Viral entry of hepatitis B and D viruses and bile salts transportation share common molecular determinants on sodium taurocholate cotransporting polypeptide
The liver bile acids transporter sodium taurocholate cotransporting polypeptide (NTCP) is responsible for the majority of sodium-dependent bile salts uptake by hepatocytes. NTCP also functions as a cellular receptor for viral entry of hepatitis B virus (HBV) and hepatitis D virus (HDV) through a spe...
Saved in:
| Published in: | Journal of virology Vol. 88; no. 6; p. 3273 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.03.2014
|
| Subjects: | |
| ISSN: | 1098-5514, 1098-5514 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The liver bile acids transporter sodium taurocholate cotransporting polypeptide (NTCP) is responsible for the majority of sodium-dependent bile salts uptake by hepatocytes. NTCP also functions as a cellular receptor for viral entry of hepatitis B virus (HBV) and hepatitis D virus (HDV) through a specific interaction between NTCP and the pre-S1 domain of HBV large envelope protein. However, it remains unknown if these two functions of NTCP are independent or if they interfere with each other. Here we show that binding of the pre-S1 domain to human NTCP blocks taurocholate uptake by the receptor; conversely, some bile acid substrates of NTCP inhibit HBV and HDV entry. Mutations of NTCP residues critical for bile salts binding severely impair viral infection by HDV and HBV; to a lesser extent, the residues important for sodium binding also inhibit viral infection. The mutation S267F, corresponding to a single nucleotide polymorphism (SNP) found in about 9% of the East Asian population, renders NTCP without either taurocholate transporting activity or the ability to support HBV or HDV infection in cell culture. These results demonstrate that molecular determinants critical for HBV and HDV entry overlap with that for bile salts uptake by NTCP, indicating that viral infection may interfere with the normal function of NTCP, and bile acids and their derivatives hold the potential for further development into antiviral drugs.
Human hepatitis B virus (HBV) and its satellite virus, hepatitis D virus (HDV), are important human pathogens. Available therapeutics against HBV are limited, and there is no drug that is clinically available for HDV infection. A liver bile acids transporter (sodium taurocholate cotransporting polypeptide [NTCP]) critical for maintaining homeostasis of bile acids serves as a functional receptor for HBV and HDV. We report here that the NTCP-binding lipopeptide that originates from the first 47 amino acids of the pre-S1 domain of the HBV L protein blocks taurocholate transport. Some bile salts dose dependently inhibit HBV and HDV infection mediated by NTCP; molecular determinants of NTCP critical for HBV and HDV entry overlap with that for bile acids transport. This work advances our understanding of NTCP-mediated HBV and HDV infection in relation to NTCP's physiological function. Our results also suggest that bile acids or their derivatives hold potential for development into novel drugs against HBV and HDV infection. |
|---|---|
| AbstractList | The liver bile acids transporter sodium taurocholate cotransporting polypeptide (NTCP) is responsible for the majority of sodium-dependent bile salts uptake by hepatocytes. NTCP also functions as a cellular receptor for viral entry of hepatitis B virus (HBV) and hepatitis D virus (HDV) through a specific interaction between NTCP and the pre-S1 domain of HBV large envelope protein. However, it remains unknown if these two functions of NTCP are independent or if they interfere with each other. Here we show that binding of the pre-S1 domain to human NTCP blocks taurocholate uptake by the receptor; conversely, some bile acid substrates of NTCP inhibit HBV and HDV entry. Mutations of NTCP residues critical for bile salts binding severely impair viral infection by HDV and HBV; to a lesser extent, the residues important for sodium binding also inhibit viral infection. The mutation S267F, corresponding to a single nucleotide polymorphism (SNP) found in about 9% of the East Asian population, renders NTCP without either taurocholate transporting activity or the ability to support HBV or HDV infection in cell culture. These results demonstrate that molecular determinants critical for HBV and HDV entry overlap with that for bile salts uptake by NTCP, indicating that viral infection may interfere with the normal function of NTCP, and bile acids and their derivatives hold the potential for further development into antiviral drugs.
Human hepatitis B virus (HBV) and its satellite virus, hepatitis D virus (HDV), are important human pathogens. Available therapeutics against HBV are limited, and there is no drug that is clinically available for HDV infection. A liver bile acids transporter (sodium taurocholate cotransporting polypeptide [NTCP]) critical for maintaining homeostasis of bile acids serves as a functional receptor for HBV and HDV. We report here that the NTCP-binding lipopeptide that originates from the first 47 amino acids of the pre-S1 domain of the HBV L protein blocks taurocholate transport. Some bile salts dose dependently inhibit HBV and HDV infection mediated by NTCP; molecular determinants of NTCP critical for HBV and HDV entry overlap with that for bile acids transport. This work advances our understanding of NTCP-mediated HBV and HDV infection in relation to NTCP's physiological function. Our results also suggest that bile acids or their derivatives hold potential for development into novel drugs against HBV and HDV infection. The liver bile acids transporter sodium taurocholate cotransporting polypeptide (NTCP) is responsible for the majority of sodium-dependent bile salts uptake by hepatocytes. NTCP also functions as a cellular receptor for viral entry of hepatitis B virus (HBV) and hepatitis D virus (HDV) through a specific interaction between NTCP and the pre-S1 domain of HBV large envelope protein. However, it remains unknown if these two functions of NTCP are independent or if they interfere with each other. Here we show that binding of the pre-S1 domain to human NTCP blocks taurocholate uptake by the receptor; conversely, some bile acid substrates of NTCP inhibit HBV and HDV entry. Mutations of NTCP residues critical for bile salts binding severely impair viral infection by HDV and HBV; to a lesser extent, the residues important for sodium binding also inhibit viral infection. The mutation S267F, corresponding to a single nucleotide polymorphism (SNP) found in about 9% of the East Asian population, renders NTCP without either taurocholate transporting activity or the ability to support HBV or HDV infection in cell culture. These results demonstrate that molecular determinants critical for HBV and HDV entry overlap with that for bile salts uptake by NTCP, indicating that viral infection may interfere with the normal function of NTCP, and bile acids and their derivatives hold the potential for further development into antiviral drugs.UNLABELLEDThe liver bile acids transporter sodium taurocholate cotransporting polypeptide (NTCP) is responsible for the majority of sodium-dependent bile salts uptake by hepatocytes. NTCP also functions as a cellular receptor for viral entry of hepatitis B virus (HBV) and hepatitis D virus (HDV) through a specific interaction between NTCP and the pre-S1 domain of HBV large envelope protein. However, it remains unknown if these two functions of NTCP are independent or if they interfere with each other. Here we show that binding of the pre-S1 domain to human NTCP blocks taurocholate uptake by the receptor; conversely, some bile acid substrates of NTCP inhibit HBV and HDV entry. Mutations of NTCP residues critical for bile salts binding severely impair viral infection by HDV and HBV; to a lesser extent, the residues important for sodium binding also inhibit viral infection. The mutation S267F, corresponding to a single nucleotide polymorphism (SNP) found in about 9% of the East Asian population, renders NTCP without either taurocholate transporting activity or the ability to support HBV or HDV infection in cell culture. These results demonstrate that molecular determinants critical for HBV and HDV entry overlap with that for bile salts uptake by NTCP, indicating that viral infection may interfere with the normal function of NTCP, and bile acids and their derivatives hold the potential for further development into antiviral drugs.Human hepatitis B virus (HBV) and its satellite virus, hepatitis D virus (HDV), are important human pathogens. Available therapeutics against HBV are limited, and there is no drug that is clinically available for HDV infection. A liver bile acids transporter (sodium taurocholate cotransporting polypeptide [NTCP]) critical for maintaining homeostasis of bile acids serves as a functional receptor for HBV and HDV. We report here that the NTCP-binding lipopeptide that originates from the first 47 amino acids of the pre-S1 domain of the HBV L protein blocks taurocholate transport. Some bile salts dose dependently inhibit HBV and HDV infection mediated by NTCP; molecular determinants of NTCP critical for HBV and HDV entry overlap with that for bile acids transport. This work advances our understanding of NTCP-mediated HBV and HDV infection in relation to NTCP's physiological function. Our results also suggest that bile acids or their derivatives hold potential for development into novel drugs against HBV and HDV infection.IMPORTANCEHuman hepatitis B virus (HBV) and its satellite virus, hepatitis D virus (HDV), are important human pathogens. Available therapeutics against HBV are limited, and there is no drug that is clinically available for HDV infection. A liver bile acids transporter (sodium taurocholate cotransporting polypeptide [NTCP]) critical for maintaining homeostasis of bile acids serves as a functional receptor for HBV and HDV. We report here that the NTCP-binding lipopeptide that originates from the first 47 amino acids of the pre-S1 domain of the HBV L protein blocks taurocholate transport. Some bile salts dose dependently inhibit HBV and HDV infection mediated by NTCP; molecular determinants of NTCP critical for HBV and HDV entry overlap with that for bile acids transport. This work advances our understanding of NTCP-mediated HBV and HDV infection in relation to NTCP's physiological function. Our results also suggest that bile acids or their derivatives hold potential for development into novel drugs against HBV and HDV infection. |
| Author | Yan, Huan Jing, Zhiyi Xu, Guangwei He, Wenhui Peng, Bo Ren, Bijie Sui, Jianhua Liu, Yang Li, Wenhui |
| Author_xml | – sequence: 1 givenname: Huan surname: Yan fullname: Yan, Huan organization: National Institute of Biological Sciences, Beijing, China – sequence: 2 givenname: Bo surname: Peng fullname: Peng, Bo – sequence: 3 givenname: Yang surname: Liu fullname: Liu, Yang – sequence: 4 givenname: Guangwei surname: Xu fullname: Xu, Guangwei – sequence: 5 givenname: Wenhui surname: He fullname: He, Wenhui – sequence: 6 givenname: Bijie surname: Ren fullname: Ren, Bijie – sequence: 7 givenname: Zhiyi surname: Jing fullname: Jing, Zhiyi – sequence: 8 givenname: Jianhua surname: Sui fullname: Sui, Jianhua – sequence: 9 givenname: Wenhui surname: Li fullname: Li, Wenhui |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24390325$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkDlPxDAUhC0EAhboqJFLmoCvJE7JfQiJBrZdvY1fWCPHDraDtP-FH8sul6hmRvpmipmQTR88EnLI2QnnQp_eT-9OmFS1LrjcILucNbooS642__kdMknplTGuVKW2yY5QsmFSlLvkY2ojOIo-xyUNHV3gANlmm-g5BW_oJX23cUyYvtLcOqQJXE40R_BpCDGv8OBpWkBE2oa-X4U-OGxHB5EazBh768GvKmssGDv2NMMYQ7sIDvK69Ldl_QsdglsOOGRrcJ9sdeASHvzoHnm-vnq6uC0eHm_uLs4eirZkTS6aquItzkspOtMZFJUC1gilS4W10KaWxgjDEQxU2GghtVGVkabV8053XILYI8ffu0MMbyOmPOttatE58BjGNOMlE1LUvJYr9OgHHec9mtkQbQ9xOft9VHwCS-t-Tg |
| CitedBy_id | crossref_primary_10_1016_j_virol_2016_06_024 crossref_primary_10_1016_j_bbalip_2021_158960 crossref_primary_10_3748_wjg_v24_i6_680 crossref_primary_10_1016_j_mri_2024_110215 crossref_primary_10_3389_fphar_2021_616858 crossref_primary_10_1124_pharmrev_124_000978 crossref_primary_10_1007_s12072_021_10230_6 crossref_primary_10_3389_fmed_2021_708495 crossref_primary_10_1016_j_scib_2018_08_013 crossref_primary_10_4274_nkmj_galenos_2024_26121 crossref_primary_10_1124_jpet_119_257600 crossref_primary_10_1002_hep_27608 crossref_primary_10_1016_j_bcp_2021_114484 crossref_primary_10_1016_j_livres_2022_08_005 crossref_primary_10_1038_s41598_017_07012_2 crossref_primary_10_1002_1873_3468_12157 crossref_primary_10_3389_fcimb_2024_1488527 crossref_primary_10_3390_v17081100 crossref_primary_10_1016_j_ijid_2019_01_038 crossref_primary_10_5812_hepatmon_121842 crossref_primary_10_1097_HC9_0000000000000078 crossref_primary_10_1016_j_ejps_2014_09_005 crossref_primary_10_3350_cmh_2015_21_3_193 crossref_primary_10_3390_cells9092052 crossref_primary_10_3748_wjg_v27_i24_3530 crossref_primary_10_1016_j_chembiol_2018_04_011 crossref_primary_10_3390_ijms222010963 crossref_primary_10_1016_j_jhep_2015_01_018 crossref_primary_10_1016_j_jhep_2014_05_018 crossref_primary_10_1053_j_gastro_2014_04_030 crossref_primary_10_1111_hepr_13007 crossref_primary_10_1016_j_jhep_2016_11_009 crossref_primary_10_1002_hep_27224 crossref_primary_10_1002_hep_28952 crossref_primary_10_1016_j_bbrc_2018_04_187 crossref_primary_10_1016_j_virol_2018_07_006 crossref_primary_10_1186_s12881_019_0823_x crossref_primary_10_3389_fcimb_2019_00018 crossref_primary_10_1016_j_bpj_2024_03_033 crossref_primary_10_1016_j_jpha_2024_100979 crossref_primary_10_1002_hep_31712 crossref_primary_10_1155_2016_7417648 crossref_primary_10_1016_j_metabol_2018_01_007 crossref_primary_10_1002_1873_3468_12202 crossref_primary_10_1146_annurev_cellbio_100814_125241 crossref_primary_10_1016_j_virol_2017_02_006 crossref_primary_10_1038_s41594_023_01191_5 crossref_primary_10_4254_wjh_v11_i1_65 crossref_primary_10_1038_s41579_024_01121_2 crossref_primary_10_3390_ijms15022892 crossref_primary_10_3390_v7092854 crossref_primary_10_7554_eLife_89167_3 crossref_primary_10_3390_pathogens13080702 crossref_primary_10_1016_j_jhep_2015_10_030 crossref_primary_10_7554_eLife_26738 crossref_primary_10_1159_000514274 crossref_primary_10_1371_journal_ppat_1013390 crossref_primary_10_1038_nrgastro_2017_44 crossref_primary_10_3389_fped_2018_00354 crossref_primary_10_1016_j_coviro_2018_04_004 crossref_primary_10_1074_jbc_RA118_007179 crossref_primary_10_1038_s41426_018_0137_7 crossref_primary_10_1016_j_tim_2016_05_006 crossref_primary_10_3389_fmicb_2018_03257 crossref_primary_10_3390_ijms23073897 crossref_primary_10_1038_s41564_024_01801_y crossref_primary_10_1159_000371692 crossref_primary_10_5812_hepatmon_94500 crossref_primary_10_1016_j_cgh_2018_04_023 crossref_primary_10_1111_jvh_13157 crossref_primary_10_1016_j_bcp_2023_115956 crossref_primary_10_1038_s41598_018_20987_w crossref_primary_10_3389_fendo_2022_898750 crossref_primary_10_1073_pnas_1813909116 crossref_primary_10_1111_sji_12553 crossref_primary_10_3390_biomedicines13010100 crossref_primary_10_1016_j_heliyon_2024_e37661 crossref_primary_10_1128_spectrum_00836_24 crossref_primary_10_3390_ijms23137468 crossref_primary_10_3851_IMP3179 crossref_primary_10_1016_j_antiviral_2018_08_014 crossref_primary_10_1016_S1875_5364_16_30065_6 crossref_primary_10_1053_j_gastro_2014_02_024 crossref_primary_10_1128_JVI_01432_18 crossref_primary_10_1038_s41467_024_53533_6 crossref_primary_10_1007_s12072_016_9718_5 crossref_primary_10_1111_jvh_13608 crossref_primary_10_1515_hsz_2022_0345 crossref_primary_10_1111_jvh_12912 crossref_primary_10_1124_dmd_120_000057 crossref_primary_10_1155_2018_9312650 crossref_primary_10_1038_s41586_022_04723_z crossref_primary_10_1074_jbc_M116_757567 crossref_primary_10_3390_v15020512 crossref_primary_10_3389_fmolb_2022_879817 crossref_primary_10_3390_ijms22063004 crossref_primary_10_1371_journal_pone_0170419 crossref_primary_10_1016_j_antiviral_2015_08_005 crossref_primary_10_1016_j_jhep_2014_08_039 crossref_primary_10_1016_j_antiviral_2016_08_008 crossref_primary_10_1038_s41598_017_17959_x crossref_primary_10_1136_gutjnl_2014_308943 crossref_primary_10_1016_j_antiviral_2015_08_009 crossref_primary_10_1053_j_gastro_2018_06_093 crossref_primary_10_1186_s12864_025_11620_y crossref_primary_10_1007_s12250_021_00450_3 crossref_primary_10_1093_infdis_jiy355 crossref_primary_10_1002_btm2_10436 crossref_primary_10_1016_j_omtm_2021_11_002 crossref_primary_10_3390_v14061259 crossref_primary_10_1128_JVI_01800_19 crossref_primary_10_1093_abbs_gmw103 crossref_primary_10_1016_j_cld_2015_01_001 crossref_primary_10_1128_JVI_00938_21 crossref_primary_10_7554_eLife_89167 crossref_primary_10_1371_journal_pone_0129889 crossref_primary_10_1111_jgh_16604 crossref_primary_10_1128_jvi_01686_21 crossref_primary_10_1002_j_2040_4603_2014_tb00594_x crossref_primary_10_1159_000360948 crossref_primary_10_1016_j_ajhg_2024_04_013 crossref_primary_10_1016_j_ebiom_2024_105101 crossref_primary_10_1186_s12885_016_2257_6 crossref_primary_10_1016_j_jhep_2016_02_011 crossref_primary_10_1186_s12879_017_2214_2 crossref_primary_10_1053_j_gastro_2018_09_052 crossref_primary_10_1128_spectrum_01365_23 crossref_primary_10_1136_gutjnl_2015_311029 crossref_primary_10_1038_s41467_024_46706_w crossref_primary_10_1016_j_biopha_2023_116077 crossref_primary_10_1038_nrgastro_2014_226 crossref_primary_10_1016_j_antiviral_2014_03_017 crossref_primary_10_1016_j_antiviral_2025_106267 crossref_primary_10_1124_dmd_122_000953 crossref_primary_10_2147_DDDT_S480151 crossref_primary_10_1007_s11427_024_2717_6 crossref_primary_10_1080_17460441_2022_2129613 crossref_primary_10_1002_jmv_24350 crossref_primary_10_1016_j_bbagen_2022_130224 crossref_primary_10_3390_cells9061486 crossref_primary_10_1074_jbc_M114_602540 crossref_primary_10_3748_wjg_v27_i21_2727 crossref_primary_10_1111_jvh_13585 crossref_primary_10_1038_s41426_018_0189_8 crossref_primary_10_3892_etm_2016_3752 crossref_primary_10_1128_jvi_01187_24 crossref_primary_10_1016_j_ejphar_2018_06_030 crossref_primary_10_1136_gutjnl_2015_310686 crossref_primary_10_1038_srep17047 crossref_primary_10_1038_s41586_022_04845_4 crossref_primary_10_1186_s12866_021_02199_x crossref_primary_10_3390_biomedicines10010196 crossref_primary_10_1111_tra_12354 crossref_primary_10_1016_j_molpha_2025_100069 crossref_primary_10_1002_hep_30792 crossref_primary_10_1016_j_coviro_2021_08_001 crossref_primary_10_1096_fj_201500134 crossref_primary_10_1186_s12985_020_01376_0 crossref_primary_10_1038_s41598_025_16348_z crossref_primary_10_1186_s40164_025_00642_7 crossref_primary_10_1016_j_meegid_2016_03_039 crossref_primary_10_1124_jpet_117_245951 crossref_primary_10_1016_j_antiviral_2015_06_007 crossref_primary_10_1038_srep46490 crossref_primary_10_1128_JVI_00901_16 crossref_primary_10_1002_j_2040_4603_2014_tb00588_x crossref_primary_10_1016_j_antiviral_2015_06_002 crossref_primary_10_3390_ijms241311146 crossref_primary_10_5812_hepatmon_33646 crossref_primary_10_1093_nsr_nwv044 crossref_primary_10_3390_molecules23123315 crossref_primary_10_1016_j_amjms_2022_03_014 crossref_primary_10_1038_s41586_022_04857_0 crossref_primary_10_1096_fj_201801181R crossref_primary_10_3390_livers1040019 crossref_primary_10_1371_journal_pone_0117152 crossref_primary_10_1111_liv_15031 crossref_primary_10_1128_JVI_01153_16 crossref_primary_10_1016_j_antiviral_2021_105165 crossref_primary_10_1016_j_jcv_2019_09_002 crossref_primary_10_1128_JVI_02832_15 crossref_primary_10_4167_jbv_2016_46_4_335 crossref_primary_10_1016_j_clinre_2014_07_009 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1128/JVI.03478-13 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1098-5514 |
| ExternalDocumentID | 24390325 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .55 .GJ 0R~ 18M 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 6TJ 85S AAYJJ ABPPZ ACGFO ACNCT ADBBV AENEX AFFNX AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CGR CS3 CUY CVF D0S DIK E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 MVM N9A NPM O9- OHT OK1 P2P RHI RNS RPM RSF TR2 UPT VH1 W2D W8F WH7 WOQ X7M Y6R YQT ZGI ZXP ~02 ~KM 7X8 AAFWJ AAGFI AFPKN |
| ID | FETCH-LOGICAL-c509t-9661ceb532fdfde264a0924854e728d73dd2d1eada6e98238d46d3dc8bf8f13a2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 205 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332126000020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1098-5514 |
| IngestDate | Sun Nov 09 09:23:37 EST 2025 Thu Apr 03 07:03:30 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-9661ceb532fdfde264a0924854e728d73dd2d1eada6e98238d46d3dc8bf8f13a2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://jvi.asm.org/content/jvi/88/6/3273.full.pdf |
| PMID | 24390325 |
| PQID | 1502327173 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1502327173 pubmed_primary_24390325 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-03-01 |
| PublicationDateYYYYMMDD | 2014-03-01 |
| PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of virology |
| PublicationTitleAlternate | J Virol |
| PublicationYear | 2014 |
| References | 23596296 - J Virol. 2013 Jun;87(12):7176-84 10192613 - J Clin Gastroenterol. 1999 Apr;28(3):249-53 23678176 - J Virol. 2013 Jul;87(14):7977-91 14699511 - Gastroenterology. 2004 Jan;126(1):322-42 8791732 - Curr Top Microbiol Immunol. 1996;214:297-337 14660639 - J Biol Chem. 2004 Feb 20;279(8):7213-22 22273662 - Vaccine. 2012 Mar 9;30(12):2212-9 23161433 - Hepatology. 2013 Mar;57(3):985-94 12631271 - Eur J Biochem. 2003 Mar;270(6):1117-27 10704474 - Microbiol Mol Biol Rev. 2000 Mar;64(1):51-68 16608845 - J Biol Chem. 2006 Jun 16;281(24):16410-8 8132774 - J Clin Invest. 1994 Mar;93(3):1326-31 12804455 - Cochrane Database Syst Rev. 2003;(2):CD003181 18086046 - Cell Microbiol. 2008 Jan;10(1):122-33 8781018 - Semin Liver Dis. 1996 May;16(2):129-36 21511329 - Lancet. 2011 Jul 2;378(9785):73-85 18046710 - Hepatology. 2007 Dec;46(6):1759-68 23150796 - Elife. 2012;1:e00049 10484607 - J Lipid Res. 1999 Sep;40(9):1604-17 18837079 - World J Gastroenterol. 2008 Oct 7;14(37):5641-9 21103971 - Handb Exp Pharmacol. 2011;(201):205-59 21976025 - Nature. 2011 Oct 20;478(7369):408-11 16012950 - Gastroenterology. 2005 Jul;129(1):234-45 21341987 - Xenobiotica. 2011 Jun;41(6):501-10 |
| References_xml | – reference: 14660639 - J Biol Chem. 2004 Feb 20;279(8):7213-22 – reference: 21341987 - Xenobiotica. 2011 Jun;41(6):501-10 – reference: 16608845 - J Biol Chem. 2006 Jun 16;281(24):16410-8 – reference: 18046710 - Hepatology. 2007 Dec;46(6):1759-68 – reference: 12631271 - Eur J Biochem. 2003 Mar;270(6):1117-27 – reference: 16012950 - Gastroenterology. 2005 Jul;129(1):234-45 – reference: 8791732 - Curr Top Microbiol Immunol. 1996;214:297-337 – reference: 10484607 - J Lipid Res. 1999 Sep;40(9):1604-17 – reference: 8132774 - J Clin Invest. 1994 Mar;93(3):1326-31 – reference: 23596296 - J Virol. 2013 Jun;87(12):7176-84 – reference: 23678176 - J Virol. 2013 Jul;87(14):7977-91 – reference: 21511329 - Lancet. 2011 Jul 2;378(9785):73-85 – reference: 21103971 - Handb Exp Pharmacol. 2011;(201):205-59 – reference: 23150796 - Elife. 2012;1:e00049 – reference: 8781018 - Semin Liver Dis. 1996 May;16(2):129-36 – reference: 10704474 - Microbiol Mol Biol Rev. 2000 Mar;64(1):51-68 – reference: 10192613 - J Clin Gastroenterol. 1999 Apr;28(3):249-53 – reference: 23161433 - Hepatology. 2013 Mar;57(3):985-94 – reference: 14699511 - Gastroenterology. 2004 Jan;126(1):322-42 – reference: 18837079 - World J Gastroenterol. 2008 Oct 7;14(37):5641-9 – reference: 18086046 - Cell Microbiol. 2008 Jan;10(1):122-33 – reference: 12804455 - Cochrane Database Syst Rev. 2003;(2):CD003181 – reference: 21976025 - Nature. 2011 Oct 20;478(7369):408-11 – reference: 22273662 - Vaccine. 2012 Mar 9;30(12):2212-9 |
| SSID | ssj0014464 |
| Score | 2.5538867 |
| Snippet | The liver bile acids transporter sodium taurocholate cotransporting polypeptide (NTCP) is responsible for the majority of sodium-dependent bile salts uptake by... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 3273 |
| SubjectTerms | Amino Acid Motifs Biological Transport Hepatitis B - genetics Hepatitis B - metabolism Hepatitis B - virology Hepatitis B virus - genetics Hepatitis B virus - physiology Hepatitis D - genetics Hepatitis D - metabolism Hepatitis D - virology Hepatitis Delta Virus - genetics Hepatitis Delta Virus - physiology Humans Organic Anion Transporters, Sodium-Dependent - chemistry Organic Anion Transporters, Sodium-Dependent - genetics Organic Anion Transporters, Sodium-Dependent - metabolism Protein Binding Receptors, Virus - chemistry Receptors, Virus - genetics Receptors, Virus - metabolism Symporters - chemistry Symporters - genetics Symporters - metabolism Taurocholic Acid - metabolism Viral Envelope Proteins - genetics Viral Envelope Proteins - metabolism Virus Internalization |
| Title | Viral entry of hepatitis B and D viruses and bile salts transportation share common molecular determinants on sodium taurocholate cotransporting polypeptide |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24390325 https://www.proquest.com/docview/1502327173 |
| Volume | 88 |
| WOSCitedRecordID | wos000332126000020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UKnjx_agvRvAaTbJpHifxVVSw9KClt7LZ2dBCm9QmKfhf_LHO5mG9CIKXQEg2WXZmZ77ZGeZj7MLk0ic3LgwKvbjhOIFr-A5KwxSmHaEpQkuKgmzC63T8fj_oVgduaVVWWdvEwlBjIvUZ-RUBF3L-Omd8PX03NGuUzq5WFBrLrMEJymit9vqLLAKFOkVWWffM1MigLny3_avn3tOlyR0dQvHfwWXhZNqb_53eFtuo4CXclPqwzZZUvMPWSsLJj1322RvN6HHBJgJJBEOlC6qzUQq3IGKEe5iPZnmq0uIuJIsBqRhnKWR1D_RCkJAOxUwBzYx-C5OaYRfwR20N6NcSHOUTyESuibkoiM70oO9vkdeEaTKmSJjsFqo99tZ-eL17NCp-BkMSzMh0Y09LqrDFSaoRKoJWwgx0izRHebaPHke00SJVFa4KfMIG6LjIUfph5EcWF_Y-W4mTWB0yEKYr3MANRUSbNpStMMBICQctG0NXWbzJzutlH5D-66SGiFWSp4PFwjfZQSm7wbRs1DGwCW2Z3G4d_WH0MVsnLOSU5WUnrBHR7lenbFXOSQizs0Kx6NrpvnwBxz_dYw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viral+entry+of+hepatitis+B+and+D+viruses+and+bile+salts+transportation+share+common+molecular+determinants+on+sodium+taurocholate+cotransporting+polypeptide&rft.jtitle=Journal+of+virology&rft.au=Yan%2C+Huan&rft.au=Peng%2C+Bo&rft.au=Liu%2C+Yang&rft.au=Xu%2C+Guangwei&rft.date=2014-03-01&rft.issn=1098-5514&rft.eissn=1098-5514&rft.volume=88&rft.issue=6&rft.spage=3273&rft_id=info:doi/10.1128%2FJVI.03478-13&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-5514&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-5514&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-5514&client=summon |