Real-Time Forecasting of Subsurface Inclusion Defects for Continuous Casting Slabs: A Data-Driven Comparative Study

Subsurface inclusions are one of the most common defects that affect the inner quality of continuous casting slabs. This increases the defects in the final products and increases the complexity of the hot charge rolling process and may even cause breakout accidents. The defects are, however, hard to...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 23; no. 12; p. 5415
Main Authors: Wei, Chihang, Song, Zhihuan
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 07.06.2023
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Subsurface inclusions are one of the most common defects that affect the inner quality of continuous casting slabs. This increases the defects in the final products and increases the complexity of the hot charge rolling process and may even cause breakout accidents. The defects are, however, hard to detect online by traditional mechanism-model-based and physics-based methods. In the present paper, a comparative study is carried out based on data-driven methods, which are only sporadically discussed in the literature. As a further contribution, a scatter-regularized kernel discriminative least squares (SR-KDLS) model and a stacked defect-related autoencoder back propagation neural network (SDAE-BPNN) model are developed to improve the forecasting performance. The scatter-regularized kernel discriminative least squares is designed as a coherent framework to directly provide forecasting information instead of low-dimensional embeddings. The stacked defect-related autoencoder back propagation neural network extracts deep defect-related features layer by layer for a higher feasibility and accuracy. The feasibility and efficiency of the data-driven methods are demonstrated through case studies based on a real-life continuous casting process, where the imbalance degree drastically vary in different categories, showing that the defects are timely (within 0.01 ms) and accurately forecasted. Moreover, experiments illustrate the merits of the developed scatter-regularized kernel discriminative least squares and stacked defect-related autoencoder back propagation neural network methods regarding the computational burden; the F1 scores of the developed methods are clearly higher than common methods.
AbstractList Subsurface inclusions are one of the most common defects that affect the inner quality of continuous casting slabs. This increases the defects in the final products and increases the complexity of the hot charge rolling process and may even cause breakout accidents. The defects are, however, hard to detect online by traditional mechanism-model-based and physics-based methods. In the present paper, a comparative study is carried out based on data-driven methods, which are only sporadically discussed in the literature. As a further contribution, a scatter-regularized kernel discriminative least squares (SR-KDLS) model and a stacked defect-related autoencoder back propagation neural network (SDAE-BPNN) model are developed to improve the forecasting performance. The scatter-regularized kernel discriminative least squares is designed as a coherent framework to directly provide forecasting information instead of low-dimensional embeddings. The stacked defect-related autoencoder back propagation neural network extracts deep defect-related features layer by layer for a higher feasibility and accuracy. The feasibility and efficiency of the data-driven methods are demonstrated through case studies based on a real-life continuous casting process, where the imbalance degree drastically vary in different categories, showing that the defects are timely (within 0.01 ms) and accurately forecasted. Moreover, experiments illustrate the merits of the developed scatter-regularized kernel discriminative least squares and stacked defect-related autoencoder back propagation neural network methods regarding the computational burden; the F1 scores of the developed methods are clearly higher than common methods.
Subsurface inclusions are one of the most common defects that affect the inner quality of continuous casting slabs. This increases the defects in the final products and increases the complexity of the hot charge rolling process and may even cause breakout accidents. The defects are, however, hard to detect online by traditional mechanism-model-based and physics-based methods. In the present paper, a comparative study is carried out based on data-driven methods, which are only sporadically discussed in the literature. As a further contribution, a scatter-regularized kernel discriminative least squares (SR-KDLS) model and a stacked defect-related autoencoder back propagation neural network (SDAE-BPNN) model are developed to improve the forecasting performance. The scatter-regularized kernel discriminative least squares is designed as a coherent framework to directly provide forecasting information instead of low-dimensional embeddings. The stacked defect-related autoencoder back propagation neural network extracts deep defect-related features layer by layer for a higher feasibility and accuracy. The feasibility and efficiency of the data-driven methods are demonstrated through case studies based on a real-life continuous casting process, where the imbalance degree drastically vary in different categories, showing that the defects are timely (within 0.01 ms) and accurately forecasted. Moreover, experiments illustrate the merits of the developed scatter-regularized kernel discriminative least squares and stacked defect-related autoencoder back propagation neural network methods regarding the computational burden; the F1 scores of the developed methods are clearly higher than common methods.Subsurface inclusions are one of the most common defects that affect the inner quality of continuous casting slabs. This increases the defects in the final products and increases the complexity of the hot charge rolling process and may even cause breakout accidents. The defects are, however, hard to detect online by traditional mechanism-model-based and physics-based methods. In the present paper, a comparative study is carried out based on data-driven methods, which are only sporadically discussed in the literature. As a further contribution, a scatter-regularized kernel discriminative least squares (SR-KDLS) model and a stacked defect-related autoencoder back propagation neural network (SDAE-BPNN) model are developed to improve the forecasting performance. The scatter-regularized kernel discriminative least squares is designed as a coherent framework to directly provide forecasting information instead of low-dimensional embeddings. The stacked defect-related autoencoder back propagation neural network extracts deep defect-related features layer by layer for a higher feasibility and accuracy. The feasibility and efficiency of the data-driven methods are demonstrated through case studies based on a real-life continuous casting process, where the imbalance degree drastically vary in different categories, showing that the defects are timely (within 0.01 ms) and accurately forecasted. Moreover, experiments illustrate the merits of the developed scatter-regularized kernel discriminative least squares and stacked defect-related autoencoder back propagation neural network methods regarding the computational burden; the F1 scores of the developed methods are clearly higher than common methods.
Audience Academic
Author Wei, Chihang
Song, Zhihuan
AuthorAffiliation 1 School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China
2 State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
AuthorAffiliation_xml – name: 1 School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China
– name: 2 State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
Author_xml – sequence: 1
  givenname: Chihang
  surname: Wei
  fullname: Wei, Chihang
– sequence: 2
  givenname: Zhihuan
  surname: Song
  fullname: Song, Zhihuan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37420581$$D View this record in MEDLINE/PubMed
BookMark eNplkk1vEzEQhleoiH7AgT-ALHGBw7b-jL1cqiihEKkSEilna9ZrB0e7drB3K_Xf45K0aot8sD1-5rXf8ZxWRyEGW1XvCT5nrMEXmTJCBSfiVXVCOOW1ohQfPVkfV6c5bzGmjDH1pjpmklMsFDmp8k8LfX3jB4uuYrIG8ujDBkWH1lObp-TAWLQKpp-yjwEtrbNmzMjFhBYxFHaKU0aLQ9q6hzZ_QXO0hBHqZfK3NhRu2EGCsWzQepy6u7fVawd9tu8O81n16-rrzeJ7ff3j22oxv66NwM1Y845DJywhLe1IsUKwdBh3ytkZgxkoNiOtJFK2eOYAz4QDzoSVkisnscQNO6tWe90uwlbvkh8g3ekIXv8LxLTRkEZveqtbDIYQxmatcrxhFBTtgIFraGMbI0jRutxr7aZ2sJ2xYUzQPxN9fhL8b72Jt5pghnnDZVH4dFBI8c9k86gHn43tewi21FBTxQSVSipc0I8v0G2cUii1KhRtlJSNpIU631MbKA58cLFcbMro7OBN6RDnS3wuheKKCilKwoenHh4f_9ANBbjYAybFnJN12vixfFy8t-T74kXf95t-7LeS8flFxoPo_-xfCTbTAw
CitedBy_id crossref_primary_10_1007_s11663_025_03674_w
crossref_primary_10_1088_1742_6596_2822_1_012082
crossref_primary_10_3390_s24103143
Cites_doi 10.1016/j.jtice.2023.104676
10.1109/MIE.2019.2938025
10.1109/TNNLS.2022.3144162
10.1016/j.jprocont.2019.06.011
10.2355/isijinternational.45.1291
10.1016/j.arcontrol.2022.09.005
10.1007/s11668-019-00690-2
10.1007/s10443-012-9286-3
10.1016/j.ress.2022.108525
10.1145/2939672.2939785
10.1016/B978-0-444-64241-7.50367-0
10.1109/TCYB.2021.3062058
10.1016/j.neucom.2021.12.093
10.1002/srin.201600068
10.1109/TPWRS.2006.888990
10.1016/j.ymssp.2018.03.025
10.1007/BF02985802
10.1145/1541880.1541882
10.3390/s23010294
10.1002/aic.14523
10.1016/B978-1-55860-377-6.50075-X
10.1109/SAMI48414.2020.9108717
10.1177/00405175221129654
10.1016/j.engappai.2018.04.024
10.1109/ACCESS.2017.2756872
10.1016/j.patcog.2022.108989
10.1179/174328105X15814
10.1016/j.engappai.2020.103637
10.1088/1742-6596/1237/2/022030
10.1016/j.engappai.2019.04.013
10.1002/srin.201700312
10.1016/j.patcog.2021.108331
10.1109/JSEN.2023.3266104
10.1016/j.conengprac.2019.104258
10.1016/j.engappai.2015.03.006
10.1016/j.matdes.2020.108920
10.1109/TIE.2019.2962468
10.1016/j.isatra.2023.04.035
10.1016/j.chemolab.2017.09.021
10.1016/j.ces.2003.09.012
10.3390/math11030661
10.1109/ICDM.2011.33
10.1109/TII.2022.3181692
10.1007/s42519-023-00325-8
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s23125415
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database

MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_b0ac11336b8f4932a82da3af929e9c51
PMC10304947
A758482575
37420581
10_3390_s23125415
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61933013, 62103364
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LY23F030002
– fundername: National Natural Science Foundation of China
  grantid: 62103364
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c509t-4d4ad5e11b2d1142107f00d8fe63a6a8361b7177b06fa065fa435e7748f707093
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001015700600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:53:08 EDT 2025
Tue Nov 04 02:06:49 EST 2025
Fri Sep 05 14:34:50 EDT 2025
Tue Oct 07 07:16:26 EDT 2025
Tue Nov 04 18:43:13 EST 2025
Thu Apr 03 07:03:45 EDT 2025
Sat Nov 29 07:18:36 EST 2025
Tue Nov 18 22:02:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords real-time forecasting
discriminant analysis
stack autoencoder
data-driven methods
subsurface inclusion defects
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-4d4ad5e11b2d1142107f00d8fe63a6a8361b7177b06fa065fa435e7748f707093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/b0ac11336b8f4932a82da3af929e9c51
PMID 37420581
PQID 2829877972
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_b0ac11336b8f4932a82da3af929e9c51
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10304947
proquest_miscellaneous_2835278780
proquest_journals_2829877972
gale_infotracacademiconefile_A758482575
pubmed_primary_37420581
crossref_citationtrail_10_3390_s23125415
crossref_primary_10_3390_s23125415
PublicationCentury 2000
PublicationDate 20230607
PublicationDateYYYYMMDD 2023-06-07
PublicationDate_xml – month: 6
  year: 2023
  text: 20230607
  day: 7
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Hastie (ref_19) 2005; 27
Xia (ref_29) 2022; 493
Huang (ref_26) 2023; 17
Feng (ref_52) 2019; 1237
ref_53
ref_51
Jia (ref_41) 2018; 110
Pedregosa (ref_45) 2011; 12
Qin (ref_9) 2014; 60
Ma (ref_30) 2023; 23
Chen (ref_39) 2019; 81
Wei (ref_16) 2020; 67
Vogado (ref_21) 2018; 72
ref_24
Zhou (ref_32) 2022; 224
Chimani (ref_6) 2005; 32
Huang (ref_20) 2015; 43
ref_23
Wang (ref_27) 2023; 133
Lee (ref_15) 2019; 83
Lee (ref_47) 2004; 59
Wang (ref_2) 2005; 45
Liu (ref_7) 2020; 194
Kong (ref_17) 2022; 54
Zhang (ref_4) 2018; 44
Dhua (ref_8) 2019; 19
Ge (ref_11) 2017; 171
Wei (ref_14) 2021; 52
ref_36
Yin (ref_13) 2019; 13
Zhang (ref_18) 2023; 93
ref_31
Thomas (ref_1) 2018; 89
ref_37
Nogueira (ref_46) 2017; 18
Zhang (ref_35) 2023; 142
Shao (ref_12) 2022; 71
Chandola (ref_28) 2009; 41
Zhang (ref_33) 2022; 71
ref_44
Bergstra (ref_48) 2012; 13
Xu (ref_40) 2007; 22
ref_42
Yi (ref_5) 2017; 88
Zhang (ref_3) 2020; 95
Erkan (ref_49) 2013; 20
Guo (ref_34) 2022; 19
Weiss (ref_43) 2000; 2000
Guo (ref_22) 2020; 92
Belkin (ref_38) 2006; 7
Bai (ref_25) 2022; 122
Ge (ref_10) 2017; 5
References_xml – volume: 142
  start-page: 104676
  year: 2023
  ident: ref_35
  article-title: A novel integrated fault diagnosis method of chemical processes based on deep learning and information propagation hysteresis analysis
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2023.104676
– ident: ref_51
– volume: 13
  start-page: 38
  year: 2019
  ident: ref_13
  article-title: Real-Time Monitoring and Control of Industrial Cyberphysical Systems: With Integrated Plant-Wide Monitoring and Control Framework
  publication-title: IEEE Ind. Electron. Mag.
  doi: 10.1109/MIE.2019.2938025
– ident: ref_36
  doi: 10.1109/TNNLS.2022.3144162
– volume: 71
  start-page: 1
  year: 2022
  ident: ref_12
  article-title: Block-wise parallel semisupervised linear dynamical system for massive and inconsecutive time-series data with application to soft sensing
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 81
  start-page: 54
  year: 2019
  ident: ref_39
  article-title: K-means Bayes algorithm for imbalanced fault classification and big data application
  publication-title: J. Process. Control
  doi: 10.1016/j.jprocont.2019.06.011
– volume: 45
  start-page: 1291
  year: 2005
  ident: ref_2
  article-title: Mathematical heat transfer model research for the improvement of continuous casting slab temperature
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.45.1291
– volume: 7
  start-page: 2399
  year: 2006
  ident: ref_38
  article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
  publication-title: J. Mach. Learn. Res.
– volume: 54
  start-page: 167
  year: 2022
  ident: ref_17
  article-title: Latent variable models in the era of industrial big data: Extension and beyond
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2022.09.005
– volume: 19
  start-page: 1023
  year: 2019
  ident: ref_8
  article-title: Metallurgical analyses of surface defects in cold-rolled steel sheets
  publication-title: J. Fail. Anal. Prev.
  doi: 10.1007/s11668-019-00690-2
– volume: 20
  start-page: 517
  year: 2013
  ident: ref_49
  article-title: Prediction of damage factor in end milling of glass fibre reinforced plastic composites using artificial neural network
  publication-title: Appl. Compos. Mater.
  doi: 10.1007/s10443-012-9286-3
– volume: 224
  start-page: 108525
  year: 2022
  ident: ref_32
  article-title: Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108525
– ident: ref_23
  doi: 10.1145/2939672.2939785
– volume: 44
  start-page: 2233
  year: 2018
  ident: ref_4
  article-title: Defect data modeling and analysis for improving product quality and productivity in steel industry
  publication-title: Comput. Aided Chem. Eng.
  doi: 10.1016/B978-0-444-64241-7.50367-0
– volume: 52
  start-page: 8862
  year: 2021
  ident: ref_14
  article-title: Hessian Semisupervised Scatter Regularized Classification Model With Geometric and Discriminative Information for Nonlinear Process
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3062058
– volume: 493
  start-page: 497
  year: 2022
  ident: ref_29
  article-title: GAN-based anomaly detection: A review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.12.093
– volume: 88
  start-page: 1600068
  year: 2017
  ident: ref_5
  article-title: An end-to-end steel strip surface defects recognition system based on convolutional neural networks
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.201600068
– volume: 22
  start-page: 164
  year: 2007
  ident: ref_40
  article-title: Power distribution fault cause identification with imbalanced data using the data mining-based fuzzy classification E-algorithm
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2006.888990
– volume: 110
  start-page: 349
  year: 2018
  ident: ref_41
  article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.03.025
– volume: 27
  start-page: 83
  year: 2005
  ident: ref_19
  article-title: The elements of statistical learning: Data mining, inference, and prediction
  publication-title: Math. Intell.
  doi: 10.1007/BF02985802
– volume: 41
  start-page: 1
  year: 2009
  ident: ref_28
  article-title: Anomaly detection: A survey
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/1541880.1541882
– ident: ref_31
  doi: 10.3390/s23010294
– volume: 60
  start-page: 3092
  year: 2014
  ident: ref_9
  article-title: Process data analytics in the era of big data
  publication-title: AIChE J.
  doi: 10.1002/aic.14523
– ident: ref_53
– ident: ref_42
  doi: 10.1016/B978-1-55860-377-6.50075-X
– ident: ref_50
  doi: 10.1109/SAMI48414.2020.9108717
– volume: 71
  start-page: 1
  year: 2022
  ident: ref_33
  article-title: The multiclass fault diagnosis of wind turbine bearing based on multisource signal fusion and deep learning generative model
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 2000
  start-page: 665
  year: 2000
  ident: ref_43
  article-title: A quantitative study of small disjuncts
  publication-title: AAAI/IAAI
– volume: 93
  start-page: 1178
  year: 2023
  ident: ref_18
  article-title: Attention-based Feature Fusion Generative Adversarial Network for yarn-dyed fabric defect detection
  publication-title: Text. Res. J.
  doi: 10.1177/00405175221129654
– volume: 72
  start-page: 415
  year: 2018
  ident: ref_21
  article-title: Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.04.024
– volume: 5
  start-page: 20590
  year: 2017
  ident: ref_10
  article-title: Data mining and analytics in the process industry: The role of machine learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2756872
– volume: 133
  start-page: 108989
  year: 2023
  ident: ref_27
  article-title: A new algorithm for support vector regression with automatic selection of hyperparameters
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.108989
– volume: 32
  start-page: 75
  year: 2005
  ident: ref_6
  article-title: Precipitation and phase transformation modelling to predict surface cracks and slab quality
  publication-title: Ironmak. Steelmak.
  doi: 10.1179/174328105X15814
– volume: 92
  start-page: 103637
  year: 2020
  ident: ref_22
  article-title: An accelerator for online SVM based on the fixed-size KKT window
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103637
– volume: 18
  start-page: 559
  year: 2017
  ident: ref_46
  article-title: Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning
  publication-title: J. Mach. Learn. Res.
– volume: 1237
  start-page: 022030
  year: 2019
  ident: ref_52
  article-title: Performance analysis of various activation functions in artificial neural networks
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1237/2/022030
– volume: 83
  start-page: 13
  year: 2019
  ident: ref_15
  article-title: Process monitoring using variational autoencoder for high-dimensional nonlinear processes
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.04.013
– volume: 89
  start-page: 1700312
  year: 2018
  ident: ref_1
  article-title: Review on modeling and simulation of continuous casting
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.201700312
– volume: 122
  start-page: 108331
  year: 2022
  ident: ref_25
  article-title: Multinomial random forest
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108331
– volume: 23
  start-page: 10801
  year: 2023
  ident: ref_30
  article-title: A Multi-Step Sequence-to-Sequence Model with Attention LSTM Neural Networks for Industrial Soft Sensor Application
  publication-title: IEEE Sen. J.
  doi: 10.1109/JSEN.2023.3266104
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_45
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 95
  start-page: 104258
  year: 2020
  ident: ref_3
  article-title: Prediction and causal analysis of defects in steel products: Handling nonnegative and highly overdispersed count data
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2019.104258
– volume: 43
  start-page: 15
  year: 2015
  ident: ref_20
  article-title: On the linear discriminant analysis for large number of classes
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2015.03.006
– volume: 194
  start-page: 108920
  year: 2020
  ident: ref_7
  article-title: Effect of slab charging temperature on reverse transformation behavior and induced crack sensitivity through experiments and micromechanical analysis
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.108920
– volume: 67
  start-page: 10876
  year: 2020
  ident: ref_16
  article-title: Generalized Semisupervised Self-Optimizing Kernel Model for Quality-Related Industrial Process Monitoring
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2962468
– ident: ref_37
  doi: 10.1016/j.isatra.2023.04.035
– volume: 171
  start-page: 16
  year: 2017
  ident: ref_11
  article-title: Review on data-driven modeling and monitoring for plant-wide industrial processes
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.09.021
– volume: 59
  start-page: 223
  year: 2004
  ident: ref_47
  article-title: Nonlinear process monitoring using kernel principal component analysis
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2003.09.012
– volume: 13
  start-page: 281
  year: 2012
  ident: ref_48
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– ident: ref_24
  doi: 10.3390/math11030661
– ident: ref_44
  doi: 10.1109/ICDM.2011.33
– volume: 19
  start-page: 6859
  year: 2022
  ident: ref_34
  article-title: A Self-Interpretable Soft Sensor Based On Deep Learning and Multiple Attention Mechanism: From Data Selection to Sensor Modeling
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3181692
– volume: 17
  start-page: 32
  year: 2023
  ident: ref_26
  article-title: An Algorithm of Nonparametric Quantile Regression
  publication-title: J. Stat. Theory Pract.
  doi: 10.1007/s42519-023-00325-8
SSID ssj0023338
Score 2.4085252
Snippet Subsurface inclusions are one of the most common defects that affect the inner quality of continuous casting slabs. This increases the defects in the final...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5415
SubjectTerms Clustering
Comparative analysis
Continuous casting
Data processing
data-driven methods
Datasets
Deep learning
Defects
discriminant analysis
Distributed control systems
Efficiency
Forecasting
Founding
Hot rolling
Least-Squares Analysis
Measurement techniques
Metallurgy
Methods
Neural networks
Neural Networks, Computer
real-time forecasting
Regression analysis
stack autoencoder
subsurface inclusion defects
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVgywEOfEMDBRmEBBer-XBihwva7rbigFZVAam3aOLYZaUqaZMNEv-emaw33RWIC9fEUWzN-PmNPX7D2DtclZzNrBUusqmQBlIBpc2ELJXKnZNJBoOI6xe1WOjz8_zUb7h1Pq1yg4kDUFeNoT3yQzrx0_i9ij9dXQuqGkWnq76Exm22R0plcsL2jo4Xp2djyJVgBLbWE0owuD_skM1gREQ1cLdWoUGs_09I3lqTdvMltxagkwf_2_WH7L6nnny69pVH7JatH7N7W4KET1h3hrxR0LUQTjU7DXSUFc0bxwlg-taBsRwh5bKnTTY-t0MyCEfiy0nmaln3Td_xmf_sK3pY95FP-RxWIOYtASuf3ciNc0pi_PWUfT85_jb7LHxZBmGQXayErCRUqY2iMq7oJi4GkC4MK402TyADnWRRiUGiKsPMATIcB0jJLNJM7RQCTJ48Y5O6qe0-5VVFyICsdLGtZOw04DBUnisD0mlr04B92JipMF6znEpnXBYYu5BFi9GiAXs7Nr1aC3X8rdER2XpsQNraw4OmvSj8VC3KEEyEoXtWaieR3oKOK0jAIZG0uUmjgL0nTykIAbAzBvxFBhwSaWkVUwzBJAbeCn93sHGIwkNDV9x4Q8DejK9xUtNJDdQW7VSQCF6MUKrDgD1f-97Y50TJOEw1dkPveOXOoHbf1Msfg3A4lZSTuVQv_t2vl-xujFNnSIhTB2yyanv7it0xP1fLrn3tp9hvVMkysg
  priority: 102
  providerName: ProQuest
Title Real-Time Forecasting of Subsurface Inclusion Defects for Continuous Casting Slabs: A Data-Driven Comparative Study
URI https://www.ncbi.nlm.nih.gov/pubmed/37420581
https://www.proquest.com/docview/2829877972
https://www.proquest.com/docview/2835278780
https://pubmed.ncbi.nlm.nih.gov/PMC10304947
https://doaj.org/article/b0ac11336b8f4932a82da3af929e9c51
Volume 23
WOSCitedRecordID wos001015700600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVg4QAHxDeBpTIICS7R5sOJHW7dtiuQ2KpaQCony3FsUWmVRU2LxIXfzpskDa1A4sIlh8RVbc94_F4yfsPYK-xK3uXOhT52WSisyUJTujwUpZSF9yLNTSvi-kHO52q5LBZ7pb4oJ6yTB-4m7qSMjI1BpPJSeQGwYVRSmdR4bOuusO3h6QSoZ0emeqqVgnl1OkIpSP1JAxQDJkS1b_d2n1ak_89QvLcXHeZJ7m08Z3fZnR4x8nHX03vsmqvvs9t7OoIPWHMBuBfSaQ5OpTataSiZmV95TnFhu_bGOo5IcLmld2N86tocDg68ykmdalVvwf_5pP_ZRzhG85aP-dRsTDhdUzzkk98q4ZxyD388ZJ_PZp8m78K-mkJoAQo2oaiEqTIXx2VS0QFa8D4fRZWCqVKTG5XmcQluJ8so9wbAxBsgKQd0qLxEXCjSR-yovqrdE0qHigFcnPCJq0TilcEwZFFIa4RXzmUBe7ObZW17qXGqeHGpQTnIIHowSMBeDk2_dfoaf2t0SqYaGpAkdnsDjqJ7R9H_cpSAvSZDa1q46Iw1_fkDDIkksPQYzEmAL0v83fHOF3S_ohtNX5wV_FcmAXsxPMZapA8spnawkybtugQRUEUBe9y5ztDnVIokyhS6oQ6c6mBQh0_q1ddW75sqwYlCyKf_YxqesVsJ1keb7SaP2dFmvXXP2U37fbNq1iN2XS5le1UjduN0Nl9cjNqVhev5zxnuLd6fL778AqmDKWc
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamDgl44H4JDDAIBC_RcnFiBwmh0jKtWldVMKTxZBzHhkpTMpoGtD_Fb-Sc3NYKxNseeG0c1U6-851z4uPvEPIcvJI1sTGu9U3kMq0iV6UmdlnKeWItC2NVi7hO-Wwmjo-T-Rb51Z2FwbLKjhNros4Kjd_Id3HHT8D9PHh7-t3FrlG4u9q10GhgcWDOfkLKVr6ZjOH9vgiCvfdHo3237SrganCOK5dlTGWR8f00yPAgKeQ_1vMyAVMOVaxEGPsp5Dg89WKrwEFbBRGFgShJWA72geJLQPnbDMAuBmR7Pjmcf-5TvBAyvka_KAwTb7eE6AkyMOy5u-b16uYAf7qANR-4WZ-55vD2rv9vj-oGudaG1nTY2MJNsmXyW-TqmuDibVJ-gLjYxWMvFHuSalVi1TctLEUCrZZWaUOBMk8q_IhIx6YudqEQ2FOU8VrkVVGVdNTe9hEsqHxNh3SsVsodL9Fx0NG5nDrFIs2zO-TThaz6LhnkRW7uY92YDxGeYTYwGQusULAMniRcK2aFMZFDXnWwkLrVZMfWICcScjNEkOwR5JBn_dDTRojkb4PeIbb6AagdXv9QLL_Klopk6int-2EYp8IyCN-VCDIVKguBskl05DvkJSJTIsPBZLRqD2rAklArTA4hxWQCqB7-bqcDoGypr5Tn6HPI0_4ykBbuRKncwHuSKPIXgKsQnkPuNVjv5xxyFniRgGmIDSvYWNTmlXzxrRZGx5Z5LGH8wb_n9YRc3j86nMrpZHbwkFwJwGzr4j--QwarZWUekUv6x2pRLh-35k3Jl4s2k98z7o0a
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwELamDSH2wG9GYIBBIHixmh9O7CAhVFoqqo2qAiaNJ-M4NlSa0pE0oP1r_HXcpWnWCsTbHnhtHNVO7u77Lj5_R8hTQCVnE2uZC2zMuNEx05lNGM-ESJ3jUaIbEddDMZnI4-N0ukV-rc7CYFnlKiY2gTqfG_xG3sMdPwn3i7Dn2rKI6XD0-vQ7ww5SuNO6aqexNJEDe_YT0rfq1XgI7_pZGI7efhq8Y22HAWYAKBeM51znsQ2CLMzxUCnkQs73cwnTj3SiZZQEGeQ7IvMTpwGsnQZ2YYExSSfAV1CICcL_DlByDj62Mx2_n37u0r0Isr-lllEUpX6vAiYF2Rj2311DwKZRwJ9wsIaHm7Waa-A3uvY_P7br5GpLuWl_6SM3yJYtbpLdNSHGW6T6AHyZ4XEYir1Kja6wGpzOHcXAWpdOG0shlJ7U-HGRDm1TBEOB8FOU95oV9byu6KC97SN4VvWS9ulQLzQblggodHAus06xePPsNjm6kFXfIdvFvLB3sZ4sAOZnuQttzkMnNSxDpKkwmjtpbeyRFysTUabVaseWIScKcja0JtVZk0eedENPlwIlfxv0Bu2sG4Ca4s0P8_KrakOUynxtgiCKkkw6DrReyzDXkXZAoG1q4sAjz9FKFUY-mIzR7QEOWBJqiKk-pJ5cAgTA3-2vjFG1IbFS55bokcfdZQhmuEOlCwvvSaH4XwgQIn2P7C3tvptzJHjoxxKmITc8YmNRm1eK2bdGMB1b6fGUi3v_ntcjchl8Qx2OJwf3yZUQPLipCRT7ZHtR1vYBuWR-LGZV-bD1dEq-XLSX_AZBJJXa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Forecasting+of+Subsurface+Inclusion+Defects+for+Continuous+Casting+Slabs%3A+A+Data-Driven+Comparative+Study&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chihang+Wei&rft.au=Zhihuan+Song&rft.date=2023-06-07&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=12&rft.spage=5415&rft_id=info:doi/10.3390%2Fs23125415&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b0ac11336b8f4932a82da3af929e9c51
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon