Viral entry of hepatitis B and D viruses and bile salts transportation share common molecular determinants on sodium taurocholate cotransporting polypeptide

The liver bile acids transporter sodium taurocholate cotransporting polypeptide (NTCP) is responsible for the majority of sodium-dependent bile salts uptake by hepatocytes. NTCP also functions as a cellular receptor for viral entry of hepatitis B virus (HBV) and hepatitis D virus (HDV) through a spe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of virology Vol. 88; no. 6; p. 3273
Main Authors: Yan, Huan, Peng, Bo, Liu, Yang, Xu, Guangwei, He, Wenhui, Ren, Bijie, Jing, Zhiyi, Sui, Jianhua, Li, Wenhui
Format: Journal Article
Language:English
Published: United States 01.03.2014
Subjects:
ISSN:1098-5514, 1098-5514
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The liver bile acids transporter sodium taurocholate cotransporting polypeptide (NTCP) is responsible for the majority of sodium-dependent bile salts uptake by hepatocytes. NTCP also functions as a cellular receptor for viral entry of hepatitis B virus (HBV) and hepatitis D virus (HDV) through a specific interaction between NTCP and the pre-S1 domain of HBV large envelope protein. However, it remains unknown if these two functions of NTCP are independent or if they interfere with each other. Here we show that binding of the pre-S1 domain to human NTCP blocks taurocholate uptake by the receptor; conversely, some bile acid substrates of NTCP inhibit HBV and HDV entry. Mutations of NTCP residues critical for bile salts binding severely impair viral infection by HDV and HBV; to a lesser extent, the residues important for sodium binding also inhibit viral infection. The mutation S267F, corresponding to a single nucleotide polymorphism (SNP) found in about 9% of the East Asian population, renders NTCP without either taurocholate transporting activity or the ability to support HBV or HDV infection in cell culture. These results demonstrate that molecular determinants critical for HBV and HDV entry overlap with that for bile salts uptake by NTCP, indicating that viral infection may interfere with the normal function of NTCP, and bile acids and their derivatives hold the potential for further development into antiviral drugs. Human hepatitis B virus (HBV) and its satellite virus, hepatitis D virus (HDV), are important human pathogens. Available therapeutics against HBV are limited, and there is no drug that is clinically available for HDV infection. A liver bile acids transporter (sodium taurocholate cotransporting polypeptide [NTCP]) critical for maintaining homeostasis of bile acids serves as a functional receptor for HBV and HDV. We report here that the NTCP-binding lipopeptide that originates from the first 47 amino acids of the pre-S1 domain of the HBV L protein blocks taurocholate transport. Some bile salts dose dependently inhibit HBV and HDV infection mediated by NTCP; molecular determinants of NTCP critical for HBV and HDV entry overlap with that for bile acids transport. This work advances our understanding of NTCP-mediated HBV and HDV infection in relation to NTCP's physiological function. Our results also suggest that bile acids or their derivatives hold potential for development into novel drugs against HBV and HDV infection.
AbstractList The liver bile acids transporter sodium taurocholate cotransporting polypeptide (NTCP) is responsible for the majority of sodium-dependent bile salts uptake by hepatocytes. NTCP also functions as a cellular receptor for viral entry of hepatitis B virus (HBV) and hepatitis D virus (HDV) through a specific interaction between NTCP and the pre-S1 domain of HBV large envelope protein. However, it remains unknown if these two functions of NTCP are independent or if they interfere with each other. Here we show that binding of the pre-S1 domain to human NTCP blocks taurocholate uptake by the receptor; conversely, some bile acid substrates of NTCP inhibit HBV and HDV entry. Mutations of NTCP residues critical for bile salts binding severely impair viral infection by HDV and HBV; to a lesser extent, the residues important for sodium binding also inhibit viral infection. The mutation S267F, corresponding to a single nucleotide polymorphism (SNP) found in about 9% of the East Asian population, renders NTCP without either taurocholate transporting activity or the ability to support HBV or HDV infection in cell culture. These results demonstrate that molecular determinants critical for HBV and HDV entry overlap with that for bile salts uptake by NTCP, indicating that viral infection may interfere with the normal function of NTCP, and bile acids and their derivatives hold the potential for further development into antiviral drugs. Human hepatitis B virus (HBV) and its satellite virus, hepatitis D virus (HDV), are important human pathogens. Available therapeutics against HBV are limited, and there is no drug that is clinically available for HDV infection. A liver bile acids transporter (sodium taurocholate cotransporting polypeptide [NTCP]) critical for maintaining homeostasis of bile acids serves as a functional receptor for HBV and HDV. We report here that the NTCP-binding lipopeptide that originates from the first 47 amino acids of the pre-S1 domain of the HBV L protein blocks taurocholate transport. Some bile salts dose dependently inhibit HBV and HDV infection mediated by NTCP; molecular determinants of NTCP critical for HBV and HDV entry overlap with that for bile acids transport. This work advances our understanding of NTCP-mediated HBV and HDV infection in relation to NTCP's physiological function. Our results also suggest that bile acids or their derivatives hold potential for development into novel drugs against HBV and HDV infection.
The liver bile acids transporter sodium taurocholate cotransporting polypeptide (NTCP) is responsible for the majority of sodium-dependent bile salts uptake by hepatocytes. NTCP also functions as a cellular receptor for viral entry of hepatitis B virus (HBV) and hepatitis D virus (HDV) through a specific interaction between NTCP and the pre-S1 domain of HBV large envelope protein. However, it remains unknown if these two functions of NTCP are independent or if they interfere with each other. Here we show that binding of the pre-S1 domain to human NTCP blocks taurocholate uptake by the receptor; conversely, some bile acid substrates of NTCP inhibit HBV and HDV entry. Mutations of NTCP residues critical for bile salts binding severely impair viral infection by HDV and HBV; to a lesser extent, the residues important for sodium binding also inhibit viral infection. The mutation S267F, corresponding to a single nucleotide polymorphism (SNP) found in about 9% of the East Asian population, renders NTCP without either taurocholate transporting activity or the ability to support HBV or HDV infection in cell culture. These results demonstrate that molecular determinants critical for HBV and HDV entry overlap with that for bile salts uptake by NTCP, indicating that viral infection may interfere with the normal function of NTCP, and bile acids and their derivatives hold the potential for further development into antiviral drugs.UNLABELLEDThe liver bile acids transporter sodium taurocholate cotransporting polypeptide (NTCP) is responsible for the majority of sodium-dependent bile salts uptake by hepatocytes. NTCP also functions as a cellular receptor for viral entry of hepatitis B virus (HBV) and hepatitis D virus (HDV) through a specific interaction between NTCP and the pre-S1 domain of HBV large envelope protein. However, it remains unknown if these two functions of NTCP are independent or if they interfere with each other. Here we show that binding of the pre-S1 domain to human NTCP blocks taurocholate uptake by the receptor; conversely, some bile acid substrates of NTCP inhibit HBV and HDV entry. Mutations of NTCP residues critical for bile salts binding severely impair viral infection by HDV and HBV; to a lesser extent, the residues important for sodium binding also inhibit viral infection. The mutation S267F, corresponding to a single nucleotide polymorphism (SNP) found in about 9% of the East Asian population, renders NTCP without either taurocholate transporting activity or the ability to support HBV or HDV infection in cell culture. These results demonstrate that molecular determinants critical for HBV and HDV entry overlap with that for bile salts uptake by NTCP, indicating that viral infection may interfere with the normal function of NTCP, and bile acids and their derivatives hold the potential for further development into antiviral drugs.Human hepatitis B virus (HBV) and its satellite virus, hepatitis D virus (HDV), are important human pathogens. Available therapeutics against HBV are limited, and there is no drug that is clinically available for HDV infection. A liver bile acids transporter (sodium taurocholate cotransporting polypeptide [NTCP]) critical for maintaining homeostasis of bile acids serves as a functional receptor for HBV and HDV. We report here that the NTCP-binding lipopeptide that originates from the first 47 amino acids of the pre-S1 domain of the HBV L protein blocks taurocholate transport. Some bile salts dose dependently inhibit HBV and HDV infection mediated by NTCP; molecular determinants of NTCP critical for HBV and HDV entry overlap with that for bile acids transport. This work advances our understanding of NTCP-mediated HBV and HDV infection in relation to NTCP's physiological function. Our results also suggest that bile acids or their derivatives hold potential for development into novel drugs against HBV and HDV infection.IMPORTANCEHuman hepatitis B virus (HBV) and its satellite virus, hepatitis D virus (HDV), are important human pathogens. Available therapeutics against HBV are limited, and there is no drug that is clinically available for HDV infection. A liver bile acids transporter (sodium taurocholate cotransporting polypeptide [NTCP]) critical for maintaining homeostasis of bile acids serves as a functional receptor for HBV and HDV. We report here that the NTCP-binding lipopeptide that originates from the first 47 amino acids of the pre-S1 domain of the HBV L protein blocks taurocholate transport. Some bile salts dose dependently inhibit HBV and HDV infection mediated by NTCP; molecular determinants of NTCP critical for HBV and HDV entry overlap with that for bile acids transport. This work advances our understanding of NTCP-mediated HBV and HDV infection in relation to NTCP's physiological function. Our results also suggest that bile acids or their derivatives hold potential for development into novel drugs against HBV and HDV infection.
Author Yan, Huan
Jing, Zhiyi
Xu, Guangwei
He, Wenhui
Peng, Bo
Ren, Bijie
Sui, Jianhua
Liu, Yang
Li, Wenhui
Author_xml – sequence: 1
  givenname: Huan
  surname: Yan
  fullname: Yan, Huan
  organization: National Institute of Biological Sciences, Beijing, China
– sequence: 2
  givenname: Bo
  surname: Peng
  fullname: Peng, Bo
– sequence: 3
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
– sequence: 4
  givenname: Guangwei
  surname: Xu
  fullname: Xu, Guangwei
– sequence: 5
  givenname: Wenhui
  surname: He
  fullname: He, Wenhui
– sequence: 6
  givenname: Bijie
  surname: Ren
  fullname: Ren, Bijie
– sequence: 7
  givenname: Zhiyi
  surname: Jing
  fullname: Jing, Zhiyi
– sequence: 8
  givenname: Jianhua
  surname: Sui
  fullname: Sui, Jianhua
– sequence: 9
  givenname: Wenhui
  surname: Li
  fullname: Li, Wenhui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24390325$$D View this record in MEDLINE/PubMed
BookMark eNpNkDlPxDAUhC0EAhboqJFLmoCvJE7JfQiJBrZdvY1fWCPHDraDtP-FH8sul6hmRvpmipmQTR88EnLI2QnnQp_eT-9OmFS1LrjcILucNbooS642__kdMknplTGuVKW2yY5QsmFSlLvkY2ojOIo-xyUNHV3gANlmm-g5BW_oJX23cUyYvtLcOqQJXE40R_BpCDGv8OBpWkBE2oa-X4U-OGxHB5EazBh768GvKmssGDv2NMMYQ7sIDvK69Ldl_QsdglsOOGRrcJ9sdeASHvzoHnm-vnq6uC0eHm_uLs4eirZkTS6aquItzkspOtMZFJUC1gilS4W10KaWxgjDEQxU2GghtVGVkabV8053XILYI8ffu0MMbyOmPOttatE58BjGNOMlE1LUvJYr9OgHHec9mtkQbQ9xOft9VHwCS-t-Tg
CitedBy_id crossref_primary_10_1016_j_virol_2016_06_024
crossref_primary_10_1016_j_bbalip_2021_158960
crossref_primary_10_3748_wjg_v24_i6_680
crossref_primary_10_1016_j_mri_2024_110215
crossref_primary_10_3389_fphar_2021_616858
crossref_primary_10_1124_pharmrev_124_000978
crossref_primary_10_1007_s12072_021_10230_6
crossref_primary_10_3389_fmed_2021_708495
crossref_primary_10_1016_j_scib_2018_08_013
crossref_primary_10_4274_nkmj_galenos_2024_26121
crossref_primary_10_1124_jpet_119_257600
crossref_primary_10_1002_hep_27608
crossref_primary_10_1016_j_bcp_2021_114484
crossref_primary_10_1016_j_livres_2022_08_005
crossref_primary_10_1038_s41598_017_07012_2
crossref_primary_10_1002_1873_3468_12157
crossref_primary_10_3389_fcimb_2024_1488527
crossref_primary_10_3390_v17081100
crossref_primary_10_1016_j_ijid_2019_01_038
crossref_primary_10_5812_hepatmon_121842
crossref_primary_10_1097_HC9_0000000000000078
crossref_primary_10_1016_j_ejps_2014_09_005
crossref_primary_10_3350_cmh_2015_21_3_193
crossref_primary_10_3390_cells9092052
crossref_primary_10_3748_wjg_v27_i24_3530
crossref_primary_10_1016_j_chembiol_2018_04_011
crossref_primary_10_3390_ijms222010963
crossref_primary_10_1016_j_jhep_2015_01_018
crossref_primary_10_1016_j_jhep_2014_05_018
crossref_primary_10_1053_j_gastro_2014_04_030
crossref_primary_10_1111_hepr_13007
crossref_primary_10_1016_j_jhep_2016_11_009
crossref_primary_10_1002_hep_27224
crossref_primary_10_1002_hep_28952
crossref_primary_10_1016_j_bbrc_2018_04_187
crossref_primary_10_1016_j_virol_2018_07_006
crossref_primary_10_1186_s12881_019_0823_x
crossref_primary_10_3389_fcimb_2019_00018
crossref_primary_10_1016_j_bpj_2024_03_033
crossref_primary_10_1016_j_jpha_2024_100979
crossref_primary_10_1002_hep_31712
crossref_primary_10_1155_2016_7417648
crossref_primary_10_1016_j_metabol_2018_01_007
crossref_primary_10_1002_1873_3468_12202
crossref_primary_10_1146_annurev_cellbio_100814_125241
crossref_primary_10_1016_j_virol_2017_02_006
crossref_primary_10_1038_s41594_023_01191_5
crossref_primary_10_4254_wjh_v11_i1_65
crossref_primary_10_1038_s41579_024_01121_2
crossref_primary_10_3390_ijms15022892
crossref_primary_10_3390_v7092854
crossref_primary_10_7554_eLife_89167_3
crossref_primary_10_3390_pathogens13080702
crossref_primary_10_1016_j_jhep_2015_10_030
crossref_primary_10_7554_eLife_26738
crossref_primary_10_1159_000514274
crossref_primary_10_1371_journal_ppat_1013390
crossref_primary_10_1038_nrgastro_2017_44
crossref_primary_10_3389_fped_2018_00354
crossref_primary_10_1016_j_coviro_2018_04_004
crossref_primary_10_1074_jbc_RA118_007179
crossref_primary_10_1038_s41426_018_0137_7
crossref_primary_10_1016_j_tim_2016_05_006
crossref_primary_10_3389_fmicb_2018_03257
crossref_primary_10_3390_ijms23073897
crossref_primary_10_1038_s41564_024_01801_y
crossref_primary_10_1159_000371692
crossref_primary_10_5812_hepatmon_94500
crossref_primary_10_1016_j_cgh_2018_04_023
crossref_primary_10_1111_jvh_13157
crossref_primary_10_1016_j_bcp_2023_115956
crossref_primary_10_1038_s41598_018_20987_w
crossref_primary_10_3389_fendo_2022_898750
crossref_primary_10_1073_pnas_1813909116
crossref_primary_10_1111_sji_12553
crossref_primary_10_3390_biomedicines13010100
crossref_primary_10_1016_j_heliyon_2024_e37661
crossref_primary_10_1128_spectrum_00836_24
crossref_primary_10_3390_ijms23137468
crossref_primary_10_3851_IMP3179
crossref_primary_10_1016_j_antiviral_2018_08_014
crossref_primary_10_1016_S1875_5364_16_30065_6
crossref_primary_10_1053_j_gastro_2014_02_024
crossref_primary_10_1128_JVI_01432_18
crossref_primary_10_1038_s41467_024_53533_6
crossref_primary_10_1007_s12072_016_9718_5
crossref_primary_10_1111_jvh_13608
crossref_primary_10_1515_hsz_2022_0345
crossref_primary_10_1111_jvh_12912
crossref_primary_10_1124_dmd_120_000057
crossref_primary_10_1155_2018_9312650
crossref_primary_10_1038_s41586_022_04723_z
crossref_primary_10_1074_jbc_M116_757567
crossref_primary_10_3390_v15020512
crossref_primary_10_3389_fmolb_2022_879817
crossref_primary_10_3390_ijms22063004
crossref_primary_10_1371_journal_pone_0170419
crossref_primary_10_1016_j_antiviral_2015_08_005
crossref_primary_10_1016_j_jhep_2014_08_039
crossref_primary_10_1016_j_antiviral_2016_08_008
crossref_primary_10_1038_s41598_017_17959_x
crossref_primary_10_1136_gutjnl_2014_308943
crossref_primary_10_1016_j_antiviral_2015_08_009
crossref_primary_10_1053_j_gastro_2018_06_093
crossref_primary_10_1186_s12864_025_11620_y
crossref_primary_10_1007_s12250_021_00450_3
crossref_primary_10_1093_infdis_jiy355
crossref_primary_10_1002_btm2_10436
crossref_primary_10_1016_j_omtm_2021_11_002
crossref_primary_10_3390_v14061259
crossref_primary_10_1128_JVI_01800_19
crossref_primary_10_1093_abbs_gmw103
crossref_primary_10_1016_j_cld_2015_01_001
crossref_primary_10_1128_JVI_00938_21
crossref_primary_10_7554_eLife_89167
crossref_primary_10_1371_journal_pone_0129889
crossref_primary_10_1111_jgh_16604
crossref_primary_10_1128_jvi_01686_21
crossref_primary_10_1002_j_2040_4603_2014_tb00594_x
crossref_primary_10_1159_000360948
crossref_primary_10_1016_j_ajhg_2024_04_013
crossref_primary_10_1016_j_ebiom_2024_105101
crossref_primary_10_1186_s12885_016_2257_6
crossref_primary_10_1016_j_jhep_2016_02_011
crossref_primary_10_1186_s12879_017_2214_2
crossref_primary_10_1053_j_gastro_2018_09_052
crossref_primary_10_1128_spectrum_01365_23
crossref_primary_10_1136_gutjnl_2015_311029
crossref_primary_10_1038_s41467_024_46706_w
crossref_primary_10_1016_j_biopha_2023_116077
crossref_primary_10_1038_nrgastro_2014_226
crossref_primary_10_1016_j_antiviral_2014_03_017
crossref_primary_10_1016_j_antiviral_2025_106267
crossref_primary_10_1124_dmd_122_000953
crossref_primary_10_2147_DDDT_S480151
crossref_primary_10_1007_s11427_024_2717_6
crossref_primary_10_1080_17460441_2022_2129613
crossref_primary_10_1002_jmv_24350
crossref_primary_10_1016_j_bbagen_2022_130224
crossref_primary_10_3390_cells9061486
crossref_primary_10_1074_jbc_M114_602540
crossref_primary_10_3748_wjg_v27_i21_2727
crossref_primary_10_1111_jvh_13585
crossref_primary_10_1038_s41426_018_0189_8
crossref_primary_10_3892_etm_2016_3752
crossref_primary_10_1128_jvi_01187_24
crossref_primary_10_1016_j_ejphar_2018_06_030
crossref_primary_10_1136_gutjnl_2015_310686
crossref_primary_10_1038_srep17047
crossref_primary_10_1038_s41586_022_04845_4
crossref_primary_10_1186_s12866_021_02199_x
crossref_primary_10_3390_biomedicines10010196
crossref_primary_10_1111_tra_12354
crossref_primary_10_1016_j_molpha_2025_100069
crossref_primary_10_1002_hep_30792
crossref_primary_10_1016_j_coviro_2021_08_001
crossref_primary_10_1096_fj_201500134
crossref_primary_10_1186_s12985_020_01376_0
crossref_primary_10_1038_s41598_025_16348_z
crossref_primary_10_1186_s40164_025_00642_7
crossref_primary_10_1016_j_meegid_2016_03_039
crossref_primary_10_1124_jpet_117_245951
crossref_primary_10_1016_j_antiviral_2015_06_007
crossref_primary_10_1038_srep46490
crossref_primary_10_1128_JVI_00901_16
crossref_primary_10_1002_j_2040_4603_2014_tb00588_x
crossref_primary_10_1016_j_antiviral_2015_06_002
crossref_primary_10_3390_ijms241311146
crossref_primary_10_5812_hepatmon_33646
crossref_primary_10_1093_nsr_nwv044
crossref_primary_10_3390_molecules23123315
crossref_primary_10_1016_j_amjms_2022_03_014
crossref_primary_10_1038_s41586_022_04857_0
crossref_primary_10_1096_fj_201801181R
crossref_primary_10_3390_livers1040019
crossref_primary_10_1371_journal_pone_0117152
crossref_primary_10_1111_liv_15031
crossref_primary_10_1128_JVI_01153_16
crossref_primary_10_1016_j_antiviral_2021_105165
crossref_primary_10_1016_j_jcv_2019_09_002
crossref_primary_10_1128_JVI_02832_15
crossref_primary_10_4167_jbv_2016_46_4_335
crossref_primary_10_1016_j_clinre_2014_07_009
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1128/JVI.03478-13
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
ExternalDocumentID 24390325
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
6TJ
85S
AAYJJ
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AFFNX
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
D0S
DIK
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
MVM
N9A
NPM
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
Y6R
YQT
ZGI
ZXP
~02
~KM
7X8
AAFWJ
AAGFI
AFPKN
ID FETCH-LOGICAL-c509t-9661ceb532fdfde264a0924854e728d73dd2d1eada6e98238d46d3dc8bf8f13a2
IEDL.DBID 7X8
ISICitedReferencesCount 205
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332126000020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1098-5514
IngestDate Sun Nov 09 09:23:37 EST 2025
Thu Apr 03 07:03:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-9661ceb532fdfde264a0924854e728d73dd2d1eada6e98238d46d3dc8bf8f13a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://jvi.asm.org/content/jvi/88/6/3273.full.pdf
PMID 24390325
PQID 1502327173
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1502327173
pubmed_primary_24390325
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2014
References 23596296 - J Virol. 2013 Jun;87(12):7176-84
10192613 - J Clin Gastroenterol. 1999 Apr;28(3):249-53
23678176 - J Virol. 2013 Jul;87(14):7977-91
14699511 - Gastroenterology. 2004 Jan;126(1):322-42
8791732 - Curr Top Microbiol Immunol. 1996;214:297-337
14660639 - J Biol Chem. 2004 Feb 20;279(8):7213-22
22273662 - Vaccine. 2012 Mar 9;30(12):2212-9
23161433 - Hepatology. 2013 Mar;57(3):985-94
12631271 - Eur J Biochem. 2003 Mar;270(6):1117-27
10704474 - Microbiol Mol Biol Rev. 2000 Mar;64(1):51-68
16608845 - J Biol Chem. 2006 Jun 16;281(24):16410-8
8132774 - J Clin Invest. 1994 Mar;93(3):1326-31
12804455 - Cochrane Database Syst Rev. 2003;(2):CD003181
18086046 - Cell Microbiol. 2008 Jan;10(1):122-33
8781018 - Semin Liver Dis. 1996 May;16(2):129-36
21511329 - Lancet. 2011 Jul 2;378(9785):73-85
18046710 - Hepatology. 2007 Dec;46(6):1759-68
23150796 - Elife. 2012;1:e00049
10484607 - J Lipid Res. 1999 Sep;40(9):1604-17
18837079 - World J Gastroenterol. 2008 Oct 7;14(37):5641-9
21103971 - Handb Exp Pharmacol. 2011;(201):205-59
21976025 - Nature. 2011 Oct 20;478(7369):408-11
16012950 - Gastroenterology. 2005 Jul;129(1):234-45
21341987 - Xenobiotica. 2011 Jun;41(6):501-10
References_xml – reference: 14660639 - J Biol Chem. 2004 Feb 20;279(8):7213-22
– reference: 21341987 - Xenobiotica. 2011 Jun;41(6):501-10
– reference: 16608845 - J Biol Chem. 2006 Jun 16;281(24):16410-8
– reference: 18046710 - Hepatology. 2007 Dec;46(6):1759-68
– reference: 12631271 - Eur J Biochem. 2003 Mar;270(6):1117-27
– reference: 16012950 - Gastroenterology. 2005 Jul;129(1):234-45
– reference: 8791732 - Curr Top Microbiol Immunol. 1996;214:297-337
– reference: 10484607 - J Lipid Res. 1999 Sep;40(9):1604-17
– reference: 8132774 - J Clin Invest. 1994 Mar;93(3):1326-31
– reference: 23596296 - J Virol. 2013 Jun;87(12):7176-84
– reference: 23678176 - J Virol. 2013 Jul;87(14):7977-91
– reference: 21511329 - Lancet. 2011 Jul 2;378(9785):73-85
– reference: 21103971 - Handb Exp Pharmacol. 2011;(201):205-59
– reference: 23150796 - Elife. 2012;1:e00049
– reference: 8781018 - Semin Liver Dis. 1996 May;16(2):129-36
– reference: 10704474 - Microbiol Mol Biol Rev. 2000 Mar;64(1):51-68
– reference: 10192613 - J Clin Gastroenterol. 1999 Apr;28(3):249-53
– reference: 23161433 - Hepatology. 2013 Mar;57(3):985-94
– reference: 14699511 - Gastroenterology. 2004 Jan;126(1):322-42
– reference: 18837079 - World J Gastroenterol. 2008 Oct 7;14(37):5641-9
– reference: 18086046 - Cell Microbiol. 2008 Jan;10(1):122-33
– reference: 12804455 - Cochrane Database Syst Rev. 2003;(2):CD003181
– reference: 21976025 - Nature. 2011 Oct 20;478(7369):408-11
– reference: 22273662 - Vaccine. 2012 Mar 9;30(12):2212-9
SSID ssj0014464
Score 2.5538867
Snippet The liver bile acids transporter sodium taurocholate cotransporting polypeptide (NTCP) is responsible for the majority of sodium-dependent bile salts uptake by...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 3273
SubjectTerms Amino Acid Motifs
Biological Transport
Hepatitis B - genetics
Hepatitis B - metabolism
Hepatitis B - virology
Hepatitis B virus - genetics
Hepatitis B virus - physiology
Hepatitis D - genetics
Hepatitis D - metabolism
Hepatitis D - virology
Hepatitis Delta Virus - genetics
Hepatitis Delta Virus - physiology
Humans
Organic Anion Transporters, Sodium-Dependent - chemistry
Organic Anion Transporters, Sodium-Dependent - genetics
Organic Anion Transporters, Sodium-Dependent - metabolism
Protein Binding
Receptors, Virus - chemistry
Receptors, Virus - genetics
Receptors, Virus - metabolism
Symporters - chemistry
Symporters - genetics
Symporters - metabolism
Taurocholic Acid - metabolism
Viral Envelope Proteins - genetics
Viral Envelope Proteins - metabolism
Virus Internalization
Title Viral entry of hepatitis B and D viruses and bile salts transportation share common molecular determinants on sodium taurocholate cotransporting polypeptide
URI https://www.ncbi.nlm.nih.gov/pubmed/24390325
https://www.proquest.com/docview/1502327173
Volume 88
WOSCitedRecordID wos000332126000020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UKnjx_agvRvAaTbJpHifxVVSw9KClt7LZ2dBCm9QmKfhf_LHO5mG9CIKXQEg2WXZmZ77ZGeZj7MLk0ic3LgwKvbjhOIFr-A5KwxSmHaEpQkuKgmzC63T8fj_oVgduaVVWWdvEwlBjIvUZ-RUBF3L-Omd8PX03NGuUzq5WFBrLrMEJymit9vqLLAKFOkVWWffM1MigLny3_avn3tOlyR0dQvHfwWXhZNqb_53eFtuo4CXclPqwzZZUvMPWSsLJj1322RvN6HHBJgJJBEOlC6qzUQq3IGKEe5iPZnmq0uIuJIsBqRhnKWR1D_RCkJAOxUwBzYx-C5OaYRfwR20N6NcSHOUTyESuibkoiM70oO9vkdeEaTKmSJjsFqo99tZ-eL17NCp-BkMSzMh0Y09LqrDFSaoRKoJWwgx0izRHebaPHke00SJVFa4KfMIG6LjIUfph5EcWF_Y-W4mTWB0yEKYr3MANRUSbNpStMMBICQctG0NXWbzJzutlH5D-66SGiFWSp4PFwjfZQSm7wbRs1DGwCW2Z3G4d_WH0MVsnLOSU5WUnrBHR7lenbFXOSQizs0Kx6NrpvnwBxz_dYw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viral+entry+of+hepatitis+B+and+D+viruses+and+bile+salts+transportation+share+common+molecular+determinants+on+sodium+taurocholate+cotransporting+polypeptide&rft.jtitle=Journal+of+virology&rft.au=Yan%2C+Huan&rft.au=Peng%2C+Bo&rft.au=Liu%2C+Yang&rft.au=Xu%2C+Guangwei&rft.date=2014-03-01&rft.issn=1098-5514&rft.eissn=1098-5514&rft.volume=88&rft.issue=6&rft.spage=3273&rft_id=info:doi/10.1128%2FJVI.03478-13&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-5514&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-5514&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-5514&client=summon