Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samples

Ovarian cancer causes more than 15000 deaths per year in the United States. The survival of patients is quite heterogeneous, and accurate prognostic tools would help with the clinical management of these patients. We developed and validated two gene expression signatures, the first for predicting su...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:JNCI : Journal of the National Cancer Institute Ročník 106; číslo 5
Hlavní autoři: Riester, Markus, Wei, Wei, Waldron, Levi, Culhane, Aedin C, Trippa, Lorenzo, Oliva, Esther, Kim, Sung-Hoon, Michor, Franziska, Huttenhower, Curtis, Parmigiani, Giovanni, Birrer, Michael J
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 03.04.2014
Témata:
ISSN:1460-2105, 1460-2105
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Ovarian cancer causes more than 15000 deaths per year in the United States. The survival of patients is quite heterogeneous, and accurate prognostic tools would help with the clinical management of these patients. We developed and validated two gene expression signatures, the first for predicting survival in advanced-stage, serous ovarian cancer and the second for predicting debulking status. We integrated 13 publicly available datasets totaling 1525 subjects. We trained prediction models using a meta-analysis variation on the compound covariable method, tested models by a "leave-one-dataset-out" procedure, and validated models in additional independent datasets. Selected genes from the debulking signature were validated by immunohistochemistry and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) in two further independent cohorts of 179 and 78 patients, respectively. All statistical tests were two-sided. The survival signature stratified patients into high- and low-risk groups (hazard ratio = 2.19; 95% confidence interval [CI] = 1.84 to 2.61) statistically significantly better than the TCGA signature (P = .04). POSTN, CXCL14, FAP, NUAK1, PTCH1, and TGFBR2 were validated by qRT-PCR (P < .05) and POSTN, CXCL14, and phosphorylated Smad2/3 were validated by immunohistochemistry (P < .001) as independent predictors of debulking status. The sum of immunohistochemistry intensities for these three proteins provided a tool that classified 92.8% of samples correctly in high- and low-risk groups for suboptimal debulking (area under the curve = 0.89; 95% CI = 0.84 to 0.93). Our survival signature provides the most accurate and validated prognostic model for early- and advanced-stage high-grade, serous ovarian cancer. The debulking signature accurately predicts the outcome of cytoreductive surgery, potentially allowing for stratification of patients for primary vs secondary cytoreduction.
AbstractList Ovarian cancer causes more than 15000 deaths per year in the United States. The survival of patients is quite heterogeneous, and accurate prognostic tools would help with the clinical management of these patients.BACKGROUNDOvarian cancer causes more than 15000 deaths per year in the United States. The survival of patients is quite heterogeneous, and accurate prognostic tools would help with the clinical management of these patients.We developed and validated two gene expression signatures, the first for predicting survival in advanced-stage, serous ovarian cancer and the second for predicting debulking status. We integrated 13 publicly available datasets totaling 1525 subjects. We trained prediction models using a meta-analysis variation on the compound covariable method, tested models by a "leave-one-dataset-out" procedure, and validated models in additional independent datasets. Selected genes from the debulking signature were validated by immunohistochemistry and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) in two further independent cohorts of 179 and 78 patients, respectively. All statistical tests were two-sided.METHODSWe developed and validated two gene expression signatures, the first for predicting survival in advanced-stage, serous ovarian cancer and the second for predicting debulking status. We integrated 13 publicly available datasets totaling 1525 subjects. We trained prediction models using a meta-analysis variation on the compound covariable method, tested models by a "leave-one-dataset-out" procedure, and validated models in additional independent datasets. Selected genes from the debulking signature were validated by immunohistochemistry and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) in two further independent cohorts of 179 and 78 patients, respectively. All statistical tests were two-sided.The survival signature stratified patients into high- and low-risk groups (hazard ratio = 2.19; 95% confidence interval [CI] = 1.84 to 2.61) statistically significantly better than the TCGA signature (P = .04). POSTN, CXCL14, FAP, NUAK1, PTCH1, and TGFBR2 were validated by qRT-PCR (P < .05) and POSTN, CXCL14, and phosphorylated Smad2/3 were validated by immunohistochemistry (P < .001) as independent predictors of debulking status. The sum of immunohistochemistry intensities for these three proteins provided a tool that classified 92.8% of samples correctly in high- and low-risk groups for suboptimal debulking (area under the curve = 0.89; 95% CI = 0.84 to 0.93).RESULTSThe survival signature stratified patients into high- and low-risk groups (hazard ratio = 2.19; 95% confidence interval [CI] = 1.84 to 2.61) statistically significantly better than the TCGA signature (P = .04). POSTN, CXCL14, FAP, NUAK1, PTCH1, and TGFBR2 were validated by qRT-PCR (P < .05) and POSTN, CXCL14, and phosphorylated Smad2/3 were validated by immunohistochemistry (P < .001) as independent predictors of debulking status. The sum of immunohistochemistry intensities for these three proteins provided a tool that classified 92.8% of samples correctly in high- and low-risk groups for suboptimal debulking (area under the curve = 0.89; 95% CI = 0.84 to 0.93).Our survival signature provides the most accurate and validated prognostic model for early- and advanced-stage high-grade, serous ovarian cancer. The debulking signature accurately predicts the outcome of cytoreductive surgery, potentially allowing for stratification of patients for primary vs secondary cytoreduction.CONCLUSIONSOur survival signature provides the most accurate and validated prognostic model for early- and advanced-stage high-grade, serous ovarian cancer. The debulking signature accurately predicts the outcome of cytoreductive surgery, potentially allowing for stratification of patients for primary vs secondary cytoreduction.
Ovarian cancer causes more than 15000 deaths per year in the United States. The survival of patients is quite heterogeneous, and accurate prognostic tools would help with the clinical management of these patients. We developed and validated two gene expression signatures, the first for predicting survival in advanced-stage, serous ovarian cancer and the second for predicting debulking status. We integrated 13 publicly available datasets totaling 1525 subjects. We trained prediction models using a meta-analysis variation on the compound covariable method, tested models by a "leave-one-dataset-out" procedure, and validated models in additional independent datasets. Selected genes from the debulking signature were validated by immunohistochemistry and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) in two further independent cohorts of 179 and 78 patients, respectively. All statistical tests were two-sided. The survival signature stratified patients into high- and low-risk groups (hazard ratio = 2.19; 95% confidence interval [CI] = 1.84 to 2.61) statistically significantly better than the TCGA signature (P = .04). POSTN, CXCL14, FAP, NUAK1, PTCH1, and TGFBR2 were validated by qRT-PCR (P < .05) and POSTN, CXCL14, and phosphorylated Smad2/3 were validated by immunohistochemistry (P < .001) as independent predictors of debulking status. The sum of immunohistochemistry intensities for these three proteins provided a tool that classified 92.8% of samples correctly in high- and low-risk groups for suboptimal debulking (area under the curve = 0.89; 95% CI = 0.84 to 0.93). Our survival signature provides the most accurate and validated prognostic model for early- and advanced-stage high-grade, serous ovarian cancer. The debulking signature accurately predicts the outcome of cytoreductive surgery, potentially allowing for stratification of patients for primary vs secondary cytoreduction.
Author Oliva, Esther
Culhane, Aedin C
Birrer, Michael J
Riester, Markus
Waldron, Levi
Michor, Franziska
Wei, Wei
Huttenhower, Curtis
Kim, Sung-Hoon
Trippa, Lorenzo
Parmigiani, Giovanni
Author_xml – sequence: 1
  givenname: Markus
  surname: Riester
  fullname: Riester, Markus
  organization: Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
– sequence: 2
  givenname: Wei
  surname: Wei
  fullname: Wei, Wei
  organization: Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
– sequence: 3
  givenname: Levi
  surname: Waldron
  fullname: Waldron, Levi
  organization: Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
– sequence: 4
  givenname: Aedin C
  surname: Culhane
  fullname: Culhane, Aedin C
  organization: Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
– sequence: 5
  givenname: Lorenzo
  surname: Trippa
  fullname: Trippa, Lorenzo
  organization: Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
– sequence: 6
  givenname: Esther
  surname: Oliva
  fullname: Oliva, Esther
  organization: Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
– sequence: 7
  givenname: Sung-Hoon
  surname: Kim
  fullname: Kim, Sung-Hoon
  organization: Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
– sequence: 8
  givenname: Franziska
  surname: Michor
  fullname: Michor, Franziska
  organization: Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
– sequence: 9
  givenname: Curtis
  surname: Huttenhower
  fullname: Huttenhower, Curtis
  organization: Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
– sequence: 10
  givenname: Giovanni
  surname: Parmigiani
  fullname: Parmigiani, Giovanni
  organization: Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK)
– sequence: 11
  givenname: Michael J
  surname: Birrer
  fullname: Birrer, Michael J
  email: mbirrer@partners.org
  organization: Affiliations of authors: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (MR, ACC, LT, FM, CH, GP); Department of Biostatistics, Harvard School of Public Health, Boston, MA (MR, ACC, LT, FM, CH, GP); Center for Cancer Research (WW, S-hK, MB) and Department of Pathology (EO), Massachusetts General Hospital, Boston, MA; City University of New York School of Public Health, Hunter College, New York, NY (LW); Sung-hoon Kim, Yonsei University College of Medicine, Seoul, Korea (S-HK). mbirrer@partners.org
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24700803$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtLxDAYxIOsuA89eZccvdRN0vSRoyy-YEEQ9Vq-pl8la5vUJBX631twBecyc_gxDLMmC-ssEnLJ2Q1nKt0erDbb5jAyWZ6QFZc5SwRn2eJfXpJ1CAc2Swl5RpZCFoyVLF2R9xcTPungsTE6Gmdp6zztIGISInwgdd_gDViqwWr0tJ5ojxESsNBNwQTqWsozkdEBokEbaYB-6DCck9MWuoAXR9-Qt_u7191jsn9-eNrd7hOdMRUTWRcqy7kExBZR1UxIXrYoRKpyobAoGEil57Up8rRs6lrkHCUwjbmc4VZsyPVv7-Dd14ghVr0JGrsOLLoxVPO2IhV5odiMXh3Rse6xqQZvevBT9feF-AFYWmHE
CitedBy_id crossref_primary_10_1038_nrc4019
crossref_primary_10_1155_2019_1056431
crossref_primary_10_1186_s13040_017_0159_z
crossref_primary_10_3390_ijms241612746
crossref_primary_10_1111_biom_13517
crossref_primary_10_1186_s12864_020_6749_z
crossref_primary_10_1016_j_ygyno_2022_06_010
crossref_primary_10_1158_1078_0432_CCR_19_3072
crossref_primary_10_1016_j_chom_2025_07_015
crossref_primary_10_3390_cancers14030619
crossref_primary_10_3390_ijms22126532
crossref_primary_10_1016_j_ygyno_2017_11_018
crossref_primary_10_1093_jnci_dju049
crossref_primary_10_1016_j_coisb_2019_09_003
crossref_primary_10_1093_bib_bbaa158
crossref_primary_10_1038_s41571_023_00819_1
crossref_primary_10_1080_14789450_2023_2295861
crossref_primary_10_1038_s41525_024_00395_y
crossref_primary_10_1111_1471_0528_17142
crossref_primary_10_1155_2016_3456153
crossref_primary_10_4103_ijmpo_ijmpo_199_19
crossref_primary_10_3390_genes10080571
crossref_primary_10_1214_23_STS891
crossref_primary_10_1016_j_ygyno_2021_10_004
crossref_primary_10_1186_1476_4598_13_241
crossref_primary_10_1016_j_humpath_2022_06_023
crossref_primary_10_1038_s41420_021_00715_6
crossref_primary_10_1038_ncomms8419
crossref_primary_10_3390_jpm10040255
crossref_primary_10_3390_medicines5010016
crossref_primary_10_1111_febs_13534
crossref_primary_10_1200_JCO_19_00337
crossref_primary_10_1016_j_ygyno_2018_11_007
crossref_primary_10_1371_journal_pone_0149183
crossref_primary_10_1016_S1470_2045_16_30108_5
crossref_primary_10_1093_jnci_dju297
crossref_primary_10_1097_GRF_0000000000000493
crossref_primary_10_1097_IGC_0000000000000826
crossref_primary_10_1214_21_AOAS1456
crossref_primary_10_3389_fonc_2016_00213
crossref_primary_10_1371_journal_pone_0252401
crossref_primary_10_3389_fonc_2017_00024
crossref_primary_10_1200_JCO_19_00022
crossref_primary_10_1038_bjc_2016_104
crossref_primary_10_1158_1078_0432_CCR_21_2846
crossref_primary_10_1002_cam4_6085
crossref_primary_10_1016_j_semcancer_2017_04_009
crossref_primary_10_1007_s12204_021_2255_y
crossref_primary_10_1002_cncr_32474
crossref_primary_10_1002_cncr_32595
crossref_primary_10_1007_s00432_022_04162_3
crossref_primary_10_1136_ijgc_2023_004676
crossref_primary_10_3322_caac_21559
crossref_primary_10_1093_carcin_bgy055
crossref_primary_10_1128_mSystems_00194_17
crossref_primary_10_1158_1078_0432_CCR_15_1617
crossref_primary_10_3390_life12122017
crossref_primary_10_1093_jnci_dju080
crossref_primary_10_1016_j_ygyno_2020_06_481
crossref_primary_10_3389_fgene_2019_00931
crossref_primary_10_1038_bjc_2016_124
crossref_primary_10_1016_j_chom_2025_03_012
crossref_primary_10_1038_s41591_019_0405_7
crossref_primary_10_1093_jjco_hyae051
crossref_primary_10_1016_j_ygyno_2017_10_011
crossref_primary_10_1038_s41591_024_03067_7
crossref_primary_10_1158_0008_5472_CAN_14_3242
crossref_primary_10_1214_14_AOAS798
crossref_primary_10_1016_j_patrec_2020_04_035
crossref_primary_10_3389_fonc_2023_1090092
crossref_primary_10_3390_cancers11050668
crossref_primary_10_3389_fcell_2020_00647
crossref_primary_10_7717_peerj_791
crossref_primary_10_1001_jamanetworkopen_2021_14162
crossref_primary_10_1038_onc_2017_394
crossref_primary_10_1080_2162402X_2015_1122863
crossref_primary_10_3390_cancers14236010
crossref_primary_10_1371_journal_pcbi_1004977
crossref_primary_10_1016_S1470_2045_20_30533_7
crossref_primary_10_3390_ijms20040952
crossref_primary_10_1093_biostatistics_kxy044
crossref_primary_10_1111_aji_13244
crossref_primary_10_1007_s00432_019_02986_0
crossref_primary_10_3389_fgene_2020_595757
crossref_primary_10_1016_j_ygyno_2014_10_007
crossref_primary_10_1016_j_canlet_2023_216057
crossref_primary_10_1016_j_ctarc_2022_100629
crossref_primary_10_1073_pnas_1708283115
crossref_primary_10_1111_biom_12974
crossref_primary_10_3390_cells10102760
crossref_primary_10_1016_j_ygyno_2019_02_010
crossref_primary_10_1016_j_ygyno_2015_08_026
crossref_primary_10_1007_s00405_018_5095_0
crossref_primary_10_1145_3569485
crossref_primary_10_1158_1078_0432_CCR_18_0784
crossref_primary_10_1080_01635581_2021_2014903
crossref_primary_10_1186_s13048_015_0195_6
crossref_primary_10_1186_s12920_017_0307_9
crossref_primary_10_1038_nmeth_3252
crossref_primary_10_1371_journal_pmed_1001794
crossref_primary_10_1158_1078_0432_CCR_18_3378
crossref_primary_10_1007_s11654_021_00303_1
crossref_primary_10_3390_cancers14143554
crossref_primary_10_1093_annonc_mdx447
crossref_primary_10_1111_biom_12843
crossref_primary_10_1016_j_ygyno_2016_06_013
crossref_primary_10_1155_2021_4156187
crossref_primary_10_1007_s40471_017_0115_y
crossref_primary_10_1097_MD_0000000000022549
crossref_primary_10_1186_s13059_016_0956_6
crossref_primary_10_1158_1078_0432_CCR_17_0246
crossref_primary_10_3390_cancers15123155
crossref_primary_10_1038_s41598_019_45165_4
crossref_primary_10_3390_genes10090678
crossref_primary_10_1016_j_xcrm_2024_101913
crossref_primary_10_1016_j_scib_2023_10_024
crossref_primary_10_1080_17460441_2017_1319356
crossref_primary_10_1186_s13073_016_0319_7
crossref_primary_10_1016_j_ygyno_2016_01_021
crossref_primary_10_1093_annonc_mdw083
crossref_primary_10_1093_biomtc_ujae146
crossref_primary_10_1038_s41579_023_00984_1
crossref_primary_10_1136_ijgc_2019_001124
crossref_primary_10_1038_cddis_2015_398
crossref_primary_10_1097_IGC_0000000000000449
crossref_primary_10_1111_aji_12975
crossref_primary_10_1158_1078_0432_CCR_19_1741
crossref_primary_10_3390_cancers13071512
crossref_primary_10_1188_15_CJON_19_05AP
crossref_primary_10_1038_srep29915
crossref_primary_10_1097_IGC_0000000000001098
crossref_primary_10_1186_s12864_017_4027_5
crossref_primary_10_1186_s13046_019_1465_8
crossref_primary_10_3389_fonc_2022_987142
crossref_primary_10_1016_j_ebiom_2020_102783
crossref_primary_10_1186_s12935_020_01601_4
ContentType Journal Article
Copyright The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/jnci/dju048
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2105
ExternalDocumentID 24700803
Genre Research Support, U.S. Gov't, Non-P.H.S
Meta-Analysis
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: 5R01CA142832
– fundername: NCI NIH HHS
  grantid: 1RC4CA156551-01
– fundername: NCI NIH HHS
  grantid: RC4 CA156551
– fundername: NCI NIH HHS
  grantid: P30 CA006516
– fundername: NCI NIH HHS
  grantid: R01 CA142832
– fundername: NCI NIH HHS
  grantid: 5P30 CA006516-46
GroupedDBID ---
-E4
-~X
.2P
.I3
.XZ
.ZR
08P
0R~
1TH
29L
2WC
354
4.4
482
48X
53G
5GY
5RE
5VS
5WD
70D
96U
AABZA
AACZT
AAHTB
AAJKP
AAJQQ
AAKAS
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWTL
ABCQX
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABNHQ
ABNKS
ABOCM
ABPEJ
ABPMR
ABPPZ
ABPTD
ABQLI
ABQNK
ABVGC
ABXVV
ABZBJ
ACBMB
ACGFO
ACGFS
ACGOD
ACKOT
ACNCT
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZCM
AEGPL
AEJOX
AEKSI
AEMDU
AEMQT
AENZO
AEPUE
AETBJ
AEWNT
AFAZI
AFCHL
AFFNX
AFFZL
AFIYH
AFOFC
AFRAH
AFXAL
AFYAG
AGINJ
AGKEF
AGSYK
AGUTN
AHMBA
AHMMS
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ATGXG
BAWUL
BAYMD
BCRHZ
BEYMZ
BTRTY
BVRKM
C45
CDBKE
CGR
CS3
CUY
CVF
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
ECM
EE~
EIF
EJD
EMOBN
ENERS
F5P
F8P
F9B
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IH2
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
MHKGH
ML0
N9A
NGC
NOMLY
NOYVH
NPM
NU-
NVLIB
OAUYM
OAWHX
OBH
OCB
OCZFY
ODMLO
ODZKP
OGEVE
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q.-
Q1.
Q5Y
R44
RD5
RNS
ROL
ROX
ROZ
RUSNO
RW1
RXO
TCURE
TEORI
TJX
TMA
TR2
TWZ
UDS
UPT
VVN
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YQT
YXANX
ZKX
ZRR
ZY1
~91
~H1
7X8
ID FETCH-LOGICAL-c509t-4b795614aeefee9b02418fe2239629e770a49c2473e138dbb261e4a0ce64b02f2
IEDL.DBID 7X8
ISICitedReferencesCount 149
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000341636100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1460-2105
IngestDate Sun Nov 09 14:02:20 EST 2025
Tue Oct 28 02:37:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-4b795614aeefee9b02418fe2239629e770a49c2473e138dbb261e4a0ce64b02f2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/jnci/article-pdf/106/5/dju048/17313240/dju048.pdf
PMID 24700803
PQID 1527326790
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1527326790
pubmed_primary_24700803
PublicationCentury 2000
PublicationDate 20140403
PublicationDateYYYYMMDD 2014-04-03
PublicationDate_xml – month: 4
  year: 2014
  text: 20140403
  day: 3
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle JNCI : Journal of the National Cancer Institute
PublicationTitleAlternate J Natl Cancer Inst
PublicationYear 2014
SSID ssj0000924
Score 2.5248868
SecondaryResourceType review_article
Snippet Ovarian cancer causes more than 15000 deaths per year in the United States. The survival of patients is quite heterogeneous, and accurate prognostic tools...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
SubjectTerms Female
Humans
Neoplasm Staging
Oligonucleotide Array Sequence Analysis
Ovarian Neoplasms - genetics
Ovarian Neoplasms - mortality
Ovarian Neoplasms - pathology
Predictive Value of Tests
Transcriptome
United States - epidemiology
Title Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samples
URI https://www.ncbi.nlm.nih.gov/pubmed/24700803
https://www.proquest.com/docview/1527326790
Volume 106
WOSCitedRecordID wos000341636100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMcXtSJefD_qixW8Lk2TTTZ7EhGLl5YiKr2VfUykVZPatAW_vbPJlp4EwUsOIS8ms7u_2dmdPyE3WRzhMGI0s5WEGbeGqRSACavj1AoIILaV2ITo9dLBQPb9hFvpl1Uu-8Sqo7aFcXPkLSe_iqghZHA7-WJONcplV72ExjppRIgyzqvFYFUtPJC1qC1PAoahTez352EQ3xrnZtSy43nA09_ZshpjOrv__bo9suPpkt7V7rBP1iA_IFtdnz8_JK9Po_KdTqbuhPsjFJGVfiBuMoTEN6DFAkNnlVPjfGFK9Tf9hJliylcuoUVGnZIR9dVYaalcceHyiLx0Hp7vH5lXVmAGAWHGuBZuQytXABmA1DhQt9MMEBVkEkoQIlBcmpCLCNpRarXGOAu4CgwkHC_OwmOykRc5nBIKyGPYdEGGwLnMAo0xdRZbneCzLaTQJNdLiw3Rc106QuVQzMvhymZNclKbfTipS2wM8dWOZaOzP9x9TraRYurlNNEFaWTYbuGSbJrFbFROryqXwGOv3_0BtrjCIQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk+prediction+for+late-stage+ovarian+cancer+by+meta-analysis+of+1525+patient+samples&rft.jtitle=JNCI+%3A+Journal+of+the+National+Cancer+Institute&rft.au=Riester%2C+Markus&rft.au=Wei%2C+Wei&rft.au=Waldron%2C+Levi&rft.au=Culhane%2C+Aedin+C&rft.date=2014-04-03&rft.issn=1460-2105&rft.eissn=1460-2105&rft.volume=106&rft.issue=5&rft_id=info:doi/10.1093%2Fjnci%2Fdju048&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-2105&client=summon