Robust Optimization Research of Cyber–Physical Power System Considering Wind Power Uncertainty and Coupled Relationship

To mitigate the impact of wind power uncertainty and power–communication coupling on the robustness of a new power system, a bi-level mixed-integer robust optimization strategy is proposed. Firstly, a coupled network model is constructed based on complex network theory, taking into account the coupl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Entropy (Basel, Switzerland) Ročník 26; číslo 9; s. 795
Hlavní autoři: Dong, Jiuling, Song, Zilong, Zheng, Yuanshuo, Luo, Jingtang, Zhang, Min, Yang, Xiaolong, Ma, Hongbing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 17.09.2024
MDPI
Témata:
ISSN:1099-4300, 1099-4300
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:To mitigate the impact of wind power uncertainty and power–communication coupling on the robustness of a new power system, a bi-level mixed-integer robust optimization strategy is proposed. Firstly, a coupled network model is constructed based on complex network theory, taking into account the coupled relationship of energy supply and control dependencies between the power and communication networks. Next, a bi-level mixed-integer robust optimization model is developed to improve power system resilience, incorporating constraints related to the coupling strength, electrical characteristics, and traffic characteristics of the information network. The upper-level model seeks to minimize load shedding by optimizing DC power flow using fuzzy chance constraints, thereby reducing the risk of power imbalances caused by random fluctuations in wind power generation. Furthermore, the deterministic power balance constraints are relaxed into inequality constraints that account for wind power forecasting errors through fuzzy variables. The lower-level model focuses on minimizing traffic load shedding by establishing a topology–function-constrained information network traffic model based on the maximum flow principle in graph theory, thereby improving the efficiency of network flow transmission. Finally, a modified IEEE 39-bus test system with intermittent wind power is used as a case study. Random attack simulations demonstrate that, under the highest link failure rate and wind power penetration, Model 2 outperforms Model 1 by reducing the load loss ratio by 23.6% and improving the node survival ratio by 5.3%.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1099-4300
1099-4300
DOI:10.3390/e26090795