Multi-Agent DRL for Air-to-Ground Communication Planning in UAV-Enabled IoT Networks

In this paper, we present a novel method to enhance the sum-rate effectiveness in full-duplex unmanned aerial vehicle (UAV)-assisted communication networks. Existing approaches often couple uplink and downlink associations, resulting in suboptimal performance, particularly in dynamic environments wh...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 24; číslo 20; s. 6535
Hlavní autori: Qureshi, Khalid Ibrahim, Lu, Bingxian, Lu, Cheng, Lodhi, Muhammad Ali, Wang, Lei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 10.10.2024
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we present a novel method to enhance the sum-rate effectiveness in full-duplex unmanned aerial vehicle (UAV)-assisted communication networks. Existing approaches often couple uplink and downlink associations, resulting in suboptimal performance, particularly in dynamic environments where user demands and network conditions are unpredictable. To overcome these limitations, we propose a decoupling of uplink and downlink associations for ground-based users (GBUs), significantly improving network efficiency. We formulate a comprehensive optimization problem that integrates UAV trajectory design and user association, aiming to maximize the overall sum-rate efficiency of the network. Due to the problem’s non-convexity, we reformulate it as a Partially Observable Markov Decision Process (POMDP), enabling UAVs to make real-time decisions based on local observations without requiring complete global information. Our framework employs multi-agent deep reinforcement learning (MADRL), specifically the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm, which balances centralized training with distributed execution. This allows UAVs to efficiently learn optimal user associations and trajectory controls while dynamically adapting to local conditions. The proposed solution is particularly suited for critical applications such as disaster response and search and rescue missions, highlighting the practical significance of utilizing UAVs for rapid network deployment in emergencies. By addressing the limitations of existing centralized and distributed solutions, our hybrid model combines the benefits of centralized training with the adaptability of distributed inference, ensuring optimal UAV operations in real-time scenarios.
AbstractList In this paper, we present a novel method to enhance the sum-rate effectiveness in full-duplex unmanned aerial vehicle (UAV)-assisted communication networks. Existing approaches often couple uplink and downlink associations, resulting in suboptimal performance, particularly in dynamic environments where user demands and network conditions are unpredictable. To overcome these limitations, we propose a decoupling of uplink and downlink associations for ground-based users (GBUs), significantly improving network efficiency. We formulate a comprehensive optimization problem that integrates UAV trajectory design and user association, aiming to maximize the overall sum-rate efficiency of the network. Due to the problem’s non-convexity, we reformulate it as a Partially Observable Markov Decision Process (POMDP), enabling UAVs to make real-time decisions based on local observations without requiring complete global information. Our framework employs multi-agent deep reinforcement learning (MADRL), specifically the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm, which balances centralized training with distributed execution. This allows UAVs to efficiently learn optimal user associations and trajectory controls while dynamically adapting to local conditions. The proposed solution is particularly suited for critical applications such as disaster response and search and rescue missions, highlighting the practical significance of utilizing UAVs for rapid network deployment in emergencies. By addressing the limitations of existing centralized and distributed solutions, our hybrid model combines the benefits of centralized training with the adaptability of distributed inference, ensuring optimal UAV operations in real-time scenarios.
In this paper, we present a novel method to enhance the sum-rate effectiveness in full-duplex unmanned aerial vehicle (UAV)-assisted communication networks. Existing approaches often couple uplink and downlink associations, resulting in suboptimal performance, particularly in dynamic environments where user demands and network conditions are unpredictable. To overcome these limitations, we propose a decoupling of uplink and downlink associations for ground-based users (GBUs), significantly improving network efficiency. We formulate a comprehensive optimization problem that integrates UAV trajectory design and user association, aiming to maximize the overall sum-rate efficiency of the network. Due to the problem's non-convexity, we reformulate it as a Partially Observable Markov Decision Process (POMDP), enabling UAVs to make real-time decisions based on local observations without requiring complete global information. Our framework employs multi-agent deep reinforcement learning (MADRL), specifically the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm, which balances centralized training with distributed execution. This allows UAVs to efficiently learn optimal user associations and trajectory controls while dynamically adapting to local conditions. The proposed solution is particularly suited for critical applications such as disaster response and search and rescue missions, highlighting the practical significance of utilizing UAVs for rapid network deployment in emergencies. By addressing the limitations of existing centralized and distributed solutions, our hybrid model combines the benefits of centralized training with the adaptability of distributed inference, ensuring optimal UAV operations in real-time scenarios.In this paper, we present a novel method to enhance the sum-rate effectiveness in full-duplex unmanned aerial vehicle (UAV)-assisted communication networks. Existing approaches often couple uplink and downlink associations, resulting in suboptimal performance, particularly in dynamic environments where user demands and network conditions are unpredictable. To overcome these limitations, we propose a decoupling of uplink and downlink associations for ground-based users (GBUs), significantly improving network efficiency. We formulate a comprehensive optimization problem that integrates UAV trajectory design and user association, aiming to maximize the overall sum-rate efficiency of the network. Due to the problem's non-convexity, we reformulate it as a Partially Observable Markov Decision Process (POMDP), enabling UAVs to make real-time decisions based on local observations without requiring complete global information. Our framework employs multi-agent deep reinforcement learning (MADRL), specifically the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm, which balances centralized training with distributed execution. This allows UAVs to efficiently learn optimal user associations and trajectory controls while dynamically adapting to local conditions. The proposed solution is particularly suited for critical applications such as disaster response and search and rescue missions, highlighting the practical significance of utilizing UAVs for rapid network deployment in emergencies. By addressing the limitations of existing centralized and distributed solutions, our hybrid model combines the benefits of centralized training with the adaptability of distributed inference, ensuring optimal UAV operations in real-time scenarios.
Audience Academic
Author Wang, Lei
Lu, Cheng
Qureshi, Khalid Ibrahim
Lu, Bingxian
Lodhi, Muhammad Ali
AuthorAffiliation Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, School of Software, Dalian University of Technology, Dalian 116024, China; khalidibrahim84@gmail.com (K.I.Q.); lc196@mail.dlut.edu.cn (C.L.); alilodhi30@gmail.com (M.A.L.)
AuthorAffiliation_xml – name: Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, School of Software, Dalian University of Technology, Dalian 116024, China; khalidibrahim84@gmail.com (K.I.Q.); lc196@mail.dlut.edu.cn (C.L.); alilodhi30@gmail.com (M.A.L.)
Author_xml – sequence: 1
  givenname: Khalid Ibrahim
  orcidid: 0000-0001-6369-3105
  surname: Qureshi
  fullname: Qureshi, Khalid Ibrahim
– sequence: 2
  givenname: Bingxian
  orcidid: 0000-0002-4378-6539
  surname: Lu
  fullname: Lu, Bingxian
– sequence: 3
  givenname: Cheng
  orcidid: 0009-0009-1482-3802
  surname: Lu
  fullname: Lu, Cheng
– sequence: 4
  givenname: Muhammad Ali
  orcidid: 0000-0002-9070-6271
  surname: Lodhi
  fullname: Lodhi, Muhammad Ali
– sequence: 5
  givenname: Lei
  orcidid: 0000-0003-1810-3019
  surname: Wang
  fullname: Wang, Lei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39460016$$D View this record in MEDLINE/PubMed
BookMark eNplkstu1DAUhi1URNuBBS-AIrGBRVpf4iReoWgoZaThIjRla_kaPCR2sRMQb49npq3aYluydfyfzz6XU3DkgzcAvETwjBAGzxOuMKwpoU_ACapwVbYYw6N752NwmtIWQkwIaZ-BY8KqGkJUn4DNp3mYXNn1xk_F-2_rwoZYdC6WUygvY5i9LpZhHGfvlJhc8MXXQXjvfF84X1x138sLL-RgdLEKm-Kzmf6E-DM9B0-tGJJ5cbMvwNWHi83yY7n-crladutSUcimkrWasQo2itS0aZCUgtRKMkYt1Eg3SOnamJbVFEuFiK0F1ZZA2QrY4kYaTRZgdeDqILb8OrpRxL88CMf3hhB7LuLk1GC4UVgTi2BlVFNRVktJYFORpmYQWmRlZr07sK5nORqtcj6iGB5AH95494P34TdHiOYFaSa8uSHE8Gs2aeKjS8oMOWEmzIkThNGuSnkswOtH0m2Yo8-52qlgQ3Hb7oBnB1UvcgTO25AfVnlqMzqVW8C6bO9aVFWI4j321f0Y7j5_W-4sOD8IVAwpRWO5ctO-rpnsBo4g3zUUv2uo7PH2kcct9H_tP6kux0k
CitedBy_id crossref_primary_10_3390_photonics12070634
Cites_doi 10.1109/TVT.2023.3274815
10.1109/TWC.2024.3401152
10.1109/MWC.001.1900333
10.3390/drones6020045
10.1109/JIOT.2020.3031622
10.1109/JSAC.2018.2864375
10.1007/s11276-021-02835-4
10.1109/JSTSP.2024.3452501
10.1109/COMST.2021.3063822
10.1109/ACCESS.2020.3023163
10.1109/TMC.2016.2645686
10.1109/LCOMM.2018.2851206
10.1109/JIOT.2021.3070209
10.1109/MWC.2019.1800486
10.1109/OJCOMS.2020.3010270
10.1109/LWC.2019.2959527
10.1109/COMST.2016.2571730
10.1109/TWC.2015.2437378
10.1109/INFOCOMWKSHPS51825.2021.9484490
10.1109/GLOCOM.2014.7037069
10.1109/COMST.2019.2902862
10.1109/MCOM.2016.7432156
10.1109/COMST.2024.3446585
10.1109/MCOM.2016.7470933
10.1109/TNSE.2022.3171600
10.1007/s10462-021-09996-w
10.1007/s11276-023-03445-y
10.1007/s11831-020-09418-0
10.1016/j.jnca.2020.102739
10.1109/TVT.2024.3461333
10.1109/JIOT.2020.3023010
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24206535
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ec2d3f104ec74596bb3074376900f1fb
PMC11511505
A814415233
39460016
10_3390_s24206535
Genre Journal Article
GrantInformation_xml – fundername: The work was supported by National Nature Science Foundation of China
  grantid: 62027826
– fundername: National Nature Science Foundation of China
  grantid: 62027826
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c509t-98d99407c365771bba36cb995f0d1d71cd6ee89652bc13f6a5df30b8a0827bed3
IEDL.DBID 7X7
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001341716900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:44:36 EDT 2025
Tue Nov 04 02:05:06 EST 2025
Thu Oct 02 11:55:10 EDT 2025
Tue Oct 07 07:28:01 EDT 2025
Tue Nov 04 18:13:47 EST 2025
Thu Apr 03 07:07:00 EDT 2025
Sat Nov 29 07:10:54 EST 2025
Tue Nov 18 21:41:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords SDN
MADRL
IoUAVs
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-98d99407c365771bba36cb995f0d1d71cd6ee89652bc13f6a5df30b8a0827bed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6369-3105
0000-0002-4378-6539
0000-0002-9070-6271
0000-0003-1810-3019
0009-0009-1482-3802
OpenAccessLink https://www.proquest.com/docview/3120752885?pq-origsite=%requestingapplication%
PMID 39460016
PQID 3120752885
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_ec2d3f104ec74596bb3074376900f1fb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11511505
proquest_miscellaneous_3121065333
proquest_journals_3120752885
gale_infotracacademiconefile_A814415233
pubmed_primary_39460016
crossref_citationtrail_10_3390_s24206535
crossref_primary_10_3390_s24206535
PublicationCentury 2000
PublicationDate 20241010
PublicationDateYYYYMMDD 2024-10-10
PublicationDate_xml – month: 10
  year: 2024
  text: 20241010
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Cumino (ref_6) 2024; 30
Hua (ref_31) 2020; 9
Wang (ref_32) 2018; 36
Hamza (ref_11) 2021; 8
ref_14
Zhang (ref_7) 2019; 26
Wang (ref_13) 2020; 8
ref_30
Ning (ref_29) 2024; 23
ref_19
Mahmood (ref_10) 2023; 72
Wang (ref_17) 2024; 56
Zeng (ref_4) 2016; 54
Sekander (ref_21) 2017; 16
Boccardi (ref_22) 2016; 54
Kamel (ref_3) 2016; 18
Nawaz (ref_9) 2021; 28
Sun (ref_23) 2020; 69
Do (ref_33) 2020; 8
ref_25
Gronauer (ref_18) 2022; 55
Chen (ref_2) 2020; 27
ref_20
Mozaffari (ref_5) 2019; 21
Sharma (ref_34) 2020; 168
Zhang (ref_8) 2018; 22
Valiulahi (ref_27) 2020; 8
Chang (ref_12) 2022; 10
ref_28
Chowdhury (ref_1) 2020; 1
ref_26
Singh (ref_24) 2015; 14
Feriani (ref_16) 2021; 23
Pasandideh (ref_15) 2022; 28
References_xml – volume: 72
  start-page: 13094
  year: 2023
  ident: ref_10
  article-title: Joint optimization of 3D placement and radio resource allocation for per-UAV sum rate maximization
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2023.3274815
– volume: 23
  start-page: 13408
  year: 2024
  ident: ref_29
  article-title: Joint User Association, Interference Cancellation and Power Control for Multi-IRS Assisted UAV Communications
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2024.3401152
– volume: 27
  start-page: 218
  year: 2020
  ident: ref_2
  article-title: Vision, Requirements, and Technology Trend of 6G: How to Tackle the Challenges of System Coverage, Capacity, User Data-Rate and Movement Speed
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.001.1900333
– ident: ref_30
  doi: 10.3390/drones6020045
– volume: 8
  start-page: 15096
  year: 2020
  ident: ref_13
  article-title: Collaborative design of multi-UAV trajectory and resource scheduling for 6G-enabled internet of things
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3031622
– volume: 69
  start-page: 7518
  year: 2020
  ident: ref_23
  article-title: Uplink Performance Improvement for Downlink-Uplink Decoupled HetNets With Non-Uniform User Distribution
  publication-title: IEEE Trans. Veh. Technol.
– volume: 36
  start-page: 1986
  year: 2018
  ident: ref_32
  article-title: Spectrum Sharing Planning for Full-Duplex UAV Relaying Systems With Underlaid D2D Communications
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2018.2864375
– volume: 28
  start-page: 257
  year: 2022
  ident: ref_15
  article-title: Topology management for flying ad hoc networks based on particle swarm optimization and software-defined networking
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-021-02835-4
– ident: ref_28
  doi: 10.1109/JSTSP.2024.3452501
– volume: 23
  start-page: 1226
  year: 2021
  ident: ref_16
  article-title: Single and multi-agent deep reinforcement learning for AI-enabled wireless networks: A tutorial
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2021.3063822
– volume: 8
  start-page: 164347
  year: 2020
  ident: ref_33
  article-title: Uplink and Downlink NOMA Transmission Using Full-Duplex UAV
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3023163
– volume: 16
  start-page: 2778
  year: 2017
  ident: ref_21
  article-title: Decoupled Uplink-Downlink User Association in Multi-Tier Full-Duplex Cellular Networks: A Two-Sided Matching Game
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2016.2645686
– volume: 22
  start-page: 1902
  year: 2018
  ident: ref_8
  article-title: 3-D Drone-Base-Station Placement with In-Band Full-Duplex Communications
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2018.2851206
– volume: 8
  start-page: 14066
  year: 2021
  ident: ref_11
  article-title: The optimal and the greedy: Drone association and positioning schemes for Internet of UAVs
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3070209
– volume: 26
  start-page: 121
  year: 2019
  ident: ref_7
  article-title: A Framework for 5G Networks with In-Band Full-Duplex Enabled Drone-Mounted Base-Stations
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.2019.1800486
– volume: 1
  start-page: 957
  year: 2020
  ident: ref_1
  article-title: 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions
  publication-title: IEEE Open J. Commun. Soc.
  doi: 10.1109/OJCOMS.2020.3010270
– volume: 9
  start-page: 475
  year: 2020
  ident: ref_31
  article-title: Throughput Maximization for Full-Duplex UAV Aided Small Cell Wireless Systems
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2019.2959527
– volume: 18
  start-page: 2522
  year: 2016
  ident: ref_3
  article-title: Ultra-Dense Networks: A Survey
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2016.2571730
– volume: 14
  start-page: 5360
  year: 2015
  ident: ref_24
  article-title: Joint Rate and SINR Coverage Analysis for Decoupled Uplink-Downlink Biased Cell Associations in HetNets
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2015.2437378
– ident: ref_26
  doi: 10.1109/INFOCOMWKSHPS51825.2021.9484490
– ident: ref_25
  doi: 10.1109/GLOCOM.2014.7037069
– volume: 21
  start-page: 2334
  year: 2019
  ident: ref_5
  article-title: A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2019.2902862
– volume: 54
  start-page: 110
  year: 2016
  ident: ref_22
  article-title: Why to decouple the uplink and downlink in cellular networks and how to do it
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2016.7432156
– ident: ref_19
  doi: 10.1109/COMST.2024.3446585
– volume: 56
  start-page: 1
  year: 2024
  ident: ref_17
  article-title: Integration of Sensing, Communication, and Computing for Metaverse: A Survey
  publication-title: ACM Comput. Surv.
– volume: 54
  start-page: 36
  year: 2016
  ident: ref_4
  article-title: Wireless communications with unmanned aerial vehicles: Opportunities and challenges
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2016.7470933
– volume: 10
  start-page: 2940
  year: 2022
  ident: ref_12
  article-title: Trajectory design and resource allocation for multi-UAV networks: Deep reinforcement learning approaches
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2022.3171600
– volume: 55
  start-page: 895
  year: 2022
  ident: ref_18
  article-title: Multi-agent deep reinforcement learning: A survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-09996-w
– volume: 30
  start-page: 387
  year: 2024
  ident: ref_6
  article-title: On the usefulness of flying base stations in 5G and beyond scenarios
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-023-03445-y
– volume: 28
  start-page: 1349
  year: 2021
  ident: ref_9
  article-title: UAV communication networks issues: A review
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-020-09418-0
– volume: 168
  start-page: 102739
  year: 2020
  ident: ref_34
  article-title: Communication and networking technologies for UAVs: A survey
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2020.102739
– ident: ref_20
– ident: ref_14
  doi: 10.1109/TVT.2024.3461333
– volume: 8
  start-page: 3605
  year: 2020
  ident: ref_27
  article-title: Multi-UAV deployment for throughput maximization in the presence of co-channel interference
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3023010
SSID ssj0023338
Score 2.454484
Snippet In this paper, we present a novel method to enhance the sum-rate effectiveness in full-duplex unmanned aerial vehicle (UAV)-assisted communication networks....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6535
SubjectTerms Algorithms
Communication
Communications networks
Control algorithms
Deep learning
Drone aircraft
Energy efficiency
Evacuations & rescues
IoUAVs
MADRL
Markov analysis
Markov processes
Optimization
SDN
Search and rescue operations
Unmanned aerial vehicles
User groups
Wireless networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9y-KAPcp5fPU-JIuhLuLZpvh6r3nGCLCJ7cm8hX8UF6crunn-_M2m3bFHwxdcmlMlkJjO_NvMbQt5oH0pXu5qViQvWcBeZF2XJgkmigQQ66dDkZhNqsdA3N-bLQasvvBM20AMPijtPoY68A9CQgmqEkd5zjHoKUF3ZVZ3H07dUZg-mRqjFAXkNPEIcQP35FgIRkrCKWfTJJP1_HsUHsWh-T_Ig8FwekwdjxkjbQdKH5E7qT8j9Ax7BR2SZy2hZi2VS9OPXzxQyUdquNmy3ZvhxqY90VghC962K6Kqn1-03dpErqCL9tF7SxXAxfPuYXF9eLD9csbFdAgsQ9XfM6GgM4LPApVCq8t5xGbwxoitjFVUVokxJGylqHyreSSdix0uvHWQByqfIn5Cjft2nZ4SqruHeaO9c4xqptYeDwCXjpXAKGc0K8m6vRhtGLnFsafHDAqZAjdtJ4wV5PU39ORBo_G3Se9yLaQJyXucHYAl2tAT7L0soyFvcSYueCcIENxYYwJKQ48q2OoNHsI2CnO03244uu7W8AjsStdYgzatpGJwN_6C4Pq1v85wKBcZXPB1sY5KZmwaTR1kQPbOa2aLmI_3qeyb0hqwcE3Nx-j_U8JzcqyHxwvhalWfkaLe5TS_I3fBrt9puXmY3-Q1RWRW9
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-Agent DRL for Air-to-Ground Communication Planning in UAV-Enabled IoT Networks
URI https://www.ncbi.nlm.nih.gov/pubmed/39460016
https://www.proquest.com/docview/3120752885
https://www.proquest.com/docview/3121065333
https://pubmed.ncbi.nlm.nih.gov/PMC11511505
https://doaj.org/article/ec2d3f104ec74596bb3074376900f1fb
Volume 24
WOSCitedRecordID wos001341716900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAH3oVAWRmEBBerSRw79gmlsBWV6GpVbdFyivwKrISSstly5LfjcbLpRiAuXHxIrGismfF843i-Qei10CZWqUpJ7CgjGVWWaBbHxEjHMg-gnTBZaDaRz2ZiuZTz_sCt7a9VbvfEsFHbxsAZ-RFNUh_dUiHYu8sfBLpGwd_VvoXGTbQPbbPBzvPldcJFff7VsQlRn9oftT4cARUrG8WgQNX_54a8E5HGtyV3ws_Jvf8V_D662wNPXHSW8gDdcPVDdGeHjvARWoRqXFJAtRX-cP4Je0CLi9WabBoCZ1S1xaN6ErzteIRXNb4oPpNpKMSy-LRZ4Fl3v7x9jC5Opov3H0nfdYEYDx42RAorpU_zDOUszxOtFeVGS8mq2CY2T4zlzgnJWapNQiuumK1orIXyYCLXztIDtFc3tXuKcF5lVEuhlcpUxoXQfj9RTmrOVA7EaBF6u9VDaXpKcuiM8b30qQmorBxUFqFXw9TLjofjb5OOQZnDBKDODg-a9dey98TSmdTSymehzuQZk1xrCjAq5zKOq6TSEXoDplCCg3thjOrrFPySgCqrLETIQb1xRehwq_Gy9_y2vFZ3hF4Or73Pwo8YVbvmKsxJQGD4xJPOuAaZqcwAg_IIiZHZjRY1flOvvgVecA_uAd-zZ_-W6zm6nXpkBgE4iQ_R3mZ95V6gW-bnZtWuJ8GDwigmaP94OpufT8JBhR_Pfk39s_np2fzLb6QzKmM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRLlwLsQKGAQCC5WnThO7ANCC23VVberFdqicgp-BVZCSdndgvhT_EbsvNgIxK0HrrEV2cnnmflszzcAz7jSREYywsRShmMqDVaMEKyFZbELoC3XcVVsIp1M-OmpmG7AzzYXxl-rbG1iZahNqf0e-S4NI-fdIs7Z67Ov2FeN8qerbQmNGhZH9sd3R9mWr0Z77v8-j6KD_dnbQ9xUFcDaOccVFtwI4WiMpglL01ApSROthGA5MaFJQ20Sa7lIWKR0SPNEMpNTorh0zjJV1lD33kuwGTuwkwFsTkfH0w8dxaOO8dX6RZQKsrt0DtCLv7Ke16uKA_zpAtZ8YP9-5prDO7j-v32qG3CtCa3RsF4LN2HDFrfg6prg4m2YVfnGeOjzydDeuzFyITsazhd4VWK_C1cY1MuYQW1NJzQv0MnwPd6vUs0MGpUzNKlv0C_vwMmFTGsbBkVZ2HuA0jymSnAlZSzjhHPlLKa0QiVMpl76LYCX7X_PdCO67mt_fMkc-fIQyTqIBPC063pWK438rdMbD56ugxcHrx6Ui09ZY2syqyNDc8ezrU5jJhKlqA8U00QQkoe5CuCFh17mTZgbjJZNJoabkhcDy4a8YtkOzAHstAjLGtu2zH7DK4AnXbOzSv6oSRa2PK_6hH7A_hV3azB3Y6Yi9lF2EgDvwbw3qX5LMf9cKZ87-uIZDLv_73E9hiuHs-NxNh5Njh7AVuTiUB9uhGQHBqvFuX0Il_W31Xy5eNSsXwQfL3od_ALfTYL_
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXYTgwPsRWMAgEFysJnGc2AeECt2KapeqQl20nILtOFAJJUvbBfHX-HV48qIRiNseuMaWZSefZ-aLPd8APBHa-CpUIfUt4zRiKqOa-z410vLIBdBWmKgqNpHMZuL4WM534GebC4PXKlubWBnqrDT4j3zIgtB5t1AIPsybaxHz8eTlyVeKFaTwpLUtp1FD5MD--O7o2_rFdOy-9dMwnOwvXr-hTYUBapyj3FApMikdpTEs5kkSaK1YbLSUPPezIEsCk8XWChnzUJuA5bHiWc58LZRznIm2GXPjnoPdBOv3DmB3Pn07_9DRPebYX61lxJj0h2vnDFEIlvc8YFUo4E93sOUP-3c1t5zf5Mr__NquwuUm5Cajeo9cgx1bXIdLW0KMN2BR5SHTEeaZkfG7Q-JCeTJaruimpPh3rshIL5OGtLWeyLIgR6P3dL9KQcvItFyQWX2zfn0Tjs5kWbdgUJSFvQMkySOmpdBKRSqKhdDOkiordcxVgpJwHjxvMZCaRowda4J8SR0pQ7ikHVw8eNx1PakVSP7W6RUCqeuAouHVg3L1KW1sUGpNmLHc8W9rkojLWGuGAWQSS9_Pg1x78AxhmKJpc5MxqsnQcEtCkbB0JCr27YDtwV6LtrSxeev0N9Q8eNQ1O2uFR1CqsOVp1SfACeMQt2tgd3NmMsLoO_ZA9CDfW1S_pVh-rhTRHa1BZsPv_nteD-GCA396OJ0d3IOLoQtPMQoJ_D0YbFan9j6cN982y_XqQbOVCXw8623wC_zMi8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Agent+DRL+for+Air-to-Ground+Communication+Planning+in+UAV-Enabled+IoT+Networks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Qureshi%2C+Khalid+Ibrahim&rft.au=Lu%2C+Bingxian&rft.au=Lu%2C+Cheng&rft.au=Lodhi%2C+Muhammad+Ali&rft.date=2024-10-10&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=20&rft.spage=6535&rft_id=info:doi/10.3390%2Fs24206535&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s24206535
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon