Time-Optimal Asymmetric S-Curve Trajectory Planning of Redundant Manipulators under Kinematic Constraints
This paper proposes a novel trajectory planning algorithm to design an end-effector motion profile along a specified path. An optimization model based on the whale optimization algorithm (WOA) is established for time-optimal asymmetrical S-curve velocity scheduling. Trajectories designed by end-effe...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 23; no. 6; p. 3074 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
13.03.2023
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper proposes a novel trajectory planning algorithm to design an end-effector motion profile along a specified path. An optimization model based on the whale optimization algorithm (WOA) is established for time-optimal asymmetrical S-curve velocity scheduling. Trajectories designed by end-effector limits may violate kinematic constraints due to the non-linear relationship between the operation and joint space of redundant manipulators. A constraints conversion approach is proposed to update end-effector limits. The path can be divided into segments at the minimum of the updated limitations. On each path segment, the jerk-limited S-shaped velocity profile is generated within the updated limitations. The proposed method aims to generate end-effector trajectory by kinematic constraints which are imposed on joints, resulting in efficient robot motion performance. The WOA-based asymmetrical S-curve velocity scheduling algorithm can be automatically adjusted for different path lengths and start/end velocities, allowing flexibility in finding the time-optimal solution under complex constraints. Simulations and experiments on a redundant manipulator prove the effect and superiority of the proposed method. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1424-8220 1424-8220 |
| DOI: | 10.3390/s23063074 |