The surprising little effectiveness of cooperative algorithms in parallel problem solving

Biological and cultural inspired optimization algorithms are nowadays part of the basic toolkit of a great many research domains. By mimicking processes in nature and animal societies, these general-purpose search algorithms promise to deliver optimal or near-optimal solutions using hardly any infor...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. B, Condensed matter physics Vol. 93; no. 7
Main Authors: Reia, Sandro M., Aquino, Larissa F., Fontanari, José F.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2020
Springer
Springer Nature B.V
Subjects:
ISSN:1434-6028, 1434-6036
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Biological and cultural inspired optimization algorithms are nowadays part of the basic toolkit of a great many research domains. By mimicking processes in nature and animal societies, these general-purpose search algorithms promise to deliver optimal or near-optimal solutions using hardly any information on the optimization problems they are set to tackle. Here we study the performances of a cultural-inspired algorithm – the imitative learning search – as well as of asexual and sexual variants of evolutionary algorithms in finding the global maxima of NK-fitness landscapes. The main performance measure is the total number of agent updates required by the algorithms to find those global maxima and the baseline performance, which establishes the effectiveness of the cooperative algorithms, is set by the blind search in which the agents explore the problem space (binary strings) by flipping bits at random. We find that even for smooth landscapes that exhibit a single maximum, the evolutionary algorithms do not perform much better than the blind search due to the stochastic effects of the genetic roulette. The imitative learning is immune to this effect thanks to the deterministic choice of the fittest string in the population, which is used as a model for imitation. The tradeoff is that for rugged landscapes the imitative learning search is more prone to be trapped in local maxima than the evolutionary algorithms. In fact, in the case of rugged landscapes with a mild density of local maxima, the blind search either beats or matches the cooperative algorithms regardless of whether the task is to find the global maximum or to find the fittest state within a given runtime. Graphical abstract
AbstractList Biological and cultural inspired optimization algorithms are nowadays part of the basic toolkit of a great many research domains. By mimicking processes in nature and animal societies, these generalpurpose search algorithms promise to deliver optimal or near-optimal solutions using hardly any information on the optimization problems they are set to tackle. Here we study the performances of a cultural-inspired algorithm--the imitative learning search--as well as of asexual and sexual variants of evolutionary algorithms in finding the global maxima of NK-fitness landscapes. The main performance measure is the total number of agent updates required by the algorithms to find those global maxima and the baseline performance, which establishes the effectiveness of the cooperative algorithms, is set by the blind search in which the agents explore the problem space (binary strings) by flipping bits at random. We find that even for smooth landscapes that exhibit a single maximum, the evolutionary algorithms do not perform much better than the blind search due to the stochastic effects of the genetic roulette. The imitative learning is immune to this effect thanks to the deterministic choice of the fittest string in the population, which is used as a model for imitation. The tradeoff is that for rugged landscapes the imitative learning search is more prone to be trapped in local maxima than the evolutionary algorithms. In fact, in the case of rugged landscapes with a mild density of local maxima, the blind search either beats or matches the cooperative algorithms regardless of whether the task is to find the global maximum or to find the fittest state within a given runtime.
Biological and cultural inspired optimization algorithms are nowadays part of the basic toolkit of a great many research domains. By mimicking processes in nature and animal societies, these general-purpose search algorithms promise to deliver optimal or near-optimal solutions using hardly any information on the optimization problems they are set to tackle. Here we study the performances of a cultural-inspired algorithm – the imitative learning search – as well as of asexual and sexual variants of evolutionary algorithms in finding the global maxima of NK-fitness landscapes. The main performance measure is the total number of agent updates required by the algorithms to find those global maxima and the baseline performance, which establishes the effectiveness of the cooperative algorithms, is set by the blind search in which the agents explore the problem space (binary strings) by flipping bits at random. We find that even for smooth landscapes that exhibit a single maximum, the evolutionary algorithms do not perform much better than the blind search due to the stochastic effects of the genetic roulette. The imitative learning is immune to this effect thanks to the deterministic choice of the fittest string in the population, which is used as a model for imitation. The tradeoff is that for rugged landscapes the imitative learning search is more prone to be trapped in local maxima than the evolutionary algorithms. In fact, in the case of rugged landscapes with a mild density of local maxima, the blind search either beats or matches the cooperative algorithms regardless of whether the task is to find the global maximum or to find the fittest state within a given runtime.
Biological and cultural inspired optimization algorithms are nowadays part of the basic toolkit of a great many research domains. By mimicking processes in nature and animal societies, these general-purpose search algorithms promise to deliver optimal or near-optimal solutions using hardly any information on the optimization problems they are set to tackle. Here we study the performances of a cultural-inspired algorithm – the imitative learning search – as well as of asexual and sexual variants of evolutionary algorithms in finding the global maxima of NK-fitness landscapes. The main performance measure is the total number of agent updates required by the algorithms to find those global maxima and the baseline performance, which establishes the effectiveness of the cooperative algorithms, is set by the blind search in which the agents explore the problem space (binary strings) by flipping bits at random. We find that even for smooth landscapes that exhibit a single maximum, the evolutionary algorithms do not perform much better than the blind search due to the stochastic effects of the genetic roulette. The imitative learning is immune to this effect thanks to the deterministic choice of the fittest string in the population, which is used as a model for imitation. The tradeoff is that for rugged landscapes the imitative learning search is more prone to be trapped in local maxima than the evolutionary algorithms. In fact, in the case of rugged landscapes with a mild density of local maxima, the blind search either beats or matches the cooperative algorithms regardless of whether the task is to find the global maximum or to find the fittest state within a given runtime. Graphical abstract
ArticleNumber 140
Audience Academic
Author Aquino, Larissa F.
Reia, Sandro M.
Fontanari, José F.
Author_xml – sequence: 1
  givenname: Sandro M.
  orcidid: 0000-0001-5817-5020
  surname: Reia
  fullname: Reia, Sandro M.
  organization: Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369
– sequence: 2
  givenname: Larissa F.
  orcidid: 0000-0002-3080-8727
  surname: Aquino
  fullname: Aquino, Larissa F.
  organization: Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369
– sequence: 3
  givenname: José F.
  surname: Fontanari
  fullname: Fontanari, José F.
  email: fontanari@ifsc.usp.br
  organization: Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369
BookMark eNqNkUtrHDEQhIVxwI_kD-Qk8CmHsfWY0Y6OxuRhMAQS55CT6NG0xlq0o4mkNcm_j9YbktgHJ-jQoqmvCrpOyOEcZyTkNWfnnLfsApf1cIGCCdZwxrVu9AE55q1sG8WkOvz9F_0ROcl5zRjjirfH5OvtHdK8TUvy2c8TDb6UgBSdQ1v8Pc6YM42O2hgXTLBbUQhTTL7cbTL1M10gQQgY6JLiEHBDcwz31eoleeEgZHz1a56SL-_e3l59aG4-vr--urxpbMd0aQAQ2CBUL5VsuWJjNzpwYoR26JVbIQPeW8eh71g_tJqjGDsQoDiunLaay1Nytvet-d-2mItZx22aa6QRrZCd6pSQVXW-V00Q0PjZxZLA1jfixtt6TOfr_lL1QrGVlv8PyJ2-UhV48wiomoLfywTbnM3150-Pzf-p_ctX7LU2xZwTOlO72kD6YTgzu_LNrnzzUL55KN_oCvVPIOtLba_mJPDheVTu0Vxz5gnTn3s-Q_0EJafHyw
CitedBy_id crossref_primary_10_1007_s12083_021_01121_6
crossref_primary_10_1088_1742_5468_abfa1f
Cites_doi 10.1088/0305-4470/24/11/008
10.1109/4235.585893
10.1103/PhysRevE.99.032301
10.1177/0022002797041002001
10.1088/1742-5468/2015/06/P06014
10.1371/journal.pone.0110517
10.1093/oso/9780195099713.001.0001
10.1093/oso/9780195165241.001.0001
10.1126/science.254.5035.1181
10.7551/mitpress/1090.001.0001
10.1007/s10955-018-1979-z
10.1016/j.plrev.2018.05.002
10.1177/0022002798042001003
10.1140/epjb/e2015-60608-1
10.1016/0167-2789(90)90065-W
10.1534/genetics.116.189340
10.1016/S0022-5193(87)80029-2
10.2189/asqu.52.4.667
10.1177/0022002701045001004
10.1287/orsc.2013.0829
10.1209/0295-5075/96/38004
10.1007/s12064-015-0219-1
10.1073/pnas.86.16.6191
10.1088/1742-5468/2009/03/P03008
10.1088/1367-2630/12/1/013010
10.1098/rstb.2009.0095
10.1088/1742-5468/aaf634
10.1287/mnsc.43.7.934
10.1109/4235.887236
10.1016/S0022-5193(89)80019-0
10.1103/PhysRevA.46.6714
10.1016/j.eswa.2016.04.018
ContentType Journal Article
Copyright EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020
COPYRIGHT 2020 Springer
EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: COPYRIGHT 2020 Springer
– notice: EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
ISR
DOI 10.1140/epjb/e2020-10199-9
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList



DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-6036
ExternalDocumentID A682607933
A636079826
10_1140_epjb_e2020_10199_9
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
-~X
.VR
06D
0R~
199
203
28-
29G
29Q
29~
2J2
2JY
2KG
2KM
2LR
2P1
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHSBF
AHYZX
AI.
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IGS
IHE
IKXTQ
ISR
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9T
PF-
PT5
QOS
R89
R9I
RED
RID
RIG
RNS
ROL
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
~8M
2JN
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
EBLON
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c509t-aaea0b2683634160d5dfaf2da4b86f7e0a18cf1a8508b491e2d5a2a61e7f9c913
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552020300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1434-6028
IngestDate Thu Sep 25 00:42:24 EDT 2025
Sat Nov 29 10:18:22 EST 2025
Sat Nov 29 10:20:26 EST 2025
Wed Nov 26 10:11:41 EST 2025
Wed Nov 26 09:35:13 EST 2025
Sat Nov 29 02:34:15 EST 2025
Tue Nov 18 21:40:37 EST 2025
Fri Feb 21 02:29:12 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Statistical and Nonlinear Physics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-aaea0b2683634160d5dfaf2da4b86f7e0a18cf1a8508b491e2d5a2a61e7f9c913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3080-8727
0000-0001-5817-5020
OpenAccessLink http://dx.doi.org/10.1140/epjb/e2020-10199-9
PQID 2423565623
PQPubID 2043700
ParticipantIDs proquest_journals_2423565623
gale_infotracacademiconefile_A682607933
gale_infotracacademiconefile_A636079826
gale_incontextgauss_ISR_A682607933
gale_incontextgauss_ISR_A636079826
crossref_primary_10_1140_epjb_e2020_10199_9
crossref_citationtrail_10_1140_epjb_e2020_10199_9
springer_journals_10_1140_epjb_e2020_10199_9
PublicationCentury 2000
PublicationDate 20200700
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 7
  year: 2020
  text: 20200700
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Condensed Matter and Complex Systems
PublicationTitle The European physical journal. B, Condensed matter physics
PublicationTitleAbbrev Eur. Phys. J. B
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References KauffmanS.A.LevinS.J. Theor. Biol.19871281110.1016/S0022-5193(87)80029-2
González-AvellaJ.C.CosenzaM.G.EguíluzV.M.San MiguelM.New J. Phys.2010120130102010NJPh...12a3010G10.1088/1367-2630/12/1/013010
NowakS.KrugJ.J. Stat. Mech.20152015P0601410.1088/1742-5468/2015/06/P06014
KauffmanS.A.WeinbergerE.D.J. Theor. Biol.198914121110.1016/S0022-5193(89)80019-0
MaloneT.LaubacherR.DellarocasC.MIT Sloan Manag. Rev.2010511
HwangS.SchmiegeltB.FerrettiL.KrugJ.J. Stat. Phys.20181722262018JSP...172..226H381054410.1007/s10955-018-1979-z
KarA.K.Expert. Syst. Appl.201659202018FBS....59...20K10.1016/j.eswa.2016.04.018
CamposP.R.A.FontanariJ.F.J. Stat. Mech.2019201901350110.1088/1742-5468/aaf634
K. Huang,Statistical Mechanics (John Willey & Sons, New York, 1963)
ShibanaiY.YasunoS.IshiguroI.J. Conflict. Res.2001458010.1177/0022002701045001004
AxelrodR.J. Conflict. Res.19974120310.1177/0022002797041002001
MackenC.A.PerelsonA.S.Proc. Natl. Acad. Sci. USA19898661911989PNAS...86.6191M10.1073/pnas.86.16.6191
FlyvbjergH.LautrupB.Phys. Rev. A19924667141992PhRvA..46.6714F10.1103/PhysRevA.46.6714
GomesP.F.ReiaS.M.RodriguesF.A.FontanariJ.F.Phys. Rev. E2019990323012019PhRvE..99c2301G10.1103/PhysRevE.99.032301
KlimekP.HanelR.ThurnerS.J. Stat. Mech.20092009P0300810.1088/1742-5468/2009/03/P03008
HubermanB.A.Physica D199042381990PhyD...42...38H10.1016/0167-2789(90)90065-W
BillingerS.StieglitzN.SchumacherT.R.Organ. Sci.2013259310.1287/orsc.2013.0829
ClearwaterS.H.HubermanB.A.HoggT.Science199125418110.1126/science.254.5035.1181
I.L. Janis,Groupthink: psychological studies of policy decisions and fiascoes (Houghton Mifflin, Boston, 1982)
WolpertD.H.MacreadyW.G.IEEE T. Evolut. Comput.199716710.1109/4235.585893
LazerD.FriedmanA.Admin. Sci. Quart.20075266710.2189/asqu.52.4.667
S.A. Kauffman,At Home in the Universe: The Search for Laws of Self-Organization and Complexity (Oxford University Press, New York, 1995)
QuellerD.C.StrassmannJ.E.Phil. Trans. R. Soc. B2009364314310.1098/rstb.2009.0095
D.E. Goldberg,Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, 1989)
W. Feller, inAn Introduction to Probability Theory and Its Applications (Wiley, New York, Third Edition, 1968), Vol. 1, p. 220
M.R. Garey, D.S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, CA, 1979)
FontanariJ.F.PLoS ONE20149e1105172014PLoSO...9k0517F10.1371/journal.pone.0110517
HerediaJ.P.TrubenováB.SudholtD.PaixãoT.Genetics201720580310.1534/genetics.116.189340
S. Blackmore,The Meme Machine (Oxford University Press, Oxford, 2000)
FontanariJ.F.Eur. Phys. J. B2015882512015EPJB...88..251F10.1140/epjb/e2015-60608-1
PeresL.R.FontanariJ.F.Europhys. Lett.201196380042011EL.....9638004P10.1209/0295-5075/96/38004
FontanariJ.F.RodriguesF.A.Theory Biosci.201613510110.1007/s12064-015-0219-1
KennedyJ.J. Conflict. Res.1998425610.1177/0022002798042001003
WrightA.H.ThompsonR.K.ZhangJ.IEEE Trans. Evolut. Comput.2000437310.1109/4235.887236
LevinthalD.A.Manag. Sci.19974393410.1287/mnsc.43.7.934
GaoC.LiuC.SchenzD.LiX.ZhangZ.JusupM.WangZ.BeekmanM.NakagakiT.Phys. Life Rev.20192912019PhLRv..29....1G10.1016/j.plrev.2018.05.002
T. Bäck,Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms (Oxford University Press, New York, 1996)
J.H. Holland,Adaptation in Natural and Artificial Systems (MIT Press, Cambridge, MA, 1992)
R. Boyd, P.J. Richerson,The Origin and Evolution of Cultures (Oxford University Press, Oxford, 2005)
FontanariJ.F.J. Phys. A: Math. Gen.199124L6151991JPhA...24L.615F10.1088/0305-4470/24/11/008
10199_CR14
D.A. Levinthal (10199_CR18) 1997; 43
C.A. Macken (10199_CR24) 1989; 86
J.P. Heredia (10199_CR32) 2017; 205
10199_CR33
D. Lazer (10199_CR12) 2007; 52
S.A. Kauffman (10199_CR16) 1989; 141
10199_CR8
J.F. Fontanari (10199_CR30) 1991; 24
10199_CR9
P.F. Gomes (10199_CR35) 2019; 99
A.K. Kar (10199_CR3) 2016; 59
H. Flyvbjerg (10199_CR31) 1992; 46
10199_CR5
P. Klimek (10199_CR36) 2009; 2009
C. Gao (10199_CR4) 2019; 29
10199_CR29
T. Malone (10199_CR1) 2010; 51
J.F. Fontanari (10199_CR13) 2015; 88
10199_CR23
S.A. Kauffman (10199_CR20) 1987; 128
10199_CR40
B.A. Huberman (10199_CR10) 1990; 42
J.F. Fontanari (10199_CR7) 2014; 9
P.R.A. Campos (10199_CR37) 2019; 2019
J.C. González-Avella (10199_CR26) 2010; 12
A.H. Wright (10199_CR22) 2000; 4
R. Axelrod (10199_CR28) 1997; 41
S. Nowak (10199_CR38) 2015; 2015
S. Hwang (10199_CR21) 2018; 172
J.F. Fontanari (10199_CR34) 2016; 135
D.C. Queller (10199_CR2) 2009; 364
S.H. Clearwater (10199_CR11) 1991; 254
S. Billinger (10199_CR19) 2013; 25
D.H. Wolpert (10199_CR39) 1997; 1
10199_CR17
J. Kennedy (10199_CR6) 1998; 42
10199_CR15
Y. Shibanai (10199_CR25) 2001; 45
L.R. Peres (10199_CR27) 2011; 96
References_xml – reference: WolpertD.H.MacreadyW.G.IEEE T. Evolut. Comput.199716710.1109/4235.585893
– reference: MackenC.A.PerelsonA.S.Proc. Natl. Acad. Sci. USA19898661911989PNAS...86.6191M10.1073/pnas.86.16.6191
– reference: ShibanaiY.YasunoS.IshiguroI.J. Conflict. Res.2001458010.1177/0022002701045001004
– reference: GaoC.LiuC.SchenzD.LiX.ZhangZ.JusupM.WangZ.BeekmanM.NakagakiT.Phys. Life Rev.20192912019PhLRv..29....1G10.1016/j.plrev.2018.05.002
– reference: AxelrodR.J. Conflict. Res.19974120310.1177/0022002797041002001
– reference: GomesP.F.ReiaS.M.RodriguesF.A.FontanariJ.F.Phys. Rev. E2019990323012019PhRvE..99c2301G10.1103/PhysRevE.99.032301
– reference: FlyvbjergH.LautrupB.Phys. Rev. A19924667141992PhRvA..46.6714F10.1103/PhysRevA.46.6714
– reference: ClearwaterS.H.HubermanB.A.HoggT.Science199125418110.1126/science.254.5035.1181
– reference: CamposP.R.A.FontanariJ.F.J. Stat. Mech.2019201901350110.1088/1742-5468/aaf634
– reference: HerediaJ.P.TrubenováB.SudholtD.PaixãoT.Genetics201720580310.1534/genetics.116.189340
– reference: K. Huang,Statistical Mechanics (John Willey & Sons, New York, 1963)
– reference: HwangS.SchmiegeltB.FerrettiL.KrugJ.J. Stat. Phys.20181722262018JSP...172..226H381054410.1007/s10955-018-1979-z
– reference: NowakS.KrugJ.J. Stat. Mech.20152015P0601410.1088/1742-5468/2015/06/P06014
– reference: D.E. Goldberg,Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, 1989)
– reference: LevinthalD.A.Manag. Sci.19974393410.1287/mnsc.43.7.934
– reference: PeresL.R.FontanariJ.F.Europhys. Lett.201196380042011EL.....9638004P10.1209/0295-5075/96/38004
– reference: J.H. Holland,Adaptation in Natural and Artificial Systems (MIT Press, Cambridge, MA, 1992)
– reference: LazerD.FriedmanA.Admin. Sci. Quart.20075266710.2189/asqu.52.4.667
– reference: KennedyJ.J. Conflict. Res.1998425610.1177/0022002798042001003
– reference: S. Blackmore,The Meme Machine (Oxford University Press, Oxford, 2000)
– reference: QuellerD.C.StrassmannJ.E.Phil. Trans. R. Soc. B2009364314310.1098/rstb.2009.0095
– reference: FontanariJ.F.Eur. Phys. J. B2015882512015EPJB...88..251F10.1140/epjb/e2015-60608-1
– reference: S.A. Kauffman,At Home in the Universe: The Search for Laws of Self-Organization and Complexity (Oxford University Press, New York, 1995)
– reference: M.R. Garey, D.S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, CA, 1979)
– reference: I.L. Janis,Groupthink: psychological studies of policy decisions and fiascoes (Houghton Mifflin, Boston, 1982)
– reference: KauffmanS.A.WeinbergerE.D.J. Theor. Biol.198914121110.1016/S0022-5193(89)80019-0
– reference: FontanariJ.F.RodriguesF.A.Theory Biosci.201613510110.1007/s12064-015-0219-1
– reference: W. Feller, inAn Introduction to Probability Theory and Its Applications (Wiley, New York, Third Edition, 1968), Vol. 1, p. 220
– reference: HubermanB.A.Physica D199042381990PhyD...42...38H10.1016/0167-2789(90)90065-W
– reference: T. Bäck,Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms (Oxford University Press, New York, 1996)
– reference: KlimekP.HanelR.ThurnerS.J. Stat. Mech.20092009P0300810.1088/1742-5468/2009/03/P03008
– reference: KarA.K.Expert. Syst. Appl.201659202018FBS....59...20K10.1016/j.eswa.2016.04.018
– reference: FontanariJ.F.J. Phys. A: Math. Gen.199124L6151991JPhA...24L.615F10.1088/0305-4470/24/11/008
– reference: WrightA.H.ThompsonR.K.ZhangJ.IEEE Trans. Evolut. Comput.2000437310.1109/4235.887236
– reference: MaloneT.LaubacherR.DellarocasC.MIT Sloan Manag. Rev.2010511
– reference: BillingerS.StieglitzN.SchumacherT.R.Organ. Sci.2013259310.1287/orsc.2013.0829
– reference: FontanariJ.F.PLoS ONE20149e1105172014PLoSO...9k0517F10.1371/journal.pone.0110517
– reference: R. Boyd, P.J. Richerson,The Origin and Evolution of Cultures (Oxford University Press, Oxford, 2005)
– reference: González-AvellaJ.C.CosenzaM.G.EguíluzV.M.San MiguelM.New J. Phys.2010120130102010NJPh...12a3010G10.1088/1367-2630/12/1/013010
– reference: KauffmanS.A.LevinS.J. Theor. Biol.19871281110.1016/S0022-5193(87)80029-2
– volume: 24
  start-page: L615
  year: 1991
  ident: 10199_CR30
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/24/11/008
– volume: 1
  start-page: 67
  year: 1997
  ident: 10199_CR39
  publication-title: IEEE T. Evolut. Comput.
  doi: 10.1109/4235.585893
– volume: 99
  start-page: 032301
  year: 2019
  ident: 10199_CR35
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.99.032301
– volume: 41
  start-page: 203
  year: 1997
  ident: 10199_CR28
  publication-title: J. Conflict. Res.
  doi: 10.1177/0022002797041002001
– ident: 10199_CR14
– volume: 2015
  start-page: P06014
  year: 2015
  ident: 10199_CR38
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2015/06/P06014
– volume: 9
  start-page: e110517
  year: 2014
  ident: 10199_CR7
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0110517
– ident: 10199_CR8
– ident: 10199_CR15
  doi: 10.1093/oso/9780195099713.001.0001
– ident: 10199_CR9
  doi: 10.1093/oso/9780195165241.001.0001
– volume: 254
  start-page: 181
  year: 1991
  ident: 10199_CR11
  publication-title: Science
  doi: 10.1126/science.254.5035.1181
– ident: 10199_CR33
– ident: 10199_CR5
  doi: 10.7551/mitpress/1090.001.0001
– volume: 172
  start-page: 226
  year: 2018
  ident: 10199_CR21
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-018-1979-z
– volume: 29
  start-page: 1
  year: 2019
  ident: 10199_CR4
  publication-title: Phys. Life Rev.
  doi: 10.1016/j.plrev.2018.05.002
– volume: 42
  start-page: 56
  year: 1998
  ident: 10199_CR6
  publication-title: J. Conflict. Res.
  doi: 10.1177/0022002798042001003
– volume: 88
  start-page: 251
  year: 2015
  ident: 10199_CR13
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2015-60608-1
– volume: 42
  start-page: 38
  year: 1990
  ident: 10199_CR10
  publication-title: Physica D
  doi: 10.1016/0167-2789(90)90065-W
– volume: 205
  start-page: 803
  year: 2017
  ident: 10199_CR32
  publication-title: Genetics
  doi: 10.1534/genetics.116.189340
– ident: 10199_CR17
– ident: 10199_CR23
– volume: 128
  start-page: 11
  year: 1987
  ident: 10199_CR20
  publication-title: J. Theor. Biol.
  doi: 10.1016/S0022-5193(87)80029-2
– volume: 52
  start-page: 667
  year: 2007
  ident: 10199_CR12
  publication-title: Admin. Sci. Quart.
  doi: 10.2189/asqu.52.4.667
– volume: 45
  start-page: 80
  year: 2001
  ident: 10199_CR25
  publication-title: J. Conflict. Res.
  doi: 10.1177/0022002701045001004
– volume: 25
  start-page: 93
  year: 2013
  ident: 10199_CR19
  publication-title: Organ. Sci.
  doi: 10.1287/orsc.2013.0829
– volume: 96
  start-page: 38004
  year: 2011
  ident: 10199_CR27
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/96/38004
– volume: 135
  start-page: 101
  year: 2016
  ident: 10199_CR34
  publication-title: Theory Biosci.
  doi: 10.1007/s12064-015-0219-1
– volume: 51
  start-page: 1
  year: 2010
  ident: 10199_CR1
  publication-title: MIT Sloan Manag. Rev.
– volume: 86
  start-page: 6191
  year: 1989
  ident: 10199_CR24
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.86.16.6191
– volume: 2009
  start-page: P03008
  year: 2009
  ident: 10199_CR36
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2009/03/P03008
– volume: 12
  start-page: 013010
  year: 2010
  ident: 10199_CR26
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/1/013010
– volume: 364
  start-page: 3143
  year: 2009
  ident: 10199_CR2
  publication-title: Phil. Trans. R. Soc. B
  doi: 10.1098/rstb.2009.0095
– volume: 2019
  start-page: 013501
  year: 2019
  ident: 10199_CR37
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/aaf634
– volume: 43
  start-page: 934
  year: 1997
  ident: 10199_CR18
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.43.7.934
– volume: 4
  start-page: 373
  year: 2000
  ident: 10199_CR22
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/4235.887236
– ident: 10199_CR40
– volume: 141
  start-page: 211
  year: 1989
  ident: 10199_CR16
  publication-title: J. Theor. Biol.
  doi: 10.1016/S0022-5193(89)80019-0
– volume: 46
  start-page: 6714
  year: 1992
  ident: 10199_CR31
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.46.6714
– ident: 10199_CR29
– volume: 59
  start-page: 20
  year: 2016
  ident: 10199_CR3
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2016.04.018
SSID ssj0001614
Score 2.3208795
Snippet Biological and cultural inspired optimization algorithms are nowadays part of the basic toolkit of a great many research domains. By mimicking processes in...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Complex Systems
Condensed Matter Physics
Evolutionary algorithms
Fluid- and Aerodynamics
Genetic algorithms
Machine learning
Mathematical optimization
Maxima
Optimization
Physics
Physics and Astronomy
Problem solving
Regular Article
Search algorithms
Solid State Physics
Strings
Toolkits
Title The surprising little effectiveness of cooperative algorithms in parallel problem solving
URI https://link.springer.com/article/10.1140/epjb/e2020-10199-9
https://www.proquest.com/docview/2423565623
Volume 93
WOSCitedRecordID wos000552020300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1434-6036
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001614
  issn: 1434-6028
  databaseCode: RSV
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5ggMSFN2IwUISQOEBFX2uT44RAcJkQL8EpStNkDJV2Wjd-P06aDvEagnNcq3EdPxr7M0IHlIQ0duPEaSexdMIoCR0ObsihLmRuSsZUEW6GTcTdLnl4oFe2Kaysq93rK0ljqSs8W_dEDp6TE-nrdAfUSONKzqI5cHdEH8frm_uJ_YUYxtwlh0HoROA-61aZb3l8cEefjfKX21HjdM6X__e6K2jJBpm4U2nFKpqR-RpaMMWeolxHj6AbuAQJwwEHlhgicdAYXJV2WOuHC4VFUQxkhQyOedYrhv3R00uJ-znWgOFZJjNs59Fg0GD9Z2ID3Z2f3Z5eOHbEgiNAdCOHc8ndxI9IEIE7i9y0nSqu_JSHCYlULF3uEaE8TiCOS0LqST9tc59HnowVFdQLNlEjL3K5hTBJVUDDFDafeuAZPSIlRHMiAQuRQhrpN5FXS5oJiz-ux2BkrOqNdpkWGTMiY0ZkjDbR0eSZQYW-MZV6X39ApmEtcl030-PjsmSXN9eso2HRYgq51FQiWNeAgUETHVoiVcA7Cm57FWCnGi7rA7vfKN95tmq9YtZOlExHszqk9mH5uNaj9-Wf97r9N_IdtGhU0dQZt1BjNBzLXTQvXkf9crhnzs8buyIYPA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61tBVcoC_E8mitqlIPbUQe3sQ-IgQCla6qXVrRk-U4Nl0UktVm4fczdhxW2wIVPXsyiifjecQz3wB85IzyLMzyoJ9nOqBpTgOJbijgIWZuRmfcMOmGTWSDATs74999U1jTVbt3V5LOUrd4tuGunlzkuzq26Q6qkcWVfArPKHosW8g3HP28tb8Yw7i7ZJrQIEX32bXK3MljwR39aZT_uh11Tudw7f9e9yWs-iCT7LVa8Qqe6Oo1vHDFnqp5A79QN0iDEsYDjiwJRuKoMaQt7fDWj9SGqLqe6BYZnMjyvJ6OZ78vGzKuiAUML0tdEj-PhqAG2z8Tb-HH4cHp_lHgRywECiOFWSCllmEepyxJ0Z2lYdEvjDRxIWnOUpPpUEZMmUgyjONyyiMdF30ZyzTSmeGKR8k6LFV1pTeAsMIknBa4-SJCzxgxrTGaUzlaiALTyLgHUSdpoTz-uB2DUYq2NzoUVmTCiUw4kQneg8-3z0xa9I0HqT_YDygsrEVl62bO5VXTiOPRUOxZWLSMYy71IBGuW8DApAefPJGp8R2V9L0KuFMLl7XA7l-Uc57bnV4JbycaYaNZG1LHuPyl06P58v173Xwc-XtYPjr9diJOjgdft2DFqaWrOd6Gpdn0Su_Ac3U9GzfTd-4s3QDiZhsg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagHOKlFChioVALIfFQos3hTezHqu2KqtWqooDaJ8vx0S4KyWqT8vuZcZyWchQhnj0ZxZPxHPHMN4S8EZyJIi7KaFIWNmJ5ySIFbigSMWRuzhbCceWHTRSzGT85EUc_dPH7avfhSrLvaUCUprobL4wL2Lbx2C6-lGObYuoDKoUYk7fJHYZDgzBfP_58aYshnvH3yixjUQ6udGib-S2Pa67pZwP9y02pd0DTh___6mtkNQSfdLvXlkfklq0fk3u-CFS3T8gp6AxtQfJw8IE9hQgdNIn2JR_BKtLGUd00C9sjhlNVnTXLeXf-taXzmiKQeFXZioY5NRQ0G_9YrJNP072PO--jMHoh0hBBdJFSVsVlmvMsBzeXx2ZinHKpUazkuStsrBKuXaI4xHclE4lNzUSlKk9s4YQWSfaUrNRNbZ8Ryo3LBDOweZOAx0y4tRDl6RIsh4H0Mh2RZJC61AGXHMdjVLLvmY4likx6kUkvMilGZOvymUWPynEj9Wv8mBLhLmqspzlTF20r948_yG2ESysE5Fg3EsE6AglmI_I2ELkG3lGr0MMAO0UYrWvs_kZ5xXNj0DEZ7EcrMcrFUDuF5XeDTl0t_3mvz_-NfJPcP9qdysP92cEL8sBrpS9F3iAr3fLCviR39bdu3i5f-WP1HQtYJAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+surprising+little+effectiveness+of+cooperative+algorithms+in+parallel+problem+solving&rft.jtitle=The+European+physical+journal.+B%2C+Condensed+matter+physics&rft.au=Reia%2C+Sandro+M&rft.au=Aquino%2C+Larissa+F&rft.au=Fontanari%2C+Jose+F&rft.date=2020-07-01&rft.pub=Springer&rft.issn=1434-6028&rft.volume=93&rft.issue=7&rft_id=info:doi/10.1140%2Fepjb%2Fe2020-10199-9&rft.externalDocID=A636079826
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6028&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6028&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6028&client=summon