the two bearing units. A stacked sparse Long Short-Term Memory Autoencoder was successfully trained on the data obtained from the left unit under normal operating conditions, learning the underlying patterns and statistical connections of the data. The model was evaluated by means of the Mean Squared Error using data from the unit's encumbered state, as well as using data collected from the right unit. The model performed satisfactorily throughout its evaluation on all collected datasets. Also, the model proved its capability for generalization along with adaptability on assessing the behavior of equipment similar to the one it was trained on.The advent of Industry 4.0 introduced new ways for businesses to evolve by implementing maintenance policies leading to advancements in terms of productivity, efficiency, and financial performance. In line with the growing emphasis on sustainability, industries implement predictive techniques based on Artificial Intelligence for the purpose of mitigating machine and equipment failures by predicting anomalies during their production process. In this work, a new dataset that was made publicly available, collected from an industrial blower, is presented, analyzed and modeled using a Sequence-to-Sequence Stacked Sparse Long Short-Term Memory Autoencoder. Specifically the right and left mounted ball bearing units were measured during several months of normal operational condition as well as during an encumbered operational state. An anomaly detection model was developed for the purpose of analyzing the operational behavior of the two bearing units. A stacked sparse Long Short-Term Memory Autoencoder was successfully trained on the data obtained from the left unit under normal operating conditions, learning the underlying patterns and statistical connections of the data. The model was evaluated by means of the Mean Squared Error using data from the unit's encumbered state, as well as using data collected from the right unit. The model performed satisfactorily throughout its evaluation on all collected datasets. Also, the model proved its capability for generalization along with adaptability on assessing the behavior of equipment similar to the one it was trained on. |
| Audience | Academic |
| Author | Karapalidou, Elisavet Kalomiros, John Alexandris, Nikolaos Vologiannidis, Stavros Varsamis, Dimitrios Antoniou, Efstathios |
| AuthorAffiliation | 2 Department of Informatics and Electronics Engineering, International Hellenic University, 57400 Thessaloniki, Greece 1 Department of Computer, Informatics and Telecommunications Engineering, International Hellenic University, 62124 Serres, Greece; eliskara3@ihu.gr (E.K.) |
| AuthorAffiliation_xml | – name: 1 Department of Computer, Informatics and Telecommunications Engineering, International Hellenic University, 62124 Serres, Greece; eliskara3@ihu.gr (E.K.) – name: 2 Department of Informatics and Electronics Engineering, International Hellenic University, 57400 Thessaloniki, Greece |
| Author_xml | – sequence: 1 givenname: Elisavet surname: Karapalidou fullname: Karapalidou, Elisavet – sequence: 2 givenname: Nikolaos surname: Alexandris fullname: Alexandris, Nikolaos – sequence: 3 givenname: Efstathios surname: Antoniou fullname: Antoniou, Efstathios – sequence: 4 givenname: Stavros orcidid: 0000-0003-2945-0841 surname: Vologiannidis fullname: Vologiannidis, Stavros – sequence: 5 givenname: John orcidid: 0000-0002-1790-0975 surname: Kalomiros fullname: Kalomiros, John – sequence: 6 givenname: Dimitrios surname: Varsamis fullname: Varsamis, Dimitrios |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37514798$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkslu2zAQhoUiRbO0h75AQaCX9qBEXLSdCifpYsBBD3bOBEWOHLoU6ZBUirxZH690FQdJCoHQgPzmnxnyP84OrLOQZe9xcUppW5wFQjGryoK8yo4wIyxvCCkOnsSH2XEIm6IglNLmTXZI6xKzum2Osj_zYWtgABtF1M4i1yOBlnA7gpWQR5fvY7SMQv4ChZZb4QOghbNrtLxxPuYr8AO6gsH5ezQbo0u4U-BR7zyaWTcIc48uIYKcKlh0NZqo74TXIgJa6QECeA0BXYoodh3MrRpDTMcGnRv3O0mdC5NiSCmp6rXVMbzNXvfCBHj38D_Jrr99XV38yBc_v88vZotclkUbc8natpOqaktSdm1dd1ipthNYyApXpOmgZ1IyEBURUEPfMVpWJWCopYRWSUpPsvmkq5zY8K3Xg_D33AnN_204v-bCRy0NcFrXCpcUcK9KxlTXAWmwqllFZF_SRiatL5PWduwGUDLduhfmmejzE6tv-NrdcVzQhjGy6-bTg4J36V1C5IMOEowRFtwYOElYkRYrE_rxBbpxo7fprnYUxYRVNU7U6UStRZpA296lwjJ9CgYtk816nfZnddmm6k2x6-DD0xkem99bKgFnEyC9C8FDz6WezJWUtUmz8J1p-aNpU8bnFxl70f_Zv6Su7xo |
| CitedBy_id | crossref_primary_10_3390_s23218984 crossref_primary_10_1016_j_talanta_2025_127650 crossref_primary_10_1016_j_ifacol_2024_08_148 crossref_primary_10_3390_electronics13153081 crossref_primary_10_3390_s23198022 |
| Cites_doi | 10.3390/app12178541 10.1016/j.ymssp.2023.110109 10.1162/neco.1997.9.8.1735 10.1016/j.ijpe.2020.107776 10.3390/app10196789 10.1016/j.dsp.2022.103704 10.3390/ma13245755 10.3390/su142114536 10.1109/ASE.2017.8115698 10.1016/j.cie.2020.106889 10.1007/s10489-021-03004-y 10.1016/j.dib.2022.108473 10.1016/j.artmed.2022.102387 10.1016/j.techfore.2019.119790 10.1016/j.procir.2014.02.001 10.1145/3097983.3098052 10.1016/j.renene.2021.03.078 10.1016/j.compind.2021.103498 10.3390/su12198211 10.3390/s21041470 10.3390/app12168081 10.1016/j.asoc.2021.107443 10.3390/app13074136 10.1016/j.cie.2019.106024 10.1007/s00371-019-01673-y 10.1109/CVPRW56347.2022.00216 10.1016/j.measurement.2021.109094 10.1016/B978-075067531-4/50006-3 10.14778/3538598.3538602 10.1016/j.aei.2022.101778 10.1016/j.egyai.2022.100145 10.3390/s21030972 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s23146502 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_377d153e1fd544dbbe281d7462cf538c PMC10384423 A759233803 37514798 10_3390_s23146502 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Operational Program Central Macedonia 2014 2020 and the European Regional Development Fund and Greece grantid: KMP6-0078707 – fundername: EPAnEk—NSRF 2014-2020, Region of Central Macedonia grantid: KMP6-0078707 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c509t-c499bcd69525b977b1dd9ba1ac61628bef4cc4ea62ae7efb43565e1e7cce9dc33 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001036586700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 18:38:52 EDT 2025 Tue Nov 04 02:06:22 EST 2025 Thu Oct 02 05:26:55 EDT 2025 Tue Oct 07 07:29:48 EDT 2025 Tue Nov 04 18:38:20 EST 2025 Wed Feb 19 02:07:29 EST 2025 Sat Nov 29 07:11:45 EST 2025 Tue Nov 18 20:54:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | deep learning anomaly detection autoencoder industrial data predictive maintenance long short-term memory |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-c499bcd69525b977b1dd9ba1ac61628bef4cc4ea62ae7efb43565e1e7cce9dc33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2945-0841 0000-0002-1790-0975 0000-0002-5844-7556 |
| OpenAccessLink | https://doaj.org/article/377d153e1fd544dbbe281d7462cf538c |
| PMID | 37514798 |
| PQID | 2843124671 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_377d153e1fd544dbbe281d7462cf538c pubmedcentral_primary_oai_pubmedcentral_nih_gov_10384423 proquest_miscellaneous_2844084445 proquest_journals_2843124671 gale_infotracacademiconefile_A759233803 pubmed_primary_37514798 crossref_citationtrail_10_3390_s23146502 crossref_primary_10_3390_s23146502 |
| PublicationCentury | 2000 |
| PublicationDate | 20230718 |
| PublicationDateYYYYMMDD | 2023-07-18 |
| PublicationDate_xml | – month: 7 year: 2023 text: 20230718 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Srivastava (ref_35) 2014; 15 Lee (ref_6) 2014; 16 Radaideh (ref_30) 2022; 43 ref_36 ref_13 ref_12 ref_33 ref_10 Cugno (ref_2) 2020; 150 Hochreiter (ref_22) 1997; 9 ref_18 ref_17 ref_39 Serradilla (ref_11) 2022; 52 ref_38 ref_37 Rao (ref_15) 2023; 189 Radaideh (ref_29) 2022; 130 Lindemann (ref_25) 2021; 131 Carvalho (ref_23) 2019; 137 Miele (ref_26) 2022; 8 Ali (ref_32) 2019; 35 Zonta (ref_7) 2020; 150 Dou (ref_34) 2022; 132 Maleki (ref_16) 2021; 108 ref_24 Bai (ref_1) 2020; 229 ref_21 Ghani (ref_14) 2016; 4 ref_20 ref_42 ref_41 ref_40 Xiang (ref_28) 2021; 175 ref_3 Chen (ref_27) 2021; 172 (ref_31) 2022; 54 ref_9 ref_8 ref_5 ref_4 Schmidl (ref_19) 2022; 15 |
| References_xml | – ident: ref_13 doi: 10.3390/app12178541 – volume: 189 start-page: 110109 year: 2023 ident: ref_15 article-title: A speed normalized autoencoder for rotating machinery fault detection under varying speed conditions publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2023.110109 – ident: ref_5 – volume: 9 start-page: 1735 year: 1997 ident: ref_22 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 229 start-page: 107776 year: 2020 ident: ref_1 article-title: Industry 4.0 technologies assessment: A sustainability perspective publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2020.107776 – ident: ref_36 doi: 10.3390/app10196789 – volume: 130 start-page: 103704 year: 2022 ident: ref_29 article-title: Time series anomaly detection in power electronics signals with recurrent and ConvLSTM autoencoders publication-title: Digital Signal Process. doi: 10.1016/j.dsp.2022.103704 – ident: ref_12 doi: 10.3390/ma13245755 – ident: ref_24 doi: 10.3390/su142114536 – ident: ref_18 doi: 10.1109/ASE.2017.8115698 – ident: ref_39 – ident: ref_40 – volume: 150 start-page: 106889 year: 2020 ident: ref_7 article-title: Predictive maintenance in the Industry 4.0: A systematic literature review publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106889 – ident: ref_37 – volume: 52 start-page: 10934 year: 2022 ident: ref_11 article-title: Deep learning models for predictive maintenance: A survey, comparison, challenges and prospects publication-title: Appl. Intell. doi: 10.1007/s10489-021-03004-y – volume: 43 start-page: 108473 year: 2022 ident: ref_30 article-title: Real electronic signal data from particle accelerator power systems for machine learning anomaly detection publication-title: Data Brief doi: 10.1016/j.dib.2022.108473 – ident: ref_42 – volume: 132 start-page: 102387 year: 2022 ident: ref_34 article-title: A deep LSTM autoencoder-based framework for predictive maintenance of a proton radiotherapy delivery system publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2022.102387 – volume: 150 start-page: 119790 year: 2020 ident: ref_2 article-title: Smart factory performance and Industry 4.0 publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2019.119790 – volume: 16 start-page: 3 year: 2014 ident: ref_6 article-title: Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment publication-title: Procedia CIRP doi: 10.1016/j.procir.2014.02.001 – ident: ref_20 doi: 10.1145/3097983.3098052 – volume: 172 start-page: 829 year: 2021 ident: ref_27 article-title: Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network publication-title: Renew. Energy doi: 10.1016/j.renene.2021.03.078 – volume: 15 start-page: 1929 year: 2014 ident: ref_35 article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting publication-title: J. Mach. Learn. Res. – volume: 131 start-page: 103498 year: 2021 ident: ref_25 article-title: A survey on anomaly detection for technical systems using LSTM networks publication-title: Comput. Ind. doi: 10.1016/j.compind.2021.103498 – ident: ref_3 doi: 10.3390/su12198211 – ident: ref_4 – ident: ref_8 doi: 10.3390/s21041470 – ident: ref_10 doi: 10.3390/app12168081 – ident: ref_41 – volume: 108 start-page: 107443 year: 2021 ident: ref_16 article-title: Unsupervised anomaly detection with LSTM autoencoders using statistical data-filtering publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107443 – ident: ref_17 doi: 10.3390/app13074136 – volume: 137 start-page: 106024 year: 2019 ident: ref_23 article-title: A systematic literature review of machine learning methods applied to predictive maintenance publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2019.106024 – volume: 35 start-page: 1013 year: 2019 ident: ref_32 article-title: TimeCluster: Dimension reduction applied to temporal data for visual analytics publication-title: Visual Comput. doi: 10.1007/s00371-019-01673-y – ident: ref_38 – ident: ref_21 doi: 10.1109/CVPRW56347.2022.00216 – volume: 175 start-page: 109094 year: 2021 ident: ref_28 article-title: Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism publication-title: Measurement doi: 10.1016/j.measurement.2021.109094 – ident: ref_9 doi: 10.1016/B978-075067531-4/50006-3 – volume: 4 start-page: 47 year: 2016 ident: ref_14 article-title: Detection of Shaft Misalignment Using Machinery Fault Simulator (MFS) publication-title: J. Adv. Res. Appl. Sci. Eng. Technol. – volume: 15 start-page: 1779 year: 2022 ident: ref_19 article-title: Anomaly detection in time series: A comprehensive evaluation publication-title: Proc. VLDB Endow. doi: 10.14778/3538598.3538602 – volume: 54 start-page: 101778 year: 2022 ident: ref_31 article-title: PredMaX: Predictive maintenance with explainable deep convolutional autoencoders publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2022.101778 – volume: 8 start-page: 100145 year: 2022 ident: ref_26 article-title: Deep anomaly detection in horizontal axis wind turbines using Graph Convolutional Autoencoders for Multivariate Time series publication-title: Energy AI doi: 10.1016/j.egyai.2022.100145 – ident: ref_33 doi: 10.3390/s21030972 |
| SSID | ssj0023338 |
| Score | 2.4394991 |
| Snippet | The advent of Industry 4.0 introduced new ways for businesses to evolve by implementing maintenance policies leading to advancements in terms of productivity,... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 6502 |
| SubjectTerms | anomaly detection Artificial intelligence autoencoder Datasets Deep learning Failure industrial data Industry 4.0 long short-term memory Machine learning Machinery Manufacturing Mediation Neural networks predictive maintenance Preventive maintenance Production costs Sustainable development |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEF1B4QAHvguGghaEBJdVY-_aa59QQqk4lAopRcrNWu9HWym1Q-xU6j_j5zGz3jiJQFw4RLLiVTK23868Wc--IeQ9MADgqU4zITRnwhUjVo2cY4qrGMVEkqTyT_pEnp7ms1nxPSy4taGscu0TvaM2jcY18kNwoxxiUSbjT4ufDLtG4dvV0ELjNrmDbbMR53K2Sbg45F-9mhCH1P6wBS4jgJEkOzHIS_X_6ZC3ItJuteRW-Dl--L-GPyIPAvGk4x4pj8ktWz8h97fkCJ-SX14q-CrsRqpp46ii01BrzbqGrY8pUFSY_YZOF5AXW3rS1Od0egFMnp2Bp6ffsHz3ho5XXYM6mcYuKXBjOq6bKzW_oUe28wVg8A819TuAryFjB9JL_YYUlF5u6ZHqFFqw6S1CJ3Ns6UYnag7HMEPBaIqcuX1Gfhx_Ofv8lYXODkwDQemYhjyr0iYr0iStgIFWsTFFpWKlszhL8so6obWwKkuUldZVwOmy1MZWam0LoznfJ3t1U9sXhAKF49Jp-BGrhUEJKS0479upycLmEfm4ftalDrLn2H1jXkL6g7AoB1hE5N0wdNFrffxt0AQBMwxAeW7_RbM8L8NsL7mUBkKJjZ1JhTBVZRPIC6TIEu0gwuiIfEC4lehEwBitwl4IuCSU4yrHMgXizfMRj8jBGlVl8C5tuYFURN4Op8Ev4MseVdtm5ceIEXxEGpHnPYAHm7kEmiwLuDf5DrR3Lmr3TH154bXHUU9fAAV_-W-7XpF7Ccw_XASP8wOy1y1X9jW5q6-7y3b5xs_S35Q6SsI priority: 102 providerName: ProQuest |
| Title | Implementation of a Sequence-to-Sequence Stacked Sparse Long Short-Term Memory Autoencoder for Anomaly Detection on Multivariate Timeseries Data of Industrial Blower Ball Bearing Units |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37514798 https://www.proquest.com/docview/2843124671 https://www.proquest.com/docview/2844084445 https://pubmed.ncbi.nlm.nih.gov/PMC10384423 https://doaj.org/article/377d153e1fd544dbbe281d7462cf538c |
| Volume | 23 |
| WOSCitedRecordID | wos001036586700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Pb9MwGMYtGBzggPhPYFQGIcElWhI7cXJsWSeQ1qqiQyqnyHEcNqlLpiadtAufi4_HYycNjUDiwqFRlFiNY7-v_Xtb-3kJeQcCAKcWyuVcMZcXiedmXlG4kknfiIkEQWZ7-lTM5_FqlSz2Un2ZNWGtPHDbcEdMiBxeqf0iDznPs0wHQCzBo0AVcFZlRl9PJLtgqgu1GCKvVkeIIag_qkExHCwSDGYfK9L_51C8NxcN10nuTTwnD8mDjhjpuK3pI3JLl4_J_T0dwSfkp9X4vey2EZW0Kqiky26RtNtU7u6cgi3htjldXiGg1fS0Kr_T5TkQ3D3DEE1nZt3tDR1vm8oIXOZ6QwG1dFxWl3J9Q491Y1du4QkltVt3rxFqg1ap3UliNJNreiwbaWrwOykInaxNLjY6kWucw7VQaWpgt35Kvp5Mzz5-cruUDK4CWTSuQoCUqTxKwiDMgI6Zn-dJJn2pIj8K4kwXXCmuZRRILXSRAcaiUPtaKKWTXDH2jByUValfEAr2YqJQ-BKteG60nxRnrM2DJhIdO-TDrqtS1emVm7QZ6xRxi-nVtO9Vh7zti161Ih1_KzQx_d0XMLra9gKsLe2sLf2XtTnkvbGW1Hg_KqNkt4kBr2R0tNKxCEHMLPaYQw53BpV2w0KdggUYgCoSvkPe9Lfh0OZfGlnqamvLcA8fHjrkeWt_fZ2ZAN-KBG0TDyxz8FLDO-XFuRUNN0L4HOz88n80wytyL4CTmd-4_fiQHDSbrX5N7qrr5qLejMhtsRL2GI_Incl0vvgysu6J4-zHFNcWn2eLb78AAWRDPQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamgQQ8cL8EBhgEghdrTezEyQNCLWXatK5CapH6FhzH2SZ1SWnSof4pnvl5nOMkvQjE2x54qBQ1VuI45_J9jv0dQt4AAgCcmmkmhOZMZFGHJZ0sY4orF8VEPC-xb3ogh8NwMom-7JCf7V4YXFbZxkQbqNNC4xz5PoRRDrkokO7H2XeGVaPw62pbQqM2i2Oz_AGUrfxw1If3-9bzDj6PPx2ypqoA05AcK6YB4yc6DSLf8xNAP4mbplGiXKUDN_DCxGRCa2FU4CkjTZYAngh84xqptYlSjROgEPKvQRyXSPbkZE3wOPC9Wr2I86izXwJ2EoCAvK2cZ0sD_JkANjLg9urMjXR3cOd_G6i75HYDrGm39oR7ZMfk98mtDbnFB-SXlUK-aHZb5bTIqKKjZi05qwrWHlOA4BDdUjqaAe83dFDkp3R0BkyFjSGT0RNcnryk3UVVoA5oauYUsD_t5sWFmi5p31R2gRvcIad2h_OlAj-vDLUbblBauqR9VSnswbp2Cu1NsWQd7akpHMMIQqcpcoLyIfl6JUP3iOzmRW6eEAoQlctMw0WMFilKZGnBeV0uTkYmdMj71rZi3ci6Y3WRaQz0Ds0wXpmhQ16vms5qLZO_Neqhga4aoPy4_aOYn8ZNNIu5lCmkSuNmqS9EmiTGA94jReDpDDKodsg7NO8YgyR0Rqtmrwc8EsqNxV3pA7HgYYc7ZK-14riJnmW8NmGHvFqdhriHH7NUboqFbSM68BO-Qx7XDrPqM5dAA2QEYxNuudLWQ22fyc_PrLY61gsQQDGe_rtfL8mNw_HJIB4cDY-fkZse-D5O-LvhHtmt5gvznFzXl9V5OX9hIwQl367a034DV6-rhA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamDSF44H4JDDAIBC9RG9uJkweEWkpFta6q1CGNp-A4zjapS0qTDvWfIX4d5-S2ViDe9sBDpaixEsc5_s534uPvEPIaGADw1ETbQmhuiyTo2lE3SWzFlYNiIoxF5Zsey8nEPz4OpjvkV7MXBtMqG0wsgTrONH4j7wCMcvBFnnQ6SZ0WMR0MPyy-21hBCldam3IalYkcmPUPCN_y96MBvOs3jA0_HX38bNcVBmwNjrKwNfD9SMde4DI3AiYUOXEcRMpR2nM85kcmEVoLozymjDRJBNzCc41jpNYmiDV-DAX43wNKLtgu2ZuODqdf23CPQ_RXaRlxHnQ7OTApAXyIbXnAslDAn-5gwx9u52puOL_h7f952O6QWzXlpr1qjtwlOya9R25uCDHeJz9LkeTzeh9WSrOEKjqrs8ztIrObYwrkHHAvprOFWuaGjrP0hM5OIYaxj8DH0UNMXF7T3qrIUCE0NksKUQHtpdm5mq_pwBRl6hvcIaXl3ucLBQhQGFpuxUHR6ZwOVKGwB5dVVWh_jsXsaF_N4RhGEDpNMVrIH5AvVzJ0D8lumqXmMaFAXrlMNFzEaBGjeJYWnFeF5GRgfIu8a-ws1LXgO9YdmYcQ-KFJhq1JWuRV23RRqZz8rVEfjbVtgMLk5R_Z8iSscS7kUsbgRI2TxK4QcRQZBhGRFB7TCfhWbZG3aOohwid0Rqt6Fwg8EgqRhT3pQsjB_S63yH5j0WGNq3l4ac4WedmeBkTEZS6VmmxVthFd-AnXIo-qydP2mUsIEGQAY-NvTauth9o-k56dlqrrWElAQPDx5N_9ekGuwwQLx6PJwVNygwEM4EqA4--T3WK5Ms_INX1RnOXL5zVcUPLtqqfabzBWtdM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+a+Sequence-to-Sequence+Stacked+Sparse+Long+Short-Term+Memory+Autoencoder+for+Anomaly+Detection+on+Multivariate+Timeseries+Data+of+Industrial+Blower+Ball+Bearing+Units&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Elisavet+Karapalidou&rft.au=Nikolaos+Alexandris&rft.au=Efstathios+Antoniou&rft.au=Stavros+Vologiannidis&rft.date=2023-07-18&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=14&rft.spage=6502&rft_id=info:doi/10.3390%2Fs23146502&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_377d153e1fd544dbbe281d7462cf538c |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |