A Recommendation System for Trigger–Action Programming Rules via Graph Contrastive Learning

Trigger–action programming (TAP) enables users to automate Internet of Things (IoT) devices by creating rules such as “IF Device1.TriggerState is triggered, THEN Device2.ActionState is executed”. As the number of IoT devices grows, the combination space between the functions provided by devices expa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 24; číslo 18; s. 6151
Hlavní autoři: Kuang, Zhejun, Xiong, Xingbo, Wu, Gang, Wang, Feng, Zhao, Jian, Sun, Dawen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 23.09.2024
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Trigger–action programming (TAP) enables users to automate Internet of Things (IoT) devices by creating rules such as “IF Device1.TriggerState is triggered, THEN Device2.ActionState is executed”. As the number of IoT devices grows, the combination space between the functions provided by devices expands, making manual rule creation time-consuming for end-users. Existing TAP recommendation systems enhance the efficiency of rule discovery but face two primary issues: they ignore the association of rules between users and fail to model collaborative information among users. To address these issues, this article proposes a graph contrastive learning-based recommendation system for TAP rules, named GCL4TAP. In GCL4TAP, we first devise a data partitioning method called DATA2DIV, which establishes cross-user rule relationships and is represented by a user–rule bipartite graph. Then, we design a user–user graph to model the similarities among users based on the categories and quantities of devices that they own. Finally, these graphs are converted into low-dimensional vector representations of users and rules using graph contrastive learning techniques. Extensive experiments conducted on a real-world smart home dataset demonstrate the superior performance of GCL4TAP compared to other state-of-the-art methods.
AbstractList Trigger-action programming (TAP) enables users to automate Internet of Things (IoT) devices by creating rules such as "IF Device1.TriggerState is triggered, THEN Device2.ActionState is executed". As the number of IoT devices grows, the combination space between the functions provided by devices expands, making manual rule creation time-consuming for end-users. Existing TAP recommendation systems enhance the efficiency of rule discovery but face two primary issues: they ignore the association of rules between users and fail to model collaborative information among users. To address these issues, this article proposes a graph contrastive learning-based recommendation system for TAP rules, named GCL4TAP. In GCL4TAP, we first devise a data partitioning method called DATA2DIV, which establishes cross-user rule relationships and is represented by a user-rule bipartite graph. Then, we design a user-user graph to model the similarities among users based on the categories and quantities of devices that they own. Finally, these graphs are converted into low-dimensional vector representations of users and rules using graph contrastive learning techniques. Extensive experiments conducted on a real-world smart home dataset demonstrate the superior performance of GCL4TAP compared to other state-of-the-art methods.
Trigger-action programming (TAP) enables users to automate Internet of Things (IoT) devices by creating rules such as "IF Device1.TriggerState is triggered, THEN Device2.ActionState is executed". As the number of IoT devices grows, the combination space between the functions provided by devices expands, making manual rule creation time-consuming for end-users. Existing TAP recommendation systems enhance the efficiency of rule discovery but face two primary issues: they ignore the association of rules between users and fail to model collaborative information among users. To address these issues, this article proposes a graph contrastive learning-based recommendation system for TAP rules, named GCL4TAP. In GCL4TAP, we first devise a data partitioning method called DATA2DIV, which establishes cross-user rule relationships and is represented by a user-rule bipartite graph. Then, we design a user-user graph to model the similarities among users based on the categories and quantities of devices that they own. Finally, these graphs are converted into low-dimensional vector representations of users and rules using graph contrastive learning techniques. Extensive experiments conducted on a real-world smart home dataset demonstrate the superior performance of GCL4TAP compared to other state-of-the-art methods.Trigger-action programming (TAP) enables users to automate Internet of Things (IoT) devices by creating rules such as "IF Device1.TriggerState is triggered, THEN Device2.ActionState is executed". As the number of IoT devices grows, the combination space between the functions provided by devices expands, making manual rule creation time-consuming for end-users. Existing TAP recommendation systems enhance the efficiency of rule discovery but face two primary issues: they ignore the association of rules between users and fail to model collaborative information among users. To address these issues, this article proposes a graph contrastive learning-based recommendation system for TAP rules, named GCL4TAP. In GCL4TAP, we first devise a data partitioning method called DATA2DIV, which establishes cross-user rule relationships and is represented by a user-rule bipartite graph. Then, we design a user-user graph to model the similarities among users based on the categories and quantities of devices that they own. Finally, these graphs are converted into low-dimensional vector representations of users and rules using graph contrastive learning techniques. Extensive experiments conducted on a real-world smart home dataset demonstrate the superior performance of GCL4TAP compared to other state-of-the-art methods.
Audience Academic
Author Sun, Dawen
Kuang, Zhejun
Xiong, Xingbo
Zhao, Jian
Wu, Gang
Wang, Feng
AuthorAffiliation 1 College of Computer Science and Technology, Changchun University, Changchun 130022, China; kuangzhejun@ccu.edu.cn (Z.K.); 231501519@mails.ccu.edu.cn (X.X.); zhaojian@ccu.edu.cn (J.Z.)
2 Jilin Provincial Key Laboratory of Human Health Status Identification Function & Enhancement, Changchun 130022, China
3 Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Changchun University, Ministry of Education, Changchun 130022, China
4 College of Computer Science and Technology, Jilin University, Changchun 130012, China; wugang17@mails.jlu.edu.cn (G.W.); wangfeng12@mails.jlu.edu.cn (F.W.)
AuthorAffiliation_xml – name: 3 Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled, Changchun University, Ministry of Education, Changchun 130022, China
– name: 4 College of Computer Science and Technology, Jilin University, Changchun 130012, China; wugang17@mails.jlu.edu.cn (G.W.); wangfeng12@mails.jlu.edu.cn (F.W.)
– name: 1 College of Computer Science and Technology, Changchun University, Changchun 130022, China; kuangzhejun@ccu.edu.cn (Z.K.); 231501519@mails.ccu.edu.cn (X.X.); zhaojian@ccu.edu.cn (J.Z.)
– name: 2 Jilin Provincial Key Laboratory of Human Health Status Identification Function & Enhancement, Changchun 130022, China
Author_xml – sequence: 1
  givenname: Zhejun
  orcidid: 0000-0001-5632-7596
  surname: Kuang
  fullname: Kuang, Zhejun
– sequence: 2
  givenname: Xingbo
  surname: Xiong
  fullname: Xiong, Xingbo
– sequence: 3
  givenname: Gang
  surname: Wu
  fullname: Wu, Gang
– sequence: 4
  givenname: Feng
  surname: Wang
  fullname: Wang, Feng
– sequence: 5
  givenname: Jian
  orcidid: 0000-0003-3265-6461
  surname: Zhao
  fullname: Zhao, Jian
– sequence: 6
  givenname: Dawen
  surname: Sun
  fullname: Sun, Dawen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39338895$$D View this record in MEDLINE/PubMed
BookMark eNptksFuEzEQhi1URNvAgRdAK3Ghh7Qee727PqEooqVSJFApR2R5veOto911sDeReuMdeEOeBCcpUVshH8aa-fx7xv5PydHgByTkLdBzziW9iCyHqgABL8gJ5CyfVozRo0f7Y3Ia45JSxjmvXpFjLlOspDghP2bZDRrf9zg0enR-yL7dxxH7zPqQ3QbXthj-_Po9M7va1-DboPveDW12s-4wZhuns6ugV3fZ3A9j0HF0G8wWqMOQoNfkpdVdxDcPcUK-X366nX-eLr5cXc9ni6kRVI7TEupSSmMpZ0CNqaiBEkUjrEUqCklpJYDWtpAVK3MJUhcN1ECRGcEN04ZPyPVet_F6qVbB9TrcK6-d2iV8aJUOozMdKlMKibZsNMUq54xLoJrnJq8rK4q6aZLWx73Wal332BjcjtU9EX1aGdydav1GAeRcyBKSwocHheB_rjGOqnfRYNfpAf06Kg5AJTBZ0oS-f4Yu_ToM6a12VCE5S11OyPmeanWawA3Wp4tNWg32ziQvWJfyswpoKSEX2wPvHs9waP7fvyfgbA-Y4GMMaA8IULX1lDp4KrEXz1jjxp1XUheu-8-Jv7cAzP8
CitedBy_id crossref_primary_10_1109_JIOT_2025_3532977
crossref_primary_10_1145_3734863
crossref_primary_10_1109_JIOT_2025_3553161
Cites_doi 10.1145/3477495.3532009
10.1609/aaai.v34i01.5330
10.1016/j.future.2021.11.006
10.1145/3377325.3377499
10.1007/978-3-030-64694-3_12
10.1007/978-981-99-4752-2_12
10.1109/INFOCOM42981.2021.9488687
10.1145/3576842.3582328
10.1016/j.engappai.2024.108766
10.1016/j.eswa.2023.121065
10.1016/j.ipm.2022.102869
10.1145/3485730.3494115
10.1109/SP40000.2020.00062
10.1145/3524610.3527922
10.1145/3540250.3558913
10.1145/3477495.3531937
10.1145/3397271.3401063
10.1145/3580305.3599768
10.1145/3432192
10.1145/3447264
10.1145/3404835.3462862
10.1145/3331184.3331267
10.1007/978-3-031-00126-0_11
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24186151
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest - Health & Medical Complete保健、医学与药学数据库
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials - QC
Proquest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

Publicly Available Content Database
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_c759ef7da0e84323910a34c4b8f56bdd
PMC11435971
A810791454
39338895
10_3390_s24186151
Genre Journal Article
GrantInformation_xml – fundername: Science and Technology Development Plan of Jilin Province of China
  grantid: 20230401092YY
– fundername: Scientific Research Project of Jilin Provincial Department of Education
  grantid: JJKH20230680KJ
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c509t-71b799cf03210cc80c17e5d5ffe0569008510bf698274919a6d1b10e2c53c2ac3
IEDL.DBID 7X7
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001322870700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 18:26:42 EDT 2025
Tue Nov 04 02:05:30 EST 2025
Fri Sep 05 06:08:10 EDT 2025
Tue Oct 07 07:13:00 EDT 2025
Tue Nov 04 18:15:07 EST 2025
Mon Jul 21 05:40:19 EDT 2025
Sat Nov 29 07:11:25 EST 2025
Tue Nov 18 22:31:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords trigger–action programming
rule recommendation
graph contrastive learning
Internet of Things
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-71b799cf03210cc80c17e5d5ffe0569008510bf698274919a6d1b10e2c53c2ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5632-7596
0000-0003-3265-6461
OpenAccessLink https://www.proquest.com/docview/3110693284?pq-origsite=%requestingapplication%
PMID 39338895
PQID 3110693284
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_c759ef7da0e84323910a34c4b8f56bdd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11435971
proquest_miscellaneous_3110912970
proquest_journals_3110693284
gale_infotracacademiconefile_A810791454
pubmed_primary_39338895
crossref_primary_10_3390_s24186151
crossref_citationtrail_10_3390_s24186151
PublicationCentury 2000
PublicationDate 20240923
PublicationDateYYYYMMDD 2024-09-23
PublicationDate_xml – month: 9
  year: 2024
  text: 20240923
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhang (ref_7) 2022; 129
ref_14
Wu (ref_1) 2024; 235
ref_13
ref_12
ref_10
Corno (ref_2) 2021; 39
ref_19
ref_18
Kim (ref_3) 2022; 59
ref_17
ref_16
Zhang (ref_11) 2020; 4
Forouzandeh (ref_15) 2024; 135
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
ref_29
ref_28
ref_27
ref_26
ref_9
ref_8
ref_5
ref_4
ref_6
References_xml – ident: ref_24
  doi: 10.1145/3477495.3532009
– ident: ref_27
  doi: 10.1609/aaai.v34i01.5330
– volume: 129
  start-page: 347
  year: 2022
  ident: ref_7
  article-title: Smart objects recommendation based on pre-training with attention and the thing–thing relationship in social Internet of things
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2021.11.006
– ident: ref_13
  doi: 10.1145/3377325.3377499
– ident: ref_14
  doi: 10.1007/978-3-030-64694-3_12
– ident: ref_4
  doi: 10.1007/978-981-99-4752-2_12
– ident: ref_10
  doi: 10.1109/INFOCOM42981.2021.9488687
– ident: ref_8
  doi: 10.1145/3576842.3582328
– volume: 135
  start-page: 108766
  year: 2024
  ident: ref_15
  article-title: UIFRS-HAN: User interests-aware food recommender system based on the heterogeneous attention network
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.108766
– volume: 235
  start-page: 121065
  year: 2024
  ident: ref_1
  article-title: A data fusion framework based on heterogeneous information network embedding for trigger-action programming in IoT
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121065
– volume: 59
  start-page: 102869
  year: 2022
  ident: ref_3
  article-title: What IoT devices and applications should be connected? Predicting user behaviors of IoT services with node2vec embedding
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2022.102869
– ident: ref_23
– ident: ref_9
  doi: 10.1145/3485730.3494115
– ident: ref_12
  doi: 10.1109/SP40000.2020.00062
– ident: ref_5
  doi: 10.1145/3524610.3527922
– ident: ref_25
– ident: ref_29
– ident: ref_6
  doi: 10.1145/3540250.3558913
– ident: ref_17
  doi: 10.1145/3477495.3531937
– ident: ref_26
  doi: 10.1145/3397271.3401063
– ident: ref_19
– ident: ref_22
– ident: ref_18
  doi: 10.1145/3580305.3599768
– volume: 4
  start-page: 1
  year: 2020
  ident: ref_11
  article-title: Trace2tap: Synthesizing trigger-action programs from traces of behavior
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
  doi: 10.1145/3432192
– ident: ref_20
– volume: 39
  start-page: 1
  year: 2021
  ident: ref_2
  article-title: From users’ intentions to if-then rules in the internet of things
  publication-title: ACM Trans. Inf. Syst. (TOIS)
  doi: 10.1145/3447264
– ident: ref_16
  doi: 10.1145/3404835.3462862
– ident: ref_28
  doi: 10.1145/3331184.3331267
– ident: ref_21
  doi: 10.1007/978-3-031-00126-0_11
SSID ssj0023338
Score 2.4478576
Snippet Trigger–action programming (TAP) enables users to automate Internet of Things (IoT) devices by creating rules such as “IF Device1.TriggerState is triggered,...
Trigger-action programming (TAP) enables users to automate Internet of Things (IoT) devices by creating rules such as "IF Device1.TriggerState is triggered,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6151
SubjectTerms Automation
Collaboration
Computational linguistics
Efficiency
End users
graph contrastive learning
Internet of Things
Language processing
Natural language interfaces
Recommender systems
rule recommendation
Semantics
trigger–action programming
Web applications
SummonAdditionalLinks – databaseName: DOAJ
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ni9UwFA0yuNCF-G11lCiCbsq0TdIky6c4uhoGGWE2EpI0GR_M68jre7P2P_gP_SXe2-SVVxTcuG1SSG9ucs6hybmEvG6DkN4LWXJXNyXvmra00skyWO08wJWLwo3FJuTJiTo_16d7pb7wTFiyB06BO_JS6BBlZ6ugOGsYwJtl3HOnomhd1-HuW0m9E1NZajFQXslHiIGoPxoApxRi9wx9RpP-P7fiPSyan5PcA57ju-ROZox0kUZ6j9wI_X1ye89H8AH5uqAoI1erkEsk0WREToGR0jPQ3xdh_evHz8V4h4GepiNZK3iVft5ehoFeLy39iM7VFM2q1nbAPZBm69WLh-TL8Yez95_KXDeh9AD_m1LWTmrtY4X3c7xXFQQ9iE7EGIDu6JFlVS62WoEk1bW2bVe7ugqNF8w31rNH5KC_6sMTQp1zEaYNfcc0wB2znlu0t-GWdcFHW5C3u3gan03FsbbFpQFxgaE3U-gL8mrq-j05afyt0zuclKkDml-PDyAlTE4J86-UKMgbnFKDSxQG422-aQCfhGZXZqFA8-qaC16Qw92sm7x2B8OAEbVAaxU0v5yaYdXhrxTbh6tt6qOBKsmqII9TkkxjZhqST2lREDVLn9lHzVv65bfR2btG9qpl_fR_hOEZudUAA8PDLQ07JAeb9TY8Jzf99WY5rF-M6-U3z84dWg
  priority: 102
  providerName: Directory of Open Access Journals
Title A Recommendation System for Trigger–Action Programming Rules via Graph Contrastive Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/39338895
https://www.proquest.com/docview/3110693284
https://www.proquest.com/docview/3110912970
https://pubmed.ncbi.nlm.nih.gov/PMC11435971
https://doaj.org/article/c759ef7da0e84323910a34c4b8f56bdd
Volume 24
WOSCitedRecordID wos001322870700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BLgc48H4ElsogJLhEm8RJbJ9QF3WBw1bVapHKAUW245RK23ZJ2j0i_gP_kF_CTOJ2W4G4cPHBdiJbM575xo9vAF7lLhPWZiJMTZyEaZnkoRZGhE4rY9FdmSozbbIJMRzK8ViN_IZb469Vrm1ia6jLhaU98kOOfipHsCHTtxffQsoaRaerPoXGddintNmk52J8FXBxjL86NiGOof1hg95Kkgff8UEtVf-fBnnLI-3eltxyP8d3_nfgd-G2B56s32nKPbjm5vfh1hYd4QP40mcUjc5mzmdaYh2fOUNgy87wlxNX__rxs98-hWCj7mbXDD9lp6tz17DLqWbviQCbEedVrRsypcwzuE4ewqfjwdm7D6FPvxBaRBHLUMRGKGWriJ75WCsjlJ3LyqyqHKIm1YK1yFS5khjZqljpvIxNHLnEZtwm2vJHsDdfzN0TYMaYCqVP9GUKvSbXNtXEkpNqXjpb6QDerAVSWM9NTikyzguMUUh2xUZ2AbzcdL3oCDn-1umIpLrpQBzabcWinhR-SRZWZMpVotSRkylPOAInzVObGllluSnLAF6TThS00nEwVvsHCzgl4swq-hJDZxWnWRrAwVr0hTcBTXEl9wBebJpx8dKJjJ67xarroxBxiSiAx52WbcbMFWqvVFkAckf_dia12zKffm0JwmMCwUrET_89rmdwM0GIRrdfEn4Ae8t65Z7DDXu5nDZ1r11KbSl7sH80GI5Oe-2OBZYn3wdYN_p4Mvr8G5-OMSI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBYmy4F0IFDAIBJuoSZzE8QKh4VFatYwqNEizQcF2nGGkzkxJZorY8Q_8Bx_Fl3BvkkknArHrgm3iRHZyfM-5iX0uwOPYRsKYSLih9gM3zILYVUIL1yqpDdKVziNdFZsQ_X4yHMrDNfi53AtDyyqXMbEK1NnM0DfybY48FaPYSMIXx19cqhpFf1eXJTRqWOzbb18xZSuf773G9_skCHbeDF7tuk1VAdcgOc5d4Wshpck92r1iTOJhl2yURXluUQzISoN4Oo9lggmb9KWKM1_7ng1MxE2gDMf7noPzGMcFJXtieJrgccz3avcizqW3XSI7JqQYOpxXlQb4kwBWGLC7OnOF7nau_G8P6ipcboQ169Uz4Rqs2el1uLRit3gDPvYYZduTiW0qSbHar52hcGcDHMLIFr--_-hVWz3YYb1ybYKXsveLI1uyk7Fib8ngm5GnV6FKogrWONSObsKHMxnfJqxPZ1N7G5jWOkd0kz2bRFXAlQkVuQCFimfW5MqBZ0sApKbxXqcSIEcp5mCElbTFigOP2qbHteHI3xq9JBS1DcgjvDowK0ZpE3JSIyJpc5EpzyYhDzgKQ8VDE-okj2KdZQ48JQymFMmwM0Y1GzJwSOQJlvYS3xPSD6PQga0l1NImxJXpKc4ceNiexuBEf5zU1M4WdRuJilJ4DtyqUd32mUucLYmMHEg6eO8MqntmOv5cGaD7JPKl8O_8u18P4OLu4N1BerDX378LGwHKUVrpE_AtWJ8XC3sPLpiT-bgs7lfTmMGns54OvwFKk4Wf
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwEB4tXYTgwP9PYAGDQHCJmsRJHB8QKiyFaqGq0CItBxRsxymVtunStIu48Q68DY_DkzCTpKEViNseuCZOZCffzHyTjL8BeBDbSBgTCTfUfuCGWRC7SmjhWiW1wXCl80hXzSbEcJgcHMjRFvxY7YWhssqVT6wcdTYz9I28yzFOxUg2krCbN2URo93-06PPLnWQoj-tq3YaNUT27NcvmL6VTwa7-K4fBkH_xf7zV27TYcA1GCgXrvC1kNLkHu1kMSbxcHo2yqI8t0gMZMVHPJ3HMsHkTfpSxZmvfc8GJuImUIbjfU_BNlLyMOjA9mjwZvS-Tfc4Zn-1lhHn0uuWGCsT4g8bEbBqFPBnOFiLh5u1mmvBr3_hf35sF-F8Q7lZr7aRS7Bli8twbk2I8Qp86DHKw6dT2_SYYrWSO0NKz_ZxCWM7__nte6_aBMJGdU3bFC9lb5eHtmTHE8VekvQ3I7WvuSopiLBGu3Z8Fd6dyPquQaeYFfYGMK11jrgn4TaJfIErEyrSBwoVz6zJlQOPV2BITaPKTs1BDlPMzgg3aYsbB-63Q49qKZK_DXpGiGoHkHp4dWA2H6eNM0qNiKTNRaY8m4Q84EgZFQ9NqJM8inWWOfCI8JiSj8PJGNVs1cAlkVpY2kt8T0g_jEIHdlawSxvnV6a_MefAvfY0ui36F6UKO1vWYyRyTeE5cL1GeDtnLtFyEhk5kGxgf2NRm2eKyadKGt0n-i-Ff_Pf87oLZ9AK0teD4d4tOBsgT6USoIDvQGcxX9rbcNocLybl_E5j0ww-nrQ9_AJ0t4_u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Recommendation+System+for+Trigger-Action+Programming+Rules+via+Graph+Contrastive+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kuang%2C+Zhejun&rft.au=Xiong%2C+Xingbo&rft.au=Wu%2C+Gang&rft.au=Wang%2C+Feng&rft.date=2024-09-23&rft.eissn=1424-8220&rft.volume=24&rft.issue=18&rft_id=info:doi/10.3390%2Fs24186151&rft_id=info%3Apmid%2F39338895&rft.externalDocID=39338895
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon