Transcranial magnetic stimulation and cortical evoked potentials: A TMS/EEG co-registration study
In recent years, a promising tool has been introduced which allows the co-registration of electroencephalographic (EEG) activity during brain transcranial magnetic stimulation (TMS). The aims of the present study are to identify eventual stimulus-related artefacts, and to confirm and extend previous...
Gespeichert in:
| Veröffentlicht in: | Clinical neurophysiology Jg. 117; H. 8; S. 1699 - 1707 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Shannon
Elsevier Ireland Ltd
01.08.2006
Elsevier Science |
| Schlagworte: | |
| ISSN: | 1388-2457, 1872-8952 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In recent years, a promising tool has been introduced which allows the co-registration of electroencephalographic (EEG) activity during brain transcranial magnetic stimulation (TMS). The aims of the present study are to identify eventual stimulus-related artefacts, and to confirm and extend previous EEG/TMS findings about the possible networks generating EEG responses evoked by TMS.
Focal TMS was delivered to the left primary motor cortex (MI), with different coils (real and sham) and orientations (45 and 135° in respect to the sagittal plane), in six healthy subjects. EEG and motor evoked potentials (MEPs) were simultaneously recorded from 19 scalp electrodes.
TMS, with coil oriented at 45°, induced EEG responses characterized by a sequence of positive deflections peaking at approximately 14, 30, 60 and 190
ms and negative deflections peaking at approximately 10, 18, 40 and 100
ms post-TMS. The negative components were recorded at the recording electrode corresponding with the stimulation site (N10, N18), as well as at recording electrodes over the frontal region of the contralateral, unstimulated, hemisphere (N40) and bilaterally over the central hemispheres with its maximal representation at the stimulation site (N100). The positive components were instead detected at the frontal region of the right, unstimulated, hemisphere (P14), over the central electrodes Cz, Fz and the frontal region of the right hemisphere (P30), at the stimulation site (P60), and over the frontal regions of both hemispheres. When TMS was delivered with the coil oriented at 135°, no MEPs were recorded from the right target muscle. Nonetheless, all the TMS-induced EEG components were still evoked apart from the N20–P30. Finally, TMS with the sham coil over left MI did not induce either significant EEG responses or MEPs.
In conclusion, the TMS evoked components we have obtained by recording in continuous mode strikingly fit with those already described by other authors for both their latencies and the spatio-temporal pattern of scalp distribution.
This experiment is a farther validation of the combined EEG/TMS recording technique as a promising tool for experimental and clinical purposes. |
|---|---|
| AbstractList | In recent years, a promising tool has been introduced which allows the co-registration of electroencephalographic (EEG) activity during brain transcranial magnetic stimulation (TMS). The aims of the present study are to identify eventual stimulus-related artefacts, and to confirm and extend previous EEG/TMS findings about the possible networks generating EEG responses evoked by TMS.OBJECTIVEIn recent years, a promising tool has been introduced which allows the co-registration of electroencephalographic (EEG) activity during brain transcranial magnetic stimulation (TMS). The aims of the present study are to identify eventual stimulus-related artefacts, and to confirm and extend previous EEG/TMS findings about the possible networks generating EEG responses evoked by TMS.Focal TMS was delivered to the left primary motor cortex (MI), with different coils (real and sham) and orientations (45 and 135 degrees in respect to the sagittal plane), in six healthy subjects. EEG and motor evoked potentials (MEPs) were simultaneously recorded from 19 scalp electrodes.METHODSFocal TMS was delivered to the left primary motor cortex (MI), with different coils (real and sham) and orientations (45 and 135 degrees in respect to the sagittal plane), in six healthy subjects. EEG and motor evoked potentials (MEPs) were simultaneously recorded from 19 scalp electrodes.TMS, with coil oriented at 45 degrees , induced EEG responses characterized by a sequence of positive deflections peaking at approximately 14, 30, 60 and 190 ms and negative deflections peaking at approximately 10, 18, 40 and 100 ms post-TMS. The negative components were recorded at the recording electrode corresponding with the stimulation site (N10, N18), as well as at recording electrodes over the frontal region of the contralateral, unstimulated, hemisphere (N40) and bilaterally over the central hemispheres with its maximal representation at the stimulation site (N100). The positive components were instead detected at the frontal region of the right, unstimulated, hemisphere (P14), over the central electrodes Cz, Fz and the frontal region of the right hemisphere (P30), at the stimulation site (P60), and over the frontal regions of both hemispheres. When TMS was delivered with the coil oriented at 135 degrees , no MEPs were recorded from the right target muscle. Nonetheless, all the TMS-induced EEG components were still evoked apart from the N20-P30. Finally, TMS with the sham coil over left MI did not induce either significant EEG responses or MEPs.RESULTSTMS, with coil oriented at 45 degrees , induced EEG responses characterized by a sequence of positive deflections peaking at approximately 14, 30, 60 and 190 ms and negative deflections peaking at approximately 10, 18, 40 and 100 ms post-TMS. The negative components were recorded at the recording electrode corresponding with the stimulation site (N10, N18), as well as at recording electrodes over the frontal region of the contralateral, unstimulated, hemisphere (N40) and bilaterally over the central hemispheres with its maximal representation at the stimulation site (N100). The positive components were instead detected at the frontal region of the right, unstimulated, hemisphere (P14), over the central electrodes Cz, Fz and the frontal region of the right hemisphere (P30), at the stimulation site (P60), and over the frontal regions of both hemispheres. When TMS was delivered with the coil oriented at 135 degrees , no MEPs were recorded from the right target muscle. Nonetheless, all the TMS-induced EEG components were still evoked apart from the N20-P30. Finally, TMS with the sham coil over left MI did not induce either significant EEG responses or MEPs.In conclusion, the TMS evoked components we have obtained by recording in continuous mode strikingly fit with those already described by other authors for both their latencies and the spatio-temporal pattern of scalp distribution.CONCLUSIONSIn conclusion, the TMS evoked components we have obtained by recording in continuous mode strikingly fit with those already described by other authors for both their latencies and the spatio-temporal pattern of scalp distribution.This experiment is a farther validation of the combined EEG/TMS recording technique as a promising tool for experimental and clinical purposes.SIGNIFICANCEThis experiment is a farther validation of the combined EEG/TMS recording technique as a promising tool for experimental and clinical purposes. In recent years, a promising tool has been introduced which allows the co-registration of electroencephalographic (EEG) activity during brain transcranial magnetic stimulation (TMS). The aims of the present study are to identify eventual stimulus-related artefacts, and to confirm and extend previous EEG/TMS findings about the possible networks generating EEG responses evoked by TMS. Focal TMS was delivered to the left primary motor cortex (MI), with different coils (real and sham) and orientations (45 and 135° in respect to the sagittal plane), in six healthy subjects. EEG and motor evoked potentials (MEPs) were simultaneously recorded from 19 scalp electrodes. TMS, with coil oriented at 45°, induced EEG responses characterized by a sequence of positive deflections peaking at approximately 14, 30, 60 and 190 ms and negative deflections peaking at approximately 10, 18, 40 and 100 ms post-TMS. The negative components were recorded at the recording electrode corresponding with the stimulation site (N10, N18), as well as at recording electrodes over the frontal region of the contralateral, unstimulated, hemisphere (N40) and bilaterally over the central hemispheres with its maximal representation at the stimulation site (N100). The positive components were instead detected at the frontal region of the right, unstimulated, hemisphere (P14), over the central electrodes Cz, Fz and the frontal region of the right hemisphere (P30), at the stimulation site (P60), and over the frontal regions of both hemispheres. When TMS was delivered with the coil oriented at 135°, no MEPs were recorded from the right target muscle. Nonetheless, all the TMS-induced EEG components were still evoked apart from the N20–P30. Finally, TMS with the sham coil over left MI did not induce either significant EEG responses or MEPs. In conclusion, the TMS evoked components we have obtained by recording in continuous mode strikingly fit with those already described by other authors for both their latencies and the spatio-temporal pattern of scalp distribution. This experiment is a farther validation of the combined EEG/TMS recording technique as a promising tool for experimental and clinical purposes. In recent years, a promising tool has been introduced which allows the co-registration of electroencephalographic (EEG) activity during brain transcranial magnetic stimulation (TMS). The aims of the present study are to identify eventual stimulus-related artefacts, and to confirm and extend previous EEG/TMS findings about the possible networks generating EEG responses evoked by TMS. Focal TMS was delivered to the left primary motor cortex (MI), with different coils (real and sham) and orientations (45 and 135 degrees in respect to the sagittal plane), in six healthy subjects. EEG and motor evoked potentials (MEPs) were simultaneously recorded from 19 scalp electrodes. TMS, with coil oriented at 45 degrees , induced EEG responses characterized by a sequence of positive deflections peaking at approximately 14, 30, 60 and 190 ms and negative deflections peaking at approximately 10, 18, 40 and 100 ms post-TMS. The negative components were recorded at the recording electrode corresponding with the stimulation site (N10, N18), as well as at recording electrodes over the frontal region of the contralateral, unstimulated, hemisphere (N40) and bilaterally over the central hemispheres with its maximal representation at the stimulation site (N100). The positive components were instead detected at the frontal region of the right, unstimulated, hemisphere (P14), over the central electrodes Cz, Fz and the frontal region of the right hemisphere (P30), at the stimulation site (P60), and over the frontal regions of both hemispheres. When TMS was delivered with the coil oriented at 135 degrees , no MEPs were recorded from the right target muscle. Nonetheless, all the TMS-induced EEG components were still evoked apart from the N20-P30. Finally, TMS with the sham coil over left MI did not induce either significant EEG responses or MEPs. In conclusion, the TMS evoked components we have obtained by recording in continuous mode strikingly fit with those already described by other authors for both their latencies and the spatio-temporal pattern of scalp distribution. This experiment is a farther validation of the combined EEG/TMS recording technique as a promising tool for experimental and clinical purposes. |
| Author | Bonato, C. Miniussi, C. Rossini, P.M. |
| Author_xml | – sequence: 1 givenname: C. surname: Bonato fullname: Bonato, C. organization: Neurofisiologia IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy – sequence: 2 givenname: C. surname: Miniussi fullname: Miniussi, C. email: cminiussi@fatebenefratelli.it organization: Neurofisiologia IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy – sequence: 3 givenname: P.M. surname: Rossini fullname: Rossini, P.M. organization: Neurofisiologia IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18017424$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16797232$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU9v1DAQxS1URP_AN0AoF7gltR07sSuEVFXbFqmIA8vZ8k4mxduss9hOpf32eMkCUg_04rFGv_ekee-UHPnRIyFvGa0YZc35uoLB-e2PilPaVFRWebwgJ0y1vFRa8qP8r5UquZDtMTmNcU0pbangr8gxa1rd8pqfELsM1kfIj7NDsbH3HpODIia3mQab3OgL67sCxpDXmcDH8QG7Yjsm9ClL4kVxWSy_fDtfLG4yVQa8dzGFWRnT1O1ek5d95vDNYZ6R79eL5dVteff15vPV5V0JkupUatFDJ1cMJUDd9UJRqwWzUksqGmVZzxgA5YxbKYRWqxWve9lLDRQawRTUZ-TD7LsN488JYzIbFwGHwXocp2ga1WgqpM7guwM4rTbYmW1wGxt25k8oGXh_AGzMN_c5HHDxH6coawUXmbuYOQhjjAF7Ay79vjwH4AbDqNk3ZdZmbsrsmzJUmjyyWDwR__X_v-zTLMMc5aPDYCI49ICdCwjJdKN7zuDjE4M9tO_2AXfPy38BiyDDbw |
| CitedBy_id | crossref_primary_10_1016_j_biopsych_2023_12_018 crossref_primary_10_1016_j_neuroimage_2025_121323 crossref_primary_10_3389_fnhum_2019_00090 crossref_primary_10_1002_hbm_22288 crossref_primary_10_1016_j_brs_2013_04_004 crossref_primary_10_1016_j_neuroimage_2021_118708 crossref_primary_10_1016_j_biopsych_2023_04_011 crossref_primary_10_3390_jpm11020068 crossref_primary_10_1016_j_neuropsychologia_2015_04_010 crossref_primary_10_1371_journal_pone_0316545 crossref_primary_10_1523_JNEUROSCI_1016_23_2023 crossref_primary_10_1016_j_brs_2017_12_013 crossref_primary_10_1109_TNSRE_2012_2228674 crossref_primary_10_1016_j_brs_2017_12_010 crossref_primary_10_3390_s22051762 crossref_primary_10_1016_j_clinph_2022_06_012 crossref_primary_10_1016_j_neubiorev_2013_05_009 crossref_primary_10_1109_TMAG_2011_2157810 crossref_primary_10_1113_JP281885 crossref_primary_10_1016_j_cortex_2007_08_012 crossref_primary_10_1371_journal_pone_0133893 crossref_primary_10_1016_j_neulet_2010_04_059 crossref_primary_10_1016_j_brs_2023_02_009 crossref_primary_10_1016_j_jneumeth_2021_109430 crossref_primary_10_1371_journal_pone_0174879 crossref_primary_10_1016_j_clinph_2007_09_139 crossref_primary_10_3389_fnagi_2019_00248 crossref_primary_10_1002_hbm_24448 crossref_primary_10_1016_j_clinph_2019_06_006 crossref_primary_10_1016_j_clinph_2017_06_003 crossref_primary_10_1111_j_1469_8986_2011_01218_x crossref_primary_10_1016_j_brainresbull_2025_111484 crossref_primary_10_1371_journal_pone_0184910 crossref_primary_10_1016_j_clinph_2020_11_018 crossref_primary_10_1002_brb3_1734 crossref_primary_10_1016_j_mehy_2019_109529 crossref_primary_10_1016_j_neuroimage_2017_09_023 crossref_primary_10_1152_jn_00628_2018 crossref_primary_10_1016_j_clinph_2014_12_003 crossref_primary_10_1016_j_brs_2021_05_009 crossref_primary_10_3390_brainsci12070929 crossref_primary_10_1038_s41598_022_17055_9 crossref_primary_10_1177_0300060520976472 crossref_primary_10_1016_j_brs_2018_05_002 crossref_primary_10_1016_j_neubiorev_2023_105434 crossref_primary_10_1152_jn_00796_2011 crossref_primary_10_3390_brainsci14040332 crossref_primary_10_1089_neu_2012_2760 crossref_primary_10_1097_WNR_0b013e328011b89a crossref_primary_10_1016_j_neuroscience_2017_06_014 crossref_primary_10_1523_JNEUROSCI_5089_13_2014 crossref_primary_10_1152_jn_00172_2010 crossref_primary_10_1016_j_jneumeth_2022_109631 crossref_primary_10_3389_fnins_2021_623692 crossref_primary_10_1152_jn_00707_2011 crossref_primary_10_1016_j_eplepsyres_2013_04_001 crossref_primary_10_1016_j_pneurobio_2011_04_004 crossref_primary_10_1371_journal_pone_0208747 crossref_primary_10_1002_hbm_20423 crossref_primary_10_1016_j_brs_2021_01_018 crossref_primary_10_1016_j_npbr_2014_02_001 crossref_primary_10_1523_JNEUROSCI_1689_16_2016 crossref_primary_10_1093_cercor_bhl165 crossref_primary_10_1016_j_neuroimage_2018_10_052 crossref_primary_10_1007_s10548_009_0116_3 crossref_primary_10_1152_jn_00739_2010 crossref_primary_10_1523_JNEUROSCI_4792_11_2012 crossref_primary_10_1111_ner_13488 crossref_primary_10_1016_j_clinph_2022_05_015 crossref_primary_10_1152_jn_00543_2011 crossref_primary_10_1177_1073858420916452 crossref_primary_10_1007_s10548_022_00917_w crossref_primary_10_1177_1545968317712470 crossref_primary_10_1016_j_clinph_2025_01_002 crossref_primary_10_1016_j_eplepsyres_2011_05_015 crossref_primary_10_1016_j_jneumeth_2022_109651 crossref_primary_10_3390_jpm11010054 crossref_primary_10_1002_hbm_20608 crossref_primary_10_3389_fnins_2018_00400 crossref_primary_10_3389_fncir_2016_00073 crossref_primary_10_3389_fnins_2023_1209801 crossref_primary_10_3390_brainsci11030303 crossref_primary_10_1111_pcn_12936 crossref_primary_10_1016_j_ijpsycho_2022_08_005 crossref_primary_10_1111_ejn_12069 crossref_primary_10_1186_s12984_024_01407_9 crossref_primary_10_3390_s21020637 crossref_primary_10_1007_s10548_015_0461_3 crossref_primary_10_1016_j_neucli_2015_02_002 crossref_primary_10_3389_fnhum_2022_937515 crossref_primary_10_1016_j_neubiorev_2010_06_005 crossref_primary_10_1016_j_neuroimage_2016_10_031 crossref_primary_10_1038_s41598_020_59911_6 crossref_primary_10_1002_hbm_22016 crossref_primary_10_1016_j_brs_2017_09_004 crossref_primary_10_1109_TNSRE_2023_3282659 crossref_primary_10_1016_j_clinph_2019_09_013 crossref_primary_10_1016_j_neurom_2024_04_007 crossref_primary_10_3389_fncel_2016_00092 crossref_primary_10_1016_j_cortex_2021_02_024 crossref_primary_10_1016_j_brs_2018_06_005 crossref_primary_10_1007_s10548_009_0083_8 crossref_primary_10_1016_j_jneumeth_2022_109677 crossref_primary_10_3390_brainsci13060921 crossref_primary_10_1080_17470919_2012_720602 crossref_primary_10_1109_MEMB_2009_935474 crossref_primary_10_3390_brainsci11030405 crossref_primary_10_1093_brain_awr340 crossref_primary_10_1016_j_clinph_2015_02_001 crossref_primary_10_1016_j_jneumeth_2008_08_023 crossref_primary_10_1016_j_brs_2018_04_015 crossref_primary_10_1109_TNSRE_2022_3154772 crossref_primary_10_1007_s00221_009_1723_7 crossref_primary_10_1016_j_neuroimage_2016_02_012 crossref_primary_10_1007_s10548_020_00773_6 crossref_primary_10_1016_j_nicl_2018_11_001 crossref_primary_10_1016_j_cortex_2013_12_006 crossref_primary_10_1503_jpn_230090 crossref_primary_10_1016_j_clinph_2016_11_013 crossref_primary_10_1073_pnas_1405508111 crossref_primary_10_1016_j_clinph_2017_08_007 crossref_primary_10_1371_journal_pone_0002483 crossref_primary_10_1016_j_brs_2025_07_016 crossref_primary_10_1016_j_brs_2009_04_001 crossref_primary_10_1152_jn_00762_2012 crossref_primary_10_1113_JP278638 crossref_primary_10_3233_JAD_210311 crossref_primary_10_3389_fnins_2021_616667 crossref_primary_10_1002_hbm_22306 crossref_primary_10_1016_j_neuroscience_2008_01_043 crossref_primary_10_1016_j_neuroimage_2022_118975 crossref_primary_10_1016_j_neuroimage_2020_116746 crossref_primary_10_1113_JP280966 crossref_primary_10_1007_s10916_018_0949_y crossref_primary_10_1016_j_neuroimage_2010_07_056 crossref_primary_10_1109_TNSRE_2017_2779135 crossref_primary_10_3390_jpm10020034 crossref_primary_10_1002_hbm_23545 crossref_primary_10_1016_j_jneumeth_2007_06_030 crossref_primary_10_1089_brain_2016_0462 crossref_primary_10_1038_s41598_023_45730_y crossref_primary_10_1016_j_clinph_2009_11_012 crossref_primary_10_3390_brainsci13020233 crossref_primary_10_1007_s10484_013_9221_x crossref_primary_10_1016_j_clinph_2019_01_001 crossref_primary_10_1089_brain_2018_0593 crossref_primary_10_3389_fnins_2019_00612 crossref_primary_10_1007_s00221_016_4773_7 crossref_primary_10_1177_155005940803900304 crossref_primary_10_1016_j_neuropsychologia_2015_02_016 crossref_primary_10_3390_bios12100814 crossref_primary_10_1007_s00221_020_05958_w crossref_primary_10_1093_brain_aws071 crossref_primary_10_1002_hbm_70048 crossref_primary_10_1016_j_brs_2012_12_001 crossref_primary_10_3389_fncir_2016_00097 crossref_primary_10_1016_j_neuroimage_2020_117394 crossref_primary_10_1177_1550059412444976 crossref_primary_10_1016_j_brs_2015_07_029 crossref_primary_10_1109_TNSRE_2013_2290870 crossref_primary_10_1007_s10548_013_0312_z crossref_primary_10_1016_j_brs_2022_01_016 crossref_primary_10_1016_j_neuroimage_2014_07_037 crossref_primary_10_1016_j_neuroimage_2007_05_015 crossref_primary_10_1038_s41598_019_49673_1 crossref_primary_10_1111_ejn_16127 crossref_primary_10_1016_j_clinph_2022_07_495 crossref_primary_10_1016_j_jneumeth_2022_109482 crossref_primary_10_1038_s41598_024_59468_8 crossref_primary_10_1016_j_jneumeth_2022_109486 crossref_primary_10_1016_j_bandc_2018_01_004 crossref_primary_10_1016_j_neucli_2011_07_002 crossref_primary_10_1002_mds_28914 crossref_primary_10_1016_j_neuroimage_2014_04_065 crossref_primary_10_1016_j_neubiorev_2014_12_014 crossref_primary_10_1016_j_neuroimage_2013_06_076 crossref_primary_10_1007_s10548_018_0662_7 crossref_primary_10_1016_j_cortex_2022_06_004 crossref_primary_10_1007_s10548_025_01113_2 crossref_primary_10_1007_s12311_022_01398_0 crossref_primary_10_1016_j_clinph_2010_09_004 crossref_primary_10_3389_fnhum_2021_787487 crossref_primary_10_1113_JP283986 crossref_primary_10_1016_j_clinph_2017_08_034 crossref_primary_10_1016_j_clinph_2021_09_013 crossref_primary_10_1016_j_jneumeth_2022_109494 crossref_primary_10_1016_j_clinph_2009_08_016 crossref_primary_10_4061_2011_654794 crossref_primary_10_1016_j_jad_2023_01_064 crossref_primary_10_1016_j_neuroimage_2011_08_097 crossref_primary_10_1007_s10548_009_0123_4 crossref_primary_10_1016_j_brs_2024_05_014 crossref_primary_10_1016_j_cortex_2018_08_004 crossref_primary_10_1016_j_jneumeth_2017_11_001 crossref_primary_10_1016_j_clinph_2009_04_023 crossref_primary_10_1016_j_neuroimage_2011_02_037 crossref_primary_10_1016_j_brs_2008_11_002 crossref_primary_10_1016_j_ijpsycho_2021_08_008 crossref_primary_10_1002_mds_29901 crossref_primary_10_1016_j_jneumeth_2008_04_021 crossref_primary_10_3389_fnhum_2024_1279183 crossref_primary_10_1016_j_ijpsycho_2019_01_002 crossref_primary_10_1002_mds_27285 crossref_primary_10_1007_s12311_019_01093_7 crossref_primary_10_1016_j_neuroimage_2018_06_053 crossref_primary_10_1016_j_clinph_2014_08_028 crossref_primary_10_1523_JNEUROSCI_1777_13_2013 crossref_primary_10_3389_fnins_2018_00393 crossref_primary_10_1088_1741_2552_ad9ee0 crossref_primary_10_1016_j_xpro_2025_103622 crossref_primary_10_3109_02699052_2014_920524 crossref_primary_10_1007_s10072_020_04527_x crossref_primary_10_1016_j_clinph_2016_06_003 crossref_primary_10_1016_j_neuropsychologia_2020_107581 crossref_primary_10_3390_brainsci12101358 crossref_primary_10_1016_j_clinph_2021_05_009 crossref_primary_10_1016_j_clinph_2021_05_008 crossref_primary_10_1016_j_brs_2019_01_010 crossref_primary_10_1007_s00421_010_1432_8 |
| Cites_doi | 10.1113/jphysiol.1992.sp019243 10.1016/S1388-2457(99)00070-X 10.1016/0013-4694(94)90029-9 10.1016/S1388-2457(99)00038-3 10.1016/0168-5597(92)90096-T 10.1016/S0140-6736(85)92413-4 10.1038/35036239 10.1097/00004691-199201000-00014 10.1097/00001756-199708180-00027 10.1016/S0140-6736(96)01219-6 10.1111/j.1469-7793.2000.00461.x 10.1097/00001756-199711100-00024 10.1152/jn.1998.79.2.1102 10.1046/j.1460-9568.2003.02858.x 10.1007/BF02513307 10.1002/hbm.10159 10.1016/S0006-3223(98)00368-0 10.1002/ana.410380221 10.1038/sj.npp.1300038 10.1016/0168-5597(91)90026-T 10.1016/0168-5597(89)90030-0 10.1016/S0924-980X(96)96090-7 10.1152/jn.2001.86.4.1983 10.1016/S0140-6736(86)91243-2 10.1097/00006123-198701000-00031 10.1002/ana.410430314 10.1016/S0924-980X(98)00013-7 10.1016/j.clinph.2005.01.002 10.1016/S0006-3223(01)01199-4 10.1016/S0013-4694(97)00097-7 10.1016/S1388-2457(01)00721-0 10.1007/s004150050536 10.1002/ana.20521 10.1212/WNL.54.4.956 10.1016/0168-5597(93)90115-6 10.1093/brain/122.9.1721 10.1016/j.neuroimage.2004.09.048 10.1097/00001756-200111160-00034 10.1016/S0006-3495(92)81587-4 10.1016/j.clinph.2003.10.032 10.1523/JNEUROSCI.17-09-03178.1997 |
| ContentType | Journal Article |
| Copyright | 2006 International Federation of Clinical Neurophysiology 2006 INIST-CNRS |
| Copyright_xml | – notice: 2006 International Federation of Clinical Neurophysiology – notice: 2006 INIST-CNRS |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.clinph.2006.05.006 |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1872-8952 |
| EndPage | 1707 |
| ExternalDocumentID | 16797232 18017424 10_1016_j_clinph_2006_05_006 S1388245706002100 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFO ACIEU ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HX~ HZ~ IHE J1W K-O KOM L7B M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OHT OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSN SSZ T5K UAP UNMZH UV1 VH1 X7M XOL XPP Z5R ZGI ~G- ~HD AACTN AADPK AAIAV ABLVK ABYKQ AFCTW AFKWA AFMIJ AHPSJ AJBFU AJOXV AMFUW LCYCR RIG VQA ZA5 9DU AAYXX CITATION AGCQF AGRNS IQODW CGR CUY CVF ECM EIF NPM PKN 7X8 |
| ID | FETCH-LOGICAL-c509t-94fcd5b1e5cc3df480a941a5950468a1f11cc0212a54498bb23f5f59c0c6418c3 |
| ISICitedReferencesCount | 248 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000239876700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1388-2457 |
| IngestDate | Thu Oct 02 12:59:48 EDT 2025 Wed Feb 19 01:45:42 EST 2025 Mon Jul 21 09:16:13 EDT 2025 Sat Nov 29 07:01:07 EST 2025 Tue Nov 18 22:35:01 EST 2025 Fri Feb 23 02:29:31 EST 2024 Tue Oct 14 19:36:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Electroencephalography TMS rTMS Low frequency Motor cortex EEG Human Validation Transcranial magnetic stimulation Motor pathway Central nervous system Electrophysiology Artefact Representation Right hemisphere Orientation Temporal pattern Encephalon rTMS: Low frequency Electrodes Muscle Motor evoked potential Technique Cortical magnetic potential |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c509t-94fcd5b1e5cc3df480a941a5950468a1f11cc0212a54498bb23f5f59c0c6418c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 16797232 |
| PQID | 68690459 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_68690459 pubmed_primary_16797232 pascalfrancis_primary_18017424 crossref_citationtrail_10_1016_j_clinph_2006_05_006 crossref_primary_10_1016_j_clinph_2006_05_006 elsevier_sciencedirect_doi_10_1016_j_clinph_2006_05_006 elsevier_clinicalkey_doi_10_1016_j_clinph_2006_05_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2006-08-01 |
| PublicationDateYYYYMMDD | 2006-08-01 |
| PublicationDate_xml | – month: 08 year: 2006 text: 2006-08-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Shannon |
| PublicationPlace_xml | – name: Shannon – name: Netherlands |
| PublicationTitle | Clinical neurophysiology |
| PublicationTitleAlternate | Clin Neurophysiol |
| PublicationYear | 2006 |
| Publisher | Elsevier Ireland Ltd Elsevier Science |
| Publisher_xml | – name: Elsevier Ireland Ltd – name: Elsevier Science |
| References | Rossini, Barker, Berardelli, Caramia, Caruso, Cracco, Dimitrijevic, Hallett, Katayama, Lucking, Maertens de Noordhout, Marsden, Murray, Rothwell, Swash, Tomberg (bib35) 1994; 91 Paus, Jech, Thompson, Comeau, Peters, Evans (bib32) 1998; 79 Boroojerdi, Hungs, Mull, Topper, Noth (bib7) 1998; 109 Nahas, Lomarev, Roberts, Shastri, Lorberbaum, Teneback, McConnell, Vincent, Li, George, Bohning (bib24) 2001; 50 Rossini, Rossi (bib34) 1998; 106 Barker, Jalinous, Freeston (bib2) 1985; 1 Ferbert, Priori, Rothwell, Day, Colebatch, Marsden (bib11) 1992; 453 Seyal, Siddiqui, Hundal (bib39) 1997; 105 George, Nahas, Molloy, Speer, Oliver, Li, Arana, Risch, Ballenger (bib13) 2000; 154 Seyal, Ro, Rafal (bib38) 1995; 38 Miniussi, Bonato, Bignotti, Gazzoli, Gennarelli, Pasqualetti, Tura, Ventriglia, Rossini (bib23) 2005; 116 Virtanen, Ruohonen, Näätänen, Ilmoniemi (bib42) 1999; 37 Barker, Freeston, Jalinous, Jarratt (bib3) 1986; 1 Oliveri, Rossini, Pasqualetti, Traversa, Cicinelli, Palmieri, Tomaiuolo, Caltagirone (bib27) 1999; 122 Oliveri, Caltagirone, Filippi, Traversa, Cicinelli, Pasqualetti, Rossini (bib28) 2000; 529 Brasil-Neto, Cohen, Panizza, Nilsson, Roth, Hallett (bib8) 1992; 9 Cracco, Amassian, Maccabee, Cracco (bib10) 1989; 74 Schlaepfer, Kosel, Nemeroff (bib37) 2003; 28 Kähkonen, Komssi, Wilenius, Ilmoniemi (bib17) 2005; 24 Paus, Jech, Thompson, Comeau, Peters, Evans (bib31) 1997; 17 Tiitinen, Virtanen, Ilmoniemi, Kamppuri, Ollikainen, Ruohonen, Näätänen (bib41) 1999; 110 Paus, Sipila, Strafella (bib33) 2001; 86 Nikulin, Kicic, Kähkonen, Ilmoniemi (bib26) 2003; 18 Baudewig, Siebner, Bestmann, Tergau, Tings, Paulus, Frahm (bib4) 2001; 12 Walsh, Cowey (bib43) 2000; 1 Fox, Ingham, George, Mayberg, Ingham, Roby, Martin, Jerabek (bib12) 1997; 8 Pascual-Leone, Rubio, Pallardo, Catala (bib30) 1996; 348 Komssi, Aronen, Huttunen, Kesäniemi, Soinne, Nikouline, Ollikainen, Roine, Karhu, Savolainen, Ilmoniemi (bib19) 2002; 113 Amassian, Cracco (bib1) 1987; 20 Cohen, Bandinelli, Sato, Kufta, Hallett (bib9) 1991; 81 Mills, Boniface, Schubert (bib22) 1992; 85 Siebner, Peller, Willoch, Minoshima, Boecker, Auer, Drzezga, Conrad, Bartenstein (bib40) 2000; 54 Heller, van Hulsteyn (bib14) 1992; 63 Ilmoniemi, Virtanen, Ruohonen, Karhu, Aronen, Näätänen, Katila (bib15) 1997; 8 Kähkonen, Wilenius, Komssi, Ilmoniemi (bib16) 2004; 115 Komssi, Kähkonen, Ilmoniemi (bib20) 2004; 21 Oliviero, Di Lazzaro, Piazza, Profice, Pennisi, Della Corte, Tonali (bib29) 1999; 246 Bender, Basseler, Sebastian, Resch, Kammer, Oelkers-Ax, Weisbrod (bib5) 2005; 58 Meyer, Roricht, Woiciechowsky (bib21) 1998; 43 Bohning, Shastri, McConnell, Nahas, Lorberbaum, Roberts, Teneback, Vincent, George (bib6) 1999; 45 Nikouline, Ruohonen, Ilmoniemi (bib25) 1999; 110 Kiers, Cros, Chiappa, Fang (bib18) 1993; 89 Rossini, Berardelli, Deuschl, Hallett, Maertens de Noordhout, Paulus, Pauri (bib36) 1999; 52 Rossini (10.1016/j.clinph.2006.05.006_bib34) 1998; 106 Ferbert (10.1016/j.clinph.2006.05.006_bib11) 1992; 453 Paus (10.1016/j.clinph.2006.05.006_bib33) 2001; 86 Bohning (10.1016/j.clinph.2006.05.006_bib6) 1999; 45 George (10.1016/j.clinph.2006.05.006_bib13) 2000; 154 Nikouline (10.1016/j.clinph.2006.05.006_bib25) 1999; 110 Pascual-Leone (10.1016/j.clinph.2006.05.006_bib30) 1996; 348 Siebner (10.1016/j.clinph.2006.05.006_bib40) 2000; 54 Kähkonen (10.1016/j.clinph.2006.05.006_bib17) 2005; 24 Oliveri (10.1016/j.clinph.2006.05.006_bib27) 1999; 122 Fox (10.1016/j.clinph.2006.05.006_bib12) 1997; 8 Virtanen (10.1016/j.clinph.2006.05.006_bib42) 1999; 37 Kähkonen (10.1016/j.clinph.2006.05.006_bib16) 2004; 115 Mills (10.1016/j.clinph.2006.05.006_bib22) 1992; 85 Schlaepfer (10.1016/j.clinph.2006.05.006_bib37) 2003; 28 Seyal (10.1016/j.clinph.2006.05.006_bib38) 1995; 38 Kiers (10.1016/j.clinph.2006.05.006_bib18) 1993; 89 Oliveri (10.1016/j.clinph.2006.05.006_bib28) 2000; 529 Rossini (10.1016/j.clinph.2006.05.006_bib35) 1994; 91 Tiitinen (10.1016/j.clinph.2006.05.006_bib41) 1999; 110 Bender (10.1016/j.clinph.2006.05.006_bib5) 2005; 58 Meyer (10.1016/j.clinph.2006.05.006_bib21) 1998; 43 Oliviero (10.1016/j.clinph.2006.05.006_bib29) 1999; 246 Seyal (10.1016/j.clinph.2006.05.006_bib39) 1997; 105 Walsh (10.1016/j.clinph.2006.05.006_bib43) 2000; 1 Boroojerdi (10.1016/j.clinph.2006.05.006_bib7) 1998; 109 Heller (10.1016/j.clinph.2006.05.006_bib14) 1992; 63 Miniussi (10.1016/j.clinph.2006.05.006_bib23) 2005; 116 Paus (10.1016/j.clinph.2006.05.006_bib32) 1998; 79 Rossini (10.1016/j.clinph.2006.05.006_bib36) 1999; 52 Komssi (10.1016/j.clinph.2006.05.006_bib19) 2002; 113 Nahas (10.1016/j.clinph.2006.05.006_bib24) 2001; 50 Cohen (10.1016/j.clinph.2006.05.006_bib9) 1991; 81 Amassian (10.1016/j.clinph.2006.05.006_bib1) 1987; 20 Barker (10.1016/j.clinph.2006.05.006_bib2) 1985; 1 Ilmoniemi (10.1016/j.clinph.2006.05.006_bib15) 1997; 8 Brasil-Neto (10.1016/j.clinph.2006.05.006_bib8) 1992; 9 Cracco (10.1016/j.clinph.2006.05.006_bib10) 1989; 74 Nikulin (10.1016/j.clinph.2006.05.006_bib26) 2003; 18 Barker (10.1016/j.clinph.2006.05.006_bib3) 1986; 1 Baudewig (10.1016/j.clinph.2006.05.006_bib4) 2001; 12 Komssi (10.1016/j.clinph.2006.05.006_bib20) 2004; 21 Paus (10.1016/j.clinph.2006.05.006_bib31) 1997; 17 |
| References_xml | – volume: 38 start-page: 264 year: 1995 end-page: 267 ident: bib38 article-title: Increased sensitivity to ipsilateral cutaneous stimuli following transcranial magnetic stimulation of the parietal lobe publication-title: Ann Neurol – volume: 50 start-page: 712 year: 2001 end-page: 720 ident: bib24 article-title: Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI publication-title: Biol Psychiatry – volume: 18 start-page: 1206 year: 2003 end-page: 1212 ident: bib26 article-title: Modulation of electroencephalographic responses to transcranial magnetic stimulation: evidence for changes in cortical excitability related to movement publication-title: Eur J Neurosci – volume: 348 start-page: 233 year: 1996 end-page: 237 ident: bib30 article-title: Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression publication-title: Lancet – volume: 43 start-page: 360 year: 1998 end-page: 369 ident: bib21 article-title: Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices publication-title: Ann Neurol – volume: 9 start-page: 132 year: 1992 end-page: 136 ident: bib8 article-title: Optimal focal transcranial magnetic activation of the human motor cortex: effect of coil orientation, shape of the induced current pulse, and stimulus intensity publication-title: J Clin Neurophysiol – volume: 453 start-page: 525 year: 1992 end-page: 546 ident: bib11 article-title: Interhemispheric inhibition of the human motor cortex publication-title: J Physiol – volume: 89 start-page: 415 year: 1993 end-page: 423 ident: bib18 article-title: Variability of motor potentials evoked by transcranial magnetic stimulation publication-title: Electroencephalogr Clin Neurophysiol – volume: 91 start-page: 79 year: 1994 end-page: 92 ident: bib35 article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee publication-title: Electroencephalogr Clin Neurophysiol – volume: 24 start-page: 955 year: 2005 end-page: 960 ident: bib17 article-title: Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans publication-title: Neuroimage – volume: 37 start-page: 322 year: 1999 end-page: 326 ident: bib42 article-title: Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation publication-title: Med Biol Eng Comput – volume: 110 start-page: 982 year: 1999 end-page: 985 ident: bib41 article-title: Separation of contamination caused by coil clicks from responses elicited by transcranial magnetic stimulation publication-title: Clin Neurophysiol – volume: 122 start-page: 1721 year: 1999 end-page: 1729 ident: bib27 article-title: Interhemispheric asymmetries in the perception of unimanual and bimanual cutaneous stimuli. A study using transcranial magnetic stimulation publication-title: Brain – volume: 113 start-page: 175 year: 2002 end-page: 184 ident: bib19 article-title: Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation publication-title: Clin Neurophysiol – volume: 12 start-page: 3543 year: 2001 end-page: 3548 ident: bib4 article-title: Functional MRI of cortical activations induced by transcranial magnetic stimulation (TMS) publication-title: NeuroReport – volume: 63 start-page: 129 year: 1992 end-page: 138 ident: bib14 article-title: Brain stimulation using electromagnetic sources: theoretical aspects publication-title: Biophys J – volume: 1 start-page: 1325 year: 1986 end-page: 1326 ident: bib3 article-title: Clinical evaluation of conduction time measurements in central motor pathways using magnetic stimulation of human brain publication-title: Lancet – volume: 74 start-page: 417 year: 1989 end-page: 424 ident: bib10 article-title: Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation publication-title: Electroencephalogr Clin Neurophysiol – volume: 115 start-page: 583 year: 2004 end-page: 588 ident: bib16 article-title: Distinct differences in cortical reactivity of motor and prefrontal cortices to magnetic stimulation publication-title: Clin Neurophysiol – volume: 116 start-page: 1062 year: 2005 end-page: 1071 ident: bib23 article-title: Repetitive transcranial magnetic stimulation (rTMS) at high and low frequency: an efficacious therapy for major drug-resistant depression? publication-title: Clin Neurophysiol – volume: 54 start-page: 956 year: 2000 end-page: 963 ident: bib40 article-title: Lasting cortical activation after repetitive TMS of the motor cortex. A glucose metabolic study publication-title: Neurology – volume: 21 start-page: 154 year: 2004 end-page: 164 ident: bib20 article-title: The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation publication-title: Hum Brain Mapp – volume: 246 start-page: 1164 year: 1999 end-page: 1168 ident: bib29 article-title: Cerebral blood flow and metabolic changes produced by repetitive magnetic brain stimulation publication-title: J Neurol – volume: 529 start-page: 461 year: 2000 end-page: 468 ident: bib28 article-title: Paired transcranial magnetic stimulation protocols reveal a pattern of inhibition and facilitation in the human parietal cortex publication-title: J Physiol – volume: 105 start-page: 24 year: 1997 end-page: 28 ident: bib39 article-title: Suppression of spatial localization of a cutaneous stimulus following transcranial magnetic pulse stimulation of the sensorimotor cortex publication-title: Electroencephalogr Clin Neurophysiol – volume: 52 start-page: 171 year: 1999 end-page: 185 ident: bib36 article-title: Applications of magnetic cortical stimulation. The International Federation of Clinical Neurophysiology publication-title: Electroencephalogr Clin Neurophysiol – volume: 154 start-page: 1752 year: 2000 end-page: 1756 ident: bib13 article-title: A controlled trial of daily left prefrontal cortex TMS for treatment of depression publication-title: Biol Psychiatry – volume: 85 start-page: 17 year: 1992 end-page: 21 ident: bib22 article-title: Magnetic brain stimulation with a double coil: the importance of coil orientation publication-title: Electroencephalogr Clin Neurophysiol – volume: 86 start-page: 1983 year: 2001 end-page: 1990 ident: bib33 article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study publication-title: J Neurophysiol – volume: 79 start-page: 1102 year: 1998 end-page: 1107 ident: bib32 article-title: Dose-dependent reduction of cerebral blood flow during rapid-rate transcranial magnetic stimulation of the human sensorimotor cortex publication-title: J Neurophysiol – volume: 58 start-page: 58 year: 2005 end-page: 67 ident: bib5 article-title: Electroencephalographic response to transcranial magnetic stimulation in children: evidence for giant inhibitory potentials publication-title: Ann Neurol – volume: 17 start-page: 3178 year: 1997 end-page: 3184 ident: bib31 article-title: Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex publication-title: Neuroscience – volume: 28 start-page: 201 year: 2003 end-page: 205 ident: bib37 article-title: Efficacy of repetitive transcranial magnetic stimulation (rTMS) in the treatment of affective disorders publication-title: Neuropsychopharmacology – volume: 8 start-page: 2787 year: 1997 end-page: 2791 ident: bib12 article-title: Imaging human intracerebral connectivity by PET during TMS publication-title: NeuroReport – volume: 8 start-page: 3537 year: 1997 end-page: 3540 ident: bib15 article-title: Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity publication-title: NeuroReport – volume: 109 start-page: 230 year: 1998 end-page: 237 ident: bib7 article-title: Interhemispheric inhibition in patients with multiple sclerosis publication-title: Electroencephalogr Clin Neurophysiol – volume: 1 start-page: 1106 year: 1985 end-page: 1107 ident: bib2 article-title: Non-invasive magnetic stimulation of human motor cortex publication-title: Lancet – volume: 45 start-page: 385 year: 1999 end-page: 394 ident: bib6 article-title: A combined TMS/fMRI study of intensity-dependent TMS over motor cortex publication-title: Biol Psychiatry – volume: 20 start-page: 148 year: 1987 end-page: 155 ident: bib1 article-title: Human cerebral cortical responses to contralateral transcranial magnetic stimulation publication-title: Neurosurgery – volume: 106 start-page: 180 year: 1998 end-page: 194 ident: bib34 article-title: Clinical applications of motor evoked potentials publication-title: Electroencephalogr Clin Neurophysiol – volume: 1 start-page: 73 year: 2000 end-page: 79 ident: bib43 article-title: Transcranial magnetic stimulation and cognitive neuroscience publication-title: Nat Rev Neurosci – volume: 81 start-page: 366 year: 1991 end-page: 376 ident: bib9 article-title: Attenuation in detection of somatosensory stimuli by transcranial magnetic stimulation publication-title: Electroencephalogr Clin Neurophysiol – volume: 110 start-page: 1325 year: 1999 end-page: 1328 ident: bib25 article-title: The role of the coil click in TMS assessed with simultaneous EEG publication-title: Clin Neurophysiol – volume: 453 start-page: 525 year: 1992 ident: 10.1016/j.clinph.2006.05.006_bib11 article-title: Interhemispheric inhibition of the human motor cortex publication-title: J Physiol doi: 10.1113/jphysiol.1992.sp019243 – volume: 110 start-page: 1325 year: 1999 ident: 10.1016/j.clinph.2006.05.006_bib25 article-title: The role of the coil click in TMS assessed with simultaneous EEG publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(99)00070-X – volume: 91 start-page: 79 year: 1994 ident: 10.1016/j.clinph.2006.05.006_bib35 article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(94)90029-9 – volume: 110 start-page: 982 year: 1999 ident: 10.1016/j.clinph.2006.05.006_bib41 article-title: Separation of contamination caused by coil clicks from responses elicited by transcranial magnetic stimulation publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(99)00038-3 – volume: 85 start-page: 17 year: 1992 ident: 10.1016/j.clinph.2006.05.006_bib22 article-title: Magnetic brain stimulation with a double coil: the importance of coil orientation publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(92)90096-T – volume: 1 start-page: 1106 year: 1985 ident: 10.1016/j.clinph.2006.05.006_bib2 article-title: Non-invasive magnetic stimulation of human motor cortex publication-title: Lancet doi: 10.1016/S0140-6736(85)92413-4 – volume: 1 start-page: 73 year: 2000 ident: 10.1016/j.clinph.2006.05.006_bib43 article-title: Transcranial magnetic stimulation and cognitive neuroscience publication-title: Nat Rev Neurosci doi: 10.1038/35036239 – volume: 9 start-page: 132 year: 1992 ident: 10.1016/j.clinph.2006.05.006_bib8 article-title: Optimal focal transcranial magnetic activation of the human motor cortex: effect of coil orientation, shape of the induced current pulse, and stimulus intensity publication-title: J Clin Neurophysiol doi: 10.1097/00004691-199201000-00014 – volume: 8 start-page: 2787 year: 1997 ident: 10.1016/j.clinph.2006.05.006_bib12 article-title: Imaging human intracerebral connectivity by PET during TMS publication-title: NeuroReport doi: 10.1097/00001756-199708180-00027 – volume: 348 start-page: 233 year: 1996 ident: 10.1016/j.clinph.2006.05.006_bib30 article-title: Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression publication-title: Lancet doi: 10.1016/S0140-6736(96)01219-6 – volume: 154 start-page: 1752 year: 2000 ident: 10.1016/j.clinph.2006.05.006_bib13 article-title: A controlled trial of daily left prefrontal cortex TMS for treatment of depression publication-title: Biol Psychiatry – volume: 529 start-page: 461 year: 2000 ident: 10.1016/j.clinph.2006.05.006_bib28 article-title: Paired transcranial magnetic stimulation protocols reveal a pattern of inhibition and facilitation in the human parietal cortex publication-title: J Physiol doi: 10.1111/j.1469-7793.2000.00461.x – volume: 8 start-page: 3537 year: 1997 ident: 10.1016/j.clinph.2006.05.006_bib15 article-title: Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity publication-title: NeuroReport doi: 10.1097/00001756-199711100-00024 – volume: 79 start-page: 1102 year: 1998 ident: 10.1016/j.clinph.2006.05.006_bib32 article-title: Dose-dependent reduction of cerebral blood flow during rapid-rate transcranial magnetic stimulation of the human sensorimotor cortex publication-title: J Neurophysiol doi: 10.1152/jn.1998.79.2.1102 – volume: 18 start-page: 1206 year: 2003 ident: 10.1016/j.clinph.2006.05.006_bib26 article-title: Modulation of electroencephalographic responses to transcranial magnetic stimulation: evidence for changes in cortical excitability related to movement publication-title: Eur J Neurosci doi: 10.1046/j.1460-9568.2003.02858.x – volume: 37 start-page: 322 year: 1999 ident: 10.1016/j.clinph.2006.05.006_bib42 article-title: Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation publication-title: Med Biol Eng Comput doi: 10.1007/BF02513307 – volume: 21 start-page: 154 year: 2004 ident: 10.1016/j.clinph.2006.05.006_bib20 article-title: The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation publication-title: Hum Brain Mapp doi: 10.1002/hbm.10159 – volume: 45 start-page: 385 year: 1999 ident: 10.1016/j.clinph.2006.05.006_bib6 article-title: A combined TMS/fMRI study of intensity-dependent TMS over motor cortex publication-title: Biol Psychiatry doi: 10.1016/S0006-3223(98)00368-0 – volume: 38 start-page: 264 year: 1995 ident: 10.1016/j.clinph.2006.05.006_bib38 article-title: Increased sensitivity to ipsilateral cutaneous stimuli following transcranial magnetic stimulation of the parietal lobe publication-title: Ann Neurol doi: 10.1002/ana.410380221 – volume: 52 start-page: 171 issue: Suppl. year: 1999 ident: 10.1016/j.clinph.2006.05.006_bib36 article-title: Applications of magnetic cortical stimulation. The International Federation of Clinical Neurophysiology publication-title: Electroencephalogr Clin Neurophysiol – volume: 28 start-page: 201 year: 2003 ident: 10.1016/j.clinph.2006.05.006_bib37 article-title: Efficacy of repetitive transcranial magnetic stimulation (rTMS) in the treatment of affective disorders publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1300038 – volume: 81 start-page: 366 year: 1991 ident: 10.1016/j.clinph.2006.05.006_bib9 article-title: Attenuation in detection of somatosensory stimuli by transcranial magnetic stimulation publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(91)90026-T – volume: 74 start-page: 417 year: 1989 ident: 10.1016/j.clinph.2006.05.006_bib10 article-title: Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(89)90030-0 – volume: 105 start-page: 24 year: 1997 ident: 10.1016/j.clinph.2006.05.006_bib39 article-title: Suppression of spatial localization of a cutaneous stimulus following transcranial magnetic pulse stimulation of the sensorimotor cortex publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/S0924-980X(96)96090-7 – volume: 86 start-page: 1983 year: 2001 ident: 10.1016/j.clinph.2006.05.006_bib33 article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study publication-title: J Neurophysiol doi: 10.1152/jn.2001.86.4.1983 – volume: 1 start-page: 1325 year: 1986 ident: 10.1016/j.clinph.2006.05.006_bib3 article-title: Clinical evaluation of conduction time measurements in central motor pathways using magnetic stimulation of human brain publication-title: Lancet doi: 10.1016/S0140-6736(86)91243-2 – volume: 20 start-page: 148 year: 1987 ident: 10.1016/j.clinph.2006.05.006_bib1 article-title: Human cerebral cortical responses to contralateral transcranial magnetic stimulation publication-title: Neurosurgery doi: 10.1097/00006123-198701000-00031 – volume: 43 start-page: 360 year: 1998 ident: 10.1016/j.clinph.2006.05.006_bib21 article-title: Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices publication-title: Ann Neurol doi: 10.1002/ana.410430314 – volume: 109 start-page: 230 year: 1998 ident: 10.1016/j.clinph.2006.05.006_bib7 article-title: Interhemispheric inhibition in patients with multiple sclerosis publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/S0924-980X(98)00013-7 – volume: 116 start-page: 1062 year: 2005 ident: 10.1016/j.clinph.2006.05.006_bib23 article-title: Repetitive transcranial magnetic stimulation (rTMS) at high and low frequency: an efficacious therapy for major drug-resistant depression? publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2005.01.002 – volume: 50 start-page: 712 year: 2001 ident: 10.1016/j.clinph.2006.05.006_bib24 article-title: Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI publication-title: Biol Psychiatry doi: 10.1016/S0006-3223(01)01199-4 – volume: 106 start-page: 180 year: 1998 ident: 10.1016/j.clinph.2006.05.006_bib34 article-title: Clinical applications of motor evoked potentials publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/S0013-4694(97)00097-7 – volume: 113 start-page: 175 year: 2002 ident: 10.1016/j.clinph.2006.05.006_bib19 article-title: Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(01)00721-0 – volume: 246 start-page: 1164 year: 1999 ident: 10.1016/j.clinph.2006.05.006_bib29 article-title: Cerebral blood flow and metabolic changes produced by repetitive magnetic brain stimulation publication-title: J Neurol doi: 10.1007/s004150050536 – volume: 58 start-page: 58 year: 2005 ident: 10.1016/j.clinph.2006.05.006_bib5 article-title: Electroencephalographic response to transcranial magnetic stimulation in children: evidence for giant inhibitory potentials publication-title: Ann Neurol doi: 10.1002/ana.20521 – volume: 54 start-page: 956 year: 2000 ident: 10.1016/j.clinph.2006.05.006_bib40 article-title: Lasting cortical activation after repetitive TMS of the motor cortex. A glucose metabolic study publication-title: Neurology doi: 10.1212/WNL.54.4.956 – volume: 89 start-page: 415 year: 1993 ident: 10.1016/j.clinph.2006.05.006_bib18 article-title: Variability of motor potentials evoked by transcranial magnetic stimulation publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0168-5597(93)90115-6 – volume: 122 start-page: 1721 year: 1999 ident: 10.1016/j.clinph.2006.05.006_bib27 article-title: Interhemispheric asymmetries in the perception of unimanual and bimanual cutaneous stimuli. A study using transcranial magnetic stimulation publication-title: Brain doi: 10.1093/brain/122.9.1721 – volume: 24 start-page: 955 year: 2005 ident: 10.1016/j.clinph.2006.05.006_bib17 article-title: Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.09.048 – volume: 12 start-page: 3543 year: 2001 ident: 10.1016/j.clinph.2006.05.006_bib4 article-title: Functional MRI of cortical activations induced by transcranial magnetic stimulation (TMS) publication-title: NeuroReport doi: 10.1097/00001756-200111160-00034 – volume: 63 start-page: 129 year: 1992 ident: 10.1016/j.clinph.2006.05.006_bib14 article-title: Brain stimulation using electromagnetic sources: theoretical aspects publication-title: Biophys J doi: 10.1016/S0006-3495(92)81587-4 – volume: 115 start-page: 583 year: 2004 ident: 10.1016/j.clinph.2006.05.006_bib16 article-title: Distinct differences in cortical reactivity of motor and prefrontal cortices to magnetic stimulation publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2003.10.032 – volume: 17 start-page: 3178 year: 1997 ident: 10.1016/j.clinph.2006.05.006_bib31 article-title: Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex publication-title: Neuroscience doi: 10.1523/JNEUROSCI.17-09-03178.1997 |
| SSID | ssj0007042 |
| Score | 2.335692 |
| Snippet | In recent years, a promising tool has been introduced which allows the co-registration of electroencephalographic (EEG) activity during brain transcranial... |
| SourceID | proquest pubmed pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1699 |
| SubjectTerms | Adult Biological and medical sciences Cerebral Cortex - physiology EEG Electrodiagnosis. Electric activity recording Electroencephalography Evoked Potentials - physiology Female Fundamental and applied biological sciences. Psychology Humans Investigative techniques, diagnostic techniques (general aspects) Low frequency Male Medical sciences Motor cortex Nervous system rTMS Somesthesis and somesthetic pathways (proprioception, exteroception, nociception); interoception; electrolocation. Sensory receptors TMS Transcranial Magnetic Stimulation Vertebrates: nervous system and sense organs |
| Title | Transcranial magnetic stimulation and cortical evoked potentials: A TMS/EEG co-registration study |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1388245706002100 https://dx.doi.org/10.1016/j.clinph.2006.05.006 https://www.ncbi.nlm.nih.gov/pubmed/16797232 https://www.proquest.com/docview/68690459 |
| Volume | 117 |
| WOSCitedRecordID | wos000239876700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8952 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0007042 issn: 1388-2457 databaseCode: AIEXJ dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYhhASQnxTPoofEC9TWNLYic3bQB0fassEGeqblTgJ2mBp6Me0P5-72E5bxtTxwItbWbnW8v1sX8539yPkJUeLrRC4kIrCw1xJT-ZZ5MUiCjMdc1k00RbfBvFoJMZjeWjjdGcNnUBcVeL8XNb_VdXQB8rG1Nl_UHf7o9AB30Hp0ILaob2a4vH00dCgL_w0_V5hmuIurORTy9RlU9mmxotdnE1-gNFZT-YYNwSjM-nPyfArDKHffw9Pesje4OrrrhSkdQUOXHJlUxuzcZWs-erfooN-3SM7BIkFrMa1zi9wXh83DFO7h9ZJu-KOEM4dYXbQEPXBTNXpdos1-ZkWS2Jlwwwiw490YSc3ToWT15ggWrtbI_R__aVw9uizOjgaDFTSHyev6l8ecorh3bslWNkiOz1AHex5O_sf--NP7Ukd-w25Ujtkl1rZxP9d_OPLTJdbdTqDWS4NE8rlryqNyZLcIbftuwbdNxi5S64V1T1yY2ijKe6TdBUq1EGFrkCFAlSogwo1UKFLqLyhKQWg7AFM6B8woQ1MHpCjg37y7oNnKTc8DZbj3JOs1DnPgoJrHeYlE34qWZByyX0WiTQog0BrZAVIOWNSZFkvLHnJpfZ1xAKhw4dku5pUxWNCwzAoM6zN5PsZ0znLuMxhotOsx0TOctEhoZtNpW09eqRF-alc4OGJMjpAqtRI-VzBR4d4rVRt6rFseJ47RSmXawynowKYbZCLWzlrixob8wqS3TU8LIcJxmDMeqxDXjiAKNjL8YIurYrJYqYipIdjXHbII4ObpWwUIz1g78lG2afk5nJZPiPb8-mieE6u67P58WzaJVvxWHTtOvgNEe_Kmw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcranial+magnetic+stimulation+and+cortical+evoked+potentials%3A+a+TMS%2FEEG+co-registration+study&rft.jtitle=Clinical+neurophysiology&rft.au=Bonato%2C+C&rft.au=Miniussi%2C+C&rft.au=Rossini%2C+P+M&rft.date=2006-08-01&rft.issn=1388-2457&rft.volume=117&rft.issue=8&rft.spage=1699&rft_id=info:doi/10.1016%2Fj.clinph.2006.05.006&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-2457&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-2457&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-2457&client=summon |