Multi-Agent DRL for Air-to-Ground Communication Planning in UAV-Enabled IoT Networks
In this paper, we present a novel method to enhance the sum-rate effectiveness in full-duplex unmanned aerial vehicle (UAV)-assisted communication networks. Existing approaches often couple uplink and downlink associations, resulting in suboptimal performance, particularly in dynamic environments wh...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 24; číslo 20; s. 6535 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
10.10.2024
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, we present a novel method to enhance the sum-rate effectiveness in full-duplex unmanned aerial vehicle (UAV)-assisted communication networks. Existing approaches often couple uplink and downlink associations, resulting in suboptimal performance, particularly in dynamic environments where user demands and network conditions are unpredictable. To overcome these limitations, we propose a decoupling of uplink and downlink associations for ground-based users (GBUs), significantly improving network efficiency. We formulate a comprehensive optimization problem that integrates UAV trajectory design and user association, aiming to maximize the overall sum-rate efficiency of the network. Due to the problem’s non-convexity, we reformulate it as a Partially Observable Markov Decision Process (POMDP), enabling UAVs to make real-time decisions based on local observations without requiring complete global information. Our framework employs multi-agent deep reinforcement learning (MADRL), specifically the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm, which balances centralized training with distributed execution. This allows UAVs to efficiently learn optimal user associations and trajectory controls while dynamically adapting to local conditions. The proposed solution is particularly suited for critical applications such as disaster response and search and rescue missions, highlighting the practical significance of utilizing UAVs for rapid network deployment in emergencies. By addressing the limitations of existing centralized and distributed solutions, our hybrid model combines the benefits of centralized training with the adaptability of distributed inference, ensuring optimal UAV operations in real-time scenarios. |
|---|---|
| AbstractList | In this paper, we present a novel method to enhance the sum-rate effectiveness in full-duplex unmanned aerial vehicle (UAV)-assisted communication networks. Existing approaches often couple uplink and downlink associations, resulting in suboptimal performance, particularly in dynamic environments where user demands and network conditions are unpredictable. To overcome these limitations, we propose a decoupling of uplink and downlink associations for ground-based users (GBUs), significantly improving network efficiency. We formulate a comprehensive optimization problem that integrates UAV trajectory design and user association, aiming to maximize the overall sum-rate efficiency of the network. Due to the problem’s non-convexity, we reformulate it as a Partially Observable Markov Decision Process (POMDP), enabling UAVs to make real-time decisions based on local observations without requiring complete global information. Our framework employs multi-agent deep reinforcement learning (MADRL), specifically the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm, which balances centralized training with distributed execution. This allows UAVs to efficiently learn optimal user associations and trajectory controls while dynamically adapting to local conditions. The proposed solution is particularly suited for critical applications such as disaster response and search and rescue missions, highlighting the practical significance of utilizing UAVs for rapid network deployment in emergencies. By addressing the limitations of existing centralized and distributed solutions, our hybrid model combines the benefits of centralized training with the adaptability of distributed inference, ensuring optimal UAV operations in real-time scenarios. In this paper, we present a novel method to enhance the sum-rate effectiveness in full-duplex unmanned aerial vehicle (UAV)-assisted communication networks. Existing approaches often couple uplink and downlink associations, resulting in suboptimal performance, particularly in dynamic environments where user demands and network conditions are unpredictable. To overcome these limitations, we propose a decoupling of uplink and downlink associations for ground-based users (GBUs), significantly improving network efficiency. We formulate a comprehensive optimization problem that integrates UAV trajectory design and user association, aiming to maximize the overall sum-rate efficiency of the network. Due to the problem's non-convexity, we reformulate it as a Partially Observable Markov Decision Process (POMDP), enabling UAVs to make real-time decisions based on local observations without requiring complete global information. Our framework employs multi-agent deep reinforcement learning (MADRL), specifically the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm, which balances centralized training with distributed execution. This allows UAVs to efficiently learn optimal user associations and trajectory controls while dynamically adapting to local conditions. The proposed solution is particularly suited for critical applications such as disaster response and search and rescue missions, highlighting the practical significance of utilizing UAVs for rapid network deployment in emergencies. By addressing the limitations of existing centralized and distributed solutions, our hybrid model combines the benefits of centralized training with the adaptability of distributed inference, ensuring optimal UAV operations in real-time scenarios.In this paper, we present a novel method to enhance the sum-rate effectiveness in full-duplex unmanned aerial vehicle (UAV)-assisted communication networks. Existing approaches often couple uplink and downlink associations, resulting in suboptimal performance, particularly in dynamic environments where user demands and network conditions are unpredictable. To overcome these limitations, we propose a decoupling of uplink and downlink associations for ground-based users (GBUs), significantly improving network efficiency. We formulate a comprehensive optimization problem that integrates UAV trajectory design and user association, aiming to maximize the overall sum-rate efficiency of the network. Due to the problem's non-convexity, we reformulate it as a Partially Observable Markov Decision Process (POMDP), enabling UAVs to make real-time decisions based on local observations without requiring complete global information. Our framework employs multi-agent deep reinforcement learning (MADRL), specifically the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm, which balances centralized training with distributed execution. This allows UAVs to efficiently learn optimal user associations and trajectory controls while dynamically adapting to local conditions. The proposed solution is particularly suited for critical applications such as disaster response and search and rescue missions, highlighting the practical significance of utilizing UAVs for rapid network deployment in emergencies. By addressing the limitations of existing centralized and distributed solutions, our hybrid model combines the benefits of centralized training with the adaptability of distributed inference, ensuring optimal UAV operations in real-time scenarios. |
| Audience | Academic |
| Author | Wang, Lei Lu, Cheng Qureshi, Khalid Ibrahim Lu, Bingxian Lodhi, Muhammad Ali |
| AuthorAffiliation | Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, School of Software, Dalian University of Technology, Dalian 116024, China; khalidibrahim84@gmail.com (K.I.Q.); lc196@mail.dlut.edu.cn (C.L.); alilodhi30@gmail.com (M.A.L.) |
| AuthorAffiliation_xml | – name: Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, School of Software, Dalian University of Technology, Dalian 116024, China; khalidibrahim84@gmail.com (K.I.Q.); lc196@mail.dlut.edu.cn (C.L.); alilodhi30@gmail.com (M.A.L.) |
| Author_xml | – sequence: 1 givenname: Khalid Ibrahim orcidid: 0000-0001-6369-3105 surname: Qureshi fullname: Qureshi, Khalid Ibrahim – sequence: 2 givenname: Bingxian orcidid: 0000-0002-4378-6539 surname: Lu fullname: Lu, Bingxian – sequence: 3 givenname: Cheng orcidid: 0009-0009-1482-3802 surname: Lu fullname: Lu, Cheng – sequence: 4 givenname: Muhammad Ali orcidid: 0000-0002-9070-6271 surname: Lodhi fullname: Lodhi, Muhammad Ali – sequence: 5 givenname: Lei orcidid: 0000-0003-1810-3019 surname: Wang fullname: Wang, Lei |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39460016$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkstu1DAUhi1URNuBBS-AIrGBRVpf4iReoWgoZaThIjRla_kaPCR2sRMQb49npq3aYluydfyfzz6XU3DkgzcAvETwjBAGzxOuMKwpoU_ACapwVbYYw6N752NwmtIWQkwIaZ-BY8KqGkJUn4DNp3mYXNn1xk_F-2_rwoZYdC6WUygvY5i9LpZhHGfvlJhc8MXXQXjvfF84X1x138sLL-RgdLEKm-Kzmf6E-DM9B0-tGJJ5cbMvwNWHi83yY7n-crladutSUcimkrWasQo2itS0aZCUgtRKMkYt1Eg3SOnamJbVFEuFiK0F1ZZA2QrY4kYaTRZgdeDqILb8OrpRxL88CMf3hhB7LuLk1GC4UVgTi2BlVFNRVktJYFORpmYQWmRlZr07sK5nORqtcj6iGB5AH95494P34TdHiOYFaSa8uSHE8Gs2aeKjS8oMOWEmzIkThNGuSnkswOtH0m2Yo8-52qlgQ3Hb7oBnB1UvcgTO25AfVnlqMzqVW8C6bO9aVFWI4j321f0Y7j5_W-4sOD8IVAwpRWO5ctO-rpnsBo4g3zUUv2uo7PH2kcct9H_tP6kux0k |
| CitedBy_id | crossref_primary_10_3390_photonics12070634 |
| Cites_doi | 10.1109/TVT.2023.3274815 10.1109/TWC.2024.3401152 10.1109/MWC.001.1900333 10.3390/drones6020045 10.1109/JIOT.2020.3031622 10.1109/JSAC.2018.2864375 10.1007/s11276-021-02835-4 10.1109/JSTSP.2024.3452501 10.1109/COMST.2021.3063822 10.1109/ACCESS.2020.3023163 10.1109/TMC.2016.2645686 10.1109/LCOMM.2018.2851206 10.1109/JIOT.2021.3070209 10.1109/MWC.2019.1800486 10.1109/OJCOMS.2020.3010270 10.1109/LWC.2019.2959527 10.1109/COMST.2016.2571730 10.1109/TWC.2015.2437378 10.1109/INFOCOMWKSHPS51825.2021.9484490 10.1109/GLOCOM.2014.7037069 10.1109/COMST.2019.2902862 10.1109/MCOM.2016.7432156 10.1109/COMST.2024.3446585 10.1109/MCOM.2016.7470933 10.1109/TNSE.2022.3171600 10.1007/s10462-021-09996-w 10.1007/s11276-023-03445-y 10.1007/s11831-020-09418-0 10.1016/j.jnca.2020.102739 10.1109/TVT.2024.3461333 10.1109/JIOT.2020.3023010 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s24206535 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_ec2d3f104ec74596bb3074376900f1fb PMC11511505 A814415233 39460016 10_3390_s24206535 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: The work was supported by National Nature Science Foundation of China grantid: 62027826 – fundername: National Nature Science Foundation of China grantid: 62027826 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c509t-98d99407c365771bba36cb995f0d1d71cd6ee89652bc13f6a5df30b8a0827bed3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001341716900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:44:36 EDT 2025 Tue Nov 04 02:05:06 EST 2025 Thu Oct 02 11:55:10 EDT 2025 Tue Oct 07 07:28:01 EDT 2025 Tue Nov 04 18:13:47 EST 2025 Thu Apr 03 07:07:00 EDT 2025 Sat Nov 29 07:10:54 EST 2025 Tue Nov 18 21:41:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Keywords | SDN MADRL IoUAVs |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-98d99407c365771bba36cb995f0d1d71cd6ee89652bc13f6a5df30b8a0827bed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6369-3105 0000-0002-4378-6539 0000-0002-9070-6271 0000-0003-1810-3019 0009-0009-1482-3802 |
| OpenAccessLink | https://www.proquest.com/docview/3120752885?pq-origsite=%requestingapplication% |
| PMID | 39460016 |
| PQID | 3120752885 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ec2d3f104ec74596bb3074376900f1fb pubmedcentral_primary_oai_pubmedcentral_nih_gov_11511505 proquest_miscellaneous_3121065333 proquest_journals_3120752885 gale_infotracacademiconefile_A814415233 pubmed_primary_39460016 crossref_citationtrail_10_3390_s24206535 crossref_primary_10_3390_s24206535 |
| PublicationCentury | 2000 |
| PublicationDate | 20241010 |
| PublicationDateYYYYMMDD | 2024-10-10 |
| PublicationDate_xml | – month: 10 year: 2024 text: 20241010 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Cumino (ref_6) 2024; 30 Hua (ref_31) 2020; 9 Wang (ref_32) 2018; 36 Hamza (ref_11) 2021; 8 ref_14 Zhang (ref_7) 2019; 26 Wang (ref_13) 2020; 8 ref_30 Ning (ref_29) 2024; 23 ref_19 Mahmood (ref_10) 2023; 72 Wang (ref_17) 2024; 56 Zeng (ref_4) 2016; 54 Sekander (ref_21) 2017; 16 Boccardi (ref_22) 2016; 54 Kamel (ref_3) 2016; 18 Nawaz (ref_9) 2021; 28 Sun (ref_23) 2020; 69 Do (ref_33) 2020; 8 ref_25 Gronauer (ref_18) 2022; 55 Chen (ref_2) 2020; 27 ref_20 Mozaffari (ref_5) 2019; 21 Sharma (ref_34) 2020; 168 Zhang (ref_8) 2018; 22 Valiulahi (ref_27) 2020; 8 Chang (ref_12) 2022; 10 ref_28 Chowdhury (ref_1) 2020; 1 ref_26 Singh (ref_24) 2015; 14 Feriani (ref_16) 2021; 23 Pasandideh (ref_15) 2022; 28 |
| References_xml | – volume: 72 start-page: 13094 year: 2023 ident: ref_10 article-title: Joint optimization of 3D placement and radio resource allocation for per-UAV sum rate maximization publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2023.3274815 – volume: 23 start-page: 13408 year: 2024 ident: ref_29 article-title: Joint User Association, Interference Cancellation and Power Control for Multi-IRS Assisted UAV Communications publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2024.3401152 – volume: 27 start-page: 218 year: 2020 ident: ref_2 article-title: Vision, Requirements, and Technology Trend of 6G: How to Tackle the Challenges of System Coverage, Capacity, User Data-Rate and Movement Speed publication-title: IEEE Wirel. Commun. doi: 10.1109/MWC.001.1900333 – ident: ref_30 doi: 10.3390/drones6020045 – volume: 8 start-page: 15096 year: 2020 ident: ref_13 article-title: Collaborative design of multi-UAV trajectory and resource scheduling for 6G-enabled internet of things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3031622 – volume: 69 start-page: 7518 year: 2020 ident: ref_23 article-title: Uplink Performance Improvement for Downlink-Uplink Decoupled HetNets With Non-Uniform User Distribution publication-title: IEEE Trans. Veh. Technol. – volume: 36 start-page: 1986 year: 2018 ident: ref_32 article-title: Spectrum Sharing Planning for Full-Duplex UAV Relaying Systems With Underlaid D2D Communications publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2018.2864375 – volume: 28 start-page: 257 year: 2022 ident: ref_15 article-title: Topology management for flying ad hoc networks based on particle swarm optimization and software-defined networking publication-title: Wirel. Netw. doi: 10.1007/s11276-021-02835-4 – ident: ref_28 doi: 10.1109/JSTSP.2024.3452501 – volume: 23 start-page: 1226 year: 2021 ident: ref_16 article-title: Single and multi-agent deep reinforcement learning for AI-enabled wireless networks: A tutorial publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/COMST.2021.3063822 – volume: 8 start-page: 164347 year: 2020 ident: ref_33 article-title: Uplink and Downlink NOMA Transmission Using Full-Duplex UAV publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3023163 – volume: 16 start-page: 2778 year: 2017 ident: ref_21 article-title: Decoupled Uplink-Downlink User Association in Multi-Tier Full-Duplex Cellular Networks: A Two-Sided Matching Game publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2016.2645686 – volume: 22 start-page: 1902 year: 2018 ident: ref_8 article-title: 3-D Drone-Base-Station Placement with In-Band Full-Duplex Communications publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2018.2851206 – volume: 8 start-page: 14066 year: 2021 ident: ref_11 article-title: The optimal and the greedy: Drone association and positioning schemes for Internet of UAVs publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3070209 – volume: 26 start-page: 121 year: 2019 ident: ref_7 article-title: A Framework for 5G Networks with In-Band Full-Duplex Enabled Drone-Mounted Base-Stations publication-title: IEEE Wirel. Commun. doi: 10.1109/MWC.2019.1800486 – volume: 1 start-page: 957 year: 2020 ident: ref_1 article-title: 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions publication-title: IEEE Open J. Commun. Soc. doi: 10.1109/OJCOMS.2020.3010270 – volume: 9 start-page: 475 year: 2020 ident: ref_31 article-title: Throughput Maximization for Full-Duplex UAV Aided Small Cell Wireless Systems publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2019.2959527 – volume: 18 start-page: 2522 year: 2016 ident: ref_3 article-title: Ultra-Dense Networks: A Survey publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/COMST.2016.2571730 – volume: 14 start-page: 5360 year: 2015 ident: ref_24 article-title: Joint Rate and SINR Coverage Analysis for Decoupled Uplink-Downlink Biased Cell Associations in HetNets publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2015.2437378 – ident: ref_26 doi: 10.1109/INFOCOMWKSHPS51825.2021.9484490 – ident: ref_25 doi: 10.1109/GLOCOM.2014.7037069 – volume: 21 start-page: 2334 year: 2019 ident: ref_5 article-title: A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/COMST.2019.2902862 – volume: 54 start-page: 110 year: 2016 ident: ref_22 article-title: Why to decouple the uplink and downlink in cellular networks and how to do it publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2016.7432156 – ident: ref_19 doi: 10.1109/COMST.2024.3446585 – volume: 56 start-page: 1 year: 2024 ident: ref_17 article-title: Integration of Sensing, Communication, and Computing for Metaverse: A Survey publication-title: ACM Comput. Surv. – volume: 54 start-page: 36 year: 2016 ident: ref_4 article-title: Wireless communications with unmanned aerial vehicles: Opportunities and challenges publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2016.7470933 – volume: 10 start-page: 2940 year: 2022 ident: ref_12 article-title: Trajectory design and resource allocation for multi-UAV networks: Deep reinforcement learning approaches publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2022.3171600 – volume: 55 start-page: 895 year: 2022 ident: ref_18 article-title: Multi-agent deep reinforcement learning: A survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-09996-w – volume: 30 start-page: 387 year: 2024 ident: ref_6 article-title: On the usefulness of flying base stations in 5G and beyond scenarios publication-title: Wirel. Netw. doi: 10.1007/s11276-023-03445-y – volume: 28 start-page: 1349 year: 2021 ident: ref_9 article-title: UAV communication networks issues: A review publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-020-09418-0 – volume: 168 start-page: 102739 year: 2020 ident: ref_34 article-title: Communication and networking technologies for UAVs: A survey publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2020.102739 – ident: ref_20 – ident: ref_14 doi: 10.1109/TVT.2024.3461333 – volume: 8 start-page: 3605 year: 2020 ident: ref_27 article-title: Multi-UAV deployment for throughput maximization in the presence of co-channel interference publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3023010 |
| SSID | ssj0023338 |
| Score | 2.454484 |
| Snippet | In this paper, we present a novel method to enhance the sum-rate effectiveness in full-duplex unmanned aerial vehicle (UAV)-assisted communication networks.... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 6535 |
| SubjectTerms | Algorithms Communication Communications networks Control algorithms Deep learning Drone aircraft Energy efficiency Evacuations & rescues IoUAVs MADRL Markov analysis Markov processes Optimization SDN Search and rescue operations Unmanned aerial vehicles User groups Wireless networks |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9y-KAPcp5fPU-JIuhLuLZpvh6r3nGCLCJ7cm8hX8UF6crunn-_M2m3bFHwxdcmlMlkJjO_NvMbQt5oH0pXu5qViQvWcBeZF2XJgkmigQQ66dDkZhNqsdA3N-bLQasvvBM20AMPijtPoY68A9CQgmqEkd5zjHoKUF3ZVZ3H07dUZg-mRqjFAXkNPEIcQP35FgIRkrCKWfTJJP1_HsUHsWh-T_Ig8FwekwdjxkjbQdKH5E7qT8j9Ax7BR2SZy2hZi2VS9OPXzxQyUdquNmy3ZvhxqY90VghC962K6Kqn1-03dpErqCL9tF7SxXAxfPuYXF9eLD9csbFdAgsQ9XfM6GgM4LPApVCq8t5xGbwxoitjFVUVokxJGylqHyreSSdix0uvHWQByqfIn5Cjft2nZ4SqruHeaO9c4xqptYeDwCXjpXAKGc0K8m6vRhtGLnFsafHDAqZAjdtJ4wV5PU39ORBo_G3Se9yLaQJyXucHYAl2tAT7L0soyFvcSYueCcIENxYYwJKQ48q2OoNHsI2CnO03244uu7W8AjsStdYgzatpGJwN_6C4Pq1v85wKBcZXPB1sY5KZmwaTR1kQPbOa2aLmI_3qeyb0hqwcE3Nx-j_U8JzcqyHxwvhalWfkaLe5TS_I3fBrt9puXmY3-Q1RWRW9 priority: 102 providerName: Directory of Open Access Journals |
| Title | Multi-Agent DRL for Air-to-Ground Communication Planning in UAV-Enabled IoT Networks |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39460016 https://www.proquest.com/docview/3120752885 https://www.proquest.com/docview/3121065333 https://pubmed.ncbi.nlm.nih.gov/PMC11511505 https://doaj.org/article/ec2d3f104ec74596bb3074376900f1fb |
| Volume | 24 |
| WOSCitedRecordID | wos001341716900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAH3oVAWRmEBBerSRw79gmlsBWV6GpVbdFyivwKrISSstly5LfjcbLpRiAuXHxIrGismfF843i-Qei10CZWqUpJ7CgjGVWWaBbHxEjHMg-gnTBZaDaRz2ZiuZTz_sCt7a9VbvfEsFHbxsAZ-RFNUh_dUiHYu8sfBLpGwd_VvoXGTbQPbbPBzvPldcJFff7VsQlRn9oftT4cARUrG8WgQNX_54a8E5HGtyV3ws_Jvf8V_D662wNPXHSW8gDdcPVDdGeHjvARWoRqXFJAtRX-cP4Je0CLi9WabBoCZ1S1xaN6ErzteIRXNb4oPpNpKMSy-LRZ4Fl3v7x9jC5Opov3H0nfdYEYDx42RAorpU_zDOUszxOtFeVGS8mq2CY2T4zlzgnJWapNQiuumK1orIXyYCLXztIDtFc3tXuKcF5lVEuhlcpUxoXQfj9RTmrOVA7EaBF6u9VDaXpKcuiM8b30qQmorBxUFqFXw9TLjofjb5OOQZnDBKDODg-a9dey98TSmdTSymehzuQZk1xrCjAq5zKOq6TSEXoDplCCg3thjOrrFPySgCqrLETIQb1xRehwq_Gy9_y2vFZ3hF4Or73Pwo8YVbvmKsxJQGD4xJPOuAaZqcwAg_IIiZHZjRY1flOvvgVecA_uAd-zZ_-W6zm6nXpkBgE4iQ_R3mZ95V6gW-bnZtWuJ8GDwigmaP94OpufT8JBhR_Pfk39s_np2fzLb6QzKmM |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRLlwLsQKGAQCC5WnThO7ANCC23VVberFdqicgp-BVZCSdndgvhT_EbsvNgIxK0HrrEV2cnnmflszzcAz7jSREYywsRShmMqDVaMEKyFZbELoC3XcVVsIp1M-OmpmG7AzzYXxl-rbG1iZahNqf0e-S4NI-fdIs7Z67Ov2FeN8qerbQmNGhZH9sd3R9mWr0Z77v8-j6KD_dnbQ9xUFcDaOccVFtwI4WiMpglL01ApSROthGA5MaFJQ20Sa7lIWKR0SPNEMpNTorh0zjJV1lD33kuwGTuwkwFsTkfH0w8dxaOO8dX6RZQKsrt0DtCLv7Ke16uKA_zpAtZ8YP9-5prDO7j-v32qG3CtCa3RsF4LN2HDFrfg6prg4m2YVfnGeOjzydDeuzFyITsazhd4VWK_C1cY1MuYQW1NJzQv0MnwPd6vUs0MGpUzNKlv0C_vwMmFTGsbBkVZ2HuA0jymSnAlZSzjhHPlLKa0QiVMpl76LYCX7X_PdCO67mt_fMkc-fIQyTqIBPC063pWK438rdMbD56ugxcHrx6Ui09ZY2syqyNDc8ezrU5jJhKlqA8U00QQkoe5CuCFh17mTZgbjJZNJoabkhcDy4a8YtkOzAHstAjLGtu2zH7DK4AnXbOzSv6oSRa2PK_6hH7A_hV3azB3Y6Yi9lF2EgDvwbw3qX5LMf9cKZ87-uIZDLv_73E9hiuHs-NxNh5Njh7AVuTiUB9uhGQHBqvFuX0Il_W31Xy5eNSsXwQfL3od_ALfTYL_ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXYTgwPsRWMAgEFysJnGc2AeECt2KapeqQl20nILtOFAJJUvbBfHX-HV48qIRiNseuMaWZSefZ-aLPd8APBHa-CpUIfUt4zRiKqOa-z410vLIBdBWmKgqNpHMZuL4WM534GebC4PXKlubWBnqrDT4j3zIgtB5t1AIPsybaxHz8eTlyVeKFaTwpLUtp1FD5MD--O7o2_rFdOy-9dMwnOwvXr-hTYUBapyj3FApMikdpTEs5kkSaK1YbLSUPPezIEsCk8XWChnzUJuA5bHiWc58LZRznIm2GXPjnoPdBOv3DmB3Pn07_9DRPebYX61lxJj0h2vnDFEIlvc8YFUo4E93sOUP-3c1t5zf5Mr__NquwuUm5Cajeo9cgx1bXIdLW0KMN2BR5SHTEeaZkfG7Q-JCeTJaruimpPh3rshIL5OGtLWeyLIgR6P3dL9KQcvItFyQWX2zfn0Tjs5kWbdgUJSFvQMkySOmpdBKRSqKhdDOkiordcxVgpJwHjxvMZCaRowda4J8SR0pQ7ikHVw8eNx1PakVSP7W6RUCqeuAouHVg3L1KW1sUGpNmLHc8W9rkojLWGuGAWQSS9_Pg1x78AxhmKJpc5MxqsnQcEtCkbB0JCr27YDtwV6LtrSxeev0N9Q8eNQ1O2uFR1CqsOVp1SfACeMQt2tgd3NmMsLoO_ZA9CDfW1S_pVh-rhTRHa1BZsPv_nteD-GCA396OJ0d3IOLoQtPMQoJ_D0YbFan9j6cN982y_XqQbOVCXw8623wC_zMi8g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Agent+DRL+for+Air-to-Ground+Communication+Planning+in+UAV-Enabled+IoT+Networks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Qureshi%2C+Khalid+Ibrahim&rft.au=Lu%2C+Bingxian&rft.au=Lu%2C+Cheng&rft.au=Lodhi%2C+Muhammad+Ali&rft.date=2024-10-10&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=20&rft.spage=6535&rft_id=info:doi/10.3390%2Fs24206535&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s24206535 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |