Adaptive Ant Colony Optimization with Sub-Population and Fuzzy Logic for 3D Laser Scanning Path Planning
For the precise measurement of complex surfaces, determining the position, direction, and path of a laser sensor probe is crucial before obtaining exact measurements. Accurate surface measurement hinges on modifying the overtures of a laser sensor and planning the scan path of the point laser displa...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 24; číslo 4; s. 1098 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
08.02.2024
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | For the precise measurement of complex surfaces, determining the position, direction, and path of a laser sensor probe is crucial before obtaining exact measurements. Accurate surface measurement hinges on modifying the overtures of a laser sensor and planning the scan path of the point laser displacement sensor probe to optimize the alignment of its measurement velocity and accuracy. This manuscript proposes a 3D surface laser scanning path planning technique that utilizes adaptive ant colony optimization with sub-population and fuzzy logic (SFACO), which involves the consideration of the measurement point layout, probe attitude, and path planning. Firstly, this study is based on a four-coordinate measuring machine paired with a point laser displacement sensor probe. The laser scanning four-coordinate measuring instrument is used to establish a coordinate system, and the relationship between them is transformed. The readings of each axis of the object being measured under the normal measuring attitude are then reversed through the coordinate system transformation, thus resulting in the optimal measuring attitude. The nominal distance matrix, which demonstrates the significance of the optimal measuring attitude, is then created based on the readings of all the points to be measured. Subsequently, a fuzzy ACO algorithm that integrates multiple swarm adaptive and dynamic domain structures is suggested to enhance the algorithm’s performance by refining and utilizing multiple swarm adaptive and fuzzy operators. The efficacy of the algorithm is verified through experiments with 13 popular TSP benchmark datasets, thereby demonstrating the complexity of the SFACO approach. Ultimately, the path planning problem of surface 3D laser scanning measurement is addressed by employing the proposed SFACO algorithm in conjunction with a nominal distance matrix. |
|---|---|
| AbstractList | For the precise measurement of complex surfaces, determining the position, direction, and path of a laser sensor probe is crucial before obtaining exact measurements. Accurate surface measurement hinges on modifying the overtures of a laser sensor and planning the scan path of the point laser displacement sensor probe to optimize the alignment of its measurement velocity and accuracy. This manuscript proposes a 3D surface laser scanning path planning technique that utilizes adaptive ant colony optimization with sub-population and fuzzy logic (SFACO), which involves the consideration of the measurement point layout, probe attitude, and path planning. Firstly, this study is based on a four-coordinate measuring machine paired with a point laser displacement sensor probe. The laser scanning four-coordinate measuring instrument is used to establish a coordinate system, and the relationship between them is transformed. The readings of each axis of the object being measured under the normal measuring attitude are then reversed through the coordinate system transformation, thus resulting in the optimal measuring attitude. The nominal distance matrix, which demonstrates the significance of the optimal measuring attitude, is then created based on the readings of all the points to be measured. Subsequently, a fuzzy ACO algorithm that integrates multiple swarm adaptive and dynamic domain structures is suggested to enhance the algorithm’s performance by refining and utilizing multiple swarm adaptive and fuzzy operators. The efficacy of the algorithm is verified through experiments with 13 popular TSP benchmark datasets, thereby demonstrating the complexity of the SFACO approach. Ultimately, the path planning problem of surface 3D laser scanning measurement is addressed by employing the proposed SFACO algorithm in conjunction with a nominal distance matrix. For the precise measurement of complex surfaces, determining the position, direction, and path of a laser sensor probe is crucial before obtaining exact measurements. Accurate surface measurement hinges on modifying the overtures of a laser sensor and planning the scan path of the point laser displacement sensor probe to optimize the alignment of its measurement velocity and accuracy. This manuscript proposes a 3D surface laser scanning path planning technique that utilizes adaptive ant colony optimization with sub-population and fuzzy logic (SFACO), which involves the consideration of the measurement point layout, probe attitude, and path planning. Firstly, this study is based on a four-coordinate measuring machine paired with a point laser displacement sensor probe. The laser scanning four-coordinate measuring instrument is used to establish a coordinate system, and the relationship between them is transformed. The readings of each axis of the object being measured under the normal measuring attitude are then reversed through the coordinate system transformation, thus resulting in the optimal measuring attitude. The nominal distance matrix, which demonstrates the significance of the optimal measuring attitude, is then created based on the readings of all the points to be measured. Subsequently, a fuzzy ACO algorithm that integrates multiple swarm adaptive and dynamic domain structures is suggested to enhance the algorithm's performance by refining and utilizing multiple swarm adaptive and fuzzy operators. The efficacy of the algorithm is verified through experiments with 13 popular TSP benchmark datasets, thereby demonstrating the complexity of the SFACO approach. Ultimately, the path planning problem of surface 3D laser scanning measurement is addressed by employing the proposed SFACO algorithm in conjunction with a nominal distance matrix.For the precise measurement of complex surfaces, determining the position, direction, and path of a laser sensor probe is crucial before obtaining exact measurements. Accurate surface measurement hinges on modifying the overtures of a laser sensor and planning the scan path of the point laser displacement sensor probe to optimize the alignment of its measurement velocity and accuracy. This manuscript proposes a 3D surface laser scanning path planning technique that utilizes adaptive ant colony optimization with sub-population and fuzzy logic (SFACO), which involves the consideration of the measurement point layout, probe attitude, and path planning. Firstly, this study is based on a four-coordinate measuring machine paired with a point laser displacement sensor probe. The laser scanning four-coordinate measuring instrument is used to establish a coordinate system, and the relationship between them is transformed. The readings of each axis of the object being measured under the normal measuring attitude are then reversed through the coordinate system transformation, thus resulting in the optimal measuring attitude. The nominal distance matrix, which demonstrates the significance of the optimal measuring attitude, is then created based on the readings of all the points to be measured. Subsequently, a fuzzy ACO algorithm that integrates multiple swarm adaptive and dynamic domain structures is suggested to enhance the algorithm's performance by refining and utilizing multiple swarm adaptive and fuzzy operators. The efficacy of the algorithm is verified through experiments with 13 popular TSP benchmark datasets, thereby demonstrating the complexity of the SFACO approach. Ultimately, the path planning problem of surface 3D laser scanning measurement is addressed by employing the proposed SFACO algorithm in conjunction with a nominal distance matrix. |
| Audience | Academic |
| Author | Xu, Xiaoyu Pu, Yuanyuan Song, Junfang |
| AuthorAffiliation | College of Information Engineering, Xizang Minzu University, No. 6, East Section of Wenhui Road, Weicheng District, Xianyang 712082, China; puyyuan@163.com (Y.P.); jingxu1993@163.com (X.X.) |
| AuthorAffiliation_xml | – name: College of Information Engineering, Xizang Minzu University, No. 6, East Section of Wenhui Road, Weicheng District, Xianyang 712082, China; puyyuan@163.com (Y.P.); jingxu1993@163.com (X.X.) |
| Author_xml | – sequence: 1 givenname: Junfang orcidid: 0000-0001-5071-6195 surname: Song fullname: Song, Junfang – sequence: 2 givenname: Yuanyuan surname: Pu fullname: Pu, Yuanyuan – sequence: 3 givenname: Xiaoyu surname: Xu fullname: Xu, Xiaoyu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38400256$$D View this record in MEDLINE/PubMed |
| BookMark | eNplUk1P3DAQjSpQ-WgP_QOVpV7oIeDYTmKfqtW2FKSVWIn2bE0cJ-tV1t46CdXur-9AAAGVD_aM37z5eifJgQ_eJsmnjJ5zruhFzwQVGVXyXXKcCSZSyRg9ePE-Sk76fk0p45zL98kRlwKNvDhOVrMatoO7s2TmBzIPXfA7coOejdvD4IInf92wIrdjlS7DduwmH_iaXI77_Y4sQusMaUIk_DtZQG8juTXgvfMtWQJGLrvJ-pAcNtD19uPjfZr8vvzxa36VLm5-Xs9ni9TkVA2pNLKoFDVMAM-MzEoOuVQiqxpZF5TahgMoaBSvJRSgSsOropS0KK1StWSKnybXE28dYK230W0g7nQApx8cIbYa4uBMZzXkORNCWFPQTHCmpM0Z47IxpaxYnQNyfZu4tmO1sbWxfojQvSJ9_ePdSrfhTmdUKpx1iQxnjwwx_BltP-iN643tcCg2jL3GghmmxkUh9Msb6DqM0eOs7lFZRoUockSdT6gWsAPnm4CJDZ7abpxBWTQO_bNSoh6EFAIDPr_s4bn4Jwkg4GICmBj6PtpGGzc8rBmZXYe96HuR6WeRYcTXNxFPpP9j_wE_ss6L |
| CitedBy_id | crossref_primary_10_1051_e3sconf_202456502008 crossref_primary_10_3390_app14083151 crossref_primary_10_3390_aerospace12080654 |
| Cites_doi | 10.1016/j.engappai.2015.10.006 10.1016/j.engappai.2022.105139 10.1016/j.cie.2022.108905 10.1016/j.comcom.2023.02.024 10.1016/j.optlastec.2023.109906 10.1016/j.knosys.2022.109290 10.1109/CLEO/Europe-EQEC57999.2023.10232034 10.1016/j.swevo.2022.101211 10.1016/j.asoc.2021.107439 10.1016/j.swevo.2022.101046 10.1016/j.jpdc.2023.04.004 10.1109/72.363466 10.1016/j.cie.2022.108157 10.1016/j.optlaseng.2022.107176 10.1016/j.knosys.2023.110540 10.1016/j.swevo.2023.101228 10.1016/j.measurement.2022.111827 10.1016/j.aei.2022.101816 10.1016/j.optlastec.2023.110034 10.1016/j.eswa.2023.120070 10.1016/j.ejor.2023.07.022 10.1016/j.swevo.2021.101014 10.1016/j.swevo.2023.101336 10.1016/j.asoc.2022.109211 10.1109/ACCESS.2020.3045765 10.1109/TITS.2020.3039557 10.1016/j.procs.2016.07.378 10.1109/ITC-CSCC58803.2023.10212945 10.1016/j.phycom.2023.102088 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/s24041098 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_a552444ec60143298e52238fc78b2d5a PMC10892337 A784104844 38400256 10_3390_s24041098 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Natural Science Foundation of Shaanxi Provincial Department of Science and Technology grantid: 2023-JC-QN-0633 – fundername: National Natural Science Foundation of China grantid: 62263028 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c509t-8c86b90c24a31c8173a58941bf8d600ef3aa9af93d8a6a97c3b678067e99d8293 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001172630000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:45:15 EDT 2025 Tue Nov 04 02:05:59 EST 2025 Thu Oct 02 04:05:27 EDT 2025 Tue Oct 07 07:29:09 EDT 2025 Tue Nov 04 18:34:03 EST 2025 Wed Feb 19 02:07:10 EST 2025 Tue Nov 18 21:44:36 EST 2025 Sat Nov 29 07:14:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | intricate surface measurement ant colony optimization laser scan scan path planning fuzzy logic |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-8c86b90c24a31c8173a58941bf8d600ef3aa9af93d8a6a97c3b678067e99d8293 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5071-6195 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2931104465?pq-origsite=%requestingapplication% |
| PMID | 38400256 |
| PQID | 2931104465 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a552444ec60143298e52238fc78b2d5a pubmedcentral_primary_oai_pubmedcentral_nih_gov_10892337 proquest_miscellaneous_2932432142 proquest_journals_2931104465 gale_infotracacademiconefile_A784104844 pubmed_primary_38400256 crossref_citationtrail_10_3390_s24041098 crossref_primary_10_3390_s24041098 |
| PublicationCentury | 2000 |
| PublicationDate | 20240208 |
| PublicationDateYYYYMMDD | 2024-02-08 |
| PublicationDate_xml | – month: 2 year: 2024 text: 20240208 day: 8 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Zolfaghari (ref_2) 2024; 168 Liu (ref_22) 2023; 271 Ou (ref_28) 2022; 125 Yan (ref_8) 2022; 202 Ding (ref_3) 2016; 92 Wu (ref_13) 2023; 62 E (ref_26) 2023; 80 ref_35 ref_10 Osaba (ref_33) 2016; 48 ref_30 Couceiro (ref_32) 2016; 283 Zhou (ref_11) 2022; 114 Chen (ref_27) 2018; 54 Huang (ref_7) 2022; 23 Diao (ref_5) 2023; 203 Zhang (ref_16) 2022; 169 Das (ref_21) 2023; 55 Sui (ref_18) 2023; 175 Reda (ref_15) 2022; 252 Wang (ref_34) 2021; 107 Pu (ref_25) 2023; 59 Yip (ref_31) 1995; 6 Ren (ref_23) 2023; 77 Rivera (ref_20) 2023; 76 Zong (ref_6) 2022; 158 Zhou (ref_14) 2022; 70 Pop (ref_9) 2023; 314 Cui (ref_12) 2020; 8 Zhu (ref_1) 2024; 169 ref_29 Chuang (ref_19) 2023; 179 ref_4 Pal (ref_17) 2023; 224 Pu (ref_24) 2022; 69 |
| References_xml | – volume: 48 start-page: 59 year: 2016 ident: ref_33 article-title: An improved discrete bat algorithm for symmetric and asymmetric Traveling Salesman Problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2015.10.006 – volume: 114 start-page: 105139 year: 2022 ident: ref_11 article-title: Parameter adaptation-based ant colony optimization with dynamic hybrid mechanism publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105139 – volume: 175 start-page: 108905 year: 2023 ident: ref_18 article-title: ACO+PSO+A∗: A bi-layer hybrid algorithm for multi-task path planning of an AUV publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2022.108905 – ident: ref_30 – volume: 203 start-page: 48 year: 2023 ident: ref_5 article-title: Complex parts machining path planning through cross-source point cloud processing publication-title: Comput. Commun. doi: 10.1016/j.comcom.2023.02.024 – volume: 168 start-page: 109906 year: 2024 ident: ref_2 article-title: Cascaded laser scanning towards high-resolution LiDAR publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2023.109906 – volume: 252 start-page: 109290 year: 2022 ident: ref_15 article-title: A discrete variant of cuckoo search algorithm to solve the Travelling Salesman Problem and path planning for autonomous trolley inside warehouse publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.109290 – ident: ref_4 doi: 10.1109/CLEO/Europe-EQEC57999.2023.10232034 – volume: 76 start-page: 101211 year: 2023 ident: ref_20 article-title: An ACO-based Hyper-heuristic for Sequencing Many-objective Evolutionary Algorithms that Consider Different Ways to Incorporate the DM’s Preferences publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2022.101211 – volume: 283 start-page: 36 year: 2016 ident: ref_32 article-title: Novel fractional order particle swarm optimization publication-title: Appl. Math. Comput. – volume: 107 start-page: 107439 year: 2021 ident: ref_34 article-title: Ant colony optimization for traveling salesman problem based on parameters optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107439 – volume: 62 start-page: 1 year: 2023 ident: ref_13 article-title: Heterogeneous Cuckoo Search-Based Unsupervised Band Selection for Hyperspectral Image Classification publication-title: IEEE Trans. Geosci. Remote. Sens. – ident: ref_35 – volume: 70 start-page: 101046 year: 2022 ident: ref_14 article-title: Adaptive gradient descent enabled ant colony optimization for routing problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2022.101046 – volume: 179 start-page: 104703 year: 2023 ident: ref_19 article-title: A real-time and ACO-based offloading algorithm in edge computing publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2023.04.004 – volume: 6 start-page: 290 year: 1995 ident: ref_31 article-title: Combinatorial optimization with use of guided evolutionary simulated annealing publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.363466 – volume: 169 start-page: 108157 year: 2022 ident: ref_16 article-title: A discrete cuckoo search algorithm for traveling salesman problem and its application in cutting path optimization publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2022.108157 – ident: ref_29 – volume: 158 start-page: 107176 year: 2022 ident: ref_6 article-title: A high-efficiency and high-precision automatic 3D scanning system for industrial parts based on a scanning path planning algorithm publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2022.107176 – volume: 271 start-page: 110540 year: 2023 ident: ref_22 article-title: An improved heuristic mechanism ant colony optimization algorithm for solving path planning publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.110540 – volume: 77 start-page: 101228 year: 2023 ident: ref_23 article-title: Improved ant colony optimization for the vehicle routing problem with split pickup and split delivery publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101228 – volume: 202 start-page: 111827 year: 2022 ident: ref_8 article-title: A two-module automated scanning inspection planning methodology for complex surfaces on coordinate measuring machine publication-title: Measurement doi: 10.1016/j.measurement.2022.111827 – volume: 55 start-page: 101816 year: 2023 ident: ref_21 article-title: A Quantum-inspired Ant Colony Optimization for solving a sustainable four-dimensional traveling salesman problem under type-2 fuzzy variable publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2022.101816 – volume: 169 start-page: 110034 year: 2024 ident: ref_1 article-title: Design optical surface as the measurement datum in measuring gear tooth flank by symmetrical laser interferometer publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2023.110034 – volume: 224 start-page: 120070 year: 2023 ident: ref_17 article-title: An analysis of the security of multi-area power transmission lines using fuzzy-ACO publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120070 – volume: 314 start-page: 819 year: 2023 ident: ref_9 article-title: A comprehensive survey on the generalized traveling salesman problem publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2023.07.022 – volume: 69 start-page: 101014 year: 2022 ident: ref_24 article-title: Fractional-Order Ant Colony Algorithm: A Fractional Long Term Memory Based Cooperative Learning Approach publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.101014 – volume: 80 start-page: 101336 year: 2023 ident: ref_26 article-title: A novel adaptive algorithm of particle swarm optimization based on the human social learning intelligence publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101336 – volume: 125 start-page: 109211 year: 2022 ident: ref_28 article-title: Cuckoo search algorithm with fuzzy logic and Gauss–Cauchy for minimizing localization error of WSN publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109211 – volume: 8 start-page: 227497 year: 2020 ident: ref_12 article-title: Multi-Subdomain Grouping-Based Particle Swarm Optimization for the Traveling Salesman Problem publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3045765 – volume: 23 start-page: 3682 year: 2022 ident: ref_7 article-title: Autonomous Outdoor Scanning via Online Topological and Geometric Path Optimization publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3039557 – volume: 92 start-page: 526 year: 2016 ident: ref_3 article-title: CAD-Based Path Planning for 3D Laser Scanning of Complex Surface publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.07.378 – ident: ref_10 doi: 10.1109/ITC-CSCC58803.2023.10212945 – volume: 59 start-page: 102088 year: 2023 ident: ref_25 article-title: Node location using cuckoo search algorithm with grouping and drift strategy for WSN publication-title: Phys. Commun. doi: 10.1016/j.phycom.2023.102088 – volume: 54 start-page: 42 year: 2018 ident: ref_27 article-title: Adaptive dynamic neighborhood hybrid cuckoo search algorithm for solving traveling salesman problems publication-title: Comput. Eng. Appl. |
| SSID | ssj0023338 |
| Score | 2.4351525 |
| Snippet | For the precise measurement of complex surfaces, determining the position, direction, and path of a laser sensor probe is crucial before obtaining exact... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1098 |
| SubjectTerms | Algorithms Analysis ant colony optimization Fuzzy algorithms Fuzzy logic Fuzzy systems Heuristic intricate surface measurement laser scan Lasers Learning strategies Linear programming Measuring instruments Optimization algorithms Pheromones Planning scan path planning Scanners Scanning devices Sensors |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6higMcEJRXoCCDkOASNbGdZHxcSlc9oLISIPVmObajVipptQ-k9tczk2SjjUDi0mvsgx_z-Ca2vw_ggzdFMMFUqQyNTyn6xRQV-aMqnCd0q6Jusk5sojo9xbMzs9iR-uI7YT09cL9wh64oKAPp6EtmopMGIyEGhY2vsJah6KARoZ5tMTWUWooqr55HSFFRf7iivKXzzOAk-3Qk_X-H4p1cNL0nuZN45o_h0YAYxawf6RO4F9t9eLjDI_gUzmfBXXPcErN2LY4onrU34ht9-TW8shT8u1VQkEgXo2CXcG0Q883t7Y1gwWUvCL4K9UV8pby2FN99L2YkFgQRxVba6Bn8nB__ODpJBwmF1BMSWKfosaxN5qV2KveYV8oVaHReNxgI6sRGOWdcY1RAVzpTeVVT9qIMFo0JSFDgOey1V218CSLGApuAGqMhGNjULqtkKL0qo-THs0UCn7ZLa_3AL84yF5eW6gzeBTvuQgLvx67XPanGvzp95v0ZOzAPdveBrMMO1mH_Zx0JfOTdteytNBjvhkcHNCXmvbIzPnalIKZ1AgdbA7CDG68sLQDBI-aUS-Dd2EwOyKcqro1Xm66P1Cz3JBN40dvLOGZF5TODygRwYkmTSU1b2ovzjuQ7z5Cwt6pe3cUyvIYHksBYd9scD2BvvdzEN3Df_15frJZvO9f5Aw9OHFE priority: 102 providerName: Directory of Open Access Journals |
| Title | Adaptive Ant Colony Optimization with Sub-Population and Fuzzy Logic for 3D Laser Scanning Path Planning |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38400256 https://www.proquest.com/docview/2931104465 https://www.proquest.com/docview/2932432142 https://pubmed.ncbi.nlm.nih.gov/PMC10892337 https://doaj.org/article/a552444ec60143298e52238fc78b2d5a |
| Volume | 24 |
| WOSCitedRecordID | wos001172630000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6xLQc48F4ILJVBSHCJ2sZJMz6h7tIKJLZEPKRyilzbYVeCtPSBtHvgtzOTuKEViBOXHBIf7Hj8zefX9wE8Myqxyqo0jGxhQkI_F6Kk8SgTbYjdShcXvcpsIp1McDpVmb8evfLHKreYWAF1rfbM57YJhLt2bnjFvEtJivIWi329XHwP2UOK91q9ocYBtFl4C1vQzt6cZp-bCZik-VitLiRpqt9dUTaL-z2Fezmpku7_E6B3MtT-6cmddDS--X8bcgtueFoqhnUc3YYrrrwD13fECu_C2dDqBYOjGJZrcUKgWV6Id_Tmm7_KKXhNVxAShVnjCiZ0acV4c3l5IdjV2QjiyEK-Em8peS7FB1M7JomMeKjY-ifdg0_j0ceT16H3aQgN0Y11iAYHM9UzUaxl32A_lTpBFfdnBVriU66QWitdKGlRD7RKjZxRiqQ06ZSySH_gEFrlvHQPQDiXYGExRqeIaxYz3UsjOzBy4CK-oZsE8GLbU7nxIubspfE1p8kMd2redGoAT5uii1q542-Fjrm7mwIstl29mC-_5H7s5jpJiATFzgxYDDFS6Ii0SixMirPIJjqA5xwsOUMCVcZof7OBmsTiWvmQ93YJKeM4gKNtTOQeK1b57xAI4EnzmUY5b93o0s03VZkoZk-pKID7dfg1dZY0R2fmGgDuBeZeo_a_lOdnlZJ4v4dE8GX68N_1egTXIuJy1WF1PILWerlxj-Gq-bE-Xy07cJBO0-qJHWgfjybZ-061tEHP05-jjh-FvwCBCz3h |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL2aBhLwwDcsMMAgEHuJlthJYz8gVDaqTSulEkPqW3BsZ5sEaekHqPtR_EbuzddagXjbA6-JH-z2-Jzr2D4H4KVRsVVWJT63ufGR_ZwvBc5HEWuD1a1wUR6UYRPJYCBHIzXcgF_NXRg6VtlwYknUdmzoG_kuyhIqFdl7vZ189yk1inZXmwiNChZHbvkTl2yzN4f7-P--4rz3_njvwK9TBXyD4jj3pZGdTAWGR1qERoaJ0LFUUZjl0qL6u1xorXSuhJW6o1ViRIaEjqTulLKSk_kSUv4V5PGEjpAlo4sFnsD1XuVeJIQKdmeollEYKLmmeWU0wJ8CsKKA66czV-Sud-t_-6Fuw826sGbdaibcgQ1X3IUbK3aL9-C0a_WE6J11iznbQ9ovluwjPvlWX0Zl9FWaIZf6wzbXjOnCst7i_HzJKJfaMKzymdhnfZT_KftkqswnNsRKmjUJUPfh86UM9QFsFuPCbQFzLpa5lZF0CqvlPNNBwm3HiI7jdMc49mCnwUJqaht2SgP5muJyjGCTtrDx4EXbdFJ5j_yt0TsCVNuA7MLLB-PpSVqzT6rjGMu4yJkO2TlyJR2W3ULmJpEZt7H24DXBMSVSw84YXd_NwCGRPVjapd1p5Poo8mC7QV1as90svYCcB8_b18hTtPmkCzdelG14RKlY3IOHFcDbPgsZlbW3B3IN-muDWn9TnJ2WXuhhIHGJIpJH_-7XM7h2cPyhn_YPB0eP4TrHyrQ8ei-3YXM-XbgncNX8mJ_Npk_LGc3gy2XPjN-rd4c3 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tFoTgwPsRWMAgEFyipnYe9gGhsqVitatSCZB6C47tsCtBWvoAdX8av46ZvLYRiNseuCY-2O3M930T2_MBPDMqssqqxOc2Nz6in_OlwHwUkTaoboUL86A0m0jGYzmdqskO_GruwtCxygYTS6C2M0PfyHtIS8hU1N6rl9fHIibD0ev5d58cpGintbHTqELk0G1-Yvm2fHUwxP_6Oeejtx_33_m1w4BvkChXvjQyzlRgeKhF38h-InQkVdjPcmlRCbhcaK10roSVOtYqMSJDcEeAd0pZyakRE8L_hUSIhGwjkulZsSew9qs6GQmhgt4SmTPsB0p2-K-0CfiTDLbYsHtSc4v6Rtf-5x_tOlytBTcbVBlyA3ZccROubLVhvAXHA6vnBPtsUKzYPtJBsWHv8cm3-pIqo6_VDDHWn7R-Z0wXlo3Wp6cbRn7VhqH6Z2LIjlAWLNgHU3lBsQkqbNY4Q92GT-ey1DuwW8wKdw-Yc5HMrQylU6ii80wHCbexEbHjdPc48uBlExepqduzk0vI1xTLNAqhtA0hD562Q-dVT5K_DXpDwdUOoDbi5YPZ4ktao1KqowjlXehMTG0euZIO5biQuUlkxm2kPXhBoZkS2OFkjK7vbOCSqG1YOqBda-SAMPRgr4nAtEbBZXoWfh48aV8jftGmlC7cbF2O4SG5ZXEP7lbB3s5ZyLDU5B7IThp0FtV9U5wclz3S-4HE0kUk9_89r8dwCRMiPToYHz6AyxwFa3kiX-7B7mqxdg_hovmxOlkuHpXJzeDzeSfGb_Xgj-s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Ant+Colony+Optimization+with+Sub-Population+and+Fuzzy+Logic+for+3D+Laser+Scanning+Path+Planning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Song%2C+Junfang&rft.au=Pu%2C+Yuanyuan&rft.au=Xu%2C+Xiaoyu&rft.date=2024-02-08&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=4&rft.spage=1098&rft_id=info:doi/10.3390%2Fs24041098&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |