Real-Time Forecasting of Subsurface Inclusion Defects for Continuous Casting Slabs: A Data-Driven Comparative Study
Subsurface inclusions are one of the most common defects that affect the inner quality of continuous casting slabs. This increases the defects in the final products and increases the complexity of the hot charge rolling process and may even cause breakout accidents. The defects are, however, hard to...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 23; no. 12; p. 5415 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
07.06.2023
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Subsurface inclusions are one of the most common defects that affect the inner quality of continuous casting slabs. This increases the defects in the final products and increases the complexity of the hot charge rolling process and may even cause breakout accidents. The defects are, however, hard to detect online by traditional mechanism-model-based and physics-based methods. In the present paper, a comparative study is carried out based on data-driven methods, which are only sporadically discussed in the literature. As a further contribution, a scatter-regularized kernel discriminative least squares (SR-KDLS) model and a stacked defect-related autoencoder back propagation neural network (SDAE-BPNN) model are developed to improve the forecasting performance. The scatter-regularized kernel discriminative least squares is designed as a coherent framework to directly provide forecasting information instead of low-dimensional embeddings. The stacked defect-related autoencoder back propagation neural network extracts deep defect-related features layer by layer for a higher feasibility and accuracy. The feasibility and efficiency of the data-driven methods are demonstrated through case studies based on a real-life continuous casting process, where the imbalance degree drastically vary in different categories, showing that the defects are timely (within 0.01 ms) and accurately forecasted. Moreover, experiments illustrate the merits of the developed scatter-regularized kernel discriminative least squares and stacked defect-related autoencoder back propagation neural network methods regarding the computational burden; the F1 scores of the developed methods are clearly higher than common methods. |
|---|---|
| AbstractList | Subsurface inclusions are one of the most common defects that affect the inner quality of continuous casting slabs. This increases the defects in the final products and increases the complexity of the hot charge rolling process and may even cause breakout accidents. The defects are, however, hard to detect online by traditional mechanism-model-based and physics-based methods. In the present paper, a comparative study is carried out based on data-driven methods, which are only sporadically discussed in the literature. As a further contribution, a scatter-regularized kernel discriminative least squares (SR-KDLS) model and a stacked defect-related autoencoder back propagation neural network (SDAE-BPNN) model are developed to improve the forecasting performance. The scatter-regularized kernel discriminative least squares is designed as a coherent framework to directly provide forecasting information instead of low-dimensional embeddings. The stacked defect-related autoencoder back propagation neural network extracts deep defect-related features layer by layer for a higher feasibility and accuracy. The feasibility and efficiency of the data-driven methods are demonstrated through case studies based on a real-life continuous casting process, where the imbalance degree drastically vary in different categories, showing that the defects are timely (within 0.01 ms) and accurately forecasted. Moreover, experiments illustrate the merits of the developed scatter-regularized kernel discriminative least squares and stacked defect-related autoencoder back propagation neural network methods regarding the computational burden; the F1 scores of the developed methods are clearly higher than common methods. Subsurface inclusions are one of the most common defects that affect the inner quality of continuous casting slabs. This increases the defects in the final products and increases the complexity of the hot charge rolling process and may even cause breakout accidents. The defects are, however, hard to detect online by traditional mechanism-model-based and physics-based methods. In the present paper, a comparative study is carried out based on data-driven methods, which are only sporadically discussed in the literature. As a further contribution, a scatter-regularized kernel discriminative least squares (SR-KDLS) model and a stacked defect-related autoencoder back propagation neural network (SDAE-BPNN) model are developed to improve the forecasting performance. The scatter-regularized kernel discriminative least squares is designed as a coherent framework to directly provide forecasting information instead of low-dimensional embeddings. The stacked defect-related autoencoder back propagation neural network extracts deep defect-related features layer by layer for a higher feasibility and accuracy. The feasibility and efficiency of the data-driven methods are demonstrated through case studies based on a real-life continuous casting process, where the imbalance degree drastically vary in different categories, showing that the defects are timely (within 0.01 ms) and accurately forecasted. Moreover, experiments illustrate the merits of the developed scatter-regularized kernel discriminative least squares and stacked defect-related autoencoder back propagation neural network methods regarding the computational burden; the F1 scores of the developed methods are clearly higher than common methods.Subsurface inclusions are one of the most common defects that affect the inner quality of continuous casting slabs. This increases the defects in the final products and increases the complexity of the hot charge rolling process and may even cause breakout accidents. The defects are, however, hard to detect online by traditional mechanism-model-based and physics-based methods. In the present paper, a comparative study is carried out based on data-driven methods, which are only sporadically discussed in the literature. As a further contribution, a scatter-regularized kernel discriminative least squares (SR-KDLS) model and a stacked defect-related autoencoder back propagation neural network (SDAE-BPNN) model are developed to improve the forecasting performance. The scatter-regularized kernel discriminative least squares is designed as a coherent framework to directly provide forecasting information instead of low-dimensional embeddings. The stacked defect-related autoencoder back propagation neural network extracts deep defect-related features layer by layer for a higher feasibility and accuracy. The feasibility and efficiency of the data-driven methods are demonstrated through case studies based on a real-life continuous casting process, where the imbalance degree drastically vary in different categories, showing that the defects are timely (within 0.01 ms) and accurately forecasted. Moreover, experiments illustrate the merits of the developed scatter-regularized kernel discriminative least squares and stacked defect-related autoencoder back propagation neural network methods regarding the computational burden; the F1 scores of the developed methods are clearly higher than common methods. |
| Audience | Academic |
| Author | Wei, Chihang Song, Zhihuan |
| AuthorAffiliation | 1 School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China 2 State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China |
| AuthorAffiliation_xml | – name: 1 School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China – name: 2 State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China |
| Author_xml | – sequence: 1 givenname: Chihang surname: Wei fullname: Wei, Chihang – sequence: 2 givenname: Zhihuan surname: Song fullname: Song, Zhihuan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37420581$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkk1vEzEQhleoiH7AgT-ALHGBw7b-jL1cqiihEKkSEilna9ZrB0e7drB3K_Xf45K0aot8sD1-5rXf8ZxWRyEGW1XvCT5nrMEXmTJCBSfiVXVCOOW1ohQfPVkfV6c5bzGmjDH1pjpmklMsFDmp8k8LfX3jB4uuYrIG8ujDBkWH1lObp-TAWLQKpp-yjwEtrbNmzMjFhBYxFHaKU0aLQ9q6hzZ_QXO0hBHqZfK3NhRu2EGCsWzQepy6u7fVawd9tu8O81n16-rrzeJ7ff3j22oxv66NwM1Y845DJywhLe1IsUKwdBh3ytkZgxkoNiOtJFK2eOYAz4QDzoSVkisnscQNO6tWe90uwlbvkh8g3ekIXv8LxLTRkEZveqtbDIYQxmatcrxhFBTtgIFraGMbI0jRutxr7aZ2sJ2xYUzQPxN9fhL8b72Jt5pghnnDZVH4dFBI8c9k86gHn43tewi21FBTxQSVSipc0I8v0G2cUii1KhRtlJSNpIU631MbKA58cLFcbMro7OBN6RDnS3wuheKKCilKwoenHh4f_9ANBbjYAybFnJN12vixfFy8t-T74kXf95t-7LeS8flFxoPo_-xfCTbTAw |
| CitedBy_id | crossref_primary_10_1007_s11663_025_03674_w crossref_primary_10_1088_1742_6596_2822_1_012082 crossref_primary_10_3390_s24103143 |
| Cites_doi | 10.1016/j.jtice.2023.104676 10.1109/MIE.2019.2938025 10.1109/TNNLS.2022.3144162 10.1016/j.jprocont.2019.06.011 10.2355/isijinternational.45.1291 10.1016/j.arcontrol.2022.09.005 10.1007/s11668-019-00690-2 10.1007/s10443-012-9286-3 10.1016/j.ress.2022.108525 10.1145/2939672.2939785 10.1016/B978-0-444-64241-7.50367-0 10.1109/TCYB.2021.3062058 10.1016/j.neucom.2021.12.093 10.1002/srin.201600068 10.1109/TPWRS.2006.888990 10.1016/j.ymssp.2018.03.025 10.1007/BF02985802 10.1145/1541880.1541882 10.3390/s23010294 10.1002/aic.14523 10.1016/B978-1-55860-377-6.50075-X 10.1109/SAMI48414.2020.9108717 10.1177/00405175221129654 10.1016/j.engappai.2018.04.024 10.1109/ACCESS.2017.2756872 10.1016/j.patcog.2022.108989 10.1179/174328105X15814 10.1016/j.engappai.2020.103637 10.1088/1742-6596/1237/2/022030 10.1016/j.engappai.2019.04.013 10.1002/srin.201700312 10.1016/j.patcog.2021.108331 10.1109/JSEN.2023.3266104 10.1016/j.conengprac.2019.104258 10.1016/j.engappai.2015.03.006 10.1016/j.matdes.2020.108920 10.1109/TIE.2019.2962468 10.1016/j.isatra.2023.04.035 10.1016/j.chemolab.2017.09.021 10.1016/j.ces.2003.09.012 10.3390/math11030661 10.1109/ICDM.2011.33 10.1109/TII.2022.3181692 10.1007/s42519-023-00325-8 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/s23125415 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_b0ac11336b8f4932a82da3af929e9c51 PMC10304947 A758482575 37420581 10_3390_s23125415 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61933013, 62103364 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LY23F030002 – fundername: National Natural Science Foundation of China grantid: 62103364 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c509t-4d4ad5e11b2d1142107f00d8fe63a6a8361b7177b06fa065fa435e7748f707093 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001015700600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:53:08 EDT 2025 Tue Nov 04 02:06:49 EST 2025 Fri Sep 05 14:34:50 EDT 2025 Tue Oct 07 07:16:26 EDT 2025 Tue Nov 04 18:43:13 EST 2025 Thu Apr 03 07:03:45 EDT 2025 Sat Nov 29 07:18:36 EST 2025 Tue Nov 18 22:02:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | real-time forecasting discriminant analysis stack autoencoder data-driven methods subsurface inclusion defects |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-4d4ad5e11b2d1142107f00d8fe63a6a8361b7177b06fa065fa435e7748f707093 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/b0ac11336b8f4932a82da3af929e9c51 |
| PMID | 37420581 |
| PQID | 2829877972 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b0ac11336b8f4932a82da3af929e9c51 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10304947 proquest_miscellaneous_2835278780 proquest_journals_2829877972 gale_infotracacademiconefile_A758482575 pubmed_primary_37420581 crossref_citationtrail_10_3390_s23125415 crossref_primary_10_3390_s23125415 |
| PublicationCentury | 2000 |
| PublicationDate | 20230607 |
| PublicationDateYYYYMMDD | 2023-06-07 |
| PublicationDate_xml | – month: 6 year: 2023 text: 20230607 day: 7 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_50 Hastie (ref_19) 2005; 27 Xia (ref_29) 2022; 493 Huang (ref_26) 2023; 17 Feng (ref_52) 2019; 1237 ref_53 ref_51 Jia (ref_41) 2018; 110 Pedregosa (ref_45) 2011; 12 Qin (ref_9) 2014; 60 Ma (ref_30) 2023; 23 Chen (ref_39) 2019; 81 Wei (ref_16) 2020; 67 Vogado (ref_21) 2018; 72 ref_24 Zhou (ref_32) 2022; 224 Chimani (ref_6) 2005; 32 Huang (ref_20) 2015; 43 ref_23 Wang (ref_27) 2023; 133 Lee (ref_15) 2019; 83 Lee (ref_47) 2004; 59 Wang (ref_2) 2005; 45 Liu (ref_7) 2020; 194 Kong (ref_17) 2022; 54 Zhang (ref_4) 2018; 44 Dhua (ref_8) 2019; 19 Ge (ref_11) 2017; 171 Wei (ref_14) 2021; 52 ref_36 Yin (ref_13) 2019; 13 Zhang (ref_18) 2023; 93 ref_31 Thomas (ref_1) 2018; 89 ref_37 Nogueira (ref_46) 2017; 18 Zhang (ref_35) 2023; 142 Shao (ref_12) 2022; 71 Chandola (ref_28) 2009; 41 Zhang (ref_33) 2022; 71 ref_44 Bergstra (ref_48) 2012; 13 Xu (ref_40) 2007; 22 ref_42 Yi (ref_5) 2017; 88 Zhang (ref_3) 2020; 95 Erkan (ref_49) 2013; 20 Guo (ref_34) 2022; 19 Weiss (ref_43) 2000; 2000 Guo (ref_22) 2020; 92 Belkin (ref_38) 2006; 7 Bai (ref_25) 2022; 122 Ge (ref_10) 2017; 5 |
| References_xml | – volume: 142 start-page: 104676 year: 2023 ident: ref_35 article-title: A novel integrated fault diagnosis method of chemical processes based on deep learning and information propagation hysteresis analysis publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2023.104676 – ident: ref_51 – volume: 13 start-page: 38 year: 2019 ident: ref_13 article-title: Real-Time Monitoring and Control of Industrial Cyberphysical Systems: With Integrated Plant-Wide Monitoring and Control Framework publication-title: IEEE Ind. Electron. Mag. doi: 10.1109/MIE.2019.2938025 – ident: ref_36 doi: 10.1109/TNNLS.2022.3144162 – volume: 71 start-page: 1 year: 2022 ident: ref_12 article-title: Block-wise parallel semisupervised linear dynamical system for massive and inconsecutive time-series data with application to soft sensing publication-title: IEEE Trans. Instrum. Meas. – volume: 81 start-page: 54 year: 2019 ident: ref_39 article-title: K-means Bayes algorithm for imbalanced fault classification and big data application publication-title: J. Process. Control doi: 10.1016/j.jprocont.2019.06.011 – volume: 45 start-page: 1291 year: 2005 ident: ref_2 article-title: Mathematical heat transfer model research for the improvement of continuous casting slab temperature publication-title: ISIJ Int. doi: 10.2355/isijinternational.45.1291 – volume: 7 start-page: 2399 year: 2006 ident: ref_38 article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples publication-title: J. Mach. Learn. Res. – volume: 54 start-page: 167 year: 2022 ident: ref_17 article-title: Latent variable models in the era of industrial big data: Extension and beyond publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2022.09.005 – volume: 19 start-page: 1023 year: 2019 ident: ref_8 article-title: Metallurgical analyses of surface defects in cold-rolled steel sheets publication-title: J. Fail. Anal. Prev. doi: 10.1007/s11668-019-00690-2 – volume: 20 start-page: 517 year: 2013 ident: ref_49 article-title: Prediction of damage factor in end milling of glass fibre reinforced plastic composites using artificial neural network publication-title: Appl. Compos. Mater. doi: 10.1007/s10443-012-9286-3 – volume: 224 start-page: 108525 year: 2022 ident: ref_32 article-title: Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108525 – ident: ref_23 doi: 10.1145/2939672.2939785 – volume: 44 start-page: 2233 year: 2018 ident: ref_4 article-title: Defect data modeling and analysis for improving product quality and productivity in steel industry publication-title: Comput. Aided Chem. Eng. doi: 10.1016/B978-0-444-64241-7.50367-0 – volume: 52 start-page: 8862 year: 2021 ident: ref_14 article-title: Hessian Semisupervised Scatter Regularized Classification Model With Geometric and Discriminative Information for Nonlinear Process publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3062058 – volume: 493 start-page: 497 year: 2022 ident: ref_29 article-title: GAN-based anomaly detection: A review publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.12.093 – volume: 88 start-page: 1600068 year: 2017 ident: ref_5 article-title: An end-to-end steel strip surface defects recognition system based on convolutional neural networks publication-title: Steel Res. Int. doi: 10.1002/srin.201600068 – volume: 22 start-page: 164 year: 2007 ident: ref_40 article-title: Power distribution fault cause identification with imbalanced data using the data mining-based fuzzy classification E-algorithm publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2006.888990 – volume: 110 start-page: 349 year: 2018 ident: ref_41 article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.03.025 – volume: 27 start-page: 83 year: 2005 ident: ref_19 article-title: The elements of statistical learning: Data mining, inference, and prediction publication-title: Math. Intell. doi: 10.1007/BF02985802 – volume: 41 start-page: 1 year: 2009 ident: ref_28 article-title: Anomaly detection: A survey publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/1541880.1541882 – ident: ref_31 doi: 10.3390/s23010294 – volume: 60 start-page: 3092 year: 2014 ident: ref_9 article-title: Process data analytics in the era of big data publication-title: AIChE J. doi: 10.1002/aic.14523 – ident: ref_53 – ident: ref_42 doi: 10.1016/B978-1-55860-377-6.50075-X – ident: ref_50 doi: 10.1109/SAMI48414.2020.9108717 – volume: 71 start-page: 1 year: 2022 ident: ref_33 article-title: The multiclass fault diagnosis of wind turbine bearing based on multisource signal fusion and deep learning generative model publication-title: IEEE Trans. Instrum. Meas. – volume: 2000 start-page: 665 year: 2000 ident: ref_43 article-title: A quantitative study of small disjuncts publication-title: AAAI/IAAI – volume: 93 start-page: 1178 year: 2023 ident: ref_18 article-title: Attention-based Feature Fusion Generative Adversarial Network for yarn-dyed fabric defect detection publication-title: Text. Res. J. doi: 10.1177/00405175221129654 – volume: 72 start-page: 415 year: 2018 ident: ref_21 article-title: Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.04.024 – volume: 5 start-page: 20590 year: 2017 ident: ref_10 article-title: Data mining and analytics in the process industry: The role of machine learning publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2756872 – volume: 133 start-page: 108989 year: 2023 ident: ref_27 article-title: A new algorithm for support vector regression with automatic selection of hyperparameters publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.108989 – volume: 32 start-page: 75 year: 2005 ident: ref_6 article-title: Precipitation and phase transformation modelling to predict surface cracks and slab quality publication-title: Ironmak. Steelmak. doi: 10.1179/174328105X15814 – volume: 92 start-page: 103637 year: 2020 ident: ref_22 article-title: An accelerator for online SVM based on the fixed-size KKT window publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103637 – volume: 18 start-page: 559 year: 2017 ident: ref_46 article-title: Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning publication-title: J. Mach. Learn. Res. – volume: 1237 start-page: 022030 year: 2019 ident: ref_52 article-title: Performance analysis of various activation functions in artificial neural networks publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1237/2/022030 – volume: 83 start-page: 13 year: 2019 ident: ref_15 article-title: Process monitoring using variational autoencoder for high-dimensional nonlinear processes publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.04.013 – volume: 89 start-page: 1700312 year: 2018 ident: ref_1 article-title: Review on modeling and simulation of continuous casting publication-title: Steel Res. Int. doi: 10.1002/srin.201700312 – volume: 122 start-page: 108331 year: 2022 ident: ref_25 article-title: Multinomial random forest publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108331 – volume: 23 start-page: 10801 year: 2023 ident: ref_30 article-title: A Multi-Step Sequence-to-Sequence Model with Attention LSTM Neural Networks for Industrial Soft Sensor Application publication-title: IEEE Sen. J. doi: 10.1109/JSEN.2023.3266104 – volume: 12 start-page: 2825 year: 2011 ident: ref_45 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – volume: 95 start-page: 104258 year: 2020 ident: ref_3 article-title: Prediction and causal analysis of defects in steel products: Handling nonnegative and highly overdispersed count data publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2019.104258 – volume: 43 start-page: 15 year: 2015 ident: ref_20 article-title: On the linear discriminant analysis for large number of classes publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2015.03.006 – volume: 194 start-page: 108920 year: 2020 ident: ref_7 article-title: Effect of slab charging temperature on reverse transformation behavior and induced crack sensitivity through experiments and micromechanical analysis publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.108920 – volume: 67 start-page: 10876 year: 2020 ident: ref_16 article-title: Generalized Semisupervised Self-Optimizing Kernel Model for Quality-Related Industrial Process Monitoring publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2962468 – ident: ref_37 doi: 10.1016/j.isatra.2023.04.035 – volume: 171 start-page: 16 year: 2017 ident: ref_11 article-title: Review on data-driven modeling and monitoring for plant-wide industrial processes publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.09.021 – volume: 59 start-page: 223 year: 2004 ident: ref_47 article-title: Nonlinear process monitoring using kernel principal component analysis publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2003.09.012 – volume: 13 start-page: 281 year: 2012 ident: ref_48 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – ident: ref_24 doi: 10.3390/math11030661 – ident: ref_44 doi: 10.1109/ICDM.2011.33 – volume: 19 start-page: 6859 year: 2022 ident: ref_34 article-title: A Self-Interpretable Soft Sensor Based On Deep Learning and Multiple Attention Mechanism: From Data Selection to Sensor Modeling publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3181692 – volume: 17 start-page: 32 year: 2023 ident: ref_26 article-title: An Algorithm of Nonparametric Quantile Regression publication-title: J. Stat. Theory Pract. doi: 10.1007/s42519-023-00325-8 |
| SSID | ssj0023338 |
| Score | 2.4085252 |
| Snippet | Subsurface inclusions are one of the most common defects that affect the inner quality of continuous casting slabs. This increases the defects in the final... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 5415 |
| SubjectTerms | Clustering Comparative analysis Continuous casting Data processing data-driven methods Datasets Deep learning Defects discriminant analysis Distributed control systems Efficiency Forecasting Founding Hot rolling Least-Squares Analysis Measurement techniques Metallurgy Methods Neural networks Neural Networks, Computer real-time forecasting Regression analysis stack autoencoder subsurface inclusion defects Variables |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVgywEOfEMDBRmEBBer-XBihwva7rbigFZVAam3aOLYZaUqaZMNEv-emaw33RWIC9fEUWzN-PmNPX7D2DtclZzNrBUusqmQBlIBpc2ELJXKnZNJBoOI6xe1WOjz8_zUb7h1Pq1yg4kDUFeNoT3yQzrx0_i9ij9dXQuqGkWnq76Exm22R0plcsL2jo4Xp2djyJVgBLbWE0owuD_skM1gREQ1cLdWoUGs_09I3lqTdvMltxagkwf_2_WH7L6nnny69pVH7JatH7N7W4KET1h3hrxR0LUQTjU7DXSUFc0bxwlg-taBsRwh5bKnTTY-t0MyCEfiy0nmaln3Td_xmf_sK3pY95FP-RxWIOYtASuf3ciNc0pi_PWUfT85_jb7LHxZBmGQXayErCRUqY2iMq7oJi4GkC4MK402TyADnWRRiUGiKsPMATIcB0jJLNJM7RQCTJ48Y5O6qe0-5VVFyICsdLGtZOw04DBUnisD0mlr04B92JipMF6znEpnXBYYu5BFi9GiAXs7Nr1aC3X8rdER2XpsQNraw4OmvSj8VC3KEEyEoXtWaieR3oKOK0jAIZG0uUmjgL0nTykIAbAzBvxFBhwSaWkVUwzBJAbeCn93sHGIwkNDV9x4Q8DejK9xUtNJDdQW7VSQCF6MUKrDgD1f-97Y50TJOEw1dkPveOXOoHbf1Msfg3A4lZSTuVQv_t2vl-xujFNnSIhTB2yyanv7it0xP1fLrn3tp9hvVMkysg priority: 102 providerName: ProQuest |
| Title | Real-Time Forecasting of Subsurface Inclusion Defects for Continuous Casting Slabs: A Data-Driven Comparative Study |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37420581 https://www.proquest.com/docview/2829877972 https://www.proquest.com/docview/2835278780 https://pubmed.ncbi.nlm.nih.gov/PMC10304947 https://doaj.org/article/b0ac11336b8f4932a82da3af929e9c51 |
| Volume | 23 |
| WOSCitedRecordID | wos001015700600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVg4QAHxDeBpTIICS7R5sOJHW7dtiuQ2KpaQCony3FsUWmVRU2LxIXfzpskDa1A4sIlh8RVbc94_F4yfsPYK-xK3uXOhT52WSisyUJTujwUpZSF9yLNTSvi-kHO52q5LBZ7pb4oJ6yTB-4m7qSMjI1BpPJSeQGwYVRSmdR4bOuusO3h6QSoZ0emeqqVgnl1OkIpSP1JAxQDJkS1b_d2n1ak_89QvLcXHeZJ7m08Z3fZnR4x8nHX03vsmqvvs9t7OoIPWHMBuBfSaQ5OpTataSiZmV95TnFhu_bGOo5IcLmld2N86tocDg68ykmdalVvwf_5pP_ZRzhG85aP-dRsTDhdUzzkk98q4ZxyD388ZJ_PZp8m78K-mkJoAQo2oaiEqTIXx2VS0QFa8D4fRZWCqVKTG5XmcQluJ8so9wbAxBsgKQd0qLxEXCjSR-yovqrdE0qHigFcnPCJq0TilcEwZFFIa4RXzmUBe7ObZW17qXGqeHGpQTnIIHowSMBeDk2_dfoaf2t0SqYaGpAkdnsDjqJ7R9H_cpSAvSZDa1q46Iw1_fkDDIkksPQYzEmAL0v83fHOF3S_ohtNX5wV_FcmAXsxPMZapA8spnawkybtugQRUEUBe9y5ztDnVIokyhS6oQ6c6mBQh0_q1ddW75sqwYlCyKf_YxqesVsJ1keb7SaP2dFmvXXP2U37fbNq1iN2XS5le1UjduN0Nl9cjNqVhev5zxnuLd6fL778AqmDKWc |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamDgl44H4JDDAIBC_RcnFiBwmh0jKtWldVMKTxZBzHhkpTMpoGtD_Fb-Sc3NYKxNseeG0c1U6-851z4uPvEPIcvJI1sTGu9U3kMq0iV6UmdlnKeWItC2NVi7hO-Wwmjo-T-Rb51Z2FwbLKjhNros4Kjd_Id3HHT8D9PHh7-t3FrlG4u9q10GhgcWDOfkLKVr6ZjOH9vgiCvfdHo3237SrganCOK5dlTGWR8f00yPAgKeQ_1vMyAVMOVaxEGPsp5Dg89WKrwEFbBRGFgShJWA72geJLQPnbDMAuBmR7Pjmcf-5TvBAyvka_KAwTb7eE6AkyMOy5u-b16uYAf7qANR-4WZ-55vD2rv9vj-oGudaG1nTY2MJNsmXyW-TqmuDibVJ-gLjYxWMvFHuSalVi1TctLEUCrZZWaUOBMk8q_IhIx6YudqEQ2FOU8VrkVVGVdNTe9hEsqHxNh3SsVsodL9Fx0NG5nDrFIs2zO-TThaz6LhnkRW7uY92YDxGeYTYwGQusULAMniRcK2aFMZFDXnWwkLrVZMfWICcScjNEkOwR5JBn_dDTRojkb4PeIbb6AagdXv9QLL_Klopk6int-2EYp8IyCN-VCDIVKguBskl05DvkJSJTIsPBZLRqD2rAklArTA4hxWQCqB7-bqcDoGypr5Tn6HPI0_4ykBbuRKncwHuSKPIXgKsQnkPuNVjv5xxyFniRgGmIDSvYWNTmlXzxrRZGx5Z5LGH8wb_n9YRc3j86nMrpZHbwkFwJwGzr4j--QwarZWUekUv6x2pRLh-35k3Jl4s2k98z7o0a |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwELamDSH2wG9GYIBBIHixmh9O7CAhVFoqqo2qAiaNJ-M4NlSa0pE0oP1r_HXcpWnWCsTbHnhtHNVO7u77Lj5_R8hTQCVnE2uZC2zMuNEx05lNGM-ESJ3jUaIbEddDMZnI4-N0ukV-rc7CYFnlKiY2gTqfG_xG3sMdPwn3i7Dn2rKI6XD0-vQ7ww5SuNO6aqexNJEDe_YT0rfq1XgI7_pZGI7efhq8Y22HAWYAKBeM51znsQ2CLMzxUCnkQs73cwnTj3SiZZQEGeQ7IvMTpwGsnQZ2YYExSSfAV1CICcL_DlByDj62Mx2_n37u0r0Isr-lllEUpX6vAiYF2Rj2311DwKZRwJ9wsIaHm7Waa-A3uvY_P7br5GpLuWl_6SM3yJYtbpLdNSHGW6T6AHyZ4XEYir1Kja6wGpzOHcXAWpdOG0shlJ7U-HGRDm1TBEOB8FOU95oV9byu6KC97SN4VvWS9ulQLzQblggodHAus06xePPsNjm6kFXfIdvFvLB3sZ4sAOZnuQttzkMnNSxDpKkwmjtpbeyRFysTUabVaseWIScKcja0JtVZk0eedENPlwIlfxv0Bu2sG4Ca4s0P8_KrakOUynxtgiCKkkw6DrReyzDXkXZAoG1q4sAjz9FKFUY-mIzR7QEOWBJqiKk-pJ5cAgTA3-2vjFG1IbFS55bokcfdZQhmuEOlCwvvSaH4XwgQIn2P7C3tvptzJHjoxxKmITc8YmNRm1eK2bdGMB1b6fGUi3v_ntcjchl8Qx2OJwf3yZUQPLipCRT7ZHtR1vYBuWR-LGZV-bD1dEq-XLSX_AZBJJXa |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Forecasting+of+Subsurface+Inclusion+Defects+for+Continuous+Casting+Slabs%3A+A+Data-Driven+Comparative+Study&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chihang+Wei&rft.au=Zhihuan+Song&rft.date=2023-06-07&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=12&rft.spage=5415&rft_id=info:doi/10.3390%2Fs23125415&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b0ac11336b8f4932a82da3af929e9c51 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |