Application of Variational AutoEncoder (VAE) Model and Image Processing Approaches in Game Design
In recent decades, the Variational AutoEncoder (VAE) model has shown good potential and capability in image generation and dimensionality reduction. The combination of VAE and various machine learning frameworks has also worked effectively in different daily life applications, however its possible u...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 23; číslo 7; s. 3457 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
25.03.2023
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In recent decades, the Variational AutoEncoder (VAE) model has shown good potential and capability in image generation and dimensionality reduction. The combination of VAE and various machine learning frameworks has also worked effectively in different daily life applications, however its possible use and effectiveness in modern game design has seldom been explored nor assessed. The use of its feature extractor for data clustering has also been minimally discussed in the literature neither. This study first attempts to explore different mathematical properties of the VAE model, in particular, the theoretical framework of the encoding and decoding processes, the possible achievable lower bound and loss functions of different applications; then applies the established VAE model to generate new game levels based on two well-known game settings; and to validate the effectiveness of its data clustering mechanism with the aid of the Modified National Institute of Standards and Technology (MNIST) database. Respective statistical metrics and assessments are also utilized to evaluate the performance of the proposed VAE model in aforementioned case studies. Based on the statistical and graphical results, several potential deficiencies, for example, difficulties in handling high-dimensional and vast datasets, as well as insufficient clarity of outputs are discussed; then measures of future enhancement, such as tokenization and the combination of VAE and GAN models, are also outlined. Hopefully, this can ultimately maximize the strengths and advantages of VAE for future game design tasks and relevant industrial missions. |
|---|---|
| AbstractList | In recent decades, the Variational AutoEncoder (VAE) model has shown good potential and capability in image generation and dimensionality reduction. The combination of VAE and various machine learning frameworks has also worked effectively in different daily life applications, however its possible use and effectiveness in modern game design has seldom been explored nor assessed. The use of its feature extractor for data clustering has also been minimally discussed in the literature neither. This study first attempts to explore different mathematical properties of the VAE model, in particular, the theoretical framework of the encoding and decoding processes, the possible achievable lower bound and loss functions of different applications; then applies the established VAE model to generate new game levels based on two well-known game settings; and to validate the effectiveness of its data clustering mechanism with the aid of the Modified National Institute of Standards and Technology (MNIST) database. Respective statistical metrics and assessments are also utilized to evaluate the performance of the proposed VAE model in aforementioned case studies. Based on the statistical and graphical results, several potential deficiencies, for example, difficulties in handling high-dimensional and vast datasets, as well as insufficient clarity of outputs are discussed; then measures of future enhancement, such as tokenization and the combination of VAE and GAN models, are also outlined. Hopefully, this can ultimately maximize the strengths and advantages of VAE for future game design tasks and relevant industrial missions. In recent decades, the Variational AutoEncoder (VAE) model has shown good potential and capability in image generation and dimensionality reduction. The combination of VAE and various machine learning frameworks has also worked effectively in different daily life applications, however its possible use and effectiveness in modern game design has seldom been explored nor assessed. The use of its feature extractor for data clustering has also been minimally discussed in the literature neither. This study first attempts to explore different mathematical properties of the VAE model, in particular, the theoretical framework of the encoding and decoding processes, the possible achievable lower bound and loss functions of different applications; then applies the established VAE model to generate new game levels based on two well-known game settings; and to validate the effectiveness of its data clustering mechanism with the aid of the Modified National Institute of Standards and Technology (MNIST) database. Respective statistical metrics and assessments are also utilized to evaluate the performance of the proposed VAE model in aforementioned case studies. Based on the statistical and graphical results, several potential deficiencies, for example, difficulties in handling high-dimensional and vast datasets, as well as insufficient clarity of outputs are discussed; then measures of future enhancement, such as tokenization and the combination of VAE and GAN models, are also outlined. Hopefully, this can ultimately maximize the strengths and advantages of VAE for future game design tasks and relevant industrial missions.In recent decades, the Variational AutoEncoder (VAE) model has shown good potential and capability in image generation and dimensionality reduction. The combination of VAE and various machine learning frameworks has also worked effectively in different daily life applications, however its possible use and effectiveness in modern game design has seldom been explored nor assessed. The use of its feature extractor for data clustering has also been minimally discussed in the literature neither. This study first attempts to explore different mathematical properties of the VAE model, in particular, the theoretical framework of the encoding and decoding processes, the possible achievable lower bound and loss functions of different applications; then applies the established VAE model to generate new game levels based on two well-known game settings; and to validate the effectiveness of its data clustering mechanism with the aid of the Modified National Institute of Standards and Technology (MNIST) database. Respective statistical metrics and assessments are also utilized to evaluate the performance of the proposed VAE model in aforementioned case studies. Based on the statistical and graphical results, several potential deficiencies, for example, difficulties in handling high-dimensional and vast datasets, as well as insufficient clarity of outputs are discussed; then measures of future enhancement, such as tokenization and the combination of VAE and GAN models, are also outlined. Hopefully, this can ultimately maximize the strengths and advantages of VAE for future game design tasks and relevant industrial missions. |
| Audience | Academic |
| Author | Mak, Hugo Wai Leung Han, Runze Yin, Hoover H. F. |
| AuthorAffiliation | 1 Department of Mathematics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China 3 Department of Information Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China 2 Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China 4 Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China |
| AuthorAffiliation_xml | – name: 2 Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China – name: 3 Department of Information Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China – name: 1 Department of Mathematics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China – name: 4 Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China |
| Author_xml | – sequence: 1 givenname: Hugo Wai Leung orcidid: 0000-0002-7033-6218 surname: Mak fullname: Mak, Hugo Wai Leung – sequence: 2 givenname: Runze surname: Han fullname: Han, Runze – sequence: 3 givenname: Hoover H. F. orcidid: 0000-0002-0268-0500 surname: Yin fullname: Yin, Hoover H. F. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37050517$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1vEzEQhleoiH7AgT-ALHFpD2m9_ljbJxSVUCIVwQF6tZzZ2a2jXTvYGyT-PSYpUVshHzweP_N6xjOn1VGIAavqbU0vOTf0KjNOFRdSvahOasHETDNGjx7Zx9VpzmtKGedcv6qOuaKSylqdVG6-2Qwe3ORjILEjdy753cENZL6d4iJAbDGR87v54oJ8KfZAXGjJcnQ9km8pAubsQ0-KTooO7jETH8iNG5F8xOz78Lp62bkh45uH_az68Wnx_frz7PbrzfJ6fjsDSc00E7LhpuaMtarVQiNy3iEA0NqoFdOMcqaBc0cpBY4Fqx2sQILWyFeOtfysWu512-jWdpP86NJvG523O0dMvXVp8jCgVbqVKyWYLJKiQXDSdIw7hWBEI5umaH3Ya222qxFbwDAlNzwRfXoT_L3t4y9bU2pM-eOicP6gkOLPLebJjj4DDoMLGLfZMk1pw2Qt64K-f4au4zaVBhRKGdOYhitRqMs91btSgQ9dLA9DWS2OHso8dL7450o0RujyVyXg3eMaDsn_630BLvYApJhzwu6A1NT-nSt7mKvCXj1jwU-7OSlZ-OE_EX8ADWTL-g |
| CitedBy_id | crossref_primary_10_1038_s41598_024_82281_2 crossref_primary_10_1007_s12559_024_10283_3 crossref_primary_10_1109_ACCESS_2024_3397775 crossref_primary_10_3389_fpsyg_2024_1450717 crossref_primary_10_1109_ACCESS_2025_3604236 crossref_primary_10_22430_22565337_3220 crossref_primary_10_1038_s41598_025_17164_1 crossref_primary_10_1016_j_csl_2024_101705 crossref_primary_10_1007_s13042_024_02468_x crossref_primary_10_1007_s44163_025_00354_1 |
| Cites_doi | 10.1145/3377930.3389821 10.1137/1.9781611975673.71 10.1016/j.eswa.2022.118491 10.1109/RCAR47638.2019.9043971 10.1109/IGARSS39084.2020.9323289 10.1007/s12065-021-00589-8 10.1098/rsta.2015.0202 10.1109/TG.2019.2896986 10.1007/s11063-022-10777-x 10.20944/preprints202206.0331.v1 10.1007/s11004-009-9257-x 10.1016/j.patrec.2006.04.013 10.1109/CVPR.2019.01245 10.1109/ICCWorkshops50388.2021.9473748 10.1609/aiide.v16i1.7401 10.1177/1046878118768858 10.21917/ijivp.2016.0180 10.20944/preprints201810.0213.v1 10.1007/s12553-022-00688-1 10.1016/S0167-8655(02)00056-9 10.1016/j.chb.2018.09.036 10.1109/DIGITEL.2010.39 10.1109/ICCV.2017.299 10.1007/978-3-031-19775-8_43 10.3390/s22239544 10.21203/rs.3.rs-1766445/v1 10.1007/978-3-030-70679-1 10.1109/ICASSP40776.2020.9053558 10.1109/DICTA52665.2021.9647261 10.1016/j.aiopen.2021.10.001 10.1186/s13640-017-0238-6 10.1109/SIU55565.2022.9864747 10.1109/SeGAH.2017.7939275 10.1109/CoG47356.2020.9231927 10.1145/3549501 10.3390/app12020772 10.1109/ACMI53878.2021.9528277 10.1080/08839514.2022.2131056 10.1109/Dynamics56256.2022.10014982 10.3390/rs13163337 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/s23073457 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Architecture |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_78d5b742528c46eca59f23a7ec946566 PMC10099338 A746948328 37050517 10_3390_s23073457 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c509t-456391322d7d848ee33feccc0197b2820328c33a000c3e22d1acbc5c88e3ba2d3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000970273000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:00:18 EDT 2025 Tue Nov 04 02:06:48 EST 2025 Thu Sep 04 19:57:58 EDT 2025 Tue Oct 07 07:46:17 EDT 2025 Tue Nov 04 18:15:25 EST 2025 Wed Feb 19 02:24:20 EST 2025 Tue Nov 18 21:26:38 EST 2025 Sat Nov 29 07:17:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | loss function Bayesian algorithm data clustering generator and discriminator MNIST database data and image analytics image and video generation variational autoencoder (VAE) game design |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-456391322d7d848ee33feccc0197b2820328c33a000c3e22d1acbc5c88e3ba2d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7033-6218 0000-0002-0268-0500 |
| OpenAccessLink | https://www.proquest.com/docview/2799696374?pq-origsite=%requestingapplication% |
| PMID | 37050517 |
| PQID | 2799696374 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_78d5b742528c46eca59f23a7ec946566 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10099338 proquest_miscellaneous_2800625151 proquest_journals_2799696374 gale_infotracacademiconefile_A746948328 pubmed_primary_37050517 crossref_primary_10_3390_s23073457 crossref_citationtrail_10_3390_s23073457 |
| PublicationCentury | 2000 |
| PublicationDate | 20230325 |
| PublicationDateYYYYMMDD | 2023-03-25 |
| PublicationDate_xml | – month: 3 year: 2023 text: 20230325 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_14 ref_58 ref_13 ref_11 ref_55 ref_10 ref_54 ref_52 Xenopoulos (ref_68) 2022; 6 ref_19 (ref_66) 2010; 42 ref_18 ref_17 ref_16 ref_15 ref_59 Baldi (ref_51) 2012; 27 Gupta (ref_57) 2016; 6 ref_61 ref_60 Elasri (ref_22) 2022; 54 ref_25 ref_69 ref_23 ref_67 ref_21 ref_20 Lukosch (ref_6) 2018; 49 Cai (ref_37) 2022; 36 ref_29 ref_28 ref_27 ref_26 Idrissa (ref_65) 2002; 23 Lommatsch (ref_1) 2019; 91 ref_72 ref_71 ref_70 Justesen (ref_24) 2020; 12 ref_36 ref_35 ref_34 Scheunders (ref_63) 1998; 1 ref_32 ref_31 ref_30 Vuyyuru (ref_39) 2021; 14 ref_73 ref_38 Jolliffe (ref_50) 2016; 374 Arivazhagan (ref_64) 2006; 27 Wang (ref_12) 2018; 4 ref_47 ref_46 ref_45 ref_44 ref_43 ref_42 ref_41 ref_40 ref_3 Kim (ref_33) 2023; 211 ref_2 ref_49 Armi (ref_62) 2019; 2 ref_48 ref_9 ref_8 Jawahar (ref_56) 2022; 12 ref_5 Ding (ref_53) 2022; 3 ref_4 ref_7 |
| References_xml | – volume: 2 start-page: 1 year: 2019 ident: ref_62 article-title: Texture image analysis and texture classification methods publication-title: Int. J. Image Process. Pattern Recognit. – ident: ref_49 – ident: ref_26 – ident: ref_30 doi: 10.1145/3377930.3389821 – ident: ref_36 doi: 10.1137/1.9781611975673.71 – volume: 211 start-page: 118491 year: 2023 ident: ref_33 article-title: Game effect sprite generation with minimal data via conditional GAN publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118491 – ident: ref_70 doi: 10.1109/RCAR47638.2019.9043971 – ident: ref_42 – ident: ref_59 doi: 10.1109/IGARSS39084.2020.9323289 – ident: ref_61 – ident: ref_35 – volume: 14 start-page: 1173 year: 2021 ident: ref_39 article-title: A novel weather prediction model using a hybrid mechanism based on MLP and VAE with fire-fly optimization algorithm publication-title: Evol. Intel. doi: 10.1007/s12065-021-00589-8 – volume: 374 start-page: 20150202 year: 2016 ident: ref_50 article-title: Principal component analysis: A review and recent developments publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2015.0202 – ident: ref_4 – ident: ref_31 – volume: 12 start-page: 1 year: 2020 ident: ref_24 article-title: Deep learning for video game playing publication-title: IEEE Trans. Games doi: 10.1109/TG.2019.2896986 – ident: ref_27 – ident: ref_52 – volume: 54 start-page: 4609 year: 2022 ident: ref_22 article-title: Image generation: A review publication-title: Neural Process Lett. doi: 10.1007/s11063-022-10777-x – ident: ref_48 – ident: ref_69 – ident: ref_10 – ident: ref_23 doi: 10.20944/preprints202206.0331.v1 – volume: 42 start-page: 49 year: 2010 ident: ref_66 article-title: Measurement of areas on a sphere using fibonacci and latitude–longitude lattices publication-title: Math. Geosci. doi: 10.1007/s11004-009-9257-x – volume: 27 start-page: 1875 year: 2006 ident: ref_64 article-title: Texture classification using ridgelet transform publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2006.04.013 – ident: ref_8 doi: 10.1109/CVPR.2019.01245 – ident: ref_38 doi: 10.1109/ICCWorkshops50388.2021.9473748 – ident: ref_29 doi: 10.1609/aiide.v16i1.7401 – ident: ref_13 – volume: 49 start-page: 279 year: 2018 ident: ref_6 article-title: A scientific foundation of simulation games for the analysis and design of complex systems publication-title: Simul. Gaming doi: 10.1177/1046878118768858 – ident: ref_17 – ident: ref_45 – volume: 6 start-page: 1239 year: 2016 ident: ref_57 article-title: Combining laplacian and sobel gradient for greater sharpening publication-title: IJIVP doi: 10.21917/ijivp.2016.0180 – ident: ref_71 doi: 10.20944/preprints201810.0213.v1 – volume: 12 start-page: 1009 year: 2022 ident: ref_56 article-title: CovMnet–Deep Learning Model for classifying Coronavirus (COVID-19) publication-title: Health Technol. doi: 10.1007/s12553-022-00688-1 – ident: ref_72 – ident: ref_20 – ident: ref_7 – volume: 23 start-page: 1095 year: 2002 ident: ref_65 article-title: Texture classification using Gabor filters publication-title: Pattern Recognit. Lett. doi: 10.1016/S0167-8655(02)00056-9 – volume: 91 start-page: 316 year: 2019 ident: ref_1 article-title: How design features in digital math games support learning and mathematics connections publication-title: Comput. Hum. Behav. doi: 10.1016/j.chb.2018.09.036 – ident: ref_5 doi: 10.1109/DIGITEL.2010.39 – ident: ref_41 doi: 10.1109/ICCV.2017.299 – ident: ref_67 doi: 10.1007/978-3-031-19775-8_43 – ident: ref_11 – ident: ref_14 – ident: ref_47 doi: 10.3390/s22239544 – ident: ref_18 – ident: ref_44 – ident: ref_28 doi: 10.21203/rs.3.rs-1766445/v1 – ident: ref_34 doi: 10.1007/978-3-030-70679-1 – ident: ref_73 – ident: ref_40 doi: 10.1109/ICASSP40776.2020.9053558 – volume: 4 start-page: 30 year: 2018 ident: ref_12 article-title: Video game classification inventory publication-title: Cult. Mon. – ident: ref_21 doi: 10.1109/DICTA52665.2021.9647261 – volume: 27 start-page: 37 year: 2012 ident: ref_51 article-title: Autoencoders, unsupervised learning, and deep architectures publication-title: J. Mach. Learn. Res. – ident: ref_25 – volume: 3 start-page: 29 year: 2022 ident: ref_53 article-title: The road from MLE to EM to VAE: A brief tutorial publication-title: AI Open doi: 10.1016/j.aiopen.2021.10.001 – volume: 1 start-page: 22 year: 1998 ident: ref_63 article-title: Wavelet-based texture analysis publication-title: Int. J. Comput. Sci. Inf. Manag. – ident: ref_16 doi: 10.1186/s13640-017-0238-6 – ident: ref_54 – ident: ref_32 doi: 10.1109/SIU55565.2022.9864747 – ident: ref_2 doi: 10.1109/SeGAH.2017.7939275 – ident: ref_9 doi: 10.1109/CoG47356.2020.9231927 – ident: ref_15 – volume: 6 start-page: 238 year: 2022 ident: ref_68 article-title: ggViz: Accelerating large-scale esports game analysis publication-title: Proc. ACM Hum. Comput. Interact. doi: 10.1145/3549501 – ident: ref_3 doi: 10.3390/app12020772 – ident: ref_19 – ident: ref_43 – ident: ref_60 – ident: ref_55 doi: 10.1109/ACMI53878.2021.9528277 – volume: 36 start-page: 2131056 year: 2022 ident: ref_37 article-title: Variational autoencoder for classification and regression for out-of-distribution detection in learning-enabled cyber-physical systems publication-title: Appl. Artif. Intell. doi: 10.1080/08839514.2022.2131056 – ident: ref_46 doi: 10.1109/Dynamics56256.2022.10014982 – ident: ref_58 doi: 10.3390/rs13163337 |
| SSID | ssj0023338 |
| Score | 2.5691352 |
| Snippet | In recent decades, the Variational AutoEncoder (VAE) model has shown good potential and capability in image generation and dimensionality reduction. The... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 3457 |
| SubjectTerms | 21st century Algorithms Architecture Artificial intelligence Bayesian algorithm Case studies Cellular telephones Computer & video games data clustering Design Designers game design Genre image and video generation Image processing loss function Machine learning Personal computers Simulation Smartphones variational autoencoder (VAE) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hqgc4oLa8QreVi5BYDtF2bWftHAPdFi4VB6h6sxzbESt1s2gf_f2dSbxpViBx6TWeRPZ4nvH4G4CPDp249DxLqWddKtFIoh08L1MM1rNca89dcE2zCXV9rW9v8x-9Vl9UE9bCA7eMGyntsxLzt4xrJyfB2SyvuLAquJygvhqwbYx6tslUTLUEZl4tjpDApH60onJnIckH9bxPA9L_tynu-aLdOsme47k8gJcxYmRFO9NDeBbqI3jRwxF8BbZ4PIZmi4rdYAIcf_KxYrNeTGu6ub5kw5ti-plR-7M7ZmvPvs_RmrB4VwC_xIqIMB5WbFazKzsP7KIp8XgNvy6nP79-S2PvhNRhCLBOMS4SOWWaXnktdQhCVLhbDiM6VWKaRTB6TgiLFtGJgGRj60qXOa2DKC334g3s1Ys6vAOGL9myqs6tEqVUwWtPiD0Tjx_JeVA-geGWp8ZFYHHqb3FnMMEg9puO_Ql86Ej_tGga_yL6QhvTERAAdvMAxcJEsTD_E4sEPtG2GlJTnIyz8bYBLokAr0yh5CSXaM50AoPtzpuovyvDVU6wQULJBM66YdQ8Ok6xdVhskEbTBVSMB8cJvG0FpZuzUNQhcIxr0TsitLOo3ZF69rtB9x5T0I7i-_4p2HAMzzlqAxXN8WwAe-vlJpzAvrtfz1bL00ZnHgA8Txnk priority: 102 providerName: Directory of Open Access Journals |
| Title | Application of Variational AutoEncoder (VAE) Model and Image Processing Approaches in Game Design |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37050517 https://www.proquest.com/docview/2799696374 https://www.proquest.com/docview/2800625151 https://pubmed.ncbi.nlm.nih.gov/PMC10099338 https://doaj.org/article/78d5b742528c46eca59f23a7ec946566 |
| Volume | 23 |
| WOSCitedRecordID | wos000970273000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xjgdA4seAERiVQUhsD9HW2KmdJ5RBB3tYVSGYylPk2A6rtCWjaXnkb-cudbNUIF54yYPjRLZ8992dff4O4I1BIy5sFIdUsy4UCJKIg0d5iM56nChlI-NMU2xCjsdqOk0mfsOt9mmVa0xsgNpWhvbIDyOZEJELl-Ld9Y-QqkbR6aovobEF28RUJnqwfTwaTz63IRfHCGzFJ8QxuD-sKe2ZC7JFHSvUkPX_Cckdm7SZL9kxQCcP_nfoD-G-dz1ZupKVR3DLlTtwL-2cJOzA3Q4_4WPQ6c3xNqsKdo6Btd88ZOlyUY1KuhE_Z_vn6eiAUVm1S6ZLy06vEKWYv4OAf2KpZy53NZuV7KO-cuxDkzryBL6ejL68_xT6mgyhQddiEaK_xROKYK20SijnOC9QCgx6ijLH8I3o-QznGpHWcIfdBtrkJjZKOZ7ryPKn0Cur0j0Dhh_pvCiOtOS5kM4qS0xAQ4s_SSInbQD76zXKjCcsp7oZlxkGLrScWbucAbxuu16vWDr-1umYFrrtQMTaTUM1_555Pc2ksnEuEchwGmLojI6TIuJaOpMQs9wwgLckJhmpPw7GaH-LAadERFpZKsUwEQiTKoC9tTRkHhfq7EYUAnjVvkaNpmMaXbpqiX0UXWxFP3MQwO5K8Noxc0mVBwc4F7UhkhuT2nxTzi4a1vABBQOoDs__Pa4XcCdCvaE0uyjeg95ivnQv4bb5uZjV8z5syalsnqrvda3fbGPg8-zXCNsmp2eTb78BLd40qw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFImHxKMUMBRYEIj2YDXx2tn1ASFDUxq1jXIoVTmZ9e4aIrV2sRMQf4rfyIzjuI5A3HrgGk9WO8k3MzvemW8AXmoM4r7xApdm1rk-Okn0g93ExcN6EEppPG11NWxCjEby5CQcr8CvRS8MlVUufGLlqE2u6R35tidCInLhwn97_s2lqVF0u7oYoTGHxb79-QNTtvLNcAf_31eetzs4er_n1lMFXI3BceriiYGHlIMZYaQvreU8RT00nnVEggkIEcxpzhX6Cs0tivWUTnSgpbQ8UZ7huO4VWPUR7LIDq-Ph4fhTk-JxzPjm_EWch93tksqsuU-xrxX1quEAf4aAVgxcrs9sBbzd2__bT3UHbtVHaxbNbeEurNhsDW5GrZuSNbjR4l-8Byq6uL5necqOVTGpX46yaDbNBxl1_Bds8zgabDEaG3fKVGbY8Ay9MKt7LHAlFtXM7LZkk4x9UGeW7VSlMevw8VJUvg-dLM_sQ2D4JZWkaVcJnvjCGmmI6ahvcJHQs8I4sLnARKxrQnaaC3IaY2JG8Ikb-DjwohE9n7OQ_E3oHQGrESDi8OqDvPgS134oFtIEiUDsohp-32oVhKnHlbA6JOa8vgOvCZYxuTfcjFZ1lwaqRERhcST8fuhjGJAObCzQF9d-r4wvoOfA8-Yxeiy6hlKZzWcoI6lxF8_RPQcezIHe7JkLmqzYQ13kkgksKbX8JJt8rVjRe5TsoPk9-ve-nsG1vaPDg_hgONp_DNc9tFkqKfSCDehMi5l9Alf19-mkLJ7Wts3g82XbyG8sIot8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFiFA4lFehgILAtEerCReO7s-IGRIAlEhygGqcnLXu2uI1NrFSUD8NX4dM87GTQTi1gPXeLLaSWa-mfHOfgPwTGMQD00Q-TSzzg8RJBEH25mPyXoUS2kCbXU9bEKMRvLwMB5vwK_lXRhqq1xiYg3UptT0jrwViJiIXLgIW7lrixj3Bq9Ov_k0QYpOWpfjNBYmsm9__sDybfpy2MP_-nkQDPof37zz3YQBX2OgnPmYPfCY6jEjjAyltZznqJPGvEdkWIwQ2ZzmXCFuaG5RrKN0piMtpeWZCgzHdS_AFqbkIfrY1nj4Yfy5Kfc4Vn8LLiPO43ZrSi3XPKQ4uBIB60EBf4aDlXi43qu5EvwG1__nn-0GXHMpN0sWPnITNmyxDVeTlROUbbiywst4C1RydqzPypwdqGriXpqyZD4r-wUxAVRs9yDp7zEaJ3fMVGHY8ATRmbm7F7gSSxxju52yScHeqhPLenXLzG34dC4q34HNoizsPWD4JZXleVsJnoXCGmmIAalrcJE4sMJ4sLu0j1Q7onaaF3KcYsFGppQ2puTB00b0dMFO8jeh12RkjQARitcflNWX1OFTKqSJMoEAjmqEXatVFOcBV8LqmBj1uh68IBNNCfZwM1q52xuoEhGIpYkIu3GI4UF6sLO0xNTh4TQ9M0MPnjSPEcnoeEoVtpyjjKQLvZhfdzy4uzD6Zs9c0MTFDuoi19xhTan1J8Xka82W3qEiCF3x_r_39RguoWOk74ej_QdwOUD3pU7DINqBzVk1tw_hov4-m0yrR87NGRydt4v8BgK7lDw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Variational+AutoEncoder+%28VAE%29+Model+and+Image+Processing+Approaches+in+Game+Design&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mak%2C+Hugo+Wai+Leung&rft.au=Han%2C+Runze&rft.au=Yin%2C+Hoover+H+F&rft.date=2023-03-25&rft.eissn=1424-8220&rft.volume=23&rft.issue=7&rft_id=info:doi/10.3390%2Fs23073457&rft_id=info%3Apmid%2F37050517&rft.externalDocID=37050517 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |