Multi-Type Missing Imputation of Time-Series Power Equipment Monitoring Data Based on Moving Average Filter–Asymmetric Denoising Autoencoder
Supervisory control and data acquisition (SCADA) systems are widely utilized in power equipment for condition monitoring. For the collected data, there generally exists a problem—missing data of different types and patterns. This leads to the poor quality and utilization difficulties of the collecte...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 23; číslo 24; s. 9697 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
08.12.2023
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Supervisory control and data acquisition (SCADA) systems are widely utilized in power equipment for condition monitoring. For the collected data, there generally exists a problem—missing data of different types and patterns. This leads to the poor quality and utilization difficulties of the collected data. To address this problem, this paper customizes methodology that combines an asymmetric denoising autoencoder (ADAE) and moving average filter (MAF) to perform accurate missing data imputation. First, convolution and gated recurrent unit (GRU) are applied to the encoder of the ADAE, while the decoder still utilizes the fully connected layers to form an asymmetric network structure. The ADAE extracts the local periodic and temporal features from monitoring data and then decodes the features to realize the imputation of the multi-type missing. On this basis, according to the continuity of power data in the time domain, the MAF is utilized to fuse the prior knowledge of the neighborhood of missing data to secondarily optimize the imputed data. Case studies reveal that the developed method achieves greater accuracy compared to existing models. This paper adopts experiments under different scenarios to justify that the MAF-ADAE method applies to actual power equipment monitoring data imputation. |
|---|---|
| AbstractList | Supervisory control and data acquisition (SCADA) systems are widely utilized in power equipment for condition monitoring. For the collected data, there generally exists a problem-missing data of different types and patterns. This leads to the poor quality and utilization difficulties of the collected data. To address this problem, this paper customizes methodology that combines an asymmetric denoising autoencoder (ADAE) and moving average filter (MAF) to perform accurate missing data imputation. First, convolution and gated recurrent unit (GRU) are applied to the encoder of the ADAE, while the decoder still utilizes the fully connected layers to form an asymmetric network structure. The ADAE extracts the local periodic and temporal features from monitoring data and then decodes the features to realize the imputation of the multi-type missing. On this basis, according to the continuity of power data in the time domain, the MAF is utilized to fuse the prior knowledge of the neighborhood of missing data to secondarily optimize the imputed data. Case studies reveal that the developed method achieves greater accuracy compared to existing models. This paper adopts experiments under different scenarios to justify that the MAF-ADAE method applies to actual power equipment monitoring data imputation. Supervisory control and data acquisition (SCADA) systems are widely utilized in power equipment for condition monitoring. For the collected data, there generally exists a problem-missing data of different types and patterns. This leads to the poor quality and utilization difficulties of the collected data. To address this problem, this paper customizes methodology that combines an asymmetric denoising autoencoder (ADAE) and moving average filter (MAF) to perform accurate missing data imputation. First, convolution and gated recurrent unit (GRU) are applied to the encoder of the ADAE, while the decoder still utilizes the fully connected layers to form an asymmetric network structure. The ADAE extracts the local periodic and temporal features from monitoring data and then decodes the features to realize the imputation of the multi-type missing. On this basis, according to the continuity of power data in the time domain, the MAF is utilized to fuse the prior knowledge of the neighborhood of missing data to secondarily optimize the imputed data. Case studies reveal that the developed method achieves greater accuracy compared to existing models. This paper adopts experiments under different scenarios to justify that the MAF-ADAE method applies to actual power equipment monitoring data imputation.Supervisory control and data acquisition (SCADA) systems are widely utilized in power equipment for condition monitoring. For the collected data, there generally exists a problem-missing data of different types and patterns. This leads to the poor quality and utilization difficulties of the collected data. To address this problem, this paper customizes methodology that combines an asymmetric denoising autoencoder (ADAE) and moving average filter (MAF) to perform accurate missing data imputation. First, convolution and gated recurrent unit (GRU) are applied to the encoder of the ADAE, while the decoder still utilizes the fully connected layers to form an asymmetric network structure. The ADAE extracts the local periodic and temporal features from monitoring data and then decodes the features to realize the imputation of the multi-type missing. On this basis, according to the continuity of power data in the time domain, the MAF is utilized to fuse the prior knowledge of the neighborhood of missing data to secondarily optimize the imputed data. Case studies reveal that the developed method achieves greater accuracy compared to existing models. This paper adopts experiments under different scenarios to justify that the MAF-ADAE method applies to actual power equipment monitoring data imputation. |
| Audience | Academic |
| Author | Zhang, Xinsong Hua, Liang Gu, Juping Jiang, Ling Cai, Yueming |
| AuthorAffiliation | 2 School of Electrical and Information Engineering, Suzhou University of Science and Technology, Suzhou 215101, China 1 School of Information Science and Technology, Nantong University, Nantong 226019, China; 2010510006@stmail.ntu.edu.cn 3 School of Electrical Engineering, Nantong University, Nantong 226019, China; zhang.xs@ntu.edu.cn (X.Z.); hualiang@ntu.edu.cn (L.H.) 4 NARI Technology Company Limited, NARI Group Corporation, Nanjing 211106, China; 13951969176@163.com |
| AuthorAffiliation_xml | – name: 2 School of Electrical and Information Engineering, Suzhou University of Science and Technology, Suzhou 215101, China – name: 1 School of Information Science and Technology, Nantong University, Nantong 226019, China; 2010510006@stmail.ntu.edu.cn – name: 4 NARI Technology Company Limited, NARI Group Corporation, Nanjing 211106, China; 13951969176@163.com – name: 3 School of Electrical Engineering, Nantong University, Nantong 226019, China; zhang.xs@ntu.edu.cn (X.Z.); hualiang@ntu.edu.cn (L.H.) |
| Author_xml | – sequence: 1 givenname: Ling orcidid: 0000-0001-9993-3342 surname: Jiang fullname: Jiang, Ling – sequence: 2 givenname: Juping orcidid: 0000-0003-0078-4602 surname: Gu fullname: Gu, Juping – sequence: 3 givenname: Xinsong surname: Zhang fullname: Zhang, Xinsong – sequence: 4 givenname: Liang surname: Hua fullname: Hua, Liang – sequence: 5 givenname: Yueming surname: Cai fullname: Cai, Yueming |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38139543$$D View this record in MEDLINE/PubMed |
| BookMark | eNptks9uGyEQxlGVqkncHvoC1Uq9tIdNYGG9y6ly86e1FKuV6jvCMLhYu-AA68q3PkEvfcM-SXGcWklUcQCG33www3eKjpx3gNBrgs8o5fg8VrRifMybZ-iEsIqVbVXhowfrY3Qa4wrjilLavkDHtCWU14yeoF-zoUu2nG_XUMxsjNYti2m_HpJM1rvCm2Jueyi_QbAQi6_-B4Ti6naw6x5cKmbe2eTDLulSJll8lBF0kfNmfrMLTjYQ5BKKa9slCH9-_p7Ebd9DClYVl-C8vbtvMiQPTnkN4SV6bmQX4dX9PELz66v5xefy5sun6cXkplQ15qnkWkOtCRjK2vGCYhjrtsUM571pDOGcEa7woiYLoikjWHKoNBBWa4yNlnSEpntZ7eVKrIPtZdgKL624C_iwFDIkqzoQCrdUNozXmhPWLmpOCaVGGcUMpkSbrPVhr7UeFj1olfsSZPdI9PGJs9_F0m8EwQ1r2vwTI_TuXiH42wFiEr2NCrpOOvBDFBXHdV01mLCMvn2CrvwQXG7VjmKc5h_GmTrbU0uZK7DO-HyxykNDb1X2jrE5PmkaXrWMkiYnvHlYw-Hx_3ySgfd7QAUfYwBzQAgWOw-Kgwcze_6EVXZvp_wK2_0n4y8gLN84 |
| CitedBy_id | crossref_primary_10_1103_PhysRevD_111_024067 crossref_primary_10_2196_53719 |
| Cites_doi | 10.3390/s20061772 10.1093/ije/dyu080 10.1016/j.apenergy.2022.119292 10.1109/ACCESS.2020.3000557 10.1109/ACCESS.2021.3052142 10.1109/ICCV48922.2021.00082 10.1109/TSG.2019.2960043 10.1109/TDEI.2015.005532 10.1109/TSG.2020.3028501 10.1109/TSG.2018.2864176 10.1016/j.trc.2020.102673 10.1109/TPWRS.2015.2413935 10.35833/MPCE.2020.000894 10.1007/s40565-016-0213-8 10.1016/j.apenergy.2021.117655 10.1109/TSG.2016.2580002 10.1109/TIM.2015.2485339 10.1109/TPWRS.2019.2922671 10.3390/s21227731 10.1109/TSG.2020.2986439 10.1109/TPAMI.2012.271 10.1109/ACCESS.2017.2740968 10.1109/TCYB.2021.3121312 10.1109/TPWRS.2014.2347047 10.1016/j.asoc.2022.109903 10.1016/j.scs.2019.101900 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/s23249697 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_c083a7495d9148b593133fcfc4f031df PMC10747881 A779284317 38139543 10_3390_s23249697 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61973178 – fundername: National Natural Science Foundation of China grantid: 52377117 – fundername: National Natural Science Foundation of China grantid: U2066203 – fundername: Key Research and Development Plan of Jiangsu Province grantid: BE2021063 – fundername: National Natural Science Foundation of China grantid: 61973178; 52377117 – fundername: Key Program of National Natural Science Foundation of China grantid: U2066203 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c509t-9dde5d1ef3486b30e6d88040f34f7f199419c0b51b1d3410a9e2de145d00fda3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001136017400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:52:06 EDT 2025 Tue Nov 04 02:06:08 EST 2025 Fri Sep 05 06:27:27 EDT 2025 Tue Oct 07 07:40:28 EDT 2025 Tue Nov 04 18:28:48 EST 2025 Mon Jul 21 05:31:04 EDT 2025 Sat Nov 29 07:14:26 EST 2025 Tue Nov 18 22:07:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Keywords | moving average filter data imputation asymmetric denoising autoencoder power equipment monitoring data multi-type missing |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-9dde5d1ef3486b30e6d88040f34f7f199419c0b51b1d3410a9e2de145d00fda3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0078-4602 0000-0001-9993-3342 |
| OpenAccessLink | https://doaj.org/article/c083a7495d9148b593133fcfc4f031df |
| PMID | 38139543 |
| PQID | 2904932330 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c083a7495d9148b593133fcfc4f031df pubmedcentral_primary_oai_pubmedcentral_nih_gov_10747881 proquest_miscellaneous_2905527014 proquest_journals_2904932330 gale_infotracacademiconefile_A779284317 pubmed_primary_38139543 crossref_primary_10_3390_s23249697 crossref_citationtrail_10_3390_s23249697 |
| PublicationCentury | 2000 |
| PublicationDate | 20231208 |
| PublicationDateYYYYMMDD | 2023-12-08 |
| PublicationDate_xml | – month: 12 year: 2023 text: 20231208 day: 8 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Zheng (ref_24) 2021; 52 Gao (ref_10) 2015; 31 Cui (ref_2) 2019; 11 Vincent (ref_22) 2010; 11 ref_31 James (ref_16) 2018; 10 ref_30 Syed (ref_27) 2021; 9 Wang (ref_4) 2016; 65 ref_18 Meng (ref_28) 2020; 53 Liao (ref_12) 2018; 10 Chen (ref_15) 2020; 117 Montanari (ref_1) 2020; 12 Liao (ref_7) 2021; 10 Dai (ref_20) 2017; 5 Li (ref_21) 2022; 320 ref_25 Huang (ref_9) 2016; 4 Hussein (ref_5) 2016; 23 ref_23 Konstantinopoulos (ref_13) 2020; 11 Ren (ref_19) 2019; 34 Yao (ref_3) 2016; 9 Jones (ref_14) 2014; 30 ref_29 Jeong (ref_17) 2021; 304 ref_8 Hong (ref_26) 2020; 8 Sun (ref_32) 2023; 132 Hu (ref_11) 2012; 35 Bhaskaran (ref_6) 2014; 43 |
| References_xml | – ident: ref_30 – ident: ref_18 doi: 10.3390/s20061772 – volume: 43 start-page: 1336 year: 2014 ident: ref_6 article-title: What is the difference between missing completely at random and missing at random? publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyu080 – volume: 320 start-page: 119292 year: 2022 ident: ref_21 article-title: Data cleaning and restoring method for vehicle battery big data platform publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119292 – volume: 8 start-page: 107244 year: 2020 ident: ref_26 article-title: Kick: Shift-N-Overlap cascades of transposed convolutional layer for better autoencoding reconstruction on remote sensing imagery publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3000557 – volume: 9 start-page: 13198 year: 2021 ident: ref_27 article-title: Moving Regression Filtering with Battery State of Charge Feedback Control for Solar PV Firming and Ramp Rate Curtailment publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3052142 – ident: ref_25 doi: 10.1109/ICCV48922.2021.00082 – volume: 11 start-page: 2688 year: 2019 ident: ref_2 article-title: Synchrophasor-based condition monitoring of instrument transformers using clustering approach publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2019.2960043 – volume: 23 start-page: 1453 year: 2016 ident: ref_5 article-title: Denoising of acoustic partial discharge signals corrupted with random noise publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2015.005532 – volume: 12 start-page: 1206 year: 2020 ident: ref_1 article-title: Self-Assessment of Health Conditions of Electrical Assets and Grid Components: A Contribution to Smart Grids publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2020.3028501 – volume: 10 start-page: 4554 year: 2018 ident: ref_12 article-title: An Alternating Direction Method of Multipliers Based Approach for PMU Data Recovery publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2018.2864176 – volume: 117 start-page: 102673 year: 2020 ident: ref_15 article-title: A nonconvex low-rank tensor completion model for spatiotemporal traffic data imputation publication-title: Transp. Res. Part C-Emerg. Technol. doi: 10.1016/j.trc.2020.102673 – volume: 31 start-page: 1006 year: 2015 ident: ref_10 article-title: Missing data recovery by exploiting Low-dimensionality in power system synchrophasor measurements publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2015.2413935 – volume: 10 start-page: 964 year: 2021 ident: ref_7 article-title: Data-driven missing data imputation for wind farms using context encoder publication-title: J. Mod. Power Syst. Clean Energy doi: 10.35833/MPCE.2020.000894 – ident: ref_8 – ident: ref_31 – ident: ref_29 – volume: 4 start-page: 353 year: 2016 ident: ref_9 article-title: Data quality issues for synchrophasor applications Part II: Problem formulation and potential solutions publication-title: J. Mod. Power Syst. Clean Energy doi: 10.1007/s40565-016-0213-8 – volume: 304 start-page: 117655 year: 2021 ident: ref_17 article-title: Missing data imputation using mixture factor analysis for building electric load data publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117655 – volume: 11 start-page: 3371 year: 2010 ident: ref_22 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 9 start-page: 1141 year: 2016 ident: ref_3 article-title: Impact of GPS signal loss and its mitigation in power system synchronized measurement devices publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2580002 – volume: 65 start-page: 264 year: 2016 ident: ref_4 article-title: Noise suppression of corona current measurement from HVdc transmission lines publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2015.2485339 – volume: 34 start-page: 5044 year: 2019 ident: ref_19 article-title: A fully data-driven method based on generative adversarial networks for power system dynamic security assessment with missing data publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2019.2922671 – ident: ref_23 doi: 10.3390/s21227731 – volume: 11 start-page: 4321 year: 2020 ident: ref_13 article-title: Synchrophasor missing data recovery via data-driven filtering publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2020.2986439 – volume: 10 start-page: 3732 year: 2018 ident: ref_16 article-title: Delay aware power system synchrophasor recovery and prediction framework publication-title: IEEE Trans. Smart Grid – volume: 35 start-page: 2117 year: 2012 ident: ref_11 article-title: Fast and accurate matrix completion via truncated nuclear norm regularization publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.271 – volume: 5 start-page: 22863 year: 2017 ident: ref_20 article-title: Cleaning method for status monitoring data of power equipment based on stacked denoising autoencoders publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2740968 – volume: 52 start-page: 13902 year: 2021 ident: ref_24 article-title: An accurate GRU-based power time-series prediction approach with selective state updating and stochastic optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3121312 – volume: 30 start-page: 1121 year: 2014 ident: ref_14 article-title: Methodology for performing synchrophasor data conditioning and validation publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2014.2347047 – volume: 132 start-page: 109903 year: 2023 ident: ref_32 article-title: Anomaly detection of power battery pack using gated recurrent units based variational autoencoder publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2022.109903 – volume: 53 start-page: 101900 year: 2020 ident: ref_28 article-title: Change-point multivariable quantile regression to explore effect of weather variables on building energy consumption and estimate base temperature range publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101900 |
| SSID | ssj0023338 |
| Score | 2.4188364 |
| Snippet | Supervisory control and data acquisition (SCADA) systems are widely utilized in power equipment for condition monitoring. For the collected data, there... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 9697 |
| SubjectTerms | Accuracy asymmetric denoising autoencoder Case studies Data entry data imputation Data transmission Deep learning Missing data moving average filter multi-type missing power equipment monitoring data Sensors Teaching methods |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5ByoEeeEMNBS0ICS5W_Lb3hFzaiEqkyqFC5WSt91EsUbuNHSRu_AIu_EN-CTNrxyQCceIYe5Psame_mW939huAl0JEKih15CqvLJGgqNjNykS5SSACGejYGHtv7cP79OQkOzvji-F6dDukVa4x0QJ1r_ZMedsIwlPVSNoxnwYcI9swQDL-5vLKpRpSdNY6FNS4DjskvJVNYGdxPF98HAlYiHysVxcKkepPW4omeEJ6Txs-yUr3_wnQGx5qO3tywx3Nbv_fgdyBW0NYyvLeju7CNV3fg90NscL78N3e1XWJuLI5Thc-ZMdUEsLOLWsMo-skLm236ZYtqPoaO7paVTYhifXYQb_EDkUn2AF6T8Xwe3O7pcFyXFIIbWxW0fH9z28_8vbrxQWV-5LsUNdNZf8vX3UNKW8qvXwAp7Oj07fv3KGagysxKOlcjkAaK1-bMMqSMvR0ohA7Ig8_m9SQRLHPpVfGfukrdK2e4DpQ2o9i5XlGifAhTOqm1nvApCr91EQilp6OqMAoxlza8CCWmadCrRx4vZ7OQg5K51Rw43OBjIdmvhhn3oEXY9PLXt7jb40OyCbGBqTIbR80y_NiWOCFxFhWpEg3FUeGWcY8RPZvpJGRQdxUxoFXZFEF4QZ2Rorh-gMOiRS4ijxNOYYKGM45sL82nGIAlLb4bScOPB9fIxTQ-Y6odbOybUhPD0mvA496Gx37jIFZyOModCDbst6tQW2_qatPVm7c72ss-I__3a8ncDPAJWZTfbJ9mHTLlX4KN-SXrmqXz4al-AvXyEoP priority: 102 providerName: ProQuest |
| Title | Multi-Type Missing Imputation of Time-Series Power Equipment Monitoring Data Based on Moving Average Filter–Asymmetric Denoising Autoencoder |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38139543 https://www.proquest.com/docview/2904932330 https://www.proquest.com/docview/2905527014 https://pubmed.ncbi.nlm.nih.gov/PMC10747881 https://doaj.org/article/c083a7495d9148b593133fcfc4f031df |
| Volume | 23 |
| WOSCitedRecordID | wos001136017400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection (NC LIVE) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiDeBpTIICS7ROq8mPqZsK1aiVYRWqJwixw9tJDaFpkXigvgFXPiH_BJmnLRKBRIXLpHqOKljf-P5JrG_AXghZazDysS-5lWFAYpO_Kwaa38cylCFJrHW7Vt7_zZdLLLlUhSDVF-0JqyTB-467kQhR5Ap0ngtkLlXiYgwqrLKqtgiHrWl2RdZzy6Y6kOtCCOvTkcowqD-pCXeIMak7DTwPk6k_8-peOCLDtdJDhzP7Dbc6hkjy7uW3oErprkLNwc6gvfgh9tG61NMyebYk1jIzihbg-t2trKMdnr49CbMtKygxGhs-nlbu7VCrDNruhM7lRvJJujYNMPr5u5tA8sR7TjrsFlNX9Z_ff-Zt18vLykTl2KnplnV7v_y7WZFopjarO_D-Wx6_vqN3yda8BXyhY0vcI5LdGBsFGfjKuJmrNGsY46_bWpJPTgQildJUAUavR6XwoTaBHGiObdaRg_gqFk15hEwpasgtbFMFDcx5f5EOmSsCBOVcR0Z7cGrXf-Xqhchp1wYH0sMRmioyv1QefB8X_VTp7zxt0oTGsR9BRLLdgUIobKHUPkvCHnwkiBQkkljY5TsdybgI5E4VpmnqUAvjkzLg-MdSsre1tsyFBhlRQg57sGz_Wm0Uvr0Ihuz2ro6JHWH8agHDztQ7duMnCkSSRx5kB3A7eChDs809YVTAg-69AfB4__RDU_gRoiW49bqZMdwtFlvzVO4rr5s6nY9gqvpMnXHbATXJtNF8W7kbA6P829TLCvO5sWH3zaMNSQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VggQc-P8xFFgQCC5Wba8dew8IpaRRoyZRDxHKzbL3ByxRu40TUG88AReeg5fiSZhZO2kiELceOMbeOGvnm29n1jPfALzMslAFuQ5d5eU5BigqcpO8o9xOkAUy0JExtm7twzAej5PpVBxtwc9lLQylVS450RK1qiTtke8GAn1ZHmD4_e7k1KWuUfR2ddlCo4HFoT77iiFb_XbQw__3VRD09yfvD9y2q4ArcXGcuwINOlK-NjxMOjn3dEchhkMPP5vYkFSuL6SXR37uK6R4LxM6UNoPI-V5RmUcL3sJLiONx5RBFk_P4zuO4V4jXsS58HZrclZEh-Sk1pY82xngT_5fWwA3kzPXVrv-zf_sOd2CG61bzbqNHdyGLV3egetrYot34butNXYp8GYjhBseZANqaWGxySrDqBzGpe1CXbMj6h7H9k8XhU2oYg330ZVYL5tnbA9Xf8XweyO7JcO6SAlIzaxfUPrBr28_uvXZ8TG1K5Osp8uqsL_XXcwrUg5VenYPJhfxPO7DdlmV-iEwqXI_NmEWSU-H1CAVfUZtRBDJxFNcKwfeLPGSylapnRqGfE4xYiNopStoOfBiNfSkkSf526A9At1qACmK2wPV7GPaElQq0RfPYgyXlcAIOY8E9zk30sjQIO8r48BrgmxKvIeTkVlbvoG3RApiaTeOBbo66I46sLNEZtoSYp2ew9KB56vTSGX0fiordbWwY0gPEIN2Bx40RrCaMzqWXEQhdyDZMI-Nm9o8UxafrFy63_SI8B_9e17P4OrBZDRMh4Px4WO4FqA927SlZAe257OFfgJX5Jd5Uc-eWqtnkF6w9fwGgRaY8Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VghAc-P8xFFgQqFys2F479h4QSkkjorZRDhXqzVrvD0SidhsnoN54Ai48Da_DkzCzdtJEIG49cIy9cdbOzDcz69nvA3gpZayjwsS-DooCCxSd-FnR1X43kpGKTGKt27f2YT8djbKjIzHegJ-LvTDUVrnARAfUulK0Rt6JBOayPMLyu2Pbtohxf_D25NQnBSl607qQ02hMZM-cfcXyrX4z7ON__SqKBruH7977rcKArzBQznyBzp3o0FgeZ92CB6ar0Z7jAD_b1BJtbihUUCRhEWqE-0AKE2kTxokOAqslx8tegssp5ympRqRH57Uex9KvITLiXASdmhIX0SVqqZXw51QC_owFK8FwvVFzJfINbv7Hz-wW3GjTbdZr_OM2bJjyDlxfIWG8C9_dHmSfCnJ2gGaIB9mQpC6czbLKMtom49MyoqnZmFTl2O7pfOIarViDiXQl1pczyXYwK9AMv3fglmpYD6ECIZsNJtSW8Ovbj159dnxMMmaK9U1ZTdzv9eazihhFtZneg8OLeB73YbOsSvMQmNJFmNpYJiowMQmnYi5prIgSlQWaG-3B64Xt5KplcCchkc85VnJkZvnSzDx4sRx60tCW_G3QDhngcgAxjbsD1fRj3gJXrjBHlymW0Vpg5VwkgoecW2VVbDEeaOvBNplvTniIk1Gy3daBt0TMYnkvTQWmQJimerC1sNK8Bco6PzdRD54vTyPE0XsrWZpq7sYQTyAW8x48aBxiOWdMOLlIYu5BtuYqaze1fqacfHI06mGjHRE--ve8nsFVdJp8fzjaewzXInRt182UbcHmbDo3T-CK-jKb1NOnDgAY5BfsPL8BBNWhpQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Type+Missing+Imputation+of+Time-Series+Power+Equipment+Monitoring+Data+Based+on+Moving+Average+Filter-Asymmetric+Denoising+Autoencoder&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jiang%2C+Ling&rft.au=Gu%2C+Juping&rft.au=Zhang%2C+Xinsong&rft.au=Hua%2C+Liang&rft.date=2023-12-08&rft.eissn=1424-8220&rft.volume=23&rft.issue=24&rft_id=info:doi/10.3390%2Fs23249697&rft_id=info%3Apmid%2F38139543&rft.externalDocID=38139543 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |