Model and Method for Providing Resilience to Resource-Constrained AI-System

Artificial intelligence technologies are becoming increasingly prevalent in resource-constrained, safety-critical embedded systems. Numerous methods exist to enhance the resilience of AI systems against disruptive influences. However, when resources are limited, ensuring cost-effective resilience be...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 24; číslo 18; s. 5951
Hlavní autoři: Moskalenko, Viacheslav, Kharchenko, Vyacheslav, Semenov, Serhii
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 13.09.2024
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Artificial intelligence technologies are becoming increasingly prevalent in resource-constrained, safety-critical embedded systems. Numerous methods exist to enhance the resilience of AI systems against disruptive influences. However, when resources are limited, ensuring cost-effective resilience becomes crucial. A promising approach for reducing the resource consumption of AI systems during test-time involves applying the concepts and methods of dynamic neural networks. Nevertheless, the resilience of dynamic neural networks against various disturbances remains underexplored. This paper proposes a model architecture and training method that integrate dynamic neural networks with a focus on resilience. Compared to conventional training methods, the proposed approach yields a 24% increase in the resilience of convolutional networks and a 19.7% increase in the resilience of visual transformers under fault injections. Additionally, it results in a 16.9% increase in the resilience of convolutional network ResNet-110 and a 21.6% increase in the resilience of visual transformer DeiT-S under adversarial attacks, while saving more than 30% of computational resources. Meta-training the neural network model improves resilience to task changes by an average of 22%, while achieving the same level of resource savings.
AbstractList Artificial intelligence technologies are becoming increasingly prevalent in resource-constrained, safety-critical embedded systems. Numerous methods exist to enhance the resilience of AI systems against disruptive influences. However, when resources are limited, ensuring cost-effective resilience becomes crucial. A promising approach for reducing the resource consumption of AI systems during test-time involves applying the concepts and methods of dynamic neural networks. Nevertheless, the resilience of dynamic neural networks against various disturbances remains underexplored. This paper proposes a model architecture and training method that integrate dynamic neural networks with a focus on resilience. Compared to conventional training methods, the proposed approach yields a 24% increase in the resilience of convolutional networks and a 19.7% increase in the resilience of visual transformers under fault injections. Additionally, it results in a 16.9% increase in the resilience of convolutional network ResNet-110 and a 21.6% increase in the resilience of visual transformer DeiT-S under adversarial attacks, while saving more than 30% of computational resources. Meta-training the neural network model improves resilience to task changes by an average of 22%, while achieving the same level of resource savings.
Artificial intelligence technologies are becoming increasingly prevalent in resource-constrained, safety-critical embedded systems. Numerous methods exist to enhance the resilience of AI systems against disruptive influences. However, when resources are limited, ensuring cost-effective resilience becomes crucial. A promising approach for reducing the resource consumption of AI systems during test-time involves applying the concepts and methods of dynamic neural networks. Nevertheless, the resilience of dynamic neural networks against various disturbances remains underexplored. This paper proposes a model architecture and training method that integrate dynamic neural networks with a focus on resilience. Compared to conventional training methods, the proposed approach yields a 24% increase in the resilience of convolutional networks and a 19.7% increase in the resilience of visual transformers under fault injections. Additionally, it results in a 16.9% increase in the resilience of convolutional network ResNet-110 and a 21.6% increase in the resilience of visual transformer DeiT-S under adversarial attacks, while saving more than 30% of computational resources. Meta-training the neural network model improves resilience to task changes by an average of 22%, while achieving the same level of resource savings.Artificial intelligence technologies are becoming increasingly prevalent in resource-constrained, safety-critical embedded systems. Numerous methods exist to enhance the resilience of AI systems against disruptive influences. However, when resources are limited, ensuring cost-effective resilience becomes crucial. A promising approach for reducing the resource consumption of AI systems during test-time involves applying the concepts and methods of dynamic neural networks. Nevertheless, the resilience of dynamic neural networks against various disturbances remains underexplored. This paper proposes a model architecture and training method that integrate dynamic neural networks with a focus on resilience. Compared to conventional training methods, the proposed approach yields a 24% increase in the resilience of convolutional networks and a 19.7% increase in the resilience of visual transformers under fault injections. Additionally, it results in a 16.9% increase in the resilience of convolutional network ResNet-110 and a 21.6% increase in the resilience of visual transformer DeiT-S under adversarial attacks, while saving more than 30% of computational resources. Meta-training the neural network model improves resilience to task changes by an average of 22%, while achieving the same level of resource savings.
Audience Academic
Author Semenov, Serhii
Kharchenko, Vyacheslav
Moskalenko, Viacheslav
AuthorAffiliation 1 Department of Computer Science, Sumy State University, 116, Kharkivska Str., 40007 Sumy, Ukraine
2 Department of Computer Systems, Networks and Cybersecurity, National Aerospace University “KhAI”, 17, Chkalov Str., 61070 Kharkiv, Ukraine; v.kharchenko@csn.khai.edu
3 Cyber Security Department, University of the National Education Commission, Ul. Podchorążych 2, 30-084 Kraków, Poland; serhii.semenov@up.krakow.pl
AuthorAffiliation_xml – name: 2 Department of Computer Systems, Networks and Cybersecurity, National Aerospace University “KhAI”, 17, Chkalov Str., 61070 Kharkiv, Ukraine; v.kharchenko@csn.khai.edu
– name: 1 Department of Computer Science, Sumy State University, 116, Kharkivska Str., 40007 Sumy, Ukraine
– name: 3 Cyber Security Department, University of the National Education Commission, Ul. Podchorążych 2, 30-084 Kraków, Poland; serhii.semenov@up.krakow.pl
Author_xml – sequence: 1
  givenname: Viacheslav
  orcidid: 0000-0001-6275-9803
  surname: Moskalenko
  fullname: Moskalenko, Viacheslav
– sequence: 2
  givenname: Vyacheslav
  orcidid: 0000-0001-5352-077X
  surname: Kharchenko
  fullname: Kharchenko, Vyacheslav
– sequence: 3
  givenname: Serhii
  orcidid: 0000-0003-4472-9234
  surname: Semenov
  fullname: Semenov, Serhii
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39338696$$D View this record in MEDLINE/PubMed
BookMark eNplkstuGyEUhlGVqkncLvoC1UjdtItJgAEGVpVl9WI1Uate1oiBg4M1hgTGkfL2xXESJalYcPvOD_855xgdxBQBobcEn3SdwqeFMiK54uQFOiKMslZSig8erQ_RcSlrjGnXdfIVOuxUnYUSR-j7eXIwNia65hymi-Qan3LzM6fr4EJcNb-ghDFAtNBMabdL22yhXaRYpmxCBNfMl-3vmzLB5jV66c1Y4M3dPEN_v3z-s_jWnv34ulzMz1rLsZpa1TtQRmALCrMeW8wJJT2WTDBJnfCDMowPxA1eKLBMGUy89BzzoSdSeNXN0HKv65JZ68scNibf6GSCvj1IeaVNnoIdQVNrBe2FkkNvmfFi6AWmblDOcS6Hmo0Z-rTXutwOG3AWYrU1PhF9ehPDhV6la00I6wTpZFX4cKeQ09UWyqQ3oVgYRxMhbYvuCMGKYNqzir5_hq5rOmPN1S0ldhiv1MmeWpnqIESf6sO2DgebYGvlfajnc0lwrziWOw_vHnt4-Px9lStwugdsTqVk8NqGyUwh7SyFUROsd32kH_qoRnx8FnEv-j_7D0NuxMg
CitedBy_id crossref_primary_10_3390_app15148014
crossref_primary_10_3390_app15137072
crossref_primary_10_3390_app15084243
crossref_primary_10_3390_su17188507
Cites_doi 10.1109/IOLTS56730.2022.9897813
10.1109/ICPR48806.2021.9413182
10.1007/s00138-024-01519-1
10.1109/TNNLS.2021.3107051
10.1109/COMST.2020.3036778
10.1109/ISSRE5003.2020.00047
10.1016/j.neucom.2022.11.072
10.1109/ICASSP49357.2023.10096662
10.1109/SiPS47522.2019.9020551
10.1007/978-3-030-01246-5_1
10.1109/IPFA49335.2020.9261013
10.1038/s42256-023-00626-4
10.32620/reks.2022.3.07
10.1109/ICIP49359.2023.10222298
10.1109/ISSREW.2018.00024
10.20944/preprints202302.0209.v1
10.3389/fpubh.2024.1342937
10.1016/j.media.2021.102141
10.52591/lxai202307232
10.3390/computers12030060
10.1371/journal.pone.0265723
10.1109/ICCVW60793.2023.00163
10.1109/CVPR52688.2022.01199
10.3390/make5040080
10.1145/3659943
10.1109/IROS45743.2020.9341571
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24185951
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic

CrossRef

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_2cc627698b7c4af6b7602db9dd558b33
PMC11436138
A810795083
39338696
10_3390_s24185951
Genre Journal Article
GeographicLocations Ukraine
GeographicLocations_xml – name: Ukraine
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c509t-97de9a60ce90470c0512170846482d6fb9a45b1dbf69ec49a01f8f505b7186f93
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001323958300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:35:24 EST 2025
Tue Nov 04 02:05:37 EST 2025
Fri Sep 05 09:02:07 EDT 2025
Tue Oct 07 07:35:47 EDT 2025
Tue Nov 04 18:15:08 EST 2025
Mon Jul 21 05:40:19 EDT 2025
Sat Nov 29 07:14:46 EST 2025
Tue Nov 18 21:51:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords adversarial attack
robustness
dynamic deep neural networks
affordable resilience
fault injection
concept drift
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-97de9a60ce90470c0512170846482d6fb9a45b1dbf69ec49a01f8f505b7186f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4472-9234
0000-0001-5352-077X
0000-0001-6275-9803
OpenAccessLink https://doaj.org/article/2cc627698b7c4af6b7602db9dd558b33
PMID 39338696
PQID 3110691025
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_2cc627698b7c4af6b7602db9dd558b33
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11436138
proquest_miscellaneous_3110910274
proquest_journals_3110691025
gale_infotracacademiconefile_A810795083
pubmed_primary_39338696
crossref_citationtrail_10_3390_s24185951
crossref_primary_10_3390_s24185951
PublicationCentury 2000
PublicationDate 20240913
PublicationDateYYYYMMDD 2024-09-13
PublicationDate_xml – month: 9
  year: 2024
  text: 20240913
  day: 13
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Moskalenko (ref_34) 2023; 2
ref_35
ref_12
ref_11
ref_33
ref_32
ref_31
Ding (ref_18) 2023; 5
ref_19
Eleftheriadis (ref_13) 2024; 35
ref_17
ref_16
ref_15
Lysenko (ref_36) 2020; 1
Hussain (ref_6) 2023; 5
ref_25
ref_24
ref_22
Bortsova (ref_30) 2021; 73
ref_21
ref_20
ref_1
ref_3
Sum (ref_14) 2023; 34
ref_29
Olowononi (ref_4) 2021; 23
ref_28
Moskalenko (ref_23) 2022; 3
ref_27
ref_26
Petrini (ref_2) 2023; 520
ref_9
ref_8
ref_5
ref_7
Guo (ref_10) 2024; 238
References_xml – ident: ref_7
– ident: ref_11
  doi: 10.1109/IOLTS56730.2022.9897813
– ident: ref_5
– ident: ref_24
– ident: ref_33
  doi: 10.1109/ICPR48806.2021.9413182
– volume: 35
  start-page: 3
  year: 2024
  ident: ref_13
  article-title: Adversarial robustness improvement for deep neural networks
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-024-01519-1
– volume: 34
  start-page: 2619
  year: 2023
  ident: ref_14
  article-title: Regularization Effect of Random Node Fault/Noise on Gradient Descent Learning Algorithm
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3107051
– volume: 23
  start-page: 524
  year: 2021
  ident: ref_4
  article-title: Resilient Machine Learning for Networked Cyber Physical Systems: A Survey for Machine Learning Security to Securing Machine Learning for CPS
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2020.3036778
– ident: ref_35
  doi: 10.1109/ISSRE5003.2020.00047
– volume: 520
  start-page: 152
  year: 2023
  ident: ref_2
  article-title: Deep neural networks compression: A comparative survey and choice recommendations
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.11.072
– ident: ref_25
  doi: 10.1109/ICASSP49357.2023.10096662
– ident: ref_20
  doi: 10.1109/SiPS47522.2019.9020551
– ident: ref_21
  doi: 10.1007/978-3-030-01246-5_1
– volume: 2
  start-page: 79
  year: 2023
  ident: ref_34
  article-title: Model-Agnostic Meta-Learning for Resilience Optimization of Artificial Intelligence System. Radio Electron
  publication-title: Comput. Sci. Control
– ident: ref_9
  doi: 10.1109/IPFA49335.2020.9261013
– volume: 5
  start-page: 220
  year: 2023
  ident: ref_18
  article-title: Parameter-efficient fine-tuning of large-scale pre-trained language models
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-023-00626-4
– volume: 3
  start-page: 95
  year: 2022
  ident: ref_23
  article-title: Neural network based image classifier resilient to destructive perturbation influences—Architecture and training method
  publication-title: Radioelectron. Comput. Syst.
  doi: 10.32620/reks.2022.3.07
– volume: 1
  start-page: 17
  year: 2020
  ident: ref_36
  article-title: Computer systems resilience in the presence of cyber threats: Taxonomy and ontology
  publication-title: Radioelectron. Comput. Syst.
– ident: ref_27
  doi: 10.1109/ICIP49359.2023.10222298
– ident: ref_32
  doi: 10.1109/ISSREW.2018.00024
– ident: ref_3
  doi: 10.20944/preprints202302.0209.v1
– ident: ref_28
  doi: 10.3389/fpubh.2024.1342937
– ident: ref_12
– volume: 73
  start-page: 102141
  year: 2021
  ident: ref_30
  article-title: Adversarial attack vulnerability of medical image analysis systems: Unexplored factors
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102141
– ident: ref_8
  doi: 10.52591/lxai202307232
– ident: ref_1
  doi: 10.3390/computers12030060
– volume: 238
  start-page: 4393
  year: 2024
  ident: ref_10
  article-title: The effect of Leaky ReLUs on the training and generalization of overparameterized networks
  publication-title: Proc. Mach. Learn. Res.
– ident: ref_15
– ident: ref_31
  doi: 10.1371/journal.pone.0265723
– ident: ref_22
  doi: 10.1109/ICCVW60793.2023.00163
– ident: ref_26
  doi: 10.1109/CVPR52688.2022.01199
– ident: ref_17
– ident: ref_19
– volume: 5
  start-page: 1589
  year: 2023
  ident: ref_6
  article-title: Reconstruction-Based Adversarial Attack Detection in Vision-Based Autonomous Driving Systems
  publication-title: Mach. Learn. Knowl. Extr.
  doi: 10.3390/make5040080
– ident: ref_29
  doi: 10.1145/3659943
– ident: ref_16
  doi: 10.1109/IROS45743.2020.9341571
SSID ssj0023338
Score 2.45786
Snippet Artificial intelligence technologies are becoming increasingly prevalent in resource-constrained, safety-critical embedded systems. Numerous methods exist to...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5951
SubjectTerms Adaptation
adversarial attack
affordable resilience
Artificial intelligence
Business metrics
Comparative analysis
concept drift
dynamic deep neural networks
Edge computing
Efficiency
Embedded systems
fault injection
Fault tolerance
Methods
Neural networks
R&D
Research & development
robustness
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgM98H4ECjIICS5Rkzhx7BPaolYgxGpVgdRb5CestErazZbfz9jxho1AXLjkkMxhnJnxzOfHNwBvDKsNlzZLS0EdPiRLVa50yo0U0uMVXrvQbKJeLPjFhVjGBbc-HqvczYlhojad9mvkxxTzFMPcVlTvL69S3zXK767GFho34cAzlZUzODg5XSzPR8hFEYENfEIUwf1xX3iuFlHlkywUyPr_nJL3ctL0vOReAjq7-7-q34M7sfQk88FX7sMN2z6Awz1Cwofw2bdGWxPZGvIltJYmWNOSZbithwLk3PardZgMyLYju6X_1Hf9DL0mrCHzT-nAgv4Ivp2dfv3wMY3tFlKNVcM2FbWxaKtMW5GVdaYxXBGvZFiglLwwzCk0XqVyoxwTVqNZs9xxhxWUwvzGnKCPYdZ2rX0KRBheCodgzHFeWoaDd6VxmUGHwCiXMoF3u9_f6MhF7tVcN4hJvKWa0VIJvB5FLwcCjr8JnXgbjgKeMzu86DbfmxiCTaE1K2omuKp1KR1TNcsKo4QxVcUVpQm89R7Q-MhGZbSMFxRwSJ4jq5lzhMq-aS5KHu0M3cSQ75vfVk7g1fgZg9XvwMjWdteDjBepywSeDD416kwF-ioTLAE-8bbJoKZf2tWPQAiOmJZiWcaf_Vuv53C7wJLMn3bJ6RHMtptr-wJu6Z_bVb95GUPnF910Ius
  priority: 102
  providerName: ProQuest
Title Model and Method for Providing Resilience to Resource-Constrained AI-System
URI https://www.ncbi.nlm.nih.gov/pubmed/39338696
https://www.proquest.com/docview/3110691025
https://www.proquest.com/docview/3110910274
https://pubmed.ncbi.nlm.nih.gov/PMC11436138
https://doaj.org/article/2cc627698b7c4af6b7602db9dd558b33
Volume 24
WOSCitedRecordID wos001323958300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiDeBpTIICS7RJnHqx7GLumKFWkUrkMrJ8lNUqlK07XLktzN20qgRSFy4-ODMwZ5HZr7E_gbgnWPcCe2LvJY04KBZbkpjc-G01BGvCB5Sswm-XIrVSjZHrb7imbCOHrhT3FllLas4k8JwW-vADGdF5Yx0bjoVhiaeT6x6DmCqh1oUkVfHI0QR1J_tqsjRIqflKPskkv4_X8VHuWh8TvIo8Vw8hAd9xUhm3UofwS3fPob7RzyCT-Bz7Gi2Ibp1ZJE6QhMsRUmTLtmhALnyu_UmxTDZb8nhi30em3WmFhHekdll3pGXP4WvF_MvHz_lfZeE3GKy3-eSO48qLqyXRc0Li1GGMKPAuqIWlWPBoM6npnQmMOktWqMogwhY-BhMSyxI-gxO2m3rXwCRTtQyIIYKQtSeMVmG2oXCoR0xOLXO4MNBe8r2FOJxmRuFUCIqWg2KzuDtIPqj4834m9B5NMEgEKmu0wQ6gOodQP3LATJ4Hw2oYkDiYqzu7xXgliK1lZoJRLix1y1Knh5srPpI3SmK9Q9uFEu_DN4MjzHG4o8T3frtTScTRXidwfPOJYY1U4muxiTLQIycZbSp8ZN2_T3xeCMUpVhNiZf_Qw2v4F6F9VY8ylLSUzjZX9_413DX_tyvd9cTuM1XPI1iAnfO58vmapIiBsfFrznONZeL5ttvgfIaJw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH6qUiTgwL4YCgwIBBerXmc5IBSWqlGaKEJFKiczngUiRXaJUxB_it_IG2_EAnHrgYsP9ju8sb95i2fm-wCeaso0lybwExFbvEjq52GufK6lkK5f4czWYhNsPucnJ2KxAz-7szBuW2UXE-tArUvl_pHvx5inKOa2KH11-tV3qlFudbWT0GhgMTU_vmPLVr2cvMXv-yyKDt4dvzn0W1UBX2Fy3PiCaYMuBcqIIGGBQlRiWR5gHk54pKnN0cc0D3VuqTAKvQ9Cyy0WCjmGcWod-RKG_N0Ewc5HsLuYzBYf-xYvxo6v4S-KYxHsV5HjhhFpOMh6tTjAnylgKwcO92duJbyDq__bq7oGV9rSmoybuXAddkxxAy5vES7ehKmTflsRWWgyq6WzCdbsZFGfRkQD8t5Uy1Ud7MimJN3Shu9UTWstDaPJeOI3LO-34MO5jOY2jIqyMHeBCM0TYbHZtJwnhuLLtom2gUbAYxST0oMX3efOVMu17txcZdhzOWRkPTI8eNKbnjYEI38zeu0w0xs4TvD6Rrn-nLUhJouUohGjgudMJdLSnNEg0rnQOk15HscePHeIy1zkQmeUbA9g4JAcB1g25mHAnCgwWu51wMrakFZlv1HlweP-MQYjt8IkC1OeNTbOhCUe3Gkw3PscC5wbVFAP-ADdg0ENnxTLLzXhOfbsMZad_N6__XoEFw-PZ0fZ0WQ-vQ-XIiw_3c6eMN6D0WZ9Zh7ABfVts6zWD9tpS-DTecP_F9wIfkY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFL0azSAEC96PwAAGgWAT1YkTx14gVBgqqjJVhEAaViHxY6ZSlQxNB8Sv8XVc50UrELtZsMkiuYvr5Pg-YvscgKeaJ1rkhvqRZBYvOfeLoFC-0LnMXb8iEtuITSTzuTg6kukO_OzPwrhtlX1MbAK1rpT7Rz5imKc45rYwHtluW0R6MHl1-tV3ClJupbWX02ghMjM_vmP7Vr-cHuC3fhaGk7cf37zzO4UBX2GiXPsy0Qbdo8pIGiVUIUKxRKeYkyMRam4L9DcuAl1YLo3CkdDACotFQ4EhnVtHxIThfw9L8gjn2F46PUw_D-0ew-6v5TJiTNJRHTqeGBkHWxmwEQr4Mx1s5MPtvZobyW9y9X9-bdfgSldyk3E7R67DjilvwOUNIsabMHOScEuSl5ocNpLaBGt5kjanFNGAfDD1YtkEQbKuSL_k4Tu100Zjw2gynvot-_st-HQuo7kNu2VVmrtApBaRtNiEWiEiw_HF20hbqnEiYHTLcw9e9J8-Ux0Hu3NzmWEv5lCSDSjx4MlgetoSj_zN6LXDz2DguMKbG9XqOOtCTxYqxcOES1EkKsotLxJOQ11IreNYFIx58NyhL3MRDZ1ReXcwA4fkuMGysQho4sSC0XK_B1nWhbo6-40wDx4PjzFIuZWnvDTVWWvjTJLIgzstngefmcR5wiX3QGwhfWtQ20_KxUlDhI69PMNyVNz7t1-P4CJiPns_nc_uw6UQq1K34Sdg-7C7Xp2ZB3BBfVsv6tXDbgYT-HLe6P8Fgk2HBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+and+Method+for+Providing+Resilience+to+Resource-Constrained+AI-System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Moskalenko%2C+Viacheslav&rft.au=Kharchenko%2C+Vyacheslav&rft.au=Semenov%2C+Serhii&rft.date=2024-09-13&rft.eissn=1424-8220&rft.volume=24&rft.issue=18&rft_id=info:doi/10.3390%2Fs24185951&rft_id=info%3Apmid%2F39338696&rft.externalDocID=39338696
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon