Transcranial magnetic stimulation and cortical evoked potentials: A TMS/EEG co-registration study

In recent years, a promising tool has been introduced which allows the co-registration of electroencephalographic (EEG) activity during brain transcranial magnetic stimulation (TMS). The aims of the present study are to identify eventual stimulus-related artefacts, and to confirm and extend previous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical neurophysiology Jg. 117; H. 8; S. 1699 - 1707
Hauptverfasser: Bonato, C., Miniussi, C., Rossini, P.M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Shannon Elsevier Ireland Ltd 01.08.2006
Elsevier Science
Schlagworte:
ISSN:1388-2457, 1872-8952
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In recent years, a promising tool has been introduced which allows the co-registration of electroencephalographic (EEG) activity during brain transcranial magnetic stimulation (TMS). The aims of the present study are to identify eventual stimulus-related artefacts, and to confirm and extend previous EEG/TMS findings about the possible networks generating EEG responses evoked by TMS. Focal TMS was delivered to the left primary motor cortex (MI), with different coils (real and sham) and orientations (45 and 135° in respect to the sagittal plane), in six healthy subjects. EEG and motor evoked potentials (MEPs) were simultaneously recorded from 19 scalp electrodes. TMS, with coil oriented at 45°, induced EEG responses characterized by a sequence of positive deflections peaking at approximately 14, 30, 60 and 190 ms and negative deflections peaking at approximately 10, 18, 40 and 100 ms post-TMS. The negative components were recorded at the recording electrode corresponding with the stimulation site (N10, N18), as well as at recording electrodes over the frontal region of the contralateral, unstimulated, hemisphere (N40) and bilaterally over the central hemispheres with its maximal representation at the stimulation site (N100). The positive components were instead detected at the frontal region of the right, unstimulated, hemisphere (P14), over the central electrodes Cz, Fz and the frontal region of the right hemisphere (P30), at the stimulation site (P60), and over the frontal regions of both hemispheres. When TMS was delivered with the coil oriented at 135°, no MEPs were recorded from the right target muscle. Nonetheless, all the TMS-induced EEG components were still evoked apart from the N20–P30. Finally, TMS with the sham coil over left MI did not induce either significant EEG responses or MEPs. In conclusion, the TMS evoked components we have obtained by recording in continuous mode strikingly fit with those already described by other authors for both their latencies and the spatio-temporal pattern of scalp distribution. This experiment is a farther validation of the combined EEG/TMS recording technique as a promising tool for experimental and clinical purposes.
AbstractList In recent years, a promising tool has been introduced which allows the co-registration of electroencephalographic (EEG) activity during brain transcranial magnetic stimulation (TMS). The aims of the present study are to identify eventual stimulus-related artefacts, and to confirm and extend previous EEG/TMS findings about the possible networks generating EEG responses evoked by TMS.OBJECTIVEIn recent years, a promising tool has been introduced which allows the co-registration of electroencephalographic (EEG) activity during brain transcranial magnetic stimulation (TMS). The aims of the present study are to identify eventual stimulus-related artefacts, and to confirm and extend previous EEG/TMS findings about the possible networks generating EEG responses evoked by TMS.Focal TMS was delivered to the left primary motor cortex (MI), with different coils (real and sham) and orientations (45 and 135 degrees in respect to the sagittal plane), in six healthy subjects. EEG and motor evoked potentials (MEPs) were simultaneously recorded from 19 scalp electrodes.METHODSFocal TMS was delivered to the left primary motor cortex (MI), with different coils (real and sham) and orientations (45 and 135 degrees in respect to the sagittal plane), in six healthy subjects. EEG and motor evoked potentials (MEPs) were simultaneously recorded from 19 scalp electrodes.TMS, with coil oriented at 45 degrees , induced EEG responses characterized by a sequence of positive deflections peaking at approximately 14, 30, 60 and 190 ms and negative deflections peaking at approximately 10, 18, 40 and 100 ms post-TMS. The negative components were recorded at the recording electrode corresponding with the stimulation site (N10, N18), as well as at recording electrodes over the frontal region of the contralateral, unstimulated, hemisphere (N40) and bilaterally over the central hemispheres with its maximal representation at the stimulation site (N100). The positive components were instead detected at the frontal region of the right, unstimulated, hemisphere (P14), over the central electrodes Cz, Fz and the frontal region of the right hemisphere (P30), at the stimulation site (P60), and over the frontal regions of both hemispheres. When TMS was delivered with the coil oriented at 135 degrees , no MEPs were recorded from the right target muscle. Nonetheless, all the TMS-induced EEG components were still evoked apart from the N20-P30. Finally, TMS with the sham coil over left MI did not induce either significant EEG responses or MEPs.RESULTSTMS, with coil oriented at 45 degrees , induced EEG responses characterized by a sequence of positive deflections peaking at approximately 14, 30, 60 and 190 ms and negative deflections peaking at approximately 10, 18, 40 and 100 ms post-TMS. The negative components were recorded at the recording electrode corresponding with the stimulation site (N10, N18), as well as at recording electrodes over the frontal region of the contralateral, unstimulated, hemisphere (N40) and bilaterally over the central hemispheres with its maximal representation at the stimulation site (N100). The positive components were instead detected at the frontal region of the right, unstimulated, hemisphere (P14), over the central electrodes Cz, Fz and the frontal region of the right hemisphere (P30), at the stimulation site (P60), and over the frontal regions of both hemispheres. When TMS was delivered with the coil oriented at 135 degrees , no MEPs were recorded from the right target muscle. Nonetheless, all the TMS-induced EEG components were still evoked apart from the N20-P30. Finally, TMS with the sham coil over left MI did not induce either significant EEG responses or MEPs.In conclusion, the TMS evoked components we have obtained by recording in continuous mode strikingly fit with those already described by other authors for both their latencies and the spatio-temporal pattern of scalp distribution.CONCLUSIONSIn conclusion, the TMS evoked components we have obtained by recording in continuous mode strikingly fit with those already described by other authors for both their latencies and the spatio-temporal pattern of scalp distribution.This experiment is a farther validation of the combined EEG/TMS recording technique as a promising tool for experimental and clinical purposes.SIGNIFICANCEThis experiment is a farther validation of the combined EEG/TMS recording technique as a promising tool for experimental and clinical purposes.
In recent years, a promising tool has been introduced which allows the co-registration of electroencephalographic (EEG) activity during brain transcranial magnetic stimulation (TMS). The aims of the present study are to identify eventual stimulus-related artefacts, and to confirm and extend previous EEG/TMS findings about the possible networks generating EEG responses evoked by TMS. Focal TMS was delivered to the left primary motor cortex (MI), with different coils (real and sham) and orientations (45 and 135° in respect to the sagittal plane), in six healthy subjects. EEG and motor evoked potentials (MEPs) were simultaneously recorded from 19 scalp electrodes. TMS, with coil oriented at 45°, induced EEG responses characterized by a sequence of positive deflections peaking at approximately 14, 30, 60 and 190 ms and negative deflections peaking at approximately 10, 18, 40 and 100 ms post-TMS. The negative components were recorded at the recording electrode corresponding with the stimulation site (N10, N18), as well as at recording electrodes over the frontal region of the contralateral, unstimulated, hemisphere (N40) and bilaterally over the central hemispheres with its maximal representation at the stimulation site (N100). The positive components were instead detected at the frontal region of the right, unstimulated, hemisphere (P14), over the central electrodes Cz, Fz and the frontal region of the right hemisphere (P30), at the stimulation site (P60), and over the frontal regions of both hemispheres. When TMS was delivered with the coil oriented at 135°, no MEPs were recorded from the right target muscle. Nonetheless, all the TMS-induced EEG components were still evoked apart from the N20–P30. Finally, TMS with the sham coil over left MI did not induce either significant EEG responses or MEPs. In conclusion, the TMS evoked components we have obtained by recording in continuous mode strikingly fit with those already described by other authors for both their latencies and the spatio-temporal pattern of scalp distribution. This experiment is a farther validation of the combined EEG/TMS recording technique as a promising tool for experimental and clinical purposes.
In recent years, a promising tool has been introduced which allows the co-registration of electroencephalographic (EEG) activity during brain transcranial magnetic stimulation (TMS). The aims of the present study are to identify eventual stimulus-related artefacts, and to confirm and extend previous EEG/TMS findings about the possible networks generating EEG responses evoked by TMS. Focal TMS was delivered to the left primary motor cortex (MI), with different coils (real and sham) and orientations (45 and 135 degrees in respect to the sagittal plane), in six healthy subjects. EEG and motor evoked potentials (MEPs) were simultaneously recorded from 19 scalp electrodes. TMS, with coil oriented at 45 degrees , induced EEG responses characterized by a sequence of positive deflections peaking at approximately 14, 30, 60 and 190 ms and negative deflections peaking at approximately 10, 18, 40 and 100 ms post-TMS. The negative components were recorded at the recording electrode corresponding with the stimulation site (N10, N18), as well as at recording electrodes over the frontal region of the contralateral, unstimulated, hemisphere (N40) and bilaterally over the central hemispheres with its maximal representation at the stimulation site (N100). The positive components were instead detected at the frontal region of the right, unstimulated, hemisphere (P14), over the central electrodes Cz, Fz and the frontal region of the right hemisphere (P30), at the stimulation site (P60), and over the frontal regions of both hemispheres. When TMS was delivered with the coil oriented at 135 degrees , no MEPs were recorded from the right target muscle. Nonetheless, all the TMS-induced EEG components were still evoked apart from the N20-P30. Finally, TMS with the sham coil over left MI did not induce either significant EEG responses or MEPs. In conclusion, the TMS evoked components we have obtained by recording in continuous mode strikingly fit with those already described by other authors for both their latencies and the spatio-temporal pattern of scalp distribution. This experiment is a farther validation of the combined EEG/TMS recording technique as a promising tool for experimental and clinical purposes.
Author Bonato, C.
Miniussi, C.
Rossini, P.M.
Author_xml – sequence: 1
  givenname: C.
  surname: Bonato
  fullname: Bonato, C.
  organization: Neurofisiologia IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy
– sequence: 2
  givenname: C.
  surname: Miniussi
  fullname: Miniussi, C.
  email: cminiussi@fatebenefratelli.it
  organization: Neurofisiologia IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy
– sequence: 3
  givenname: P.M.
  surname: Rossini
  fullname: Rossini, P.M.
  organization: Neurofisiologia IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18017424$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16797232$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URP_AN0AoF7gltR07sSuEVFXbFqmIA8vZ8k4mxduss9hOpf32eMkCUg_04rFGv_ekee-UHPnRIyFvGa0YZc35uoLB-e2PilPaVFRWebwgJ0y1vFRa8qP8r5UquZDtMTmNcU0pbangr8gxa1rd8pqfELsM1kfIj7NDsbH3HpODIia3mQab3OgL67sCxpDXmcDH8QG7Yjsm9ClL4kVxWSy_fDtfLG4yVQa8dzGFWRnT1O1ek5d95vDNYZ6R79eL5dVteff15vPV5V0JkupUatFDJ1cMJUDd9UJRqwWzUksqGmVZzxgA5YxbKYRWqxWve9lLDRQawRTUZ-TD7LsN488JYzIbFwGHwXocp2ga1WgqpM7guwM4rTbYmW1wGxt25k8oGXh_AGzMN_c5HHDxH6coawUXmbuYOQhjjAF7Ay79vjwH4AbDqNk3ZdZmbsrsmzJUmjyyWDwR__X_v-zTLMMc5aPDYCI49ICdCwjJdKN7zuDjE4M9tO_2AXfPy38BiyDDbw
CitedBy_id crossref_primary_10_1016_j_biopsych_2023_12_018
crossref_primary_10_1016_j_neuroimage_2025_121323
crossref_primary_10_3389_fnhum_2019_00090
crossref_primary_10_1002_hbm_22288
crossref_primary_10_1016_j_brs_2013_04_004
crossref_primary_10_1016_j_neuroimage_2021_118708
crossref_primary_10_1016_j_biopsych_2023_04_011
crossref_primary_10_3390_jpm11020068
crossref_primary_10_1016_j_neuropsychologia_2015_04_010
crossref_primary_10_1371_journal_pone_0316545
crossref_primary_10_1523_JNEUROSCI_1016_23_2023
crossref_primary_10_1016_j_brs_2017_12_013
crossref_primary_10_1109_TNSRE_2012_2228674
crossref_primary_10_1016_j_brs_2017_12_010
crossref_primary_10_3390_s22051762
crossref_primary_10_1016_j_clinph_2022_06_012
crossref_primary_10_1016_j_neubiorev_2013_05_009
crossref_primary_10_1109_TMAG_2011_2157810
crossref_primary_10_1113_JP281885
crossref_primary_10_1016_j_cortex_2007_08_012
crossref_primary_10_1371_journal_pone_0133893
crossref_primary_10_1016_j_neulet_2010_04_059
crossref_primary_10_1016_j_brs_2023_02_009
crossref_primary_10_1016_j_jneumeth_2021_109430
crossref_primary_10_1371_journal_pone_0174879
crossref_primary_10_1016_j_clinph_2007_09_139
crossref_primary_10_3389_fnagi_2019_00248
crossref_primary_10_1002_hbm_24448
crossref_primary_10_1016_j_clinph_2019_06_006
crossref_primary_10_1016_j_clinph_2017_06_003
crossref_primary_10_1111_j_1469_8986_2011_01218_x
crossref_primary_10_1016_j_brainresbull_2025_111484
crossref_primary_10_1371_journal_pone_0184910
crossref_primary_10_1016_j_clinph_2020_11_018
crossref_primary_10_1002_brb3_1734
crossref_primary_10_1016_j_mehy_2019_109529
crossref_primary_10_1016_j_neuroimage_2017_09_023
crossref_primary_10_1152_jn_00628_2018
crossref_primary_10_1016_j_clinph_2014_12_003
crossref_primary_10_1016_j_brs_2021_05_009
crossref_primary_10_3390_brainsci12070929
crossref_primary_10_1038_s41598_022_17055_9
crossref_primary_10_1177_0300060520976472
crossref_primary_10_1016_j_brs_2018_05_002
crossref_primary_10_1016_j_neubiorev_2023_105434
crossref_primary_10_1152_jn_00796_2011
crossref_primary_10_3390_brainsci14040332
crossref_primary_10_1089_neu_2012_2760
crossref_primary_10_1097_WNR_0b013e328011b89a
crossref_primary_10_1016_j_neuroscience_2017_06_014
crossref_primary_10_1523_JNEUROSCI_5089_13_2014
crossref_primary_10_1152_jn_00172_2010
crossref_primary_10_1016_j_jneumeth_2022_109631
crossref_primary_10_3389_fnins_2021_623692
crossref_primary_10_1152_jn_00707_2011
crossref_primary_10_1016_j_eplepsyres_2013_04_001
crossref_primary_10_1016_j_pneurobio_2011_04_004
crossref_primary_10_1371_journal_pone_0208747
crossref_primary_10_1002_hbm_20423
crossref_primary_10_1016_j_brs_2021_01_018
crossref_primary_10_1016_j_npbr_2014_02_001
crossref_primary_10_1523_JNEUROSCI_1689_16_2016
crossref_primary_10_1093_cercor_bhl165
crossref_primary_10_1016_j_neuroimage_2018_10_052
crossref_primary_10_1007_s10548_009_0116_3
crossref_primary_10_1152_jn_00739_2010
crossref_primary_10_1523_JNEUROSCI_4792_11_2012
crossref_primary_10_1111_ner_13488
crossref_primary_10_1016_j_clinph_2022_05_015
crossref_primary_10_1152_jn_00543_2011
crossref_primary_10_1177_1073858420916452
crossref_primary_10_1007_s10548_022_00917_w
crossref_primary_10_1177_1545968317712470
crossref_primary_10_1016_j_clinph_2025_01_002
crossref_primary_10_1016_j_eplepsyres_2011_05_015
crossref_primary_10_1016_j_jneumeth_2022_109651
crossref_primary_10_3390_jpm11010054
crossref_primary_10_1002_hbm_20608
crossref_primary_10_3389_fnins_2018_00400
crossref_primary_10_3389_fncir_2016_00073
crossref_primary_10_3389_fnins_2023_1209801
crossref_primary_10_3390_brainsci11030303
crossref_primary_10_1111_pcn_12936
crossref_primary_10_1016_j_ijpsycho_2022_08_005
crossref_primary_10_1111_ejn_12069
crossref_primary_10_1186_s12984_024_01407_9
crossref_primary_10_3390_s21020637
crossref_primary_10_1007_s10548_015_0461_3
crossref_primary_10_1016_j_neucli_2015_02_002
crossref_primary_10_3389_fnhum_2022_937515
crossref_primary_10_1016_j_neubiorev_2010_06_005
crossref_primary_10_1016_j_neuroimage_2016_10_031
crossref_primary_10_1038_s41598_020_59911_6
crossref_primary_10_1002_hbm_22016
crossref_primary_10_1016_j_brs_2017_09_004
crossref_primary_10_1109_TNSRE_2023_3282659
crossref_primary_10_1016_j_clinph_2019_09_013
crossref_primary_10_1016_j_neurom_2024_04_007
crossref_primary_10_3389_fncel_2016_00092
crossref_primary_10_1016_j_cortex_2021_02_024
crossref_primary_10_1016_j_brs_2018_06_005
crossref_primary_10_1007_s10548_009_0083_8
crossref_primary_10_1016_j_jneumeth_2022_109677
crossref_primary_10_3390_brainsci13060921
crossref_primary_10_1080_17470919_2012_720602
crossref_primary_10_1109_MEMB_2009_935474
crossref_primary_10_3390_brainsci11030405
crossref_primary_10_1093_brain_awr340
crossref_primary_10_1016_j_clinph_2015_02_001
crossref_primary_10_1016_j_jneumeth_2008_08_023
crossref_primary_10_1016_j_brs_2018_04_015
crossref_primary_10_1109_TNSRE_2022_3154772
crossref_primary_10_1007_s00221_009_1723_7
crossref_primary_10_1016_j_neuroimage_2016_02_012
crossref_primary_10_1007_s10548_020_00773_6
crossref_primary_10_1016_j_nicl_2018_11_001
crossref_primary_10_1016_j_cortex_2013_12_006
crossref_primary_10_1503_jpn_230090
crossref_primary_10_1016_j_clinph_2016_11_013
crossref_primary_10_1073_pnas_1405508111
crossref_primary_10_1016_j_clinph_2017_08_007
crossref_primary_10_1371_journal_pone_0002483
crossref_primary_10_1016_j_brs_2025_07_016
crossref_primary_10_1016_j_brs_2009_04_001
crossref_primary_10_1152_jn_00762_2012
crossref_primary_10_1113_JP278638
crossref_primary_10_3233_JAD_210311
crossref_primary_10_3389_fnins_2021_616667
crossref_primary_10_1002_hbm_22306
crossref_primary_10_1016_j_neuroscience_2008_01_043
crossref_primary_10_1016_j_neuroimage_2022_118975
crossref_primary_10_1016_j_neuroimage_2020_116746
crossref_primary_10_1113_JP280966
crossref_primary_10_1007_s10916_018_0949_y
crossref_primary_10_1016_j_neuroimage_2010_07_056
crossref_primary_10_1109_TNSRE_2017_2779135
crossref_primary_10_3390_jpm10020034
crossref_primary_10_1002_hbm_23545
crossref_primary_10_1016_j_jneumeth_2007_06_030
crossref_primary_10_1089_brain_2016_0462
crossref_primary_10_1038_s41598_023_45730_y
crossref_primary_10_1016_j_clinph_2009_11_012
crossref_primary_10_3390_brainsci13020233
crossref_primary_10_1007_s10484_013_9221_x
crossref_primary_10_1016_j_clinph_2019_01_001
crossref_primary_10_1089_brain_2018_0593
crossref_primary_10_3389_fnins_2019_00612
crossref_primary_10_1007_s00221_016_4773_7
crossref_primary_10_1177_155005940803900304
crossref_primary_10_1016_j_neuropsychologia_2015_02_016
crossref_primary_10_3390_bios12100814
crossref_primary_10_1007_s00221_020_05958_w
crossref_primary_10_1093_brain_aws071
crossref_primary_10_1002_hbm_70048
crossref_primary_10_1016_j_brs_2012_12_001
crossref_primary_10_3389_fncir_2016_00097
crossref_primary_10_1016_j_neuroimage_2020_117394
crossref_primary_10_1177_1550059412444976
crossref_primary_10_1016_j_brs_2015_07_029
crossref_primary_10_1109_TNSRE_2013_2290870
crossref_primary_10_1007_s10548_013_0312_z
crossref_primary_10_1016_j_brs_2022_01_016
crossref_primary_10_1016_j_neuroimage_2014_07_037
crossref_primary_10_1016_j_neuroimage_2007_05_015
crossref_primary_10_1038_s41598_019_49673_1
crossref_primary_10_1111_ejn_16127
crossref_primary_10_1016_j_clinph_2022_07_495
crossref_primary_10_1016_j_jneumeth_2022_109482
crossref_primary_10_1038_s41598_024_59468_8
crossref_primary_10_1016_j_jneumeth_2022_109486
crossref_primary_10_1016_j_bandc_2018_01_004
crossref_primary_10_1016_j_neucli_2011_07_002
crossref_primary_10_1002_mds_28914
crossref_primary_10_1016_j_neuroimage_2014_04_065
crossref_primary_10_1016_j_neubiorev_2014_12_014
crossref_primary_10_1016_j_neuroimage_2013_06_076
crossref_primary_10_1007_s10548_018_0662_7
crossref_primary_10_1016_j_cortex_2022_06_004
crossref_primary_10_1007_s10548_025_01113_2
crossref_primary_10_1007_s12311_022_01398_0
crossref_primary_10_1016_j_clinph_2010_09_004
crossref_primary_10_3389_fnhum_2021_787487
crossref_primary_10_1113_JP283986
crossref_primary_10_1016_j_clinph_2017_08_034
crossref_primary_10_1016_j_clinph_2021_09_013
crossref_primary_10_1016_j_jneumeth_2022_109494
crossref_primary_10_1016_j_clinph_2009_08_016
crossref_primary_10_4061_2011_654794
crossref_primary_10_1016_j_jad_2023_01_064
crossref_primary_10_1016_j_neuroimage_2011_08_097
crossref_primary_10_1007_s10548_009_0123_4
crossref_primary_10_1016_j_brs_2024_05_014
crossref_primary_10_1016_j_cortex_2018_08_004
crossref_primary_10_1016_j_jneumeth_2017_11_001
crossref_primary_10_1016_j_clinph_2009_04_023
crossref_primary_10_1016_j_neuroimage_2011_02_037
crossref_primary_10_1016_j_brs_2008_11_002
crossref_primary_10_1016_j_ijpsycho_2021_08_008
crossref_primary_10_1002_mds_29901
crossref_primary_10_1016_j_jneumeth_2008_04_021
crossref_primary_10_3389_fnhum_2024_1279183
crossref_primary_10_1016_j_ijpsycho_2019_01_002
crossref_primary_10_1002_mds_27285
crossref_primary_10_1007_s12311_019_01093_7
crossref_primary_10_1016_j_neuroimage_2018_06_053
crossref_primary_10_1016_j_clinph_2014_08_028
crossref_primary_10_1523_JNEUROSCI_1777_13_2013
crossref_primary_10_3389_fnins_2018_00393
crossref_primary_10_1088_1741_2552_ad9ee0
crossref_primary_10_1016_j_xpro_2025_103622
crossref_primary_10_3109_02699052_2014_920524
crossref_primary_10_1007_s10072_020_04527_x
crossref_primary_10_1016_j_clinph_2016_06_003
crossref_primary_10_1016_j_neuropsychologia_2020_107581
crossref_primary_10_3390_brainsci12101358
crossref_primary_10_1016_j_clinph_2021_05_009
crossref_primary_10_1016_j_clinph_2021_05_008
crossref_primary_10_1016_j_brs_2019_01_010
crossref_primary_10_1007_s00421_010_1432_8
Cites_doi 10.1113/jphysiol.1992.sp019243
10.1016/S1388-2457(99)00070-X
10.1016/0013-4694(94)90029-9
10.1016/S1388-2457(99)00038-3
10.1016/0168-5597(92)90096-T
10.1016/S0140-6736(85)92413-4
10.1038/35036239
10.1097/00004691-199201000-00014
10.1097/00001756-199708180-00027
10.1016/S0140-6736(96)01219-6
10.1111/j.1469-7793.2000.00461.x
10.1097/00001756-199711100-00024
10.1152/jn.1998.79.2.1102
10.1046/j.1460-9568.2003.02858.x
10.1007/BF02513307
10.1002/hbm.10159
10.1016/S0006-3223(98)00368-0
10.1002/ana.410380221
10.1038/sj.npp.1300038
10.1016/0168-5597(91)90026-T
10.1016/0168-5597(89)90030-0
10.1016/S0924-980X(96)96090-7
10.1152/jn.2001.86.4.1983
10.1016/S0140-6736(86)91243-2
10.1097/00006123-198701000-00031
10.1002/ana.410430314
10.1016/S0924-980X(98)00013-7
10.1016/j.clinph.2005.01.002
10.1016/S0006-3223(01)01199-4
10.1016/S0013-4694(97)00097-7
10.1016/S1388-2457(01)00721-0
10.1007/s004150050536
10.1002/ana.20521
10.1212/WNL.54.4.956
10.1016/0168-5597(93)90115-6
10.1093/brain/122.9.1721
10.1016/j.neuroimage.2004.09.048
10.1097/00001756-200111160-00034
10.1016/S0006-3495(92)81587-4
10.1016/j.clinph.2003.10.032
10.1523/JNEUROSCI.17-09-03178.1997
ContentType Journal Article
Copyright 2006 International Federation of Clinical Neurophysiology
2006 INIST-CNRS
Copyright_xml – notice: 2006 International Federation of Clinical Neurophysiology
– notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.clinph.2006.05.006
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-8952
EndPage 1707
ExternalDocumentID 16797232
18017424
10_1016_j_clinph_2006_05_006
S1388245706002100
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HX~
HZ~
IHE
J1W
K-O
KOM
L7B
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OHT
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSN
SSZ
T5K
UAP
UNMZH
UV1
VH1
X7M
XOL
XPP
Z5R
ZGI
~G-
~HD
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AFMIJ
AHPSJ
AJBFU
AJOXV
AMFUW
LCYCR
RIG
VQA
ZA5
9DU
AAYXX
CITATION
AGCQF
AGRNS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ID FETCH-LOGICAL-c509t-94fcd5b1e5cc3df480a941a5950468a1f11cc0212a54498bb23f5f59c0c6418c3
ISICitedReferencesCount 248
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000239876700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1388-2457
IngestDate Thu Oct 02 12:59:48 EDT 2025
Wed Feb 19 01:45:42 EST 2025
Mon Jul 21 09:16:13 EDT 2025
Sat Nov 29 07:01:07 EST 2025
Tue Nov 18 22:35:01 EST 2025
Fri Feb 23 02:29:31 EST 2024
Tue Oct 14 19:36:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Electroencephalography
TMS
rTMS
Low frequency
Motor cortex
EEG
Human
Validation
Transcranial magnetic stimulation
Motor pathway
Central nervous system
Electrophysiology
Artefact
Representation
Right hemisphere
Orientation
Temporal pattern
Encephalon
rTMS: Low frequency
Electrodes
Muscle
Motor evoked potential
Technique
Cortical magnetic potential
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-94fcd5b1e5cc3df480a941a5950468a1f11cc0212a54498bb23f5f59c0c6418c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 16797232
PQID 68690459
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_68690459
pubmed_primary_16797232
pascalfrancis_primary_18017424
crossref_citationtrail_10_1016_j_clinph_2006_05_006
crossref_primary_10_1016_j_clinph_2006_05_006
elsevier_sciencedirect_doi_10_1016_j_clinph_2006_05_006
elsevier_clinicalkey_doi_10_1016_j_clinph_2006_05_006
PublicationCentury 2000
PublicationDate 2006-08-01
PublicationDateYYYYMMDD 2006-08-01
PublicationDate_xml – month: 08
  year: 2006
  text: 2006-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Shannon
PublicationPlace_xml – name: Shannon
– name: Netherlands
PublicationTitle Clinical neurophysiology
PublicationTitleAlternate Clin Neurophysiol
PublicationYear 2006
Publisher Elsevier Ireland Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ireland Ltd
– name: Elsevier Science
References Rossini, Barker, Berardelli, Caramia, Caruso, Cracco, Dimitrijevic, Hallett, Katayama, Lucking, Maertens de Noordhout, Marsden, Murray, Rothwell, Swash, Tomberg (bib35) 1994; 91
Paus, Jech, Thompson, Comeau, Peters, Evans (bib32) 1998; 79
Boroojerdi, Hungs, Mull, Topper, Noth (bib7) 1998; 109
Nahas, Lomarev, Roberts, Shastri, Lorberbaum, Teneback, McConnell, Vincent, Li, George, Bohning (bib24) 2001; 50
Rossini, Rossi (bib34) 1998; 106
Barker, Jalinous, Freeston (bib2) 1985; 1
Ferbert, Priori, Rothwell, Day, Colebatch, Marsden (bib11) 1992; 453
Seyal, Siddiqui, Hundal (bib39) 1997; 105
George, Nahas, Molloy, Speer, Oliver, Li, Arana, Risch, Ballenger (bib13) 2000; 154
Seyal, Ro, Rafal (bib38) 1995; 38
Miniussi, Bonato, Bignotti, Gazzoli, Gennarelli, Pasqualetti, Tura, Ventriglia, Rossini (bib23) 2005; 116
Virtanen, Ruohonen, Näätänen, Ilmoniemi (bib42) 1999; 37
Barker, Freeston, Jalinous, Jarratt (bib3) 1986; 1
Oliveri, Rossini, Pasqualetti, Traversa, Cicinelli, Palmieri, Tomaiuolo, Caltagirone (bib27) 1999; 122
Oliveri, Caltagirone, Filippi, Traversa, Cicinelli, Pasqualetti, Rossini (bib28) 2000; 529
Brasil-Neto, Cohen, Panizza, Nilsson, Roth, Hallett (bib8) 1992; 9
Cracco, Amassian, Maccabee, Cracco (bib10) 1989; 74
Schlaepfer, Kosel, Nemeroff (bib37) 2003; 28
Kähkonen, Komssi, Wilenius, Ilmoniemi (bib17) 2005; 24
Paus, Jech, Thompson, Comeau, Peters, Evans (bib31) 1997; 17
Tiitinen, Virtanen, Ilmoniemi, Kamppuri, Ollikainen, Ruohonen, Näätänen (bib41) 1999; 110
Paus, Sipila, Strafella (bib33) 2001; 86
Nikulin, Kicic, Kähkonen, Ilmoniemi (bib26) 2003; 18
Baudewig, Siebner, Bestmann, Tergau, Tings, Paulus, Frahm (bib4) 2001; 12
Walsh, Cowey (bib43) 2000; 1
Fox, Ingham, George, Mayberg, Ingham, Roby, Martin, Jerabek (bib12) 1997; 8
Pascual-Leone, Rubio, Pallardo, Catala (bib30) 1996; 348
Komssi, Aronen, Huttunen, Kesäniemi, Soinne, Nikouline, Ollikainen, Roine, Karhu, Savolainen, Ilmoniemi (bib19) 2002; 113
Amassian, Cracco (bib1) 1987; 20
Cohen, Bandinelli, Sato, Kufta, Hallett (bib9) 1991; 81
Mills, Boniface, Schubert (bib22) 1992; 85
Siebner, Peller, Willoch, Minoshima, Boecker, Auer, Drzezga, Conrad, Bartenstein (bib40) 2000; 54
Heller, van Hulsteyn (bib14) 1992; 63
Ilmoniemi, Virtanen, Ruohonen, Karhu, Aronen, Näätänen, Katila (bib15) 1997; 8
Kähkonen, Wilenius, Komssi, Ilmoniemi (bib16) 2004; 115
Komssi, Kähkonen, Ilmoniemi (bib20) 2004; 21
Oliviero, Di Lazzaro, Piazza, Profice, Pennisi, Della Corte, Tonali (bib29) 1999; 246
Bender, Basseler, Sebastian, Resch, Kammer, Oelkers-Ax, Weisbrod (bib5) 2005; 58
Meyer, Roricht, Woiciechowsky (bib21) 1998; 43
Bohning, Shastri, McConnell, Nahas, Lorberbaum, Roberts, Teneback, Vincent, George (bib6) 1999; 45
Nikouline, Ruohonen, Ilmoniemi (bib25) 1999; 110
Kiers, Cros, Chiappa, Fang (bib18) 1993; 89
Rossini, Berardelli, Deuschl, Hallett, Maertens de Noordhout, Paulus, Pauri (bib36) 1999; 52
Rossini (10.1016/j.clinph.2006.05.006_bib34) 1998; 106
Ferbert (10.1016/j.clinph.2006.05.006_bib11) 1992; 453
Paus (10.1016/j.clinph.2006.05.006_bib33) 2001; 86
Bohning (10.1016/j.clinph.2006.05.006_bib6) 1999; 45
George (10.1016/j.clinph.2006.05.006_bib13) 2000; 154
Nikouline (10.1016/j.clinph.2006.05.006_bib25) 1999; 110
Pascual-Leone (10.1016/j.clinph.2006.05.006_bib30) 1996; 348
Siebner (10.1016/j.clinph.2006.05.006_bib40) 2000; 54
Kähkonen (10.1016/j.clinph.2006.05.006_bib17) 2005; 24
Oliveri (10.1016/j.clinph.2006.05.006_bib27) 1999; 122
Fox (10.1016/j.clinph.2006.05.006_bib12) 1997; 8
Virtanen (10.1016/j.clinph.2006.05.006_bib42) 1999; 37
Kähkonen (10.1016/j.clinph.2006.05.006_bib16) 2004; 115
Mills (10.1016/j.clinph.2006.05.006_bib22) 1992; 85
Schlaepfer (10.1016/j.clinph.2006.05.006_bib37) 2003; 28
Seyal (10.1016/j.clinph.2006.05.006_bib38) 1995; 38
Kiers (10.1016/j.clinph.2006.05.006_bib18) 1993; 89
Oliveri (10.1016/j.clinph.2006.05.006_bib28) 2000; 529
Rossini (10.1016/j.clinph.2006.05.006_bib35) 1994; 91
Tiitinen (10.1016/j.clinph.2006.05.006_bib41) 1999; 110
Bender (10.1016/j.clinph.2006.05.006_bib5) 2005; 58
Meyer (10.1016/j.clinph.2006.05.006_bib21) 1998; 43
Oliviero (10.1016/j.clinph.2006.05.006_bib29) 1999; 246
Seyal (10.1016/j.clinph.2006.05.006_bib39) 1997; 105
Walsh (10.1016/j.clinph.2006.05.006_bib43) 2000; 1
Boroojerdi (10.1016/j.clinph.2006.05.006_bib7) 1998; 109
Heller (10.1016/j.clinph.2006.05.006_bib14) 1992; 63
Miniussi (10.1016/j.clinph.2006.05.006_bib23) 2005; 116
Paus (10.1016/j.clinph.2006.05.006_bib32) 1998; 79
Rossini (10.1016/j.clinph.2006.05.006_bib36) 1999; 52
Komssi (10.1016/j.clinph.2006.05.006_bib19) 2002; 113
Nahas (10.1016/j.clinph.2006.05.006_bib24) 2001; 50
Cohen (10.1016/j.clinph.2006.05.006_bib9) 1991; 81
Amassian (10.1016/j.clinph.2006.05.006_bib1) 1987; 20
Barker (10.1016/j.clinph.2006.05.006_bib2) 1985; 1
Ilmoniemi (10.1016/j.clinph.2006.05.006_bib15) 1997; 8
Brasil-Neto (10.1016/j.clinph.2006.05.006_bib8) 1992; 9
Cracco (10.1016/j.clinph.2006.05.006_bib10) 1989; 74
Nikulin (10.1016/j.clinph.2006.05.006_bib26) 2003; 18
Barker (10.1016/j.clinph.2006.05.006_bib3) 1986; 1
Baudewig (10.1016/j.clinph.2006.05.006_bib4) 2001; 12
Komssi (10.1016/j.clinph.2006.05.006_bib20) 2004; 21
Paus (10.1016/j.clinph.2006.05.006_bib31) 1997; 17
References_xml – volume: 38
  start-page: 264
  year: 1995
  end-page: 267
  ident: bib38
  article-title: Increased sensitivity to ipsilateral cutaneous stimuli following transcranial magnetic stimulation of the parietal lobe
  publication-title: Ann Neurol
– volume: 50
  start-page: 712
  year: 2001
  end-page: 720
  ident: bib24
  article-title: Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI
  publication-title: Biol Psychiatry
– volume: 18
  start-page: 1206
  year: 2003
  end-page: 1212
  ident: bib26
  article-title: Modulation of electroencephalographic responses to transcranial magnetic stimulation: evidence for changes in cortical excitability related to movement
  publication-title: Eur J Neurosci
– volume: 348
  start-page: 233
  year: 1996
  end-page: 237
  ident: bib30
  article-title: Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression
  publication-title: Lancet
– volume: 43
  start-page: 360
  year: 1998
  end-page: 369
  ident: bib21
  article-title: Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices
  publication-title: Ann Neurol
– volume: 9
  start-page: 132
  year: 1992
  end-page: 136
  ident: bib8
  article-title: Optimal focal transcranial magnetic activation of the human motor cortex: effect of coil orientation, shape of the induced current pulse, and stimulus intensity
  publication-title: J Clin Neurophysiol
– volume: 453
  start-page: 525
  year: 1992
  end-page: 546
  ident: bib11
  article-title: Interhemispheric inhibition of the human motor cortex
  publication-title: J Physiol
– volume: 89
  start-page: 415
  year: 1993
  end-page: 423
  ident: bib18
  article-title: Variability of motor potentials evoked by transcranial magnetic stimulation
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 91
  start-page: 79
  year: 1994
  end-page: 92
  ident: bib35
  article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 24
  start-page: 955
  year: 2005
  end-page: 960
  ident: bib17
  article-title: Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans
  publication-title: Neuroimage
– volume: 37
  start-page: 322
  year: 1999
  end-page: 326
  ident: bib42
  article-title: Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation
  publication-title: Med Biol Eng Comput
– volume: 110
  start-page: 982
  year: 1999
  end-page: 985
  ident: bib41
  article-title: Separation of contamination caused by coil clicks from responses elicited by transcranial magnetic stimulation
  publication-title: Clin Neurophysiol
– volume: 122
  start-page: 1721
  year: 1999
  end-page: 1729
  ident: bib27
  article-title: Interhemispheric asymmetries in the perception of unimanual and bimanual cutaneous stimuli. A study using transcranial magnetic stimulation
  publication-title: Brain
– volume: 113
  start-page: 175
  year: 2002
  end-page: 184
  ident: bib19
  article-title: Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation
  publication-title: Clin Neurophysiol
– volume: 12
  start-page: 3543
  year: 2001
  end-page: 3548
  ident: bib4
  article-title: Functional MRI of cortical activations induced by transcranial magnetic stimulation (TMS)
  publication-title: NeuroReport
– volume: 63
  start-page: 129
  year: 1992
  end-page: 138
  ident: bib14
  article-title: Brain stimulation using electromagnetic sources: theoretical aspects
  publication-title: Biophys J
– volume: 1
  start-page: 1325
  year: 1986
  end-page: 1326
  ident: bib3
  article-title: Clinical evaluation of conduction time measurements in central motor pathways using magnetic stimulation of human brain
  publication-title: Lancet
– volume: 74
  start-page: 417
  year: 1989
  end-page: 424
  ident: bib10
  article-title: Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 115
  start-page: 583
  year: 2004
  end-page: 588
  ident: bib16
  article-title: Distinct differences in cortical reactivity of motor and prefrontal cortices to magnetic stimulation
  publication-title: Clin Neurophysiol
– volume: 116
  start-page: 1062
  year: 2005
  end-page: 1071
  ident: bib23
  article-title: Repetitive transcranial magnetic stimulation (rTMS) at high and low frequency: an efficacious therapy for major drug-resistant depression?
  publication-title: Clin Neurophysiol
– volume: 54
  start-page: 956
  year: 2000
  end-page: 963
  ident: bib40
  article-title: Lasting cortical activation after repetitive TMS of the motor cortex. A glucose metabolic study
  publication-title: Neurology
– volume: 21
  start-page: 154
  year: 2004
  end-page: 164
  ident: bib20
  article-title: The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation
  publication-title: Hum Brain Mapp
– volume: 246
  start-page: 1164
  year: 1999
  end-page: 1168
  ident: bib29
  article-title: Cerebral blood flow and metabolic changes produced by repetitive magnetic brain stimulation
  publication-title: J Neurol
– volume: 529
  start-page: 461
  year: 2000
  end-page: 468
  ident: bib28
  article-title: Paired transcranial magnetic stimulation protocols reveal a pattern of inhibition and facilitation in the human parietal cortex
  publication-title: J Physiol
– volume: 105
  start-page: 24
  year: 1997
  end-page: 28
  ident: bib39
  article-title: Suppression of spatial localization of a cutaneous stimulus following transcranial magnetic pulse stimulation of the sensorimotor cortex
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 52
  start-page: 171
  year: 1999
  end-page: 185
  ident: bib36
  article-title: Applications of magnetic cortical stimulation. The International Federation of Clinical Neurophysiology
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 154
  start-page: 1752
  year: 2000
  end-page: 1756
  ident: bib13
  article-title: A controlled trial of daily left prefrontal cortex TMS for treatment of depression
  publication-title: Biol Psychiatry
– volume: 85
  start-page: 17
  year: 1992
  end-page: 21
  ident: bib22
  article-title: Magnetic brain stimulation with a double coil: the importance of coil orientation
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 86
  start-page: 1983
  year: 2001
  end-page: 1990
  ident: bib33
  article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study
  publication-title: J Neurophysiol
– volume: 79
  start-page: 1102
  year: 1998
  end-page: 1107
  ident: bib32
  article-title: Dose-dependent reduction of cerebral blood flow during rapid-rate transcranial magnetic stimulation of the human sensorimotor cortex
  publication-title: J Neurophysiol
– volume: 58
  start-page: 58
  year: 2005
  end-page: 67
  ident: bib5
  article-title: Electroencephalographic response to transcranial magnetic stimulation in children: evidence for giant inhibitory potentials
  publication-title: Ann Neurol
– volume: 17
  start-page: 3178
  year: 1997
  end-page: 3184
  ident: bib31
  article-title: Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex
  publication-title: Neuroscience
– volume: 28
  start-page: 201
  year: 2003
  end-page: 205
  ident: bib37
  article-title: Efficacy of repetitive transcranial magnetic stimulation (rTMS) in the treatment of affective disorders
  publication-title: Neuropsychopharmacology
– volume: 8
  start-page: 2787
  year: 1997
  end-page: 2791
  ident: bib12
  article-title: Imaging human intracerebral connectivity by PET during TMS
  publication-title: NeuroReport
– volume: 8
  start-page: 3537
  year: 1997
  end-page: 3540
  ident: bib15
  article-title: Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity
  publication-title: NeuroReport
– volume: 109
  start-page: 230
  year: 1998
  end-page: 237
  ident: bib7
  article-title: Interhemispheric inhibition in patients with multiple sclerosis
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 1
  start-page: 1106
  year: 1985
  end-page: 1107
  ident: bib2
  article-title: Non-invasive magnetic stimulation of human motor cortex
  publication-title: Lancet
– volume: 45
  start-page: 385
  year: 1999
  end-page: 394
  ident: bib6
  article-title: A combined TMS/fMRI study of intensity-dependent TMS over motor cortex
  publication-title: Biol Psychiatry
– volume: 20
  start-page: 148
  year: 1987
  end-page: 155
  ident: bib1
  article-title: Human cerebral cortical responses to contralateral transcranial magnetic stimulation
  publication-title: Neurosurgery
– volume: 106
  start-page: 180
  year: 1998
  end-page: 194
  ident: bib34
  article-title: Clinical applications of motor evoked potentials
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 1
  start-page: 73
  year: 2000
  end-page: 79
  ident: bib43
  article-title: Transcranial magnetic stimulation and cognitive neuroscience
  publication-title: Nat Rev Neurosci
– volume: 81
  start-page: 366
  year: 1991
  end-page: 376
  ident: bib9
  article-title: Attenuation in detection of somatosensory stimuli by transcranial magnetic stimulation
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 110
  start-page: 1325
  year: 1999
  end-page: 1328
  ident: bib25
  article-title: The role of the coil click in TMS assessed with simultaneous EEG
  publication-title: Clin Neurophysiol
– volume: 453
  start-page: 525
  year: 1992
  ident: 10.1016/j.clinph.2006.05.006_bib11
  article-title: Interhemispheric inhibition of the human motor cortex
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1992.sp019243
– volume: 110
  start-page: 1325
  year: 1999
  ident: 10.1016/j.clinph.2006.05.006_bib25
  article-title: The role of the coil click in TMS assessed with simultaneous EEG
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(99)00070-X
– volume: 91
  start-page: 79
  year: 1994
  ident: 10.1016/j.clinph.2006.05.006_bib35
  article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(94)90029-9
– volume: 110
  start-page: 982
  year: 1999
  ident: 10.1016/j.clinph.2006.05.006_bib41
  article-title: Separation of contamination caused by coil clicks from responses elicited by transcranial magnetic stimulation
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(99)00038-3
– volume: 85
  start-page: 17
  year: 1992
  ident: 10.1016/j.clinph.2006.05.006_bib22
  article-title: Magnetic brain stimulation with a double coil: the importance of coil orientation
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(92)90096-T
– volume: 1
  start-page: 1106
  year: 1985
  ident: 10.1016/j.clinph.2006.05.006_bib2
  article-title: Non-invasive magnetic stimulation of human motor cortex
  publication-title: Lancet
  doi: 10.1016/S0140-6736(85)92413-4
– volume: 1
  start-page: 73
  year: 2000
  ident: 10.1016/j.clinph.2006.05.006_bib43
  article-title: Transcranial magnetic stimulation and cognitive neuroscience
  publication-title: Nat Rev Neurosci
  doi: 10.1038/35036239
– volume: 9
  start-page: 132
  year: 1992
  ident: 10.1016/j.clinph.2006.05.006_bib8
  article-title: Optimal focal transcranial magnetic activation of the human motor cortex: effect of coil orientation, shape of the induced current pulse, and stimulus intensity
  publication-title: J Clin Neurophysiol
  doi: 10.1097/00004691-199201000-00014
– volume: 8
  start-page: 2787
  year: 1997
  ident: 10.1016/j.clinph.2006.05.006_bib12
  article-title: Imaging human intracerebral connectivity by PET during TMS
  publication-title: NeuroReport
  doi: 10.1097/00001756-199708180-00027
– volume: 348
  start-page: 233
  year: 1996
  ident: 10.1016/j.clinph.2006.05.006_bib30
  article-title: Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression
  publication-title: Lancet
  doi: 10.1016/S0140-6736(96)01219-6
– volume: 154
  start-page: 1752
  year: 2000
  ident: 10.1016/j.clinph.2006.05.006_bib13
  article-title: A controlled trial of daily left prefrontal cortex TMS for treatment of depression
  publication-title: Biol Psychiatry
– volume: 529
  start-page: 461
  year: 2000
  ident: 10.1016/j.clinph.2006.05.006_bib28
  article-title: Paired transcranial magnetic stimulation protocols reveal a pattern of inhibition and facilitation in the human parietal cortex
  publication-title: J Physiol
  doi: 10.1111/j.1469-7793.2000.00461.x
– volume: 8
  start-page: 3537
  year: 1997
  ident: 10.1016/j.clinph.2006.05.006_bib15
  article-title: Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity
  publication-title: NeuroReport
  doi: 10.1097/00001756-199711100-00024
– volume: 79
  start-page: 1102
  year: 1998
  ident: 10.1016/j.clinph.2006.05.006_bib32
  article-title: Dose-dependent reduction of cerebral blood flow during rapid-rate transcranial magnetic stimulation of the human sensorimotor cortex
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1998.79.2.1102
– volume: 18
  start-page: 1206
  year: 2003
  ident: 10.1016/j.clinph.2006.05.006_bib26
  article-title: Modulation of electroencephalographic responses to transcranial magnetic stimulation: evidence for changes in cortical excitability related to movement
  publication-title: Eur J Neurosci
  doi: 10.1046/j.1460-9568.2003.02858.x
– volume: 37
  start-page: 322
  year: 1999
  ident: 10.1016/j.clinph.2006.05.006_bib42
  article-title: Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02513307
– volume: 21
  start-page: 154
  year: 2004
  ident: 10.1016/j.clinph.2006.05.006_bib20
  article-title: The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.10159
– volume: 45
  start-page: 385
  year: 1999
  ident: 10.1016/j.clinph.2006.05.006_bib6
  article-title: A combined TMS/fMRI study of intensity-dependent TMS over motor cortex
  publication-title: Biol Psychiatry
  doi: 10.1016/S0006-3223(98)00368-0
– volume: 38
  start-page: 264
  year: 1995
  ident: 10.1016/j.clinph.2006.05.006_bib38
  article-title: Increased sensitivity to ipsilateral cutaneous stimuli following transcranial magnetic stimulation of the parietal lobe
  publication-title: Ann Neurol
  doi: 10.1002/ana.410380221
– volume: 52
  start-page: 171
  issue: Suppl.
  year: 1999
  ident: 10.1016/j.clinph.2006.05.006_bib36
  article-title: Applications of magnetic cortical stimulation. The International Federation of Clinical Neurophysiology
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 28
  start-page: 201
  year: 2003
  ident: 10.1016/j.clinph.2006.05.006_bib37
  article-title: Efficacy of repetitive transcranial magnetic stimulation (rTMS) in the treatment of affective disorders
  publication-title: Neuropsychopharmacology
  doi: 10.1038/sj.npp.1300038
– volume: 81
  start-page: 366
  year: 1991
  ident: 10.1016/j.clinph.2006.05.006_bib9
  article-title: Attenuation in detection of somatosensory stimuli by transcranial magnetic stimulation
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(91)90026-T
– volume: 74
  start-page: 417
  year: 1989
  ident: 10.1016/j.clinph.2006.05.006_bib10
  article-title: Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(89)90030-0
– volume: 105
  start-page: 24
  year: 1997
  ident: 10.1016/j.clinph.2006.05.006_bib39
  article-title: Suppression of spatial localization of a cutaneous stimulus following transcranial magnetic pulse stimulation of the sensorimotor cortex
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/S0924-980X(96)96090-7
– volume: 86
  start-page: 1983
  year: 2001
  ident: 10.1016/j.clinph.2006.05.006_bib33
  article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2001.86.4.1983
– volume: 1
  start-page: 1325
  year: 1986
  ident: 10.1016/j.clinph.2006.05.006_bib3
  article-title: Clinical evaluation of conduction time measurements in central motor pathways using magnetic stimulation of human brain
  publication-title: Lancet
  doi: 10.1016/S0140-6736(86)91243-2
– volume: 20
  start-page: 148
  year: 1987
  ident: 10.1016/j.clinph.2006.05.006_bib1
  article-title: Human cerebral cortical responses to contralateral transcranial magnetic stimulation
  publication-title: Neurosurgery
  doi: 10.1097/00006123-198701000-00031
– volume: 43
  start-page: 360
  year: 1998
  ident: 10.1016/j.clinph.2006.05.006_bib21
  article-title: Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices
  publication-title: Ann Neurol
  doi: 10.1002/ana.410430314
– volume: 109
  start-page: 230
  year: 1998
  ident: 10.1016/j.clinph.2006.05.006_bib7
  article-title: Interhemispheric inhibition in patients with multiple sclerosis
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/S0924-980X(98)00013-7
– volume: 116
  start-page: 1062
  year: 2005
  ident: 10.1016/j.clinph.2006.05.006_bib23
  article-title: Repetitive transcranial magnetic stimulation (rTMS) at high and low frequency: an efficacious therapy for major drug-resistant depression?
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2005.01.002
– volume: 50
  start-page: 712
  year: 2001
  ident: 10.1016/j.clinph.2006.05.006_bib24
  article-title: Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI
  publication-title: Biol Psychiatry
  doi: 10.1016/S0006-3223(01)01199-4
– volume: 106
  start-page: 180
  year: 1998
  ident: 10.1016/j.clinph.2006.05.006_bib34
  article-title: Clinical applications of motor evoked potentials
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/S0013-4694(97)00097-7
– volume: 113
  start-page: 175
  year: 2002
  ident: 10.1016/j.clinph.2006.05.006_bib19
  article-title: Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(01)00721-0
– volume: 246
  start-page: 1164
  year: 1999
  ident: 10.1016/j.clinph.2006.05.006_bib29
  article-title: Cerebral blood flow and metabolic changes produced by repetitive magnetic brain stimulation
  publication-title: J Neurol
  doi: 10.1007/s004150050536
– volume: 58
  start-page: 58
  year: 2005
  ident: 10.1016/j.clinph.2006.05.006_bib5
  article-title: Electroencephalographic response to transcranial magnetic stimulation in children: evidence for giant inhibitory potentials
  publication-title: Ann Neurol
  doi: 10.1002/ana.20521
– volume: 54
  start-page: 956
  year: 2000
  ident: 10.1016/j.clinph.2006.05.006_bib40
  article-title: Lasting cortical activation after repetitive TMS of the motor cortex. A glucose metabolic study
  publication-title: Neurology
  doi: 10.1212/WNL.54.4.956
– volume: 89
  start-page: 415
  year: 1993
  ident: 10.1016/j.clinph.2006.05.006_bib18
  article-title: Variability of motor potentials evoked by transcranial magnetic stimulation
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(93)90115-6
– volume: 122
  start-page: 1721
  year: 1999
  ident: 10.1016/j.clinph.2006.05.006_bib27
  article-title: Interhemispheric asymmetries in the perception of unimanual and bimanual cutaneous stimuli. A study using transcranial magnetic stimulation
  publication-title: Brain
  doi: 10.1093/brain/122.9.1721
– volume: 24
  start-page: 955
  year: 2005
  ident: 10.1016/j.clinph.2006.05.006_bib17
  article-title: Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.09.048
– volume: 12
  start-page: 3543
  year: 2001
  ident: 10.1016/j.clinph.2006.05.006_bib4
  article-title: Functional MRI of cortical activations induced by transcranial magnetic stimulation (TMS)
  publication-title: NeuroReport
  doi: 10.1097/00001756-200111160-00034
– volume: 63
  start-page: 129
  year: 1992
  ident: 10.1016/j.clinph.2006.05.006_bib14
  article-title: Brain stimulation using electromagnetic sources: theoretical aspects
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(92)81587-4
– volume: 115
  start-page: 583
  year: 2004
  ident: 10.1016/j.clinph.2006.05.006_bib16
  article-title: Distinct differences in cortical reactivity of motor and prefrontal cortices to magnetic stimulation
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2003.10.032
– volume: 17
  start-page: 3178
  year: 1997
  ident: 10.1016/j.clinph.2006.05.006_bib31
  article-title: Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex
  publication-title: Neuroscience
  doi: 10.1523/JNEUROSCI.17-09-03178.1997
SSID ssj0007042
Score 2.335692
Snippet In recent years, a promising tool has been introduced which allows the co-registration of electroencephalographic (EEG) activity during brain transcranial...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1699
SubjectTerms Adult
Biological and medical sciences
Cerebral Cortex - physiology
EEG
Electrodiagnosis. Electric activity recording
Electroencephalography
Evoked Potentials - physiology
Female
Fundamental and applied biological sciences. Psychology
Humans
Investigative techniques, diagnostic techniques (general aspects)
Low frequency
Male
Medical sciences
Motor cortex
Nervous system
rTMS
Somesthesis and somesthetic pathways (proprioception, exteroception, nociception); interoception; electrolocation. Sensory receptors
TMS
Transcranial Magnetic Stimulation
Vertebrates: nervous system and sense organs
Title Transcranial magnetic stimulation and cortical evoked potentials: A TMS/EEG co-registration study
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1388245706002100
https://dx.doi.org/10.1016/j.clinph.2006.05.006
https://www.ncbi.nlm.nih.gov/pubmed/16797232
https://www.proquest.com/docview/68690459
Volume 117
WOSCitedRecordID wos000239876700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8952
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0007042
  issn: 1388-2457
  databaseCode: AIEXJ
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYhhASQnxTPoofEC9TWNLYic3bQB0fassEGeqblTgJ2mBp6Me0P5-72E5bxtTxwItbWbnW8v1sX8539yPkJUeLrRC4kIrCw1xJT-ZZ5MUiCjMdc1k00RbfBvFoJMZjeWjjdGcNnUBcVeL8XNb_VdXQB8rG1Nl_UHf7o9AB30Hp0ILaob2a4vH00dCgL_w0_V5hmuIurORTy9RlU9mmxotdnE1-gNFZT-YYNwSjM-nPyfArDKHffw9Pesje4OrrrhSkdQUOXHJlUxuzcZWs-erfooN-3SM7BIkFrMa1zi9wXh83DFO7h9ZJu-KOEM4dYXbQEPXBTNXpdos1-ZkWS2Jlwwwiw490YSc3ToWT15ggWrtbI_R__aVw9uizOjgaDFTSHyev6l8ecorh3bslWNkiOz1AHex5O_sf--NP7Ukd-w25Ujtkl1rZxP9d_OPLTJdbdTqDWS4NE8rlryqNyZLcIbftuwbdNxi5S64V1T1yY2ijKe6TdBUq1EGFrkCFAlSogwo1UKFLqLyhKQWg7AFM6B8woQ1MHpCjg37y7oNnKTc8DZbj3JOs1DnPgoJrHeYlE34qWZByyX0WiTQog0BrZAVIOWNSZFkvLHnJpfZ1xAKhw4dku5pUxWNCwzAoM6zN5PsZ0znLuMxhotOsx0TOctEhoZtNpW09eqRF-alc4OGJMjpAqtRI-VzBR4d4rVRt6rFseJ47RSmXawynowKYbZCLWzlrixob8wqS3TU8LIcJxmDMeqxDXjiAKNjL8YIurYrJYqYipIdjXHbII4ObpWwUIz1g78lG2afk5nJZPiPb8-mieE6u67P58WzaJVvxWHTtOvgNEe_Kmw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcranial+magnetic+stimulation+and+cortical+evoked+potentials%3A+a+TMS%2FEEG+co-registration+study&rft.jtitle=Clinical+neurophysiology&rft.au=Bonato%2C+C&rft.au=Miniussi%2C+C&rft.au=Rossini%2C+P+M&rft.date=2006-08-01&rft.issn=1388-2457&rft.volume=117&rft.issue=8&rft.spage=1699&rft_id=info:doi/10.1016%2Fj.clinph.2006.05.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-2457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-2457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-2457&client=summon