A Recommendation System for Trigger–Action Programming Rules via Graph Contrastive Learning
Trigger–action programming (TAP) enables users to automate Internet of Things (IoT) devices by creating rules such as “IF Device1.TriggerState is triggered, THEN Device2.ActionState is executed”. As the number of IoT devices grows, the combination space between the functions provided by devices expa...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 24; číslo 18; s. 6151 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
23.09.2024
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Trigger–action programming (TAP) enables users to automate Internet of Things (IoT) devices by creating rules such as “IF Device1.TriggerState is triggered, THEN Device2.ActionState is executed”. As the number of IoT devices grows, the combination space between the functions provided by devices expands, making manual rule creation time-consuming for end-users. Existing TAP recommendation systems enhance the efficiency of rule discovery but face two primary issues: they ignore the association of rules between users and fail to model collaborative information among users. To address these issues, this article proposes a graph contrastive learning-based recommendation system for TAP rules, named GCL4TAP. In GCL4TAP, we first devise a data partitioning method called DATA2DIV, which establishes cross-user rule relationships and is represented by a user–rule bipartite graph. Then, we design a user–user graph to model the similarities among users based on the categories and quantities of devices that they own. Finally, these graphs are converted into low-dimensional vector representations of users and rules using graph contrastive learning techniques. Extensive experiments conducted on a real-world smart home dataset demonstrate the superior performance of GCL4TAP compared to other state-of-the-art methods. |
|---|---|
| AbstractList | Trigger-action programming (TAP) enables users to automate Internet of Things (IoT) devices by creating rules such as "IF Device1.TriggerState is triggered, THEN Device2.ActionState is executed". As the number of IoT devices grows, the combination space between the functions provided by devices expands, making manual rule creation time-consuming for end-users. Existing TAP recommendation systems enhance the efficiency of rule discovery but face two primary issues: they ignore the association of rules between users and fail to model collaborative information among users. To address these issues, this article proposes a graph contrastive learning-based recommendation system for TAP rules, named GCL4TAP. In GCL4TAP, we first devise a data partitioning method called DATA2DIV, which establishes cross-user rule relationships and is represented by a user-rule bipartite graph. Then, we design a user-user graph to model the similarities among users based on the categories and quantities of devices that they own. Finally, these graphs are converted into low-dimensional vector representations of users and rules using graph contrastive learning techniques. Extensive experiments conducted on a real-world smart home dataset demonstrate the superior performance of GCL4TAP compared to other state-of-the-art methods. Trigger-action programming (TAP) enables users to automate Internet of Things (IoT) devices by creating rules such as "IF Device1.TriggerState is triggered, THEN Device2.ActionState is executed". As the number of IoT devices grows, the combination space between the functions provided by devices expands, making manual rule creation time-consuming for end-users. Existing TAP recommendation systems enhance the efficiency of rule discovery but face two primary issues: they ignore the association of rules between users and fail to model collaborative information among users. To address these issues, this article proposes a graph contrastive learning-based recommendation system for TAP rules, named GCL4TAP. In GCL4TAP, we first devise a data partitioning method called DATA2DIV, which establishes cross-user rule relationships and is represented by a user-rule bipartite graph. Then, we design a user-user graph to model the similarities among users based on the categories and quantities of devices that they own. Finally, these graphs are converted into low-dimensional vector representations of users and rules using graph contrastive learning techniques. Extensive experiments conducted on a real-world smart home dataset demonstrate the superior performance of GCL4TAP compared to other state-of-the-art methods.Trigger-action programming (TAP) enables users to automate Internet of Things (IoT) devices by creating rules such as "IF Device1.TriggerState is triggered, THEN Device2.ActionState is executed". As the number of IoT devices grows, the combination space between the functions provided by devices expands, making manual rule creation time-consuming for end-users. Existing TAP recommendation systems enhance the efficiency of rule discovery but face two primary issues: they ignore the association of rules between users and fail to model collaborative information among users. To address these issues, this article proposes a graph contrastive learning-based recommendation system for TAP rules, named GCL4TAP. In GCL4TAP, we first devise a data partitioning method called DATA2DIV, which establishes cross-user rule relationships and is represented by a user-rule bipartite graph. Then, we design a user-user graph to model the similarities among users based on the categories and quantities of devices that they own. Finally, these graphs are converted into low-dimensional vector representations of users and rules using graph contrastive learning techniques. Extensive experiments conducted on a real-world smart home dataset demonstrate the superior performance of GCL4TAP compared to other state-of-the-art methods. |
| Audience | Academic |
| Author | Sun, Dawen Kuang, Zhejun Xiong, Xingbo Zhao, Jian Wu, Gang Wang, Feng |
| AuthorAffiliation | 1 College of Computer Science and Technology, Changchun University, Changchun 130022, China; kuangzhejun@ccu.edu.cn (Z.K.); 231501519@mails.ccu.edu.cn (X.X.); zhaojian@ccu.edu.cn (J.Z.) 2 Jilin Provincial Key Laboratory of Human Health Status Identification Function & Enhancement, Changchun 130022, China 3 Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Changchun University, Ministry of Education, Changchun 130022, China 4 College of Computer Science and Technology, Jilin University, Changchun 130012, China; wugang17@mails.jlu.edu.cn (G.W.); wangfeng12@mails.jlu.edu.cn (F.W.) |
| AuthorAffiliation_xml | – name: 3 Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Changchun University, Ministry of Education, Changchun 130022, China – name: 4 College of Computer Science and Technology, Jilin University, Changchun 130012, China; wugang17@mails.jlu.edu.cn (G.W.); wangfeng12@mails.jlu.edu.cn (F.W.) – name: 1 College of Computer Science and Technology, Changchun University, Changchun 130022, China; kuangzhejun@ccu.edu.cn (Z.K.); 231501519@mails.ccu.edu.cn (X.X.); zhaojian@ccu.edu.cn (J.Z.) – name: 2 Jilin Provincial Key Laboratory of Human Health Status Identification Function & Enhancement, Changchun 130022, China |
| Author_xml | – sequence: 1 givenname: Zhejun orcidid: 0000-0001-5632-7596 surname: Kuang fullname: Kuang, Zhejun – sequence: 2 givenname: Xingbo surname: Xiong fullname: Xiong, Xingbo – sequence: 3 givenname: Gang surname: Wu fullname: Wu, Gang – sequence: 4 givenname: Feng surname: Wang fullname: Wang, Feng – sequence: 5 givenname: Jian orcidid: 0000-0003-3265-6461 surname: Zhao fullname: Zhao, Jian – sequence: 6 givenname: Dawen surname: Sun fullname: Sun, Dawen |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39338895$$D View this record in MEDLINE/PubMed |
| BookMark | eNptksFuEzEQhi1URNvAgRdAK3Ghh7Qee727PqEooqVSJFApR2R5veOto911sDeReuMdeEOeBCcpUVshH8aa-fx7xv5PydHgByTkLdBzziW9iCyHqgABL8gJ5CyfVozRo0f7Y3Ia45JSxjmvXpFjLlOspDghP2bZDRrf9zg0enR-yL7dxxH7zPqQ3QbXthj-_Po9M7va1-DboPveDW12s-4wZhuns6ugV3fZ3A9j0HF0G8wWqMOQoNfkpdVdxDcPcUK-X366nX-eLr5cXc9ni6kRVI7TEupSSmMpZ0CNqaiBEkUjrEUqCklpJYDWtpAVK3MJUhcN1ECRGcEN04ZPyPVet_F6qVbB9TrcK6-d2iV8aJUOozMdKlMKibZsNMUq54xLoJrnJq8rK4q6aZLWx73Wal332BjcjtU9EX1aGdydav1GAeRcyBKSwocHheB_rjGOqnfRYNfpAf06Kg5AJTBZ0oS-f4Yu_ToM6a12VCE5S11OyPmeanWawA3Wp4tNWg32ziQvWJfyswpoKSEX2wPvHs9waP7fvyfgbA-Y4GMMaA8IULX1lDp4KrEXz1jjxp1XUheu-8-Jv7cAzP8 |
| CitedBy_id | crossref_primary_10_1109_JIOT_2025_3532977 crossref_primary_10_1145_3734863 crossref_primary_10_1109_JIOT_2025_3553161 |
| Cites_doi | 10.1145/3477495.3532009 10.1609/aaai.v34i01.5330 10.1016/j.future.2021.11.006 10.1145/3377325.3377499 10.1007/978-3-030-64694-3_12 10.1007/978-981-99-4752-2_12 10.1109/INFOCOM42981.2021.9488687 10.1145/3576842.3582328 10.1016/j.engappai.2024.108766 10.1016/j.eswa.2023.121065 10.1016/j.ipm.2022.102869 10.1145/3485730.3494115 10.1109/SP40000.2020.00062 10.1145/3524610.3527922 10.1145/3540250.3558913 10.1145/3477495.3531937 10.1145/3397271.3401063 10.1145/3580305.3599768 10.1145/3432192 10.1145/3447264 10.1145/3404835.3462862 10.1145/3331184.3331267 10.1007/978-3-031-00126-0_11 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s24186151 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest - Health & Medical Complete保健、医学与药学数据库 ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials - QC Proquest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic ProQuest - Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_c759ef7da0e84323910a34c4b8f56bdd PMC11435971 A810791454 39338895 10_3390_s24186151 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Science and Technology Development Plan of Jilin Province of China grantid: 20230401092YY – fundername: Scientific Research Project of Jilin Provincial Department of Education grantid: JJKH20230680KJ |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c509t-71b799cf03210cc80c17e5d5ffe0569008510bf698274919a6d1b10e2c53c2ac3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001322870700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 18:26:42 EDT 2025 Tue Nov 04 02:05:30 EST 2025 Fri Sep 05 06:08:10 EDT 2025 Tue Oct 07 07:13:00 EDT 2025 Tue Nov 04 18:15:07 EST 2025 Mon Jul 21 05:40:19 EDT 2025 Sat Nov 29 07:11:25 EST 2025 Tue Nov 18 22:31:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Keywords | trigger–action programming rule recommendation graph contrastive learning Internet of Things |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-71b799cf03210cc80c17e5d5ffe0569008510bf698274919a6d1b10e2c53c2ac3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5632-7596 0000-0003-3265-6461 |
| OpenAccessLink | https://www.proquest.com/docview/3110693284?pq-origsite=%requestingapplication% |
| PMID | 39338895 |
| PQID | 3110693284 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c759ef7da0e84323910a34c4b8f56bdd pubmedcentral_primary_oai_pubmedcentral_nih_gov_11435971 proquest_miscellaneous_3110912970 proquest_journals_3110693284 gale_infotracacademiconefile_A810791454 pubmed_primary_39338895 crossref_primary_10_3390_s24186151 crossref_citationtrail_10_3390_s24186151 |
| PublicationCentury | 2000 |
| PublicationDate | 20240923 |
| PublicationDateYYYYMMDD | 2024-09-23 |
| PublicationDate_xml | – month: 9 year: 2024 text: 20240923 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Zhang (ref_7) 2022; 129 ref_14 Wu (ref_1) 2024; 235 ref_13 ref_12 ref_10 Corno (ref_2) 2021; 39 ref_19 ref_18 Kim (ref_3) 2022; 59 ref_17 ref_16 Zhang (ref_11) 2020; 4 Forouzandeh (ref_15) 2024; 135 ref_25 ref_24 ref_23 ref_22 ref_21 ref_20 ref_29 ref_28 ref_27 ref_26 ref_9 ref_8 ref_5 ref_4 ref_6 |
| References_xml | – ident: ref_24 doi: 10.1145/3477495.3532009 – ident: ref_27 doi: 10.1609/aaai.v34i01.5330 – volume: 129 start-page: 347 year: 2022 ident: ref_7 article-title: Smart objects recommendation based on pre-training with attention and the thing–thing relationship in social Internet of things publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2021.11.006 – ident: ref_13 doi: 10.1145/3377325.3377499 – ident: ref_14 doi: 10.1007/978-3-030-64694-3_12 – ident: ref_4 doi: 10.1007/978-981-99-4752-2_12 – ident: ref_10 doi: 10.1109/INFOCOM42981.2021.9488687 – ident: ref_8 doi: 10.1145/3576842.3582328 – volume: 135 start-page: 108766 year: 2024 ident: ref_15 article-title: UIFRS-HAN: User interests-aware food recommender system based on the heterogeneous attention network publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.108766 – volume: 235 start-page: 121065 year: 2024 ident: ref_1 article-title: A data fusion framework based on heterogeneous information network embedding for trigger-action programming in IoT publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121065 – volume: 59 start-page: 102869 year: 2022 ident: ref_3 article-title: What IoT devices and applications should be connected? Predicting user behaviors of IoT services with node2vec embedding publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2022.102869 – ident: ref_23 – ident: ref_9 doi: 10.1145/3485730.3494115 – ident: ref_12 doi: 10.1109/SP40000.2020.00062 – ident: ref_5 doi: 10.1145/3524610.3527922 – ident: ref_25 – ident: ref_29 – ident: ref_6 doi: 10.1145/3540250.3558913 – ident: ref_17 doi: 10.1145/3477495.3531937 – ident: ref_26 doi: 10.1145/3397271.3401063 – ident: ref_19 – ident: ref_22 – ident: ref_18 doi: 10.1145/3580305.3599768 – volume: 4 start-page: 1 year: 2020 ident: ref_11 article-title: Trace2tap: Synthesizing trigger-action programs from traces of behavior publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. doi: 10.1145/3432192 – ident: ref_20 – volume: 39 start-page: 1 year: 2021 ident: ref_2 article-title: From users’ intentions to if-then rules in the internet of things publication-title: ACM Trans. Inf. Syst. (TOIS) doi: 10.1145/3447264 – ident: ref_16 doi: 10.1145/3404835.3462862 – ident: ref_28 doi: 10.1145/3331184.3331267 – ident: ref_21 doi: 10.1007/978-3-031-00126-0_11 |
| SSID | ssj0023338 |
| Score | 2.4478576 |
| Snippet | Trigger–action programming (TAP) enables users to automate Internet of Things (IoT) devices by creating rules such as “IF Device1.TriggerState is triggered,... Trigger-action programming (TAP) enables users to automate Internet of Things (IoT) devices by creating rules such as "IF Device1.TriggerState is triggered,... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 6151 |
| SubjectTerms | Automation Collaboration Computational linguistics Efficiency End users graph contrastive learning Internet of Things Language processing Natural language interfaces Recommender systems rule recommendation Semantics trigger–action programming Web applications |
| SummonAdditionalLinks | – databaseName: DOAJ dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ni9UwFA0yuNCF-G11lCiCbsq0TdIky6c4uhoGGWE2EpI0GR_M68jre7P2P_gP_SXe2-SVVxTcuG1SSG9ucs6hybmEvG6DkN4LWXJXNyXvmra00skyWO08wJWLwo3FJuTJiTo_16d7pb7wTFiyB06BO_JS6BBlZ6ugOGsYwJtl3HOnomhd1-HuW0m9E1NZajFQXslHiIGoPxoApxRi9wx9RpP-P7fiPSyan5PcA57ju-ROZox0kUZ6j9wI_X1ye89H8AH5uqAoI1erkEsk0WREToGR0jPQ3xdh_evHz8V4h4GepiNZK3iVft5ehoFeLy39iM7VFM2q1nbAPZBm69WLh-TL8Yez95_KXDeh9AD_m1LWTmrtY4X3c7xXFQQ9iE7EGIDu6JFlVS62WoEk1bW2bVe7ugqNF8w31rNH5KC_6sMTQp1zEaYNfcc0wB2znlu0t-GWdcFHW5C3u3gan03FsbbFpQFxgaE3U-gL8mrq-j05afyt0zuclKkDml-PDyAlTE4J86-UKMgbnFKDSxQG422-aQCfhGZXZqFA8-qaC16Qw92sm7x2B8OAEbVAaxU0v5yaYdXhrxTbh6tt6qOBKsmqII9TkkxjZhqST2lREDVLn9lHzVv65bfR2btG9qpl_fR_hOEZudUAA8PDLQ07JAeb9TY8Jzf99WY5rF-M6-U3z84dWg priority: 102 providerName: Directory of Open Access Journals |
| Title | A Recommendation System for Trigger–Action Programming Rules via Graph Contrastive Learning |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39338895 https://www.proquest.com/docview/3110693284 https://www.proquest.com/docview/3110912970 https://pubmed.ncbi.nlm.nih.gov/PMC11435971 https://doaj.org/article/c759ef7da0e84323910a34c4b8f56bdd |
| Volume | 24 |
| WOSCitedRecordID | wos001322870700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BLgc48H4ElsogJLhEm8RJbJ9QF3WBw1bVapHKAUW245RK23ZJ2j0i_gP_kF_CTOJ2W4G4cPHBdiJbM575xo9vAF7lLhPWZiJMTZyEaZnkoRZGhE4rY9FdmSozbbIJMRzK8ViN_IZb469Vrm1ia6jLhaU98kOOfipHsCHTtxffQsoaRaerPoXGddintNmk52J8FXBxjL86NiGOof1hg95Kkgff8UEtVf-fBnnLI-3eltxyP8d3_nfgd-G2B56s32nKPbjm5vfh1hYd4QP40mcUjc5mzmdaYh2fOUNgy87wlxNX__rxs98-hWCj7mbXDD9lp6tz17DLqWbviQCbEedVrRsypcwzuE4ewqfjwdm7D6FPvxBaRBHLUMRGKGWriJ75WCsjlJ3LyqyqHKIm1YK1yFS5khjZqljpvIxNHLnEZtwm2vJHsDdfzN0TYMaYCqVP9GUKvSbXNtXEkpNqXjpb6QDerAVSWM9NTikyzguMUUh2xUZ2AbzcdL3oCDn-1umIpLrpQBzabcWinhR-SRZWZMpVotSRkylPOAInzVObGllluSnLAF6TThS00nEwVvsHCzgl4swq-hJDZxWnWRrAwVr0hTcBTXEl9wBebJpx8dKJjJ67xarroxBxiSiAx52WbcbMFWqvVFkAckf_dia12zKffm0JwmMCwUrET_89rmdwM0GIRrdfEn4Ae8t65Z7DDXu5nDZ1r11KbSl7sH80GI5Oe-2OBZYn3wdYN_p4Mvr8G5-OMSI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBYmy4F0IFDAIBJuoSZzE8QKh4VFatYwqNEizQcF2nGGkzkxJZorY8Q_8Bx_Fl3BvkkknArHrgm3iRHZyfM-5iX0uwOPYRsKYSLih9gM3zILYVUIL1yqpDdKVziNdFZsQ_X4yHMrDNfi53AtDyyqXMbEK1NnM0DfybY48FaPYSMIXx19cqhpFf1eXJTRqWOzbb18xZSuf773G9_skCHbeDF7tuk1VAdcgOc5d4Wshpck92r1iTOJhl2yURXluUQzISoN4Oo9lggmb9KWKM1_7ng1MxE2gDMf7noPzGMcFJXtieJrgccz3avcizqW3XSI7JqQYOpxXlQb4kwBWGLC7OnOF7nau_G8P6ipcboQ169Uz4Rqs2el1uLRit3gDPvYYZduTiW0qSbHar52hcGcDHMLIFr--_-hVWz3YYb1ybYKXsveLI1uyk7Fib8ngm5GnV6FKogrWONSObsKHMxnfJqxPZ1N7G5jWOkd0kz2bRFXAlQkVuQCFimfW5MqBZ0sApKbxXqcSIEcp5mCElbTFigOP2qbHteHI3xq9JBS1DcgjvDowK0ZpE3JSIyJpc5EpzyYhDzgKQ8VDE-okj2KdZQ48JQymFMmwM0Y1GzJwSOQJlvYS3xPSD6PQga0l1NImxJXpKc4ceNiexuBEf5zU1M4WdRuJilJ4DtyqUd32mUucLYmMHEg6eO8MqntmOv5cGaD7JPKl8O_8u18P4OLu4N1BerDX378LGwHKUVrpE_AtWJ8XC3sPLpiT-bgs7lfTmMGns54OvwFKk4Wf |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwEB4tXYTgwP9PYAGDQHCJmsRJHB8QKiyFaqGq0CItBxRsxymVtunStIu48Q68DY_DkzCTpKEViNseuCZOZCffzHyTjL8BeBDbSBgTCTfUfuCGWRC7SmjhWiW1wXCl80hXzSbEcJgcHMjRFvxY7YWhssqVT6wcdTYz9I28yzFOxUg2krCbN2URo93-06PPLnWQoj-tq3YaNUT27NcvmL6VTwa7-K4fBkH_xf7zV27TYcA1GCgXrvC1kNLkHu1kMSbxcHo2yqI8t0gMZMVHPJ3HMsHkTfpSxZmvfc8GJuImUIbjfU_BNlLyMOjA9mjwZvS-Tfc4Zn-1lhHn0uuWGCsT4g8bEbBqFPBnOFiLh5u1mmvBr3_hf35sF-F8Q7lZr7aRS7Bli8twbk2I8Qp86DHKw6dT2_SYYrWSO0NKz_ZxCWM7__nte6_aBMJGdU3bFC9lb5eHtmTHE8VekvQ3I7WvuSopiLBGu3Z8Fd6dyPquQaeYFfYGMK11jrgn4TaJfIErEyrSBwoVz6zJlQOPV2BITaPKTs1BDlPMzgg3aYsbB-63Q49qKZK_DXpGiGoHkHp4dWA2H6eNM0qNiKTNRaY8m4Q84EgZFQ9NqJM8inWWOfCI8JiSj8PJGNVs1cAlkVpY2kt8T0g_jEIHdlawSxvnV6a_MefAvfY0ui36F6UKO1vWYyRyTeE5cL1GeDtnLtFyEhk5kGxgf2NRm2eKyadKGt0n-i-Ff_Pf87oLZ9AK0teD4d4tOBsgT6USoIDvQGcxX9rbcNocLybl_E5j0ww-nrQ9_AJ0t4_u |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Recommendation+System+for+Trigger-Action+Programming+Rules+via+Graph+Contrastive+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kuang%2C+Zhejun&rft.au=Xiong%2C+Xingbo&rft.au=Wu%2C+Gang&rft.au=Wang%2C+Feng&rft.date=2024-09-23&rft.eissn=1424-8220&rft.volume=24&rft.issue=18&rft_id=info:doi/10.3390%2Fs24186151&rft_id=info%3Apmid%2F39338895&rft.externalDocID=39338895 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |