Application of Variational AutoEncoder (VAE) Model and Image Processing Approaches in Game Design

In recent decades, the Variational AutoEncoder (VAE) model has shown good potential and capability in image generation and dimensionality reduction. The combination of VAE and various machine learning frameworks has also worked effectively in different daily life applications, however its possible u...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 23; číslo 7; s. 3457
Hlavní autoři: Mak, Hugo Wai Leung, Han, Runze, Yin, Hoover H. F.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 25.03.2023
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In recent decades, the Variational AutoEncoder (VAE) model has shown good potential and capability in image generation and dimensionality reduction. The combination of VAE and various machine learning frameworks has also worked effectively in different daily life applications, however its possible use and effectiveness in modern game design has seldom been explored nor assessed. The use of its feature extractor for data clustering has also been minimally discussed in the literature neither. This study first attempts to explore different mathematical properties of the VAE model, in particular, the theoretical framework of the encoding and decoding processes, the possible achievable lower bound and loss functions of different applications; then applies the established VAE model to generate new game levels based on two well-known game settings; and to validate the effectiveness of its data clustering mechanism with the aid of the Modified National Institute of Standards and Technology (MNIST) database. Respective statistical metrics and assessments are also utilized to evaluate the performance of the proposed VAE model in aforementioned case studies. Based on the statistical and graphical results, several potential deficiencies, for example, difficulties in handling high-dimensional and vast datasets, as well as insufficient clarity of outputs are discussed; then measures of future enhancement, such as tokenization and the combination of VAE and GAN models, are also outlined. Hopefully, this can ultimately maximize the strengths and advantages of VAE for future game design tasks and relevant industrial missions.
AbstractList In recent decades, the Variational AutoEncoder (VAE) model has shown good potential and capability in image generation and dimensionality reduction. The combination of VAE and various machine learning frameworks has also worked effectively in different daily life applications, however its possible use and effectiveness in modern game design has seldom been explored nor assessed. The use of its feature extractor for data clustering has also been minimally discussed in the literature neither. This study first attempts to explore different mathematical properties of the VAE model, in particular, the theoretical framework of the encoding and decoding processes, the possible achievable lower bound and loss functions of different applications; then applies the established VAE model to generate new game levels based on two well-known game settings; and to validate the effectiveness of its data clustering mechanism with the aid of the Modified National Institute of Standards and Technology (MNIST) database. Respective statistical metrics and assessments are also utilized to evaluate the performance of the proposed VAE model in aforementioned case studies. Based on the statistical and graphical results, several potential deficiencies, for example, difficulties in handling high-dimensional and vast datasets, as well as insufficient clarity of outputs are discussed; then measures of future enhancement, such as tokenization and the combination of VAE and GAN models, are also outlined. Hopefully, this can ultimately maximize the strengths and advantages of VAE for future game design tasks and relevant industrial missions.
In recent decades, the Variational AutoEncoder (VAE) model has shown good potential and capability in image generation and dimensionality reduction. The combination of VAE and various machine learning frameworks has also worked effectively in different daily life applications, however its possible use and effectiveness in modern game design has seldom been explored nor assessed. The use of its feature extractor for data clustering has also been minimally discussed in the literature neither. This study first attempts to explore different mathematical properties of the VAE model, in particular, the theoretical framework of the encoding and decoding processes, the possible achievable lower bound and loss functions of different applications; then applies the established VAE model to generate new game levels based on two well-known game settings; and to validate the effectiveness of its data clustering mechanism with the aid of the Modified National Institute of Standards and Technology (MNIST) database. Respective statistical metrics and assessments are also utilized to evaluate the performance of the proposed VAE model in aforementioned case studies. Based on the statistical and graphical results, several potential deficiencies, for example, difficulties in handling high-dimensional and vast datasets, as well as insufficient clarity of outputs are discussed; then measures of future enhancement, such as tokenization and the combination of VAE and GAN models, are also outlined. Hopefully, this can ultimately maximize the strengths and advantages of VAE for future game design tasks and relevant industrial missions.In recent decades, the Variational AutoEncoder (VAE) model has shown good potential and capability in image generation and dimensionality reduction. The combination of VAE and various machine learning frameworks has also worked effectively in different daily life applications, however its possible use and effectiveness in modern game design has seldom been explored nor assessed. The use of its feature extractor for data clustering has also been minimally discussed in the literature neither. This study first attempts to explore different mathematical properties of the VAE model, in particular, the theoretical framework of the encoding and decoding processes, the possible achievable lower bound and loss functions of different applications; then applies the established VAE model to generate new game levels based on two well-known game settings; and to validate the effectiveness of its data clustering mechanism with the aid of the Modified National Institute of Standards and Technology (MNIST) database. Respective statistical metrics and assessments are also utilized to evaluate the performance of the proposed VAE model in aforementioned case studies. Based on the statistical and graphical results, several potential deficiencies, for example, difficulties in handling high-dimensional and vast datasets, as well as insufficient clarity of outputs are discussed; then measures of future enhancement, such as tokenization and the combination of VAE and GAN models, are also outlined. Hopefully, this can ultimately maximize the strengths and advantages of VAE for future game design tasks and relevant industrial missions.
Audience Academic
Author Mak, Hugo Wai Leung
Han, Runze
Yin, Hoover H. F.
AuthorAffiliation 1 Department of Mathematics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
3 Department of Information Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
2 Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
4 Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
AuthorAffiliation_xml – name: 2 Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
– name: 3 Department of Information Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
– name: 1 Department of Mathematics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
– name: 4 Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Author_xml – sequence: 1
  givenname: Hugo Wai Leung
  orcidid: 0000-0002-7033-6218
  surname: Mak
  fullname: Mak, Hugo Wai Leung
– sequence: 2
  givenname: Runze
  surname: Han
  fullname: Han, Runze
– sequence: 3
  givenname: Hoover H. F.
  orcidid: 0000-0002-0268-0500
  surname: Yin
  fullname: Yin, Hoover H. F.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37050517$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQhleoiH7AgT-ALHFpD2m9_ljbJxSVUCIVwQF6tZzZ2a2jXTvYGyT-PSYpUVshHzweP_N6xjOn1VGIAavqbU0vOTf0KjNOFRdSvahOasHETDNGjx7Zx9VpzmtKGedcv6qOuaKSylqdVG6-2Qwe3ORjILEjdy753cENZL6d4iJAbDGR87v54oJ8KfZAXGjJcnQ9km8pAubsQ0-KTooO7jETH8iNG5F8xOz78Lp62bkh45uH_az68Wnx_frz7PbrzfJ6fjsDSc00E7LhpuaMtarVQiNy3iEA0NqoFdOMcqaBc0cpBY4Fqx2sQILWyFeOtfysWu512-jWdpP86NJvG523O0dMvXVp8jCgVbqVKyWYLJKiQXDSdIw7hWBEI5umaH3Ya222qxFbwDAlNzwRfXoT_L3t4y9bU2pM-eOicP6gkOLPLebJjj4DDoMLGLfZMk1pw2Qt64K-f4au4zaVBhRKGdOYhitRqMs91btSgQ9dLA9DWS2OHso8dL7450o0RujyVyXg3eMaDsn_630BLvYApJhzwu6A1NT-nSt7mKvCXj1jwU-7OSlZ-OE_EX8ADWTL-g
CitedBy_id crossref_primary_10_1038_s41598_024_82281_2
crossref_primary_10_1007_s12559_024_10283_3
crossref_primary_10_1109_ACCESS_2024_3397775
crossref_primary_10_3389_fpsyg_2024_1450717
crossref_primary_10_1109_ACCESS_2025_3604236
crossref_primary_10_22430_22565337_3220
crossref_primary_10_1038_s41598_025_17164_1
crossref_primary_10_1016_j_csl_2024_101705
crossref_primary_10_1007_s13042_024_02468_x
crossref_primary_10_1007_s44163_025_00354_1
Cites_doi 10.1145/3377930.3389821
10.1137/1.9781611975673.71
10.1016/j.eswa.2022.118491
10.1109/RCAR47638.2019.9043971
10.1109/IGARSS39084.2020.9323289
10.1007/s12065-021-00589-8
10.1098/rsta.2015.0202
10.1109/TG.2019.2896986
10.1007/s11063-022-10777-x
10.20944/preprints202206.0331.v1
10.1007/s11004-009-9257-x
10.1016/j.patrec.2006.04.013
10.1109/CVPR.2019.01245
10.1109/ICCWorkshops50388.2021.9473748
10.1609/aiide.v16i1.7401
10.1177/1046878118768858
10.21917/ijivp.2016.0180
10.20944/preprints201810.0213.v1
10.1007/s12553-022-00688-1
10.1016/S0167-8655(02)00056-9
10.1016/j.chb.2018.09.036
10.1109/DIGITEL.2010.39
10.1109/ICCV.2017.299
10.1007/978-3-031-19775-8_43
10.3390/s22239544
10.21203/rs.3.rs-1766445/v1
10.1007/978-3-030-70679-1
10.1109/ICASSP40776.2020.9053558
10.1109/DICTA52665.2021.9647261
10.1016/j.aiopen.2021.10.001
10.1186/s13640-017-0238-6
10.1109/SIU55565.2022.9864747
10.1109/SeGAH.2017.7939275
10.1109/CoG47356.2020.9231927
10.1145/3549501
10.3390/app12020772
10.1109/ACMI53878.2021.9528277
10.1080/08839514.2022.2131056
10.1109/Dynamics56256.2022.10014982
10.3390/rs13163337
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s23073457
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef

Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_78d5b742528c46eca59f23a7ec946566
PMC10099338
A746948328
37050517
10_3390_s23073457
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c509t-456391322d7d848ee33feccc0197b2820328c33a000c3e22d1acbc5c88e3ba2d3
IEDL.DBID BENPR
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000970273000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:00:18 EDT 2025
Tue Nov 04 02:06:48 EST 2025
Thu Sep 04 19:57:58 EDT 2025
Tue Oct 07 07:46:17 EDT 2025
Tue Nov 04 18:15:25 EST 2025
Wed Feb 19 02:24:20 EST 2025
Tue Nov 18 21:26:38 EST 2025
Sat Nov 29 07:17:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords loss function
Bayesian algorithm
data clustering
generator and discriminator
MNIST database
data and image analytics
image and video generation
variational autoencoder (VAE)
game design
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-456391322d7d848ee33feccc0197b2820328c33a000c3e22d1acbc5c88e3ba2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7033-6218
0000-0002-0268-0500
OpenAccessLink https://www.proquest.com/docview/2799696374?pq-origsite=%requestingapplication%
PMID 37050517
PQID 2799696374
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_78d5b742528c46eca59f23a7ec946566
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10099338
proquest_miscellaneous_2800625151
proquest_journals_2799696374
gale_infotracacademiconefile_A746948328
pubmed_primary_37050517
crossref_primary_10_3390_s23073457
crossref_citationtrail_10_3390_s23073457
PublicationCentury 2000
PublicationDate 20230325
PublicationDateYYYYMMDD 2023-03-25
PublicationDate_xml – month: 3
  year: 2023
  text: 20230325
  day: 25
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_14
ref_58
ref_13
ref_11
ref_55
ref_10
ref_54
ref_52
Xenopoulos (ref_68) 2022; 6
ref_19
(ref_66) 2010; 42
ref_18
ref_17
ref_16
ref_15
ref_59
Baldi (ref_51) 2012; 27
Gupta (ref_57) 2016; 6
ref_61
ref_60
Elasri (ref_22) 2022; 54
ref_25
ref_69
ref_23
ref_67
ref_21
ref_20
Lukosch (ref_6) 2018; 49
Cai (ref_37) 2022; 36
ref_29
ref_28
ref_27
ref_26
Idrissa (ref_65) 2002; 23
Lommatsch (ref_1) 2019; 91
ref_72
ref_71
ref_70
Justesen (ref_24) 2020; 12
ref_36
ref_35
ref_34
Scheunders (ref_63) 1998; 1
ref_32
ref_31
ref_30
Vuyyuru (ref_39) 2021; 14
ref_73
ref_38
Jolliffe (ref_50) 2016; 374
Arivazhagan (ref_64) 2006; 27
Wang (ref_12) 2018; 4
ref_47
ref_46
ref_45
ref_44
ref_43
ref_42
ref_41
ref_40
ref_3
Kim (ref_33) 2023; 211
ref_2
ref_49
Armi (ref_62) 2019; 2
ref_48
ref_9
ref_8
Jawahar (ref_56) 2022; 12
ref_5
Ding (ref_53) 2022; 3
ref_4
ref_7
References_xml – volume: 2
  start-page: 1
  year: 2019
  ident: ref_62
  article-title: Texture image analysis and texture classification methods
  publication-title: Int. J. Image Process. Pattern Recognit.
– ident: ref_49
– ident: ref_26
– ident: ref_30
  doi: 10.1145/3377930.3389821
– ident: ref_36
  doi: 10.1137/1.9781611975673.71
– volume: 211
  start-page: 118491
  year: 2023
  ident: ref_33
  article-title: Game effect sprite generation with minimal data via conditional GAN
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118491
– ident: ref_70
  doi: 10.1109/RCAR47638.2019.9043971
– ident: ref_42
– ident: ref_59
  doi: 10.1109/IGARSS39084.2020.9323289
– ident: ref_61
– ident: ref_35
– volume: 14
  start-page: 1173
  year: 2021
  ident: ref_39
  article-title: A novel weather prediction model using a hybrid mechanism based on MLP and VAE with fire-fly optimization algorithm
  publication-title: Evol. Intel.
  doi: 10.1007/s12065-021-00589-8
– volume: 374
  start-page: 20150202
  year: 2016
  ident: ref_50
  article-title: Principal component analysis: A review and recent developments
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2015.0202
– ident: ref_4
– ident: ref_31
– volume: 12
  start-page: 1
  year: 2020
  ident: ref_24
  article-title: Deep learning for video game playing
  publication-title: IEEE Trans. Games
  doi: 10.1109/TG.2019.2896986
– ident: ref_27
– ident: ref_52
– volume: 54
  start-page: 4609
  year: 2022
  ident: ref_22
  article-title: Image generation: A review
  publication-title: Neural Process Lett.
  doi: 10.1007/s11063-022-10777-x
– ident: ref_48
– ident: ref_69
– ident: ref_10
– ident: ref_23
  doi: 10.20944/preprints202206.0331.v1
– volume: 42
  start-page: 49
  year: 2010
  ident: ref_66
  article-title: Measurement of areas on a sphere using fibonacci and latitude–longitude lattices
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-009-9257-x
– volume: 27
  start-page: 1875
  year: 2006
  ident: ref_64
  article-title: Texture classification using ridgelet transform
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2006.04.013
– ident: ref_8
  doi: 10.1109/CVPR.2019.01245
– ident: ref_38
  doi: 10.1109/ICCWorkshops50388.2021.9473748
– ident: ref_29
  doi: 10.1609/aiide.v16i1.7401
– ident: ref_13
– volume: 49
  start-page: 279
  year: 2018
  ident: ref_6
  article-title: A scientific foundation of simulation games for the analysis and design of complex systems
  publication-title: Simul. Gaming
  doi: 10.1177/1046878118768858
– ident: ref_17
– ident: ref_45
– volume: 6
  start-page: 1239
  year: 2016
  ident: ref_57
  article-title: Combining laplacian and sobel gradient for greater sharpening
  publication-title: IJIVP
  doi: 10.21917/ijivp.2016.0180
– ident: ref_71
  doi: 10.20944/preprints201810.0213.v1
– volume: 12
  start-page: 1009
  year: 2022
  ident: ref_56
  article-title: CovMnet–Deep Learning Model for classifying Coronavirus (COVID-19)
  publication-title: Health Technol.
  doi: 10.1007/s12553-022-00688-1
– ident: ref_72
– ident: ref_20
– ident: ref_7
– volume: 23
  start-page: 1095
  year: 2002
  ident: ref_65
  article-title: Texture classification using Gabor filters
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(02)00056-9
– volume: 91
  start-page: 316
  year: 2019
  ident: ref_1
  article-title: How design features in digital math games support learning and mathematics connections
  publication-title: Comput. Hum. Behav.
  doi: 10.1016/j.chb.2018.09.036
– ident: ref_5
  doi: 10.1109/DIGITEL.2010.39
– ident: ref_41
  doi: 10.1109/ICCV.2017.299
– ident: ref_67
  doi: 10.1007/978-3-031-19775-8_43
– ident: ref_11
– ident: ref_14
– ident: ref_47
  doi: 10.3390/s22239544
– ident: ref_18
– ident: ref_44
– ident: ref_28
  doi: 10.21203/rs.3.rs-1766445/v1
– ident: ref_34
  doi: 10.1007/978-3-030-70679-1
– ident: ref_73
– ident: ref_40
  doi: 10.1109/ICASSP40776.2020.9053558
– volume: 4
  start-page: 30
  year: 2018
  ident: ref_12
  article-title: Video game classification inventory
  publication-title: Cult. Mon.
– ident: ref_21
  doi: 10.1109/DICTA52665.2021.9647261
– volume: 27
  start-page: 37
  year: 2012
  ident: ref_51
  article-title: Autoencoders, unsupervised learning, and deep architectures
  publication-title: J. Mach. Learn. Res.
– ident: ref_25
– volume: 3
  start-page: 29
  year: 2022
  ident: ref_53
  article-title: The road from MLE to EM to VAE: A brief tutorial
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.10.001
– volume: 1
  start-page: 22
  year: 1998
  ident: ref_63
  article-title: Wavelet-based texture analysis
  publication-title: Int. J. Comput. Sci. Inf. Manag.
– ident: ref_16
  doi: 10.1186/s13640-017-0238-6
– ident: ref_54
– ident: ref_32
  doi: 10.1109/SIU55565.2022.9864747
– ident: ref_2
  doi: 10.1109/SeGAH.2017.7939275
– ident: ref_9
  doi: 10.1109/CoG47356.2020.9231927
– ident: ref_15
– volume: 6
  start-page: 238
  year: 2022
  ident: ref_68
  article-title: ggViz: Accelerating large-scale esports game analysis
  publication-title: Proc. ACM Hum. Comput. Interact.
  doi: 10.1145/3549501
– ident: ref_3
  doi: 10.3390/app12020772
– ident: ref_19
– ident: ref_43
– ident: ref_60
– ident: ref_55
  doi: 10.1109/ACMI53878.2021.9528277
– volume: 36
  start-page: 2131056
  year: 2022
  ident: ref_37
  article-title: Variational autoencoder for classification and regression for out-of-distribution detection in learning-enabled cyber-physical systems
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2022.2131056
– ident: ref_46
  doi: 10.1109/Dynamics56256.2022.10014982
– ident: ref_58
  doi: 10.3390/rs13163337
SSID ssj0023338
Score 2.5691352
Snippet In recent decades, the Variational AutoEncoder (VAE) model has shown good potential and capability in image generation and dimensionality reduction. The...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3457
SubjectTerms 21st century
Algorithms
Architecture
Artificial intelligence
Bayesian algorithm
Case studies
Cellular telephones
Computer & video games
data clustering
Design
Designers
game design
Genre
image and video generation
Image processing
loss function
Machine learning
Personal computers
Simulation
Smartphones
variational autoencoder (VAE)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hqgc4oLa8QreVi5BYDtF2bWftHAPdFi4VB6h6sxzbESt1s2gf_f2dSbxpViBx6TWeRPZ4nvH4G4CPDp249DxLqWddKtFIoh08L1MM1rNca89dcE2zCXV9rW9v8x-9Vl9UE9bCA7eMGyntsxLzt4xrJyfB2SyvuLAquJygvhqwbYx6tslUTLUEZl4tjpDApH60onJnIckH9bxPA9L_tynu-aLdOsme47k8gJcxYmRFO9NDeBbqI3jRwxF8BbZ4PIZmi4rdYAIcf_KxYrNeTGu6ub5kw5ti-plR-7M7ZmvPvs_RmrB4VwC_xIqIMB5WbFazKzsP7KIp8XgNvy6nP79-S2PvhNRhCLBOMS4SOWWaXnktdQhCVLhbDiM6VWKaRTB6TgiLFtGJgGRj60qXOa2DKC334g3s1Ys6vAOGL9myqs6tEqVUwWtPiD0Tjx_JeVA-geGWp8ZFYHHqb3FnMMEg9puO_Ql86Ej_tGga_yL6QhvTERAAdvMAxcJEsTD_E4sEPtG2GlJTnIyz8bYBLokAr0yh5CSXaM50AoPtzpuovyvDVU6wQULJBM66YdQ8Ok6xdVhskEbTBVSMB8cJvG0FpZuzUNQhcIxr0TsitLOo3ZF69rtB9x5T0I7i-_4p2HAMzzlqAxXN8WwAe-vlJpzAvrtfz1bL00ZnHgA8Txnk
  priority: 102
  providerName: Directory of Open Access Journals
Title Application of Variational AutoEncoder (VAE) Model and Image Processing Approaches in Game Design
URI https://www.ncbi.nlm.nih.gov/pubmed/37050517
https://www.proquest.com/docview/2799696374
https://www.proquest.com/docview/2800625151
https://pubmed.ncbi.nlm.nih.gov/PMC10099338
https://doaj.org/article/78d5b742528c46eca59f23a7ec946566
Volume 23
WOSCitedRecordID wos000970273000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xjgdA4seAERiVQUhsD9HW2KmdJ5RBB3tYVSGYylPk2A6rtCWjaXnkb-cudbNUIF54yYPjRLZ8992dff4O4I1BIy5sFIdUsy4UCJKIg0d5iM56nChlI-NMU2xCjsdqOk0mfsOt9mmVa0xsgNpWhvbIDyOZEJELl-Ld9Y-QqkbR6aovobEF28RUJnqwfTwaTz63IRfHCGzFJ8QxuD-sKe2ZC7JFHSvUkPX_Cckdm7SZL9kxQCcP_nfoD-G-dz1ZupKVR3DLlTtwL-2cJOzA3Q4_4WPQ6c3xNqsKdo6Btd88ZOlyUY1KuhE_Z_vn6eiAUVm1S6ZLy06vEKWYv4OAf2KpZy53NZuV7KO-cuxDkzryBL6ejL68_xT6mgyhQddiEaK_xROKYK20SijnOC9QCgx6ijLH8I3o-QznGpHWcIfdBtrkJjZKOZ7ryPKn0Cur0j0Dhh_pvCiOtOS5kM4qS0xAQ4s_SSInbQD76zXKjCcsp7oZlxkGLrScWbucAbxuu16vWDr-1umYFrrtQMTaTUM1_555Pc2ksnEuEchwGmLojI6TIuJaOpMQs9wwgLckJhmpPw7GaH-LAadERFpZKsUwEQiTKoC9tTRkHhfq7EYUAnjVvkaNpmMaXbpqiX0UXWxFP3MQwO5K8Noxc0mVBwc4F7UhkhuT2nxTzi4a1vABBQOoDs__Pa4XcCdCvaE0uyjeg95ivnQv4bb5uZjV8z5syalsnqrvda3fbGPg8-zXCNsmp2eTb78BLd40qw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFImHxKMUMBRYEIj2YDXx2tn1ASFDUxq1jXIoVTmZ9e4aIrV2sRMQf4rfyIzjuI5A3HrgGk9WO8k3MzvemW8AXmoM4r7xApdm1rk-Okn0g93ExcN6EEppPG11NWxCjEby5CQcr8CvRS8MlVUufGLlqE2u6R35tidCInLhwn97_s2lqVF0u7oYoTGHxb79-QNTtvLNcAf_31eetzs4er_n1lMFXI3BceriiYGHlIMZYaQvreU8RT00nnVEggkIEcxpzhX6Cs0tivWUTnSgpbQ8UZ7huO4VWPUR7LIDq-Ph4fhTk-JxzPjm_EWch93tksqsuU-xrxX1quEAf4aAVgxcrs9sBbzd2__bT3UHbtVHaxbNbeEurNhsDW5GrZuSNbjR4l-8Byq6uL5necqOVTGpX46yaDbNBxl1_Bds8zgabDEaG3fKVGbY8Ay9MKt7LHAlFtXM7LZkk4x9UGeW7VSlMevw8VJUvg-dLM_sQ2D4JZWkaVcJnvjCGmmI6ahvcJHQs8I4sLnARKxrQnaaC3IaY2JG8Ikb-DjwohE9n7OQ_E3oHQGrESDi8OqDvPgS134oFtIEiUDsohp-32oVhKnHlbA6JOa8vgOvCZYxuTfcjFZ1lwaqRERhcST8fuhjGJAObCzQF9d-r4wvoOfA8-Yxeiy6hlKZzWcoI6lxF8_RPQcezIHe7JkLmqzYQ13kkgksKbX8JJt8rVjRe5TsoPk9-ve-nsG1vaPDg_hgONp_DNc9tFkqKfSCDehMi5l9Alf19-mkLJ7Wts3g82XbyG8sIot8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFiFA4lFehgILAtEerCReO7s-IGRIAlEhygGqcnLXu2uI1NrFSUD8NX4dM87GTQTi1gPXeLLaSWa-mfHOfgPwTGMQD00Q-TSzzg8RJBEH25mPyXoUS2kCbXU9bEKMRvLwMB5vwK_lXRhqq1xiYg3UptT0jrwViJiIXLgIW7lrixj3Bq9Ov_k0QYpOWpfjNBYmsm9__sDybfpy2MP_-nkQDPof37zz3YQBX2OgnPmYPfCY6jEjjAyltZznqJPGvEdkWIwQ2ZzmXCFuaG5RrKN0piMtpeWZCgzHdS_AFqbkIfrY1nj4Yfy5Kfc4Vn8LLiPO43ZrSi3XPKQ4uBIB60EBf4aDlXi43qu5EvwG1__nn-0GXHMpN0sWPnITNmyxDVeTlROUbbiywst4C1RydqzPypwdqGriXpqyZD4r-wUxAVRs9yDp7zEaJ3fMVGHY8ATRmbm7F7gSSxxju52yScHeqhPLenXLzG34dC4q34HNoizsPWD4JZXleVsJnoXCGmmIAalrcJE4sMJ4sLu0j1Q7onaaF3KcYsFGppQ2puTB00b0dMFO8jeh12RkjQARitcflNWX1OFTKqSJMoEAjmqEXatVFOcBV8LqmBj1uh68IBNNCfZwM1q52xuoEhGIpYkIu3GI4UF6sLO0xNTh4TQ9M0MPnjSPEcnoeEoVtpyjjKQLvZhfdzy4uzD6Zs9c0MTFDuoi19xhTan1J8Xka82W3qEiCF3x_r_39RguoWOk74ej_QdwOUD3pU7DINqBzVk1tw_hov4-m0yrR87NGRydt4v8BgK7lDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Variational+AutoEncoder+%28VAE%29+Model+and+Image+Processing+Approaches+in+Game+Design&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mak%2C+Hugo+Wai+Leung&rft.au=Han%2C+Runze&rft.au=Yin%2C+Hoover+H+F&rft.date=2023-03-25&rft.eissn=1424-8220&rft.volume=23&rft.issue=7&rft_id=info:doi/10.3390%2Fs23073457&rft_id=info%3Apmid%2F37050517&rft.externalDocID=37050517
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon