Research on the Optimization Method of Visual Sensor Calibration Combining Convex Lens Imaging with the Bionic Algorithm of Wolf Pack Predation

To improve the accuracy of camera calibration, a novel optimization method is proposed in this paper, which combines convex lens imaging with the bionic algorithm of Wolf Pack Predation (CLI-WPP). During the optimization process, the internal parameters and radial distortion parameters of the camera...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 24; číslo 18; s. 5926
Hlavní autori: Wu, Qingdong, Miao, Jijun, Liu, Zhaohui, Chang, Jiaxiu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 12.09.2024
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:To improve the accuracy of camera calibration, a novel optimization method is proposed in this paper, which combines convex lens imaging with the bionic algorithm of Wolf Pack Predation (CLI-WPP). During the optimization process, the internal parameters and radial distortion parameters of the camera are regarded as the search targets of the bionic algorithm of Wolf Pack Predation, and the reprojection error of the calibration results is used as the fitness evaluation criterion of the bionic algorithm of Wolf Pack Predation. The goal of optimizing camera calibration parameters is achieved by iteratively searching for a solution that minimizes the fitness value. To overcome the drawback that the bionic algorithm of Wolf Pack Predation is prone to fall into local optimal, a reverse learning strategy based on convex lens imaging is introduced to transform the current optimal individual and generate a series of new individuals with potential better solutions that are different from the original individual, helping the algorithm out of the local optimum dilemma. The comparative experimental results show that the average reprojection errors of the simulated annealing algorithm, Zhang’s calibration method, the sparrow search algorithm, the particle swarm optimization algorithm, bionic algorithm of Wolf Pack Predation, and the algorithm proposed in this paper (CLI-WPP) are 0.42986500, 0.28847656, 0.23543161, 0.219342495, 0.10637477, and 0.06615037, respectively. The results indicate that calibration accuracy, stability, and robustness are significantly improved with the optimization method based on the CLI-WPP, in comparison to the existing commonly used optimization algorithms.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s24185926