The surprising little effectiveness of cooperative algorithms in parallel problem solving
Biological and cultural inspired optimization algorithms are nowadays part of the basic toolkit of a great many research domains. By mimicking processes in nature and animal societies, these general-purpose search algorithms promise to deliver optimal or near-optimal solutions using hardly any infor...
Saved in:
| Published in: | The European physical journal. B, Condensed matter physics Vol. 93; no. 7 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2020
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 1434-6028, 1434-6036 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Biological and cultural inspired optimization algorithms are nowadays part of the basic toolkit of a great many research domains. By mimicking processes in nature and animal societies, these general-purpose search algorithms promise to deliver optimal or near-optimal solutions using hardly any information on the optimization problems they are set to tackle. Here we study the performances of a cultural-inspired algorithm – the imitative learning search – as well as of asexual and sexual variants of evolutionary algorithms in finding the global maxima of NK-fitness landscapes. The main performance measure is the total number of agent updates required by the algorithms to find those global maxima and the baseline performance, which establishes the effectiveness of the cooperative algorithms, is set by the blind search in which the agents explore the problem space (binary strings) by flipping bits at random. We find that even for smooth landscapes that exhibit a single maximum, the evolutionary algorithms do not perform much better than the blind search due to the stochastic effects of the genetic roulette. The imitative learning is immune to this effect thanks to the deterministic choice of the fittest string in the population, which is used as a model for imitation. The tradeoff is that for rugged landscapes the imitative learning search is more prone to be trapped in local maxima than the evolutionary algorithms. In fact, in the case of rugged landscapes with a mild density of local maxima, the blind search either beats or matches the cooperative algorithms regardless of whether the task is to find the global maximum or to find the fittest state within a given runtime.
Graphical abstract |
|---|---|
| AbstractList | Biological and cultural inspired optimization algorithms are nowadays part of the basic toolkit of a great many research domains. By mimicking processes in nature and animal societies, these generalpurpose search algorithms promise to deliver optimal or near-optimal solutions using hardly any information on the optimization problems they are set to tackle. Here we study the performances of a cultural-inspired algorithm--the imitative learning search--as well as of asexual and sexual variants of evolutionary algorithms in finding the global maxima of NK-fitness landscapes. The main performance measure is the total number of agent updates required by the algorithms to find those global maxima and the baseline performance, which establishes the effectiveness of the cooperative algorithms, is set by the blind search in which the agents explore the problem space (binary strings) by flipping bits at random. We find that even for smooth landscapes that exhibit a single maximum, the evolutionary algorithms do not perform much better than the blind search due to the stochastic effects of the genetic roulette. The imitative learning is immune to this effect thanks to the deterministic choice of the fittest string in the population, which is used as a model for imitation. The tradeoff is that for rugged landscapes the imitative learning search is more prone to be trapped in local maxima than the evolutionary algorithms. In fact, in the case of rugged landscapes with a mild density of local maxima, the blind search either beats or matches the cooperative algorithms regardless of whether the task is to find the global maximum or to find the fittest state within a given runtime. Biological and cultural inspired optimization algorithms are nowadays part of the basic toolkit of a great many research domains. By mimicking processes in nature and animal societies, these general-purpose search algorithms promise to deliver optimal or near-optimal solutions using hardly any information on the optimization problems they are set to tackle. Here we study the performances of a cultural-inspired algorithm – the imitative learning search – as well as of asexual and sexual variants of evolutionary algorithms in finding the global maxima of NK-fitness landscapes. The main performance measure is the total number of agent updates required by the algorithms to find those global maxima and the baseline performance, which establishes the effectiveness of the cooperative algorithms, is set by the blind search in which the agents explore the problem space (binary strings) by flipping bits at random. We find that even for smooth landscapes that exhibit a single maximum, the evolutionary algorithms do not perform much better than the blind search due to the stochastic effects of the genetic roulette. The imitative learning is immune to this effect thanks to the deterministic choice of the fittest string in the population, which is used as a model for imitation. The tradeoff is that for rugged landscapes the imitative learning search is more prone to be trapped in local maxima than the evolutionary algorithms. In fact, in the case of rugged landscapes with a mild density of local maxima, the blind search either beats or matches the cooperative algorithms regardless of whether the task is to find the global maximum or to find the fittest state within a given runtime. Biological and cultural inspired optimization algorithms are nowadays part of the basic toolkit of a great many research domains. By mimicking processes in nature and animal societies, these general-purpose search algorithms promise to deliver optimal or near-optimal solutions using hardly any information on the optimization problems they are set to tackle. Here we study the performances of a cultural-inspired algorithm – the imitative learning search – as well as of asexual and sexual variants of evolutionary algorithms in finding the global maxima of NK-fitness landscapes. The main performance measure is the total number of agent updates required by the algorithms to find those global maxima and the baseline performance, which establishes the effectiveness of the cooperative algorithms, is set by the blind search in which the agents explore the problem space (binary strings) by flipping bits at random. We find that even for smooth landscapes that exhibit a single maximum, the evolutionary algorithms do not perform much better than the blind search due to the stochastic effects of the genetic roulette. The imitative learning is immune to this effect thanks to the deterministic choice of the fittest string in the population, which is used as a model for imitation. The tradeoff is that for rugged landscapes the imitative learning search is more prone to be trapped in local maxima than the evolutionary algorithms. In fact, in the case of rugged landscapes with a mild density of local maxima, the blind search either beats or matches the cooperative algorithms regardless of whether the task is to find the global maximum or to find the fittest state within a given runtime. Graphical abstract |
| ArticleNumber | 140 |
| Audience | Academic |
| Author | Aquino, Larissa F. Reia, Sandro M. Fontanari, José F. |
| Author_xml | – sequence: 1 givenname: Sandro M. orcidid: 0000-0001-5817-5020 surname: Reia fullname: Reia, Sandro M. organization: Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369 – sequence: 2 givenname: Larissa F. orcidid: 0000-0002-3080-8727 surname: Aquino fullname: Aquino, Larissa F. organization: Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369 – sequence: 3 givenname: José F. surname: Fontanari fullname: Fontanari, José F. email: fontanari@ifsc.usp.br organization: Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369 |
| BookMark | eNqNkUtrHDEQhIVxwI_kD-Qk8CmHsfWY0Y6OxuRhMAQS55CT6NG0xlq0o4mkNcm_j9YbktgHJ-jQoqmvCrpOyOEcZyTkNWfnnLfsApf1cIGCCdZwxrVu9AE55q1sG8WkOvz9F_0ROcl5zRjjirfH5OvtHdK8TUvy2c8TDb6UgBSdQ1v8Pc6YM42O2hgXTLBbUQhTTL7cbTL1M10gQQgY6JLiEHBDcwz31eoleeEgZHz1a56SL-_e3l59aG4-vr--urxpbMd0aQAQ2CBUL5VsuWJjNzpwYoR26JVbIQPeW8eh71g_tJqjGDsQoDiunLaay1Nytvet-d-2mItZx22aa6QRrZCd6pSQVXW-V00Q0PjZxZLA1jfixtt6TOfr_lL1QrGVlv8PyJ2-UhV48wiomoLfywTbnM3150-Pzf-p_ctX7LU2xZwTOlO72kD6YTgzu_LNrnzzUL55KN_oCvVPIOtLba_mJPDheVTu0Vxz5gnTn3s-Q_0EJafHyw |
| CitedBy_id | crossref_primary_10_1007_s12083_021_01121_6 crossref_primary_10_1088_1742_5468_abfa1f |
| Cites_doi | 10.1088/0305-4470/24/11/008 10.1109/4235.585893 10.1103/PhysRevE.99.032301 10.1177/0022002797041002001 10.1088/1742-5468/2015/06/P06014 10.1371/journal.pone.0110517 10.1093/oso/9780195099713.001.0001 10.1093/oso/9780195165241.001.0001 10.1126/science.254.5035.1181 10.7551/mitpress/1090.001.0001 10.1007/s10955-018-1979-z 10.1016/j.plrev.2018.05.002 10.1177/0022002798042001003 10.1140/epjb/e2015-60608-1 10.1016/0167-2789(90)90065-W 10.1534/genetics.116.189340 10.1016/S0022-5193(87)80029-2 10.2189/asqu.52.4.667 10.1177/0022002701045001004 10.1287/orsc.2013.0829 10.1209/0295-5075/96/38004 10.1007/s12064-015-0219-1 10.1073/pnas.86.16.6191 10.1088/1742-5468/2009/03/P03008 10.1088/1367-2630/12/1/013010 10.1098/rstb.2009.0095 10.1088/1742-5468/aaf634 10.1287/mnsc.43.7.934 10.1109/4235.887236 10.1016/S0022-5193(89)80019-0 10.1103/PhysRevA.46.6714 10.1016/j.eswa.2016.04.018 |
| ContentType | Journal Article |
| Copyright | EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020 COPYRIGHT 2020 Springer EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| Copyright_xml | – notice: EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: COPYRIGHT 2020 Springer – notice: EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| DBID | AAYXX CITATION ISR |
| DOI | 10.1140/epjb/e2020-10199-9 |
| DatabaseName | CrossRef Gale In Context: Science |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1434-6036 |
| ExternalDocumentID | A682607933 A636079826 10_1140_epjb_e2020_10199_9 |
| GroupedDBID | -5F -5G -BR -EM -Y2 -~C -~X .VR 06D 0R~ 199 203 28- 29G 29Q 29~ 2J2 2JY 2KG 2KM 2LR 2P1 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN ABAKF ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFFNX AFQWF AFWTZ AFZKB AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHSBF AHYZX AI. AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IGS IHE IKXTQ ISR ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J P9T PF- PT5 QOS R89 R9I RED RID RIG RNS ROL RSV RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UPT UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WJK WK8 YLTOR Z45 Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z88 ZMTXR ~8M 2JN AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION EBLON HCIFZ M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c509t-aaea0b2683634160d5dfaf2da4b86f7e0a18cf1a8508b491e2d5a2a61e7f9c913 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552020300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1434-6028 |
| IngestDate | Thu Sep 25 00:42:24 EDT 2025 Sat Nov 29 10:18:22 EST 2025 Sat Nov 29 10:20:26 EST 2025 Wed Nov 26 10:11:41 EST 2025 Wed Nov 26 09:35:13 EST 2025 Sat Nov 29 02:34:15 EST 2025 Tue Nov 18 21:40:37 EST 2025 Fri Feb 21 02:29:12 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Statistical and Nonlinear Physics |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-aaea0b2683634160d5dfaf2da4b86f7e0a18cf1a8508b491e2d5a2a61e7f9c913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3080-8727 0000-0001-5817-5020 |
| OpenAccessLink | http://dx.doi.org/10.1140/epjb/e2020-10199-9 |
| PQID | 2423565623 |
| PQPubID | 2043700 |
| ParticipantIDs | proquest_journals_2423565623 gale_infotracacademiconefile_A682607933 gale_infotracacademiconefile_A636079826 gale_incontextgauss_ISR_A682607933 gale_incontextgauss_ISR_A636079826 crossref_primary_10_1140_epjb_e2020_10199_9 crossref_citationtrail_10_1140_epjb_e2020_10199_9 springer_journals_10_1140_epjb_e2020_10199_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20200700 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 7 year: 2020 text: 20200700 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | Condensed Matter and Complex Systems |
| PublicationTitle | The European physical journal. B, Condensed matter physics |
| PublicationTitleAbbrev | Eur. Phys. J. B |
| PublicationYear | 2020 |
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
| References | KauffmanS.A.LevinS.J. Theor. Biol.19871281110.1016/S0022-5193(87)80029-2 González-AvellaJ.C.CosenzaM.G.EguíluzV.M.San MiguelM.New J. Phys.2010120130102010NJPh...12a3010G10.1088/1367-2630/12/1/013010 NowakS.KrugJ.J. Stat. Mech.20152015P0601410.1088/1742-5468/2015/06/P06014 KauffmanS.A.WeinbergerE.D.J. Theor. Biol.198914121110.1016/S0022-5193(89)80019-0 MaloneT.LaubacherR.DellarocasC.MIT Sloan Manag. Rev.2010511 HwangS.SchmiegeltB.FerrettiL.KrugJ.J. Stat. Phys.20181722262018JSP...172..226H381054410.1007/s10955-018-1979-z KarA.K.Expert. Syst. Appl.201659202018FBS....59...20K10.1016/j.eswa.2016.04.018 CamposP.R.A.FontanariJ.F.J. Stat. Mech.2019201901350110.1088/1742-5468/aaf634 K. Huang,Statistical Mechanics (John Willey & Sons, New York, 1963) ShibanaiY.YasunoS.IshiguroI.J. Conflict. Res.2001458010.1177/0022002701045001004 AxelrodR.J. Conflict. Res.19974120310.1177/0022002797041002001 MackenC.A.PerelsonA.S.Proc. Natl. Acad. Sci. USA19898661911989PNAS...86.6191M10.1073/pnas.86.16.6191 FlyvbjergH.LautrupB.Phys. Rev. A19924667141992PhRvA..46.6714F10.1103/PhysRevA.46.6714 GomesP.F.ReiaS.M.RodriguesF.A.FontanariJ.F.Phys. Rev. E2019990323012019PhRvE..99c2301G10.1103/PhysRevE.99.032301 KlimekP.HanelR.ThurnerS.J. Stat. Mech.20092009P0300810.1088/1742-5468/2009/03/P03008 HubermanB.A.Physica D199042381990PhyD...42...38H10.1016/0167-2789(90)90065-W BillingerS.StieglitzN.SchumacherT.R.Organ. Sci.2013259310.1287/orsc.2013.0829 ClearwaterS.H.HubermanB.A.HoggT.Science199125418110.1126/science.254.5035.1181 I.L. Janis,Groupthink: psychological studies of policy decisions and fiascoes (Houghton Mifflin, Boston, 1982) WolpertD.H.MacreadyW.G.IEEE T. Evolut. Comput.199716710.1109/4235.585893 LazerD.FriedmanA.Admin. Sci. Quart.20075266710.2189/asqu.52.4.667 S.A. Kauffman,At Home in the Universe: The Search for Laws of Self-Organization and Complexity (Oxford University Press, New York, 1995) QuellerD.C.StrassmannJ.E.Phil. Trans. R. Soc. B2009364314310.1098/rstb.2009.0095 D.E. Goldberg,Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, 1989) W. Feller, inAn Introduction to Probability Theory and Its Applications (Wiley, New York, Third Edition, 1968), Vol. 1, p. 220 M.R. Garey, D.S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, CA, 1979) FontanariJ.F.PLoS ONE20149e1105172014PLoSO...9k0517F10.1371/journal.pone.0110517 HerediaJ.P.TrubenováB.SudholtD.PaixãoT.Genetics201720580310.1534/genetics.116.189340 S. Blackmore,The Meme Machine (Oxford University Press, Oxford, 2000) FontanariJ.F.Eur. Phys. J. B2015882512015EPJB...88..251F10.1140/epjb/e2015-60608-1 PeresL.R.FontanariJ.F.Europhys. Lett.201196380042011EL.....9638004P10.1209/0295-5075/96/38004 FontanariJ.F.RodriguesF.A.Theory Biosci.201613510110.1007/s12064-015-0219-1 KennedyJ.J. Conflict. Res.1998425610.1177/0022002798042001003 WrightA.H.ThompsonR.K.ZhangJ.IEEE Trans. Evolut. Comput.2000437310.1109/4235.887236 LevinthalD.A.Manag. Sci.19974393410.1287/mnsc.43.7.934 GaoC.LiuC.SchenzD.LiX.ZhangZ.JusupM.WangZ.BeekmanM.NakagakiT.Phys. Life Rev.20192912019PhLRv..29....1G10.1016/j.plrev.2018.05.002 T. Bäck,Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms (Oxford University Press, New York, 1996) J.H. Holland,Adaptation in Natural and Artificial Systems (MIT Press, Cambridge, MA, 1992) R. Boyd, P.J. Richerson,The Origin and Evolution of Cultures (Oxford University Press, Oxford, 2005) FontanariJ.F.J. Phys. A: Math. Gen.199124L6151991JPhA...24L.615F10.1088/0305-4470/24/11/008 10199_CR14 D.A. Levinthal (10199_CR18) 1997; 43 C.A. Macken (10199_CR24) 1989; 86 J.P. Heredia (10199_CR32) 2017; 205 10199_CR33 D. Lazer (10199_CR12) 2007; 52 S.A. Kauffman (10199_CR16) 1989; 141 10199_CR8 J.F. Fontanari (10199_CR30) 1991; 24 10199_CR9 P.F. Gomes (10199_CR35) 2019; 99 A.K. Kar (10199_CR3) 2016; 59 H. Flyvbjerg (10199_CR31) 1992; 46 10199_CR5 P. Klimek (10199_CR36) 2009; 2009 C. Gao (10199_CR4) 2019; 29 10199_CR29 T. Malone (10199_CR1) 2010; 51 J.F. Fontanari (10199_CR13) 2015; 88 10199_CR23 S.A. Kauffman (10199_CR20) 1987; 128 10199_CR40 B.A. Huberman (10199_CR10) 1990; 42 J.F. Fontanari (10199_CR7) 2014; 9 P.R.A. Campos (10199_CR37) 2019; 2019 J.C. González-Avella (10199_CR26) 2010; 12 A.H. Wright (10199_CR22) 2000; 4 R. Axelrod (10199_CR28) 1997; 41 S. Nowak (10199_CR38) 2015; 2015 S. Hwang (10199_CR21) 2018; 172 J.F. Fontanari (10199_CR34) 2016; 135 D.C. Queller (10199_CR2) 2009; 364 S.H. Clearwater (10199_CR11) 1991; 254 S. Billinger (10199_CR19) 2013; 25 D.H. Wolpert (10199_CR39) 1997; 1 10199_CR17 J. Kennedy (10199_CR6) 1998; 42 10199_CR15 Y. Shibanai (10199_CR25) 2001; 45 L.R. Peres (10199_CR27) 2011; 96 |
| References_xml | – reference: WolpertD.H.MacreadyW.G.IEEE T. Evolut. Comput.199716710.1109/4235.585893 – reference: MackenC.A.PerelsonA.S.Proc. Natl. Acad. Sci. USA19898661911989PNAS...86.6191M10.1073/pnas.86.16.6191 – reference: ShibanaiY.YasunoS.IshiguroI.J. Conflict. Res.2001458010.1177/0022002701045001004 – reference: GaoC.LiuC.SchenzD.LiX.ZhangZ.JusupM.WangZ.BeekmanM.NakagakiT.Phys. Life Rev.20192912019PhLRv..29....1G10.1016/j.plrev.2018.05.002 – reference: AxelrodR.J. Conflict. Res.19974120310.1177/0022002797041002001 – reference: GomesP.F.ReiaS.M.RodriguesF.A.FontanariJ.F.Phys. Rev. E2019990323012019PhRvE..99c2301G10.1103/PhysRevE.99.032301 – reference: FlyvbjergH.LautrupB.Phys. Rev. A19924667141992PhRvA..46.6714F10.1103/PhysRevA.46.6714 – reference: ClearwaterS.H.HubermanB.A.HoggT.Science199125418110.1126/science.254.5035.1181 – reference: CamposP.R.A.FontanariJ.F.J. Stat. Mech.2019201901350110.1088/1742-5468/aaf634 – reference: HerediaJ.P.TrubenováB.SudholtD.PaixãoT.Genetics201720580310.1534/genetics.116.189340 – reference: K. Huang,Statistical Mechanics (John Willey & Sons, New York, 1963) – reference: HwangS.SchmiegeltB.FerrettiL.KrugJ.J. Stat. Phys.20181722262018JSP...172..226H381054410.1007/s10955-018-1979-z – reference: NowakS.KrugJ.J. Stat. Mech.20152015P0601410.1088/1742-5468/2015/06/P06014 – reference: D.E. Goldberg,Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, 1989) – reference: LevinthalD.A.Manag. Sci.19974393410.1287/mnsc.43.7.934 – reference: PeresL.R.FontanariJ.F.Europhys. Lett.201196380042011EL.....9638004P10.1209/0295-5075/96/38004 – reference: J.H. Holland,Adaptation in Natural and Artificial Systems (MIT Press, Cambridge, MA, 1992) – reference: LazerD.FriedmanA.Admin. Sci. Quart.20075266710.2189/asqu.52.4.667 – reference: KennedyJ.J. Conflict. Res.1998425610.1177/0022002798042001003 – reference: S. Blackmore,The Meme Machine (Oxford University Press, Oxford, 2000) – reference: QuellerD.C.StrassmannJ.E.Phil. Trans. R. Soc. B2009364314310.1098/rstb.2009.0095 – reference: FontanariJ.F.Eur. Phys. J. B2015882512015EPJB...88..251F10.1140/epjb/e2015-60608-1 – reference: S.A. Kauffman,At Home in the Universe: The Search for Laws of Self-Organization and Complexity (Oxford University Press, New York, 1995) – reference: M.R. Garey, D.S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, CA, 1979) – reference: I.L. Janis,Groupthink: psychological studies of policy decisions and fiascoes (Houghton Mifflin, Boston, 1982) – reference: KauffmanS.A.WeinbergerE.D.J. Theor. Biol.198914121110.1016/S0022-5193(89)80019-0 – reference: FontanariJ.F.RodriguesF.A.Theory Biosci.201613510110.1007/s12064-015-0219-1 – reference: W. Feller, inAn Introduction to Probability Theory and Its Applications (Wiley, New York, Third Edition, 1968), Vol. 1, p. 220 – reference: HubermanB.A.Physica D199042381990PhyD...42...38H10.1016/0167-2789(90)90065-W – reference: T. Bäck,Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms (Oxford University Press, New York, 1996) – reference: KlimekP.HanelR.ThurnerS.J. Stat. Mech.20092009P0300810.1088/1742-5468/2009/03/P03008 – reference: KarA.K.Expert. Syst. Appl.201659202018FBS....59...20K10.1016/j.eswa.2016.04.018 – reference: FontanariJ.F.J. Phys. A: Math. Gen.199124L6151991JPhA...24L.615F10.1088/0305-4470/24/11/008 – reference: WrightA.H.ThompsonR.K.ZhangJ.IEEE Trans. Evolut. Comput.2000437310.1109/4235.887236 – reference: MaloneT.LaubacherR.DellarocasC.MIT Sloan Manag. Rev.2010511 – reference: BillingerS.StieglitzN.SchumacherT.R.Organ. Sci.2013259310.1287/orsc.2013.0829 – reference: FontanariJ.F.PLoS ONE20149e1105172014PLoSO...9k0517F10.1371/journal.pone.0110517 – reference: R. Boyd, P.J. Richerson,The Origin and Evolution of Cultures (Oxford University Press, Oxford, 2005) – reference: González-AvellaJ.C.CosenzaM.G.EguíluzV.M.San MiguelM.New J. Phys.2010120130102010NJPh...12a3010G10.1088/1367-2630/12/1/013010 – reference: KauffmanS.A.LevinS.J. Theor. Biol.19871281110.1016/S0022-5193(87)80029-2 – volume: 24 start-page: L615 year: 1991 ident: 10199_CR30 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/24/11/008 – volume: 1 start-page: 67 year: 1997 ident: 10199_CR39 publication-title: IEEE T. Evolut. Comput. doi: 10.1109/4235.585893 – volume: 99 start-page: 032301 year: 2019 ident: 10199_CR35 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.99.032301 – volume: 41 start-page: 203 year: 1997 ident: 10199_CR28 publication-title: J. Conflict. Res. doi: 10.1177/0022002797041002001 – ident: 10199_CR14 – volume: 2015 start-page: P06014 year: 2015 ident: 10199_CR38 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2015/06/P06014 – volume: 9 start-page: e110517 year: 2014 ident: 10199_CR7 publication-title: PLoS ONE doi: 10.1371/journal.pone.0110517 – ident: 10199_CR8 – ident: 10199_CR15 doi: 10.1093/oso/9780195099713.001.0001 – ident: 10199_CR9 doi: 10.1093/oso/9780195165241.001.0001 – volume: 254 start-page: 181 year: 1991 ident: 10199_CR11 publication-title: Science doi: 10.1126/science.254.5035.1181 – ident: 10199_CR33 – ident: 10199_CR5 doi: 10.7551/mitpress/1090.001.0001 – volume: 172 start-page: 226 year: 2018 ident: 10199_CR21 publication-title: J. Stat. Phys. doi: 10.1007/s10955-018-1979-z – volume: 29 start-page: 1 year: 2019 ident: 10199_CR4 publication-title: Phys. Life Rev. doi: 10.1016/j.plrev.2018.05.002 – volume: 42 start-page: 56 year: 1998 ident: 10199_CR6 publication-title: J. Conflict. Res. doi: 10.1177/0022002798042001003 – volume: 88 start-page: 251 year: 2015 ident: 10199_CR13 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2015-60608-1 – volume: 42 start-page: 38 year: 1990 ident: 10199_CR10 publication-title: Physica D doi: 10.1016/0167-2789(90)90065-W – volume: 205 start-page: 803 year: 2017 ident: 10199_CR32 publication-title: Genetics doi: 10.1534/genetics.116.189340 – ident: 10199_CR17 – ident: 10199_CR23 – volume: 128 start-page: 11 year: 1987 ident: 10199_CR20 publication-title: J. Theor. Biol. doi: 10.1016/S0022-5193(87)80029-2 – volume: 52 start-page: 667 year: 2007 ident: 10199_CR12 publication-title: Admin. Sci. Quart. doi: 10.2189/asqu.52.4.667 – volume: 45 start-page: 80 year: 2001 ident: 10199_CR25 publication-title: J. Conflict. Res. doi: 10.1177/0022002701045001004 – volume: 25 start-page: 93 year: 2013 ident: 10199_CR19 publication-title: Organ. Sci. doi: 10.1287/orsc.2013.0829 – volume: 96 start-page: 38004 year: 2011 ident: 10199_CR27 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/96/38004 – volume: 135 start-page: 101 year: 2016 ident: 10199_CR34 publication-title: Theory Biosci. doi: 10.1007/s12064-015-0219-1 – volume: 51 start-page: 1 year: 2010 ident: 10199_CR1 publication-title: MIT Sloan Manag. Rev. – volume: 86 start-page: 6191 year: 1989 ident: 10199_CR24 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.86.16.6191 – volume: 2009 start-page: P03008 year: 2009 ident: 10199_CR36 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2009/03/P03008 – volume: 12 start-page: 013010 year: 2010 ident: 10199_CR26 publication-title: New J. Phys. doi: 10.1088/1367-2630/12/1/013010 – volume: 364 start-page: 3143 year: 2009 ident: 10199_CR2 publication-title: Phil. Trans. R. Soc. B doi: 10.1098/rstb.2009.0095 – volume: 2019 start-page: 013501 year: 2019 ident: 10199_CR37 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/aaf634 – volume: 43 start-page: 934 year: 1997 ident: 10199_CR18 publication-title: Manag. Sci. doi: 10.1287/mnsc.43.7.934 – volume: 4 start-page: 373 year: 2000 ident: 10199_CR22 publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/4235.887236 – ident: 10199_CR40 – volume: 141 start-page: 211 year: 1989 ident: 10199_CR16 publication-title: J. Theor. Biol. doi: 10.1016/S0022-5193(89)80019-0 – volume: 46 start-page: 6714 year: 1992 ident: 10199_CR31 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.46.6714 – ident: 10199_CR29 – volume: 59 start-page: 20 year: 2016 ident: 10199_CR3 publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2016.04.018 |
| SSID | ssj0001614 |
| Score | 2.3208795 |
| Snippet | Biological and cultural inspired optimization algorithms are nowadays part of the basic toolkit of a great many research domains. By mimicking processes in... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Complex Systems Condensed Matter Physics Evolutionary algorithms Fluid- and Aerodynamics Genetic algorithms Machine learning Mathematical optimization Maxima Optimization Physics Physics and Astronomy Problem solving Regular Article Search algorithms Solid State Physics Strings Toolkits |
| Title | The surprising little effectiveness of cooperative algorithms in parallel problem solving |
| URI | https://link.springer.com/article/10.1140/epjb/e2020-10199-9 https://www.proquest.com/docview/2423565623 |
| Volume | 93 |
| WOSCitedRecordID | wos000552020300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1434-6036 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001614 issn: 1434-6028 databaseCode: RSV dateStart: 19980101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5ggMSFN2IwUISQOEBFX2uT44RAcJkQL8EpStNkDJV2Wjd-P06aDvEagnNcq3EdPxr7M0IHlIQ0duPEaSexdMIoCR0ObsihLmRuSsZUEW6GTcTdLnl4oFe2Kaysq93rK0ljqSs8W_dEDp6TE-nrdAfUSONKzqI5cHdEH8frm_uJ_YUYxtwlh0HoROA-61aZb3l8cEefjfKX21HjdM6X__e6K2jJBpm4U2nFKpqR-RpaMMWeolxHj6AbuAQJwwEHlhgicdAYXJV2WOuHC4VFUQxkhQyOedYrhv3R00uJ-znWgOFZJjNs59Fg0GD9Z2ID3Z2f3Z5eOHbEgiNAdCOHc8ndxI9IEIE7i9y0nSqu_JSHCYlULF3uEaE8TiCOS0LqST9tc59HnowVFdQLNlEjL3K5hTBJVUDDFDafeuAZPSIlRHMiAQuRQhrpN5FXS5oJiz-ux2BkrOqNdpkWGTMiY0ZkjDbR0eSZQYW-MZV6X39ApmEtcl030-PjsmSXN9eso2HRYgq51FQiWNeAgUETHVoiVcA7Cm57FWCnGi7rA7vfKN95tmq9YtZOlExHszqk9mH5uNaj9-Wf97r9N_IdtGhU0dQZt1BjNBzLXTQvXkf9crhnzs8buyIYPA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61tBVcoC_E8mitqlIPbUQe3sQ-IgQCla6qXVrRk-U4Nl0UktVm4fczdhxW2wIVPXsyiifjecQz3wB85IzyLMzyoJ9nOqBpTgOJbijgIWZuRmfcMOmGTWSDATs74999U1jTVbt3V5LOUrd4tuGunlzkuzq26Q6qkcWVfArPKHosW8g3HP28tb8Yw7i7ZJrQIEX32bXK3MljwR39aZT_uh11Tudw7f9e9yWs-iCT7LVa8Qqe6Oo1vHDFnqp5A79QN0iDEsYDjiwJRuKoMaQt7fDWj9SGqLqe6BYZnMjyvJ6OZ78vGzKuiAUML0tdEj-PhqAG2z8Tb-HH4cHp_lHgRywECiOFWSCllmEepyxJ0Z2lYdEvjDRxIWnOUpPpUEZMmUgyjONyyiMdF30ZyzTSmeGKR8k6LFV1pTeAsMIknBa4-SJCzxgxrTGaUzlaiALTyLgHUSdpoTz-uB2DUYq2NzoUVmTCiUw4kQneg8-3z0xa9I0HqT_YDygsrEVl62bO5VXTiOPRUOxZWLSMYy71IBGuW8DApAefPJGp8R2V9L0KuFMLl7XA7l-Uc57bnV4JbycaYaNZG1LHuPyl06P58v173Xwc-XtYPjr9diJOjgdft2DFqaWrOd6Gpdn0Su_Ac3U9GzfTd-4s3QDiZhsg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagHOKlFChioVALIfFQos3hTezHqu2KqtWqooDaJ8vx0S4KyWqT8vuZcZyWchQhnj0ZxZPxHPHMN4S8EZyJIi7KaFIWNmJ5ySIFbigSMWRuzhbCceWHTRSzGT85EUc_dPH7avfhSrLvaUCUprobL4wL2Lbx2C6-lGObYuoDKoUYk7fJHYZDgzBfP_58aYshnvH3yixjUQ6udGib-S2Pa67pZwP9y02pd0DTh___6mtkNQSfdLvXlkfklq0fk3u-CFS3T8gp6AxtQfJw8IE9hQgdNIn2JR_BKtLGUd00C9sjhlNVnTXLeXf-taXzmiKQeFXZioY5NRQ0G_9YrJNP072PO--jMHoh0hBBdJFSVsVlmvMsBzeXx2ZinHKpUazkuStsrBKuXaI4xHclE4lNzUSlKk9s4YQWSfaUrNRNbZ8Ryo3LBDOweZOAx0y4tRDl6RIsh4H0Mh2RZJC61AGXHMdjVLLvmY4likx6kUkvMilGZOvymUWPynEj9Wv8mBLhLmqspzlTF20r948_yG2ESysE5Fg3EsE6AglmI_I2ELkG3lGr0MMAO0UYrWvs_kZ5xXNj0DEZ7EcrMcrFUDuF5XeDTl0t_3mvz_-NfJPcP9qdysP92cEL8sBrpS9F3iAr3fLCviR39bdu3i5f-WP1HQtYJAQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+surprising+little+effectiveness+of+cooperative+algorithms+in+parallel+problem+solving&rft.jtitle=The+European+physical+journal.+B%2C+Condensed+matter+physics&rft.au=Reia%2C+Sandro+M&rft.au=Aquino%2C+Larissa+F&rft.au=Fontanari%2C+Jose+F&rft.date=2020-07-01&rft.pub=Springer&rft.issn=1434-6028&rft.volume=93&rft.issue=7&rft_id=info:doi/10.1140%2Fepjb%2Fe2020-10199-9&rft.externalDocID=A636079826 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6028&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6028&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6028&client=summon |