Posttranscriptional Gene Regulation by Long Noncoding RNA

Eukaryotic cells transcribe a vast number of noncoding RNA species. Among them, long noncoding RNAs (lncRNAs) have been widely implicated in the regulation of gene transcription. However, examples of posttranscriptional gene regulation by lncRNAs are emerging. Through extended base-pairing, lncRNAs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology Jg. 425; H. 19; S. 3723 - 3730
Hauptverfasser: Yoon, Je-Hyun, Abdelmohsen, Kotb, Gorospe, Myriam
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier Ltd 09.10.2013
Schlagworte:
ISSN:0022-2836, 1089-8638, 1089-8638
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Eukaryotic cells transcribe a vast number of noncoding RNA species. Among them, long noncoding RNAs (lncRNAs) have been widely implicated in the regulation of gene transcription. However, examples of posttranscriptional gene regulation by lncRNAs are emerging. Through extended base-pairing, lncRNAs can stabilize or promote the translation of target mRNAs, while partial base-pairing facilitates mRNA decay or inhibits target mRNA translation. In the absence of complementarity, lncRNAs can suppress precursor mRNA splicing and translation by acting as decoys of RNA-binding proteins or microRNAs and can compete for microRNA-mediated inhibition leading to increased expression of the mRNA. Through these regulatory mechanisms, lncRNAs can elicit differentiation, proliferation, and cytoprotective programs, underscoring the rising recognition of lncRNA roles in human disease. In this review, we summarize the mechanisms of posttranscriptional gene regulation by lncRNAs identified until now. [Display omitted] ► LncRNAs are emerging as key posttranscriptional gene regulatory factors. ► LncRNAs can control splicing by sequestering splicing regulatory proteins. ► LncRNAs can modulate target mRNA turnover via partial or extended complementarity. ► LncRNAs can affect translation by interacting with target mRNAs, recruiting proteins. ► LncRNAs can function by competing or cooperating with microRNAs.
AbstractList Eukaryotic cells transcribe a vast number of noncoding RNA species. Among them, long noncoding RNAs (lncRNAs) have been widely implicated in the regulation of gene transcription. However, examples of posttranscriptional gene regulation by lncRNAs are emerging. Through extended base-pairing, lncRNAs can stabilize or promote the translation of target mRNAs, while partial base-pairing facilitates mRNA decay or inhibits target mRNA translation. In the absence of complementarity, lncRNAs can suppress precursor mRNA splicing and translation by acting as decoys of RNA-binding proteins or microRNAs and can compete for microRNA-mediated inhibition leading to increased expression of the mRNA. Through these regulatory mechanisms, lncRNAs can elicit differentiation, proliferation, and cytoprotective programs, underscoring the rising recognition of lncRNA roles in human disease. In this review, we summarize the mechanisms of posttranscriptional gene regulation by lncRNAs identified until now.Eukaryotic cells transcribe a vast number of noncoding RNA species. Among them, long noncoding RNAs (lncRNAs) have been widely implicated in the regulation of gene transcription. However, examples of posttranscriptional gene regulation by lncRNAs are emerging. Through extended base-pairing, lncRNAs can stabilize or promote the translation of target mRNAs, while partial base-pairing facilitates mRNA decay or inhibits target mRNA translation. In the absence of complementarity, lncRNAs can suppress precursor mRNA splicing and translation by acting as decoys of RNA-binding proteins or microRNAs and can compete for microRNA-mediated inhibition leading to increased expression of the mRNA. Through these regulatory mechanisms, lncRNAs can elicit differentiation, proliferation, and cytoprotective programs, underscoring the rising recognition of lncRNA roles in human disease. In this review, we summarize the mechanisms of posttranscriptional gene regulation by lncRNAs identified until now.
Eukaryotic cells transcribe a vast number of noncoding RNA species. Among them, long noncoding RNAs (lncRNAs) have been widely implicated in the regulation of gene transcription. However, examples of posttranscriptional gene regulation by lncRNAs are emerging. Through extended base-pairing, lncRNAs can stabilize or promote the translation of target mRNAs, while partial base-pairing facilitates mRNA decay or inhibits target mRNA translation. In the absence of complementarity, lncRNAs can suppress precursor mRNA splicing and translation by acting as decoys of RNA-binding proteins or microRNAs and can compete for microRNA-mediated inhibition leading to increased expression of the mRNA. Through these regulatory mechanisms, lncRNAs can elicit differentiation, proliferation, and cytoprotective programs, underscoring the rising recognition of lncRNA roles in human disease. In this review, we summarize the mechanisms of posttranscriptional gene regulation by lncRNAs identified until now.
Eukaryotic cells transcribe a vast number of noncoding RNA species. Among them, long noncoding RNAs (lncRNAs) have been widely implicated in the regulation of gene transcription. However, examples of posttranscriptional gene regulation by lncRNAs are emerging. Through extended base-pairing, lncRNAs can stabilize or promote the translation of target mRNAs, while partial base-pairing facilitates mRNA decay or inhibits target mRNA translation. In the absence of complementarity, lncRNAs can suppress precursor mRNA splicing and translation by acting as decoys of RNA-binding proteins or microRNAs and can compete for microRNA-mediated inhibition leading to increased expression of the mRNA. Through these regulatory mechanisms, lncRNAs can elicit differentiation, proliferation, and cytoprotective programs, underscoring the rising recognition of lncRNA roles in human disease. In this review, we summarize the mechanisms of posttranscriptional gene regulation by lncRNAs identified until now. [Display omitted] ► LncRNAs are emerging as key posttranscriptional gene regulatory factors. ► LncRNAs can control splicing by sequestering splicing regulatory proteins. ► LncRNAs can modulate target mRNA turnover via partial or extended complementarity. ► LncRNAs can affect translation by interacting with target mRNAs, recruiting proteins. ► LncRNAs can function by competing or cooperating with microRNAs.
Author Gorospe, Myriam
Abdelmohsen, Kotb
Yoon, Je-Hyun
Author_xml – sequence: 1
  givenname: Je-Hyun
  surname: Yoon
  fullname: Yoon, Je-Hyun
– sequence: 2
  givenname: Kotb
  surname: Abdelmohsen
  fullname: Abdelmohsen, Kotb
– sequence: 3
  givenname: Myriam
  surname: Gorospe
  fullname: Gorospe, Myriam
  email: myriam-gorospe@nih.gov
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23178169$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1U1KahD8AGZtnNDP7_EauqgoIUFVTo2rI9dyJHk3GwJ0h9-zqksGDRrq5lfedK93zn6GRKEyD0luCOYCI_bLrN1ncUE9oR0mHKX6EFwdq0WjJ9ghYYU9pSzeQZOi9lgzEWjOtTdEYZUZpIs0DmeyrznN1UQo67OabJjc0NTNDcwXo_usNP4x-aVZrWzW2aQupjfd3dXr1Brwc3Frh4mkt0__nTz-sv7erbzdfrq1UbBDZzy4UIUnvuA1dBG0dhMHrwyig_eCEVF3wQAzaMe1D1BK6FUN4wBsT1GAhbosvj3l1Ov_ZQZruNJcA4ugnSvlgiFcVaYiVeRsWhAGWEfhnljFAjWJ1L9O4J3fst9HaX49blB_u3xAqQIxByKiXD8A8h2B5E2Y2touxBlCXE1itrRv2XCXH-03aVEcdnk--PycEl69Y5Fnv_owKi6uWy2q_ExyMBVcvvCNmWEGEK0McMYbZ9is_sfwS7z7Lr
CitedBy_id crossref_primary_10_1074_jbc_M115_661785
crossref_primary_10_1038_srep25723
crossref_primary_10_1016_j_omtn_2018_08_015
crossref_primary_10_1111_exd_12341
crossref_primary_10_1186_s13578_015_0050_x
crossref_primary_10_1016_j_toxlet_2017_12_009
crossref_primary_10_3390_ijms242115870
crossref_primary_10_4239_wjd_v14_i7_958
crossref_primary_10_1038_s41598_018_35231_8
crossref_primary_10_1080_10715762_2023_2299333
crossref_primary_10_1080_13813455_2018_1499119
crossref_primary_10_3390_ijms20112628
crossref_primary_10_1038_ncomms6248
crossref_primary_10_1007_s12035_022_02899_z
crossref_primary_10_1007_s11033_022_07947_4
crossref_primary_10_1016_j_coviro_2015_02_006
crossref_primary_10_1080_1354750X_2024_2341411
crossref_primary_10_1038_ncb3464
crossref_primary_10_3389_fimmu_2017_01663
crossref_primary_10_3390_biology14040442
crossref_primary_10_1007_s13277_015_4457_0
crossref_primary_10_1089_ars_2017_7126
crossref_primary_10_1016_j_jpsychires_2022_02_007
crossref_primary_10_1038_s41598_023_37236_4
crossref_primary_10_1128_msphere_00062_25
crossref_primary_10_1007_s10142_020_00735_y
crossref_primary_10_3892_mmr_2015_4711
crossref_primary_10_3892_ijo_2016_3716
crossref_primary_10_3390_jcdd6020015
crossref_primary_10_3390_life14111462
crossref_primary_10_1080_10920277_2016_1178588
crossref_primary_10_2217_fon_2017_0149
crossref_primary_10_1016_j_biopha_2018_03_041
crossref_primary_10_1016_j_omtn_2019_11_003
crossref_primary_10_1186_s12986_021_00552_5
crossref_primary_10_1016_j_tig_2014_08_004
crossref_primary_10_1007_s00018_024_05385_y
crossref_primary_10_1080_15592294_2023_2231707
crossref_primary_10_1016_j_jia_2022_11_005
crossref_primary_10_3390_cancers13051045
crossref_primary_10_3390_agronomy12081976
crossref_primary_10_3390_cells11213466
crossref_primary_10_1111_cpr_12461
crossref_primary_10_1016_j_cellsig_2024_111412
crossref_primary_10_1016_j_biocel_2015_03_011
crossref_primary_10_1186_s12979_021_00258_5
crossref_primary_10_3390_biom12101339
crossref_primary_10_1111_jcmm_14988
crossref_primary_10_1016_j_biomaterials_2014_12_023
crossref_primary_10_1139_gen_2020_0062
crossref_primary_10_1186_s13059_017_1348_2
crossref_primary_10_1155_2020_8822859
crossref_primary_10_1186_s12935_021_01808_z
crossref_primary_10_7717_peerj_6091
crossref_primary_10_1155_2015_146250
crossref_primary_10_3389_fmolb_2024_1327459
crossref_primary_10_1186_s12935_022_02490_5
crossref_primary_10_1016_j_semcdb_2016_06_013
crossref_primary_10_1002_cbf_3079
crossref_primary_10_1155_2014_978984
crossref_primary_10_3390_ijms25020842
crossref_primary_10_3892_ol_2016_4580
crossref_primary_10_1016_j_diff_2020_10_002
crossref_primary_10_1002_jcp_27186
crossref_primary_10_1016_j_egg_2025_100360
crossref_primary_10_1111_aji_12275
crossref_primary_10_3390_biomedicines11092411
crossref_primary_10_2196_33186
crossref_primary_10_1093_bib_bbaa354
crossref_primary_10_3390_ijms20051226
crossref_primary_10_1002_jcb_29920
crossref_primary_10_1016_j_pbiomolbio_2019_08_006
crossref_primary_10_3389_fgene_2023_1242129
crossref_primary_10_1261_rna_044040_113
crossref_primary_10_1371_journal_pone_0224358
crossref_primary_10_1186_s12935_021_02253_8
crossref_primary_10_2147_OTT_S251625
crossref_primary_10_1161_ATVBAHA_118_310848
crossref_primary_10_1002_jcp_28485
crossref_primary_10_1016_j_aichem_2025_100094
crossref_primary_10_3724_abbs_2024236
crossref_primary_10_1007_s11010_024_05083_0
crossref_primary_10_3389_fonc_2020_598817
crossref_primary_10_1016_j_canlet_2015_02_035
crossref_primary_10_1038_s41419_018_0793_5
crossref_primary_10_3389_fonc_2021_738477
crossref_primary_10_1089_omi_2024_0047
crossref_primary_10_1038_s41598_020_66881_2
crossref_primary_10_1242_jcs_259306
crossref_primary_10_1074_jbc_M114_597401
crossref_primary_10_1186_s12864_017_3748_9
crossref_primary_10_1016_j_arr_2023_101913
crossref_primary_10_1002_cbf_3181
crossref_primary_10_1038_s41419_022_04723_x
crossref_primary_10_3390_ijms19113615
crossref_primary_10_1016_j_canlet_2016_03_022
crossref_primary_10_3390_ijms18010021
crossref_primary_10_3389_fonc_2021_754834
crossref_primary_10_1016_j_bbrc_2015_12_082
crossref_primary_10_3390_ijms18061236
crossref_primary_10_1038_nrm_2017_103
crossref_primary_10_3389_fimmu_2014_00573
crossref_primary_10_3892_ol_2020_11639
crossref_primary_10_3892_mmr_2019_10203
crossref_primary_10_1016_j_bbagrm_2015_07_007
crossref_primary_10_1155_2019_8690592
crossref_primary_10_1007_s12079_020_00589_w
crossref_primary_10_1111_jcmm_14422
crossref_primary_10_1111_cas_14516
crossref_primary_10_3389_fendo_2022_851967
crossref_primary_10_1111_jipb_12163
crossref_primary_10_3390_ncrna4020011
crossref_primary_10_1093_nar_gky087
crossref_primary_10_3390_cancers16091639
crossref_primary_10_1002_iub_2344
crossref_primary_10_3892_ol_2019_10782
crossref_primary_10_1038_s41598_017_02561_y
crossref_primary_10_3389_fonc_2022_896840
crossref_primary_10_1016_j_bbagrm_2015_07_011
crossref_primary_10_1016_j_jmb_2013_07_032
crossref_primary_10_1038_ncomms7967
crossref_primary_10_1038_s41419_019_1925_2
crossref_primary_10_1016_j_toxlet_2017_03_026
crossref_primary_10_1016_j_ygeno_2018_01_012
crossref_primary_10_1134_S0026893324700183
crossref_primary_10_1186_s13046_021_02145_9
crossref_primary_10_1186_s12864_019_6049_7
crossref_primary_10_3390_genes13091598
crossref_primary_10_1093_bib_bby039
crossref_primary_10_1016_j_molcel_2014_01_009
crossref_primary_10_1111_jcmm_14524
crossref_primary_10_1016_j_ymthe_2017_06_027
crossref_primary_10_1128_mcb_00036_22
crossref_primary_10_1111_imcb_1028
crossref_primary_10_1016_j_addr_2015_05_012
crossref_primary_10_1007_s12263_015_0496_9
crossref_primary_10_1016_j_bbagrm_2018_02_001
crossref_primary_10_1038_srep14642
crossref_primary_10_3892_mco_2014_429
crossref_primary_10_3389_fonc_2021_690213
crossref_primary_10_1016_j_bbrc_2020_05_047
crossref_primary_10_1016_j_gene_2020_144796
crossref_primary_10_1038_s41598_025_94661_3
crossref_primary_10_1007_s00018_020_03751_0
crossref_primary_10_18632_oncotarget_16355
crossref_primary_10_1186_s40591_015_0042_6
crossref_primary_10_1134_S1022795422060114
crossref_primary_10_3390_cancers11020184
crossref_primary_10_1016_j_molcel_2014_04_033
crossref_primary_10_3390_ijms251910316
crossref_primary_10_1098_rsob_180110
crossref_primary_10_1111_1744_7917_12867
crossref_primary_10_1002_bies_201300068
crossref_primary_10_3390_ijms232213869
crossref_primary_10_1016_j_compbiomed_2023_106943
crossref_primary_10_1007_s00425_014_2168_1
crossref_primary_10_3389_fgene_2020_00233
crossref_primary_10_1007_s13353_024_00908_6
crossref_primary_10_3390_ncrna6030033
crossref_primary_10_2217_epi_14_29
crossref_primary_10_3389_fonc_2025_1549477
crossref_primary_10_1002_cam4_2108
crossref_primary_10_1016_j_ijbiomac_2020_02_026
crossref_primary_10_1007_s12041_015_0561_6
crossref_primary_10_3892_mmr_2019_10128
crossref_primary_10_1016_j_ymthe_2018_08_018
crossref_primary_10_3389_fneur_2022_929290
crossref_primary_10_1002_cbin_11021
crossref_primary_10_1002_pld3_455
crossref_primary_10_3389_fimmu_2018_02512
crossref_primary_10_1038_s41467_019_13168_4
crossref_primary_10_1016_j_mce_2016_02_020
crossref_primary_10_1093_bib_bbx042
crossref_primary_10_1186_s12929_023_00954_y
crossref_primary_10_1186_s12885_020_07302_5
crossref_primary_10_1093_bib_bby008
crossref_primary_10_1016_j_ygeno_2020_04_021
crossref_primary_10_1155_2014_970607
crossref_primary_10_1242_dev_152413
crossref_primary_10_1186_s12864_018_4603_3
crossref_primary_10_1016_j_bbalip_2018_01_005
crossref_primary_10_1038_nri3682
crossref_primary_10_1016_j_virusres_2015_08_008
crossref_primary_10_1016_j_biopha_2019_108719
crossref_primary_10_1002_2211_5463_12602
crossref_primary_10_1128_MCB_00423_14
crossref_primary_10_1093_neuonc_nox017
crossref_primary_10_1002_jcp_30061
crossref_primary_10_1016_j_bbagrm_2015_06_013
crossref_primary_10_3390_ncrna10010013
crossref_primary_10_1111_jcmm_13238
crossref_primary_10_1016_j_scitotenv_2019_136045
crossref_primary_10_1186_s12974_024_03083_x
crossref_primary_10_1002_humu_23859
crossref_primary_10_1101_gr_266528_120
crossref_primary_10_3389_fcell_2021_629895
crossref_primary_10_1002_ctm2_706
crossref_primary_10_3389_fphys_2021_659638
crossref_primary_10_3390_ncrna9060072
crossref_primary_10_1016_j_jsps_2021_10_008
crossref_primary_10_3390_cells12111498
crossref_primary_10_1038_s41389_019_0182_7
crossref_primary_10_3389_fonc_2021_745166
crossref_primary_10_1111_jcmm_70344
crossref_primary_10_1038_srep33210
crossref_primary_10_1007_s00114_018_1552_2
crossref_primary_10_1186_s12943_018_0820_2
crossref_primary_10_1097_MD_0000000000004608
crossref_primary_10_1016_j_bbadis_2024_167454
crossref_primary_10_1111_raq_12709
crossref_primary_10_3389_fgene_2021_813873
crossref_primary_10_3892_mmr_2019_9856
crossref_primary_10_1016_j_micpath_2021_105367
crossref_primary_10_3892_ijo_2016_3385
crossref_primary_10_1186_s12935_020_01258_z
crossref_primary_10_1038_s41419_018_0884_3
crossref_primary_10_3892_mmr_2015_3290
crossref_primary_10_1093_nar_gku686
crossref_primary_10_1093_nar_gkad1095
crossref_primary_10_1016_j_bbadis_2018_09_021
crossref_primary_10_1016_j_jbiotec_2021_08_005
crossref_primary_10_3389_fnins_2018_00694
crossref_primary_10_1186_s12575_018_0071_z
crossref_primary_10_3390_ijms140919202
crossref_primary_10_1093_nar_gkaa097
crossref_primary_10_1016_j_mad_2018_11_002
crossref_primary_10_3389_fnins_2024_1392688
crossref_primary_10_1002_jbt_23389
crossref_primary_10_1096_fj_202400236RR
crossref_primary_10_1007_s43393_024_00320_5
crossref_primary_10_1016_j_bbrc_2019_06_113
crossref_primary_10_3390_cells14151193
crossref_primary_10_1016_j_gene_2016_08_027
crossref_primary_10_3390_cells9030527
crossref_primary_10_1016_j_micinf_2015_03_003
crossref_primary_10_1097_MIB_0000000000000691
crossref_primary_10_3389_fimmu_2018_00761
crossref_primary_10_1007_s00018_021_04063_7
crossref_primary_10_1002_jcla_24389
crossref_primary_10_1016_j_gene_2024_148165
crossref_primary_10_1007_s11033_022_07427_9
crossref_primary_10_7717_peerj_9957
crossref_primary_10_1111_acel_12753
crossref_primary_10_1161_CIRCRESAHA_115_306464
crossref_primary_10_3389_fonc_2022_927706
crossref_primary_10_1080_15592294_2023_2293409
crossref_primary_10_1016_j_bbrc_2015_07_120
crossref_primary_10_1007_s11427_014_4706_2
crossref_primary_10_1016_j_gene_2023_147907
crossref_primary_10_1016_j_jsbmb_2021_105875
crossref_primary_10_3892_mmr_2021_12350
crossref_primary_10_1080_01635581_2020_1823006
crossref_primary_10_1007_s00441_014_1885_x
crossref_primary_10_1002_wrna_1864
crossref_primary_10_1016_j_jbiotec_2023_12_003
crossref_primary_10_1186_s13075_019_1853_7
crossref_primary_10_1016_j_gene_2018_05_014
crossref_primary_10_1016_j_mimet_2015_12_013
crossref_primary_10_1038_onc_2014_200
crossref_primary_10_1038_s41388_021_02033_8
crossref_primary_10_1038_nrrheum_2017_162
crossref_primary_10_1007_s10142_024_01494_w
crossref_primary_10_1186_s12864_016_2776_1
crossref_primary_10_1007_s12022_018_9564_1
crossref_primary_10_1111_1440_1681_12795
crossref_primary_10_1155_2014_780521
crossref_primary_10_1016_j_bioorg_2019_103214
crossref_primary_10_1002_jcb_29669
crossref_primary_10_1002_mc_22314
crossref_primary_10_1007_s11010_023_04828_7
crossref_primary_10_1002_jcp_26424
crossref_primary_10_1002_cbf_70119
crossref_primary_10_1016_j_pt_2020_07_006
crossref_primary_10_1038_s41419_020_2557_2
crossref_primary_10_1128_JVI_00927_18
crossref_primary_10_1016_j_canlet_2018_01_008
crossref_primary_10_1016_j_pbiomolbio_2022_09_007
crossref_primary_10_1002_jgm_3065
crossref_primary_10_1096_fj_201900643RRR
crossref_primary_10_3892_etm_2020_8471
crossref_primary_10_1111_jop_13232
crossref_primary_10_1186_s12881_020_01064_4
crossref_primary_10_1186_s13287_021_02654_6
crossref_primary_10_3390_ncrna7010003
crossref_primary_10_4103_1673_5374_247467
crossref_primary_10_1016_j_leukres_2019_106261
crossref_primary_10_3390_ijms140714744
crossref_primary_10_1016_j_plaphy_2024_108797
crossref_primary_10_1002_pmic_201200576
crossref_primary_10_1534_genetics_119_302661
crossref_primary_10_3390_ijms25073894
crossref_primary_10_1186_s12859_023_05279_z
crossref_primary_10_1016_j_genrep_2021_101116
crossref_primary_10_1007_s10238_024_01491_0
crossref_primary_10_1111_cas_13740
crossref_primary_10_1155_2018_1823726
crossref_primary_10_1007_s13562_021_00674_0
crossref_primary_10_1186_s12920_023_01553_4
crossref_primary_10_3389_fmars_2022_1014810
crossref_primary_10_3389_fgene_2021_626234
crossref_primary_10_1093_nargab_lqae045
crossref_primary_10_1038_s41419_021_03966_4
crossref_primary_10_1016_j_biopha_2024_116868
crossref_primary_10_1111_nyas_14781
crossref_primary_10_3390_ncrna7020024
crossref_primary_10_1016_j_urolonc_2021_11_012
crossref_primary_10_1016_j_gene_2023_148074
crossref_primary_10_32604_oncologie_2021_017786
crossref_primary_10_1186_s12964_023_01212_2
crossref_primary_10_3390_ijms17050702
crossref_primary_10_1016_j_bbalip_2021_158987
crossref_primary_10_1038_cr_2016_84
crossref_primary_10_1007_s00424_016_1792_y
crossref_primary_10_1080_14737159_2021_1979960
crossref_primary_10_3390_ijms19010123
crossref_primary_10_3390_genes7120107
crossref_primary_10_1016_j_taap_2022_116097
crossref_primary_10_1111_jcmm_15262
crossref_primary_10_1096_fj_201800098RR
crossref_primary_10_1016_j_bcp_2023_115643
crossref_primary_10_1155_2017_2767484
crossref_primary_10_3389_fvets_2021_693416
crossref_primary_10_1155_2017_3859582
crossref_primary_10_3390_ijms23095199
crossref_primary_10_1007_s00438_021_01786_x
crossref_primary_10_1007_s44211_023_00382_w
crossref_primary_10_1016_j_yjmcc_2015_01_011
crossref_primary_10_1159_000515422
crossref_primary_10_1002_mrd_23065
crossref_primary_10_1002_wrna_1209
crossref_primary_10_1016_j_artmed_2017_02_001
crossref_primary_10_1016_j_jconrel_2023_04_026
crossref_primary_10_1038_ncb3295
crossref_primary_10_1016_j_phrs_2021_105507
crossref_primary_10_1016_j_biomaterials_2017_03_027
crossref_primary_10_3390_ijms22020782
crossref_primary_10_1016_j_fsi_2018_07_032
crossref_primary_10_3390_biomedicines10102515
crossref_primary_10_1007_s11033_025_10906_4
crossref_primary_10_3892_or_2015_4364
crossref_primary_10_1161_ATVBAHA_114_304296
crossref_primary_10_2478_s11658_014_0212_6
crossref_primary_10_3390_ijerph14030270
crossref_primary_10_3389_fchem_2014_00022
crossref_primary_10_1007_s11816_018_00514_z
crossref_primary_10_1186_s13046_018_0991_0
crossref_primary_10_1155_2021_9921466
crossref_primary_10_1016_j_virol_2015_02_008
crossref_primary_10_1038_srep21620
crossref_primary_10_3390_ijms26104821
crossref_primary_10_3390_ncrna9020025
crossref_primary_10_3390_ijms17010132
crossref_primary_10_3390_cells8111399
crossref_primary_10_1093_biolre_ioac216
crossref_primary_10_3390_ijms22031332
crossref_primary_10_7124_bc_0008EB
crossref_primary_10_1002_wrna_1463
crossref_primary_10_1371_journal_pone_0145112
crossref_primary_10_3390_ijms23020764
crossref_primary_10_1042_BCJ20180440
crossref_primary_10_1111_cbdd_13849
crossref_primary_10_1155_2020_8884450
crossref_primary_10_3389_fnmol_2018_00096
crossref_primary_10_1007_s10495_022_01786_1
crossref_primary_10_1002_cam4_2618
crossref_primary_10_1016_j_yexcr_2018_05_029
crossref_primary_10_3390_cells12182272
crossref_primary_10_1038_cddis_2017_464
crossref_primary_10_1038_s41420_021_00500_5
crossref_primary_10_1016_j_biopha_2020_110201
crossref_primary_10_1111_iep_70003
crossref_primary_10_1073_pnas_1415098111
crossref_primary_10_1007_s10535_014_0404_y
crossref_primary_10_1089_hum_2017_064
crossref_primary_10_7124_bc_000A59
crossref_primary_10_1002_wrna_1471
crossref_primary_10_1007_s12094_023_03193_7
crossref_primary_10_1007_s10238_025_01660_9
crossref_primary_10_3389_fpls_2023_1090711
crossref_primary_10_1111_cpr_12698
crossref_primary_10_1161_CIRCRESAHA_118_312966
crossref_primary_10_1016_j_biopha_2020_110655
crossref_primary_10_1080_17474124_2020_1780915
crossref_primary_10_1016_j_canlet_2017_03_018
crossref_primary_10_3390_ijms21031027
crossref_primary_10_1186_s13045_018_0692_3
crossref_primary_10_3389_fcell_2022_779269
crossref_primary_10_1002_qub2_100
crossref_primary_10_1016_j_omto_2021_05_012
crossref_primary_10_1016_j_jbc_2021_100997
crossref_primary_10_1016_j_tibs_2017_02_004
crossref_primary_10_1016_j_ncrna_2025_09_006
crossref_primary_10_1016_j_ymeth_2023_02_009
crossref_primary_10_1007_s00438_025_02244_8
crossref_primary_10_1007_s11738_018_2627_6
crossref_primary_10_1042_BSR20180516
crossref_primary_10_1016_j_mrrev_2015_08_002
crossref_primary_10_3389_fbioe_2020_00027
crossref_primary_10_3389_fninf_2022_794342
crossref_primary_10_3390_ijms25147893
crossref_primary_10_3727_096504018X15152037713570
crossref_primary_10_1016_j_ejphar_2019_172407
crossref_primary_10_1016_j_pbiomolbio_2021_04_001
crossref_primary_10_3390_jcm8071033
crossref_primary_10_1007_s12035_015_9634_z
crossref_primary_10_1038_mtna_2014_54
crossref_primary_10_3390_insects14040308
crossref_primary_10_1016_j_bbrc_2019_09_058
crossref_primary_10_1016_j_gene_2021_146133
crossref_primary_10_3390_cancers5020462
crossref_primary_10_1007_s11010_020_03709_7
crossref_primary_10_1038_srep21819
crossref_primary_10_1038_s41598_022_06154_2
crossref_primary_10_1371_journal_pone_0148940
crossref_primary_10_1038_s41419_018_0582_1
crossref_primary_10_1155_2014_591703
crossref_primary_10_1371_journal_pone_0170860
crossref_primary_10_1155_2019_6078251
crossref_primary_10_3390_cells10061407
crossref_primary_10_3892_mmr_2017_6161
crossref_primary_10_1016_j_semcdb_2014_05_015
crossref_primary_10_1109_TCBB_2018_2861009
crossref_primary_10_3389_frnar_2024_1334464
crossref_primary_10_1093_nar_gkw017
crossref_primary_10_1016_j_gene_2014_11_060
crossref_primary_10_1016_j_isci_2023_107838
crossref_primary_10_1016_j_marpolbul_2024_117011
crossref_primary_10_1186_s13287_017_0485_6
crossref_primary_10_3390_ijms25158554
crossref_primary_10_1002_jcp_27435
crossref_primary_10_1089_jir_2018_0086
crossref_primary_10_3389_fneur_2015_00050
Cites_doi 10.1007/BF01731728
10.1146/annurev.cellbio.21.122303.120653
10.1016/j.tcb.2011.04.001
10.1038/sj.emboj.7601712
10.1038/nature10887
10.1038/nm1784
10.1186/gb-2010-11-5-r56
10.1016/j.cell.2007.05.022
10.1038/emboj.2012.292
10.1016/j.cell.2004.11.050
10.1126/science.1192002
10.1261/rna.034330.112
10.1016/j.cell.2007.05.009
10.1016/j.cell.2011.11.055
10.1101/gad.204438.112
10.1016/0092-8674(92)90519-I
10.1146/annurev-biochem-051410-092902
10.1038/nrg2673
10.1083/jcb.200506006
10.1111/j.1742-4658.2009.07521.x
10.1038/nature06008
10.1101/gr.131037.111
10.1016/j.celrep.2012.06.003
10.1038/nature09701
10.4161/rna.21089
10.1016/j.molcel.2012.06.027
10.1038/nature11508
10.1073/pnas.1217338109
10.1016/j.cell.2011.09.028
10.1261/rna.033217.112
10.1128/MCB.10.1.28
10.1038/ng.848
10.1038/emboj.2010.199
10.1016/j.molcel.2012.07.033
10.1126/science.1197349
10.1126/science.1138341
10.1016/j.molcel.2010.08.011
10.1016/j.cell.2011.10.002
10.1038/nrg3035
10.1016/j.cell.2010.06.040
10.1038/ncb2521
10.1016/j.celrep.2012.05.020
10.1016/j.cell.2011.07.014
10.1016/j.cell.2006.06.023
ContentType Journal Article
Copyright 2013
Published by Elsevier Ltd.
Copyright_xml – notice: 2013
– notice: Published by Elsevier Ltd.
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
7S9
L.6
DOI 10.1016/j.jmb.2012.11.024
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA


Genetics Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1089-8638
EndPage 3730
ExternalDocumentID 23178169
10_1016_j_jmb_2012_11_024
US201500046089
S0022283612008960
Genre Journal Article
Research Support, N.I.H., Intramural
Review
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: ZIA AG000511
GroupedDBID ---
--K
--M
-DZ
-ET
-~X
.~1
0R~
186
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
85S
8P~
9JM
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABOCM
ABPPZ
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGEKW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CJTIS
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GX1
HLW
HMG
IH2
IHE
J1W
K-O
KOM
LG5
LUGTX
LX2
LZ5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSI
SSU
SSZ
T5K
TWZ
VQA
WH7
XPP
YQT
ZMT
ZU3
~G-
.55
.GJ
29L
3O-
AAQXK
ABEFU
ABPIF
ABPTK
ACKIV
ADFGL
ADIYS
ADMUD
AEQTP
AFMIJ
AGHFR
AGRDE
AI.
ASPBG
AVWKF
AZFZN
CAG
COF
FBQ
FEDTE
FGOYB
G-2
G8K
HVGLF
HX~
HZ~
H~9
MVM
NEJ
R2-
SBG
SEW
SIN
UQL
VH1
WUQ
X7M
XJT
XOL
Y6R
YYP
ZGI
ZKB
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7TM
8FD
FR3
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-c509t-455c68b4bc47c89a2ef98fb797bfb567454f5f0934be702448557b933e1ad0e13
ISICitedReferencesCount 517
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000325040800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-2836
1089-8638
IngestDate Thu Oct 02 14:13:58 EDT 2025
Mon Sep 29 05:44:19 EDT 2025
Sun Sep 28 05:15:12 EDT 2025
Mon Jul 21 05:29:22 EDT 2025
Tue Nov 18 21:55:58 EST 2025
Sat Nov 29 05:57:40 EST 2025
Wed Dec 27 19:00:14 EST 2023
Fri Feb 23 02:26:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords BACE1
pre-mRNA
RNA-binding protein
lncRNA
sno-lncRNA
mRNA turnover
lincRNA
PABP
translational regulation
poly(A)-binding protein
β amyloid-cleaving enzyme 1
precursor mRNA
small nucleolar lncRNA
long noncoding RNA
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Published by Elsevier Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-455c68b4bc47c89a2ef98fb797bfb567454f5f0934be702448557b933e1ad0e13
Notes http://dx.doi.org/10.1016/j.jmb.2012.11.024
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 23178169
PQID 1431295314
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1672086075
proquest_miscellaneous_1505347958
proquest_miscellaneous_1431295314
pubmed_primary_23178169
crossref_primary_10_1016_j_jmb_2012_11_024
crossref_citationtrail_10_1016_j_jmb_2012_11_024
fao_agris_US201500046089
elsevier_sciencedirect_doi_10_1016_j_jmb_2012_11_024
PublicationCentury 2000
PublicationDate 2013-10-09
PublicationDateYYYYMMDD 2013-10-09
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-09
  day: 09
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of molecular biology
PublicationTitleAlternate J Mol Biol
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rinn, Kertesz, Wang, Squazzo, Xu, Brugmann (bb0065) 2007; 129
Faghihi, Zhang, Huang, Modarresi, Van der Brug, Nalls (bb0170) 2010; 11
Liu, Li, Zhang, Guo, Zhan (bb0175) 2012
Wang, Iacoangeli, Lin, Williams, Denman, Hellen (bb0100) 2005; 171
Licatalosi, Darnell (bb0140) 2010; 11
Paul, Duerksen (bb0050) 1975; 9
Eißmann, Gutschner, Hämmerle, Günther, Caudron-Herger, Groß (bb0215) 2012; 9
Nakagawa, Ip, Shioi, Tripathi, Zong, Hirose (bb0205) 2012; 18
Clark, Johnston, Inostroza-Ponta, Fox, Fortini, Moscato (bb0110) 2012; 22
Yin, Yang, Zhang, Xiang, Wu, Carmichael (bb0150) 2012; 48
Kim, Furic, Parisien, Major, DesGroseillers, Maquat (bb0165) 2007; 26
Keniry, Oxley, Monnier, Kyba, Dandolo, Smits (bb0200) 2012; 14
Kim, Furic, Desgroseillers, Maquat (bb0160) 2005; 120
Rinn, Chang (bb0015) 2012; 81
Heo, Sung (bb0060) 2011; 331
Tripathi, Ellis, Shen, Song, Pan, Watt (bb0085) 2010; 39
Brannan, Dees, Ingram, Tilghman (bb0030) 1990; 10
Carrieri, Cimatti, Biagioli, Beugnet, Zucchelli, Fedele (bb0180) 2012
Wapinski, Chang (bb0220) 2011; 21
Wilusz, Jnbaptiste, Lu, Kuhn, Joshua-Tor, Sharp (bb0115) 2012; 26
Moon, Anderson, Kumagai, Wilusz, Akira, Khromykh, Wilusz (bb0155) 2012; 18
Zhang, Arun, Mao, Lazar, Hung, Bhattacharjee (bb0210) 2012; 2
Blencowe (bb0130) 2006; 126
Kindler, Wang, Richter, Tiedge (bb0185) 2005; 21
Hallegger, Llorian, Smith (bb0135) 2010; 277
Cesana, Cacchiarelli, Legnini, Santini, Sthandier, Chinappi (bb0190) 2011; 147
Kapranov, Cheng, Dike, Nix, Duttagupta, Willingham (bb0005) 2007; 316
Faghihi, Modarresi, Khalil, Wood, Sahagan, Morgan (bb0095) 2008; 14
Salmena, Poliseno, Tay, Kats, Pandolfi (bb0195) 2011; 146
Guttman, Rinn (bb0010) 2012; 482
Ingolia, Lareau, Weissman (bb0045) 2011; 147
Wutz (bb0055) 2011; 12
Tsai, Manor, Wan, Mosammaparast, Wang, Lan (bb0070) 2010; 329
Brockdorff, Ashworth, Kay, McCabe, Norris, Cooper (bb0035) 1992; 71
Ulitsky, Shkumatava, Jan, Sive, Bartel (bb0040) 2011; 147
Hung, Wang, Lin, Koegel, Kotake, Grant (bb0080) 2011; 43
Barski, Cuddapah, Cui, Roh, Schones, Wang (bb0020) 2007; 129
Mikkelsen, Ku, Jaffe, Issac, Lieberman, Giannoukos (bb0025) 2007; 448
Tycowski, Shu, Borah, Shi, Steitz (bb0125) 2012; 2
Gong, Maquat (bb0090) 2011; 470
Brown, Valenstein, Yario, Tycowski, Steitz (bb0120) 2012
Huarte, Guttman, Feldser, Garber, Koziol, Kenzelmann-Broz (bb0075) 2010; 142
Yoon, Abdelmohsen, Srikantan, Yang, Martindale, De (bb0105) 2012; 47
Bernard, Prasanth, Tripathi, Colasse, Nakamura, Xuan (bb0145) 2010; 29
Wilusz (10.1016/j.jmb.2012.11.024_bb0115) 2012; 26
Wutz (10.1016/j.jmb.2012.11.024_bb0055) 2011; 12
Tycowski (10.1016/j.jmb.2012.11.024_bb0125) 2012; 2
Faghihi (10.1016/j.jmb.2012.11.024_bb0095) 2008; 14
Hallegger (10.1016/j.jmb.2012.11.024_bb0135) 2010; 277
Brown (10.1016/j.jmb.2012.11.024_bb0120) 2012
Brockdorff (10.1016/j.jmb.2012.11.024_bb0035) 1992; 71
Blencowe (10.1016/j.jmb.2012.11.024_bb0130) 2006; 126
Huarte (10.1016/j.jmb.2012.11.024_bb0075) 2010; 142
Carrieri (10.1016/j.jmb.2012.11.024_bb0180) 2012
Ulitsky (10.1016/j.jmb.2012.11.024_bb0040) 2011; 147
Rinn (10.1016/j.jmb.2012.11.024_bb0065) 2007; 129
Moon (10.1016/j.jmb.2012.11.024_bb0155) 2012; 18
Liu (10.1016/j.jmb.2012.11.024_bb0175) 2012
Brannan (10.1016/j.jmb.2012.11.024_bb0030) 1990; 10
Kindler (10.1016/j.jmb.2012.11.024_bb0185) 2005; 21
Kapranov (10.1016/j.jmb.2012.11.024_bb0005) 2007; 316
Paul (10.1016/j.jmb.2012.11.024_bb0050) 1975; 9
Keniry (10.1016/j.jmb.2012.11.024_bb0200) 2012; 14
Zhang (10.1016/j.jmb.2012.11.024_bb0210) 2012; 2
Nakagawa (10.1016/j.jmb.2012.11.024_bb0205) 2012; 18
Wapinski (10.1016/j.jmb.2012.11.024_bb0220) 2011; 21
Heo (10.1016/j.jmb.2012.11.024_bb0060) 2011; 331
Hung (10.1016/j.jmb.2012.11.024_bb0080) 2011; 43
Gong (10.1016/j.jmb.2012.11.024_bb0090) 2011; 470
Clark (10.1016/j.jmb.2012.11.024_bb0110) 2012; 22
Tripathi (10.1016/j.jmb.2012.11.024_bb0085) 2010; 39
Cesana (10.1016/j.jmb.2012.11.024_bb0190) 2011; 147
Bernard (10.1016/j.jmb.2012.11.024_bb0145) 2010; 29
Kim (10.1016/j.jmb.2012.11.024_bb0160) 2005; 120
Faghihi (10.1016/j.jmb.2012.11.024_bb0170) 2010; 11
Yin (10.1016/j.jmb.2012.11.024_bb0150) 2012; 48
Guttman (10.1016/j.jmb.2012.11.024_bb0010) 2012; 482
Mikkelsen (10.1016/j.jmb.2012.11.024_bb0025) 2007; 448
Eißmann (10.1016/j.jmb.2012.11.024_bb0215) 2012; 9
Yoon (10.1016/j.jmb.2012.11.024_bb0105) 2012; 47
Rinn (10.1016/j.jmb.2012.11.024_bb0015) 2012; 81
Wang (10.1016/j.jmb.2012.11.024_bb0100) 2005; 171
Barski (10.1016/j.jmb.2012.11.024_bb0020) 2007; 129
Kim (10.1016/j.jmb.2012.11.024_bb0165) 2007; 26
Licatalosi (10.1016/j.jmb.2012.11.024_bb0140) 2010; 11
Ingolia (10.1016/j.jmb.2012.11.024_bb0045) 2011; 147
Tsai (10.1016/j.jmb.2012.11.024_bb0070) 2010; 329
Salmena (10.1016/j.jmb.2012.11.024_bb0195) 2011; 146
References_xml – volume: 39
  start-page: 925
  year: 2010
  end-page: 938
  ident: bb0085
  article-title: The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation
  publication-title: Mol. Cell
– volume: 12
  start-page: 542
  year: 2011
  end-page: 553
  ident: bb0055
  article-title: Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation
  publication-title: Nat. Rev., Genet.
– volume: 129
  start-page: 823
  year: 2007
  end-page: 837
  ident: bb0020
  article-title: High-resolution profiling of histone methylations in the human genome
  publication-title: Cell
– volume: 21
  start-page: 354
  year: 2011
  end-page: 361
  ident: bb0220
  article-title: Long noncoding RNAs and human disease
  publication-title: Trends Cell Biol.
– volume: 22
  start-page: 885
  year: 2012
  end-page: 898
  ident: bb0110
  article-title: Genome-wide analysis of long noncoding RNA stability
  publication-title: Genome Res.
– volume: 9
  year: 2012
  ident: bb0215
  article-title: Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development
  publication-title: RNA Biol.
– volume: 329
  start-page: 689
  year: 2010
  end-page: 693
  ident: bb0070
  article-title: Long noncoding RNA as modular scaffold of histone modification complexes
  publication-title: Science
– volume: 171
  start-page: 811
  year: 2005
  end-page: 821
  ident: bb0100
  article-title: Dendritic BC1 RNA in translational control mechanisms
  publication-title: J. Cell Biol.
– volume: 331
  start-page: 76
  year: 2011
  end-page: 79
  ident: bb0060
  article-title: Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA
  publication-title: Science
– volume: 11
  start-page: 75
  year: 2010
  end-page: 87
  ident: bb0140
  article-title: RNA processing and its regulation: global insights into biological networks
  publication-title: Nat. Rev., Genet.
– volume: 29
  start-page: 3082
  year: 2010
  end-page: 3093
  ident: bb0145
  article-title: A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression
  publication-title: EMBO J.
– volume: 21
  start-page: 223
  year: 2005
  end-page: 245
  ident: bb0185
  article-title: RNA transport and local control of translation
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 147
  start-page: 789
  year: 2011
  end-page: 802
  ident: bb0045
  article-title: Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes
  publication-title: Cell
– volume: 14
  start-page: 659
  year: 2012
  end-page: 665
  ident: bb0200
  article-title: The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r
  publication-title: Nat. Cell Biol.
– volume: 2
  start-page: 26
  year: 2012
  end-page: 32
  ident: bb0125
  article-title: Conservation of a triple-helix-forming RNA stability element in noncoding and genomic RNAs of diverse viruses
  publication-title: Cell Rep.
– volume: 71
  start-page: 515
  year: 1992
  end-page: 526
  ident: bb0035
  article-title: The product of the mouse Xist gene is a 15
  publication-title: Cell
– volume: 147
  start-page: 1537
  year: 2011
  end-page: 1550
  ident: bb0040
  article-title: Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution
  publication-title: Cell
– volume: 146
  start-page: 353
  year: 2011
  end-page: 358
  ident: bb0195
  article-title: A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?
  publication-title: Cell
– year: 2012
  ident: bb0180
  article-title: New long non-coding antisense RNA controls
  publication-title: Nature
– volume: 482
  start-page: 339
  year: 2012
  end-page: 346
  ident: bb0010
  article-title: Modular regulatory principles of large non-coding RNAs
  publication-title: Nature
– volume: 129
  start-page: 1311
  year: 2007
  end-page: 1323
  ident: bb0065
  article-title: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs
  publication-title: Cell
– volume: 18
  start-page: 1487
  year: 2012
  end-page: 1499
  ident: bb0205
  article-title: Malat1 is not an essential component of nuclear speckles in mice
  publication-title: RNA
– volume: 126
  start-page: 37
  year: 2006
  end-page: 47
  ident: bb0130
  article-title: Alternative splicing: new insights from global analyses
  publication-title: Cell
– volume: 47
  start-page: 648
  year: 2012
  end-page: 655
  ident: bb0105
  article-title: LincRNA-p21 suppresses target mRNA translation
  publication-title: Mol. Cell
– volume: 43
  start-page: 621
  year: 2011
  end-page: 629
  ident: bb0080
  article-title: Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters
  publication-title: Nat. Genet.
– volume: 14
  start-page: 723
  year: 2008
  end-page: 730
  ident: bb0095
  article-title: Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase
  publication-title: Nat. Med.
– volume: 26
  start-page: 2392
  year: 2012
  end-page: 2407
  ident: bb0115
  article-title: A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails
  publication-title: Genes Dev.
– volume: 277
  start-page: 856
  year: 2010
  end-page: 866
  ident: bb0135
  article-title: Alternative splicing: global insights
  publication-title: FEBS J.
– volume: 10
  start-page: 28
  year: 1990
  end-page: 36
  ident: bb0030
  article-title: The product of the H19 gene may function as an RNA
  publication-title: Mol. Cell. Biol.
– volume: 81
  start-page: 145
  year: 2012
  end-page: 166
  ident: bb0015
  article-title: Genome regulation by long noncoding RNAs
  publication-title: Annu. Rev. Biochem.
– volume: 11
  start-page: R56
  year: 2010
  ident: bb0170
  article-title: Evidence for natural antisense transcript-mediated inhibition of microRNA function
  publication-title: Genome Biol.
– volume: 26
  start-page: 2670
  year: 2007
  end-page: 2681
  ident: bb0165
  article-title: Staufen1 regulates diverse classes of mammalian transcripts
  publication-title: EMBO J.
– volume: 470
  start-page: 284
  year: 2011
  end-page: 288
  ident: bb0090
  article-title: lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements
  publication-title: Nature
– year: 2012
  ident: bb0120
  article-title: Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENβ noncoding RNAs
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 120
  start-page: 195
  year: 2005
  end-page: 208
  ident: bb0160
  article-title: Mammalian Staufen1 recruits Upf1 to specific mRNA 3′UTRs so as to elicit mRNA decay
  publication-title: Cell
– volume: 18
  start-page: 2029
  year: 2012
  end-page: 2040
  ident: bb0155
  article-title: A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability
  publication-title: RNA
– volume: 48
  start-page: 219
  year: 2012
  end-page: 230
  ident: bb0150
  article-title: Long noncoding RNAs with snoRNA ends
  publication-title: Mol. Cell
– volume: 147
  start-page: 358
  year: 2011
  end-page: 369
  ident: bb0190
  article-title: A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA
  publication-title: Cell
– volume: 142
  start-page: 409
  year: 2010
  end-page: 419
  ident: bb0075
  article-title: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response
  publication-title: Cell
– volume: 316
  start-page: 1484
  year: 2007
  end-page: 1488
  ident: bb0005
  article-title: RNA maps reveal new RNA classes and a possible function for pervasive transcription
  publication-title: Science
– year: 2012
  ident: bb0175
  article-title: Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay
  publication-title: EMBO J.
– volume: 2
  start-page: 111
  year: 2012
  end-page: 123
  ident: bb0210
  article-title: The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult
  publication-title: Cell Rep.
– volume: 448
  start-page: 553
  year: 2007
  end-page: 560
  ident: bb0025
  article-title: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells
  publication-title: Nature
– volume: 9
  start-page: 9
  year: 1975
  end-page: 16
  ident: bb0050
  article-title: Chromatin-associated RNA content of heterochromatin and euchromatin
  publication-title: Mol. Cell. Biochem.
– volume: 9
  start-page: 9
  year: 1975
  ident: 10.1016/j.jmb.2012.11.024_bb0050
  article-title: Chromatin-associated RNA content of heterochromatin and euchromatin
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/BF01731728
– volume: 21
  start-page: 223
  year: 2005
  ident: 10.1016/j.jmb.2012.11.024_bb0185
  article-title: RNA transport and local control of translation
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.21.122303.120653
– volume: 21
  start-page: 354
  year: 2011
  ident: 10.1016/j.jmb.2012.11.024_bb0220
  article-title: Long noncoding RNAs and human disease
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2011.04.001
– volume: 26
  start-page: 2670
  year: 2007
  ident: 10.1016/j.jmb.2012.11.024_bb0165
  article-title: Staufen1 regulates diverse classes of mammalian transcripts
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601712
– volume: 482
  start-page: 339
  year: 2012
  ident: 10.1016/j.jmb.2012.11.024_bb0010
  article-title: Modular regulatory principles of large non-coding RNAs
  publication-title: Nature
  doi: 10.1038/nature10887
– volume: 14
  start-page: 723
  year: 2008
  ident: 10.1016/j.jmb.2012.11.024_bb0095
  article-title: Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase
  publication-title: Nat. Med.
  doi: 10.1038/nm1784
– volume: 11
  start-page: R56
  year: 2010
  ident: 10.1016/j.jmb.2012.11.024_bb0170
  article-title: Evidence for natural antisense transcript-mediated inhibition of microRNA function
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-5-r56
– volume: 129
  start-page: 1311
  year: 2007
  ident: 10.1016/j.jmb.2012.11.024_bb0065
  article-title: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.022
– year: 2012
  ident: 10.1016/j.jmb.2012.11.024_bb0175
  article-title: Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.292
– volume: 120
  start-page: 195
  year: 2005
  ident: 10.1016/j.jmb.2012.11.024_bb0160
  article-title: Mammalian Staufen1 recruits Upf1 to specific mRNA 3′UTRs so as to elicit mRNA decay
  publication-title: Cell
  doi: 10.1016/j.cell.2004.11.050
– volume: 329
  start-page: 689
  year: 2010
  ident: 10.1016/j.jmb.2012.11.024_bb0070
  article-title: Long noncoding RNA as modular scaffold of histone modification complexes
  publication-title: Science
  doi: 10.1126/science.1192002
– volume: 18
  start-page: 2029
  year: 2012
  ident: 10.1016/j.jmb.2012.11.024_bb0155
  article-title: A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability
  publication-title: RNA
  doi: 10.1261/rna.034330.112
– volume: 129
  start-page: 823
  year: 2007
  ident: 10.1016/j.jmb.2012.11.024_bb0020
  article-title: High-resolution profiling of histone methylations in the human genome
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.009
– volume: 147
  start-page: 1537
  year: 2011
  ident: 10.1016/j.jmb.2012.11.024_bb0040
  article-title: Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.055
– volume: 26
  start-page: 2392
  year: 2012
  ident: 10.1016/j.jmb.2012.11.024_bb0115
  article-title: A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails
  publication-title: Genes Dev.
  doi: 10.1101/gad.204438.112
– volume: 71
  start-page: 515
  year: 1992
  ident: 10.1016/j.jmb.2012.11.024_bb0035
  article-title: The product of the mouse Xist gene is a 15kb inactive X-specific transcript containing no conserved ORF and located in the nucleus
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90519-I
– volume: 81
  start-page: 145
  year: 2012
  ident: 10.1016/j.jmb.2012.11.024_bb0015
  article-title: Genome regulation by long noncoding RNAs
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-051410-092902
– volume: 11
  start-page: 75
  year: 2010
  ident: 10.1016/j.jmb.2012.11.024_bb0140
  article-title: RNA processing and its regulation: global insights into biological networks
  publication-title: Nat. Rev., Genet.
  doi: 10.1038/nrg2673
– volume: 171
  start-page: 811
  year: 2005
  ident: 10.1016/j.jmb.2012.11.024_bb0100
  article-title: Dendritic BC1 RNA in translational control mechanisms
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200506006
– volume: 277
  start-page: 856
  year: 2010
  ident: 10.1016/j.jmb.2012.11.024_bb0135
  article-title: Alternative splicing: global insights
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2009.07521.x
– volume: 448
  start-page: 553
  year: 2007
  ident: 10.1016/j.jmb.2012.11.024_bb0025
  article-title: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells
  publication-title: Nature
  doi: 10.1038/nature06008
– volume: 22
  start-page: 885
  year: 2012
  ident: 10.1016/j.jmb.2012.11.024_bb0110
  article-title: Genome-wide analysis of long noncoding RNA stability
  publication-title: Genome Res.
  doi: 10.1101/gr.131037.111
– volume: 2
  start-page: 111
  year: 2012
  ident: 10.1016/j.jmb.2012.11.024_bb0210
  article-title: The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2012.06.003
– volume: 470
  start-page: 284
  year: 2011
  ident: 10.1016/j.jmb.2012.11.024_bb0090
  article-title: lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements
  publication-title: Nature
  doi: 10.1038/nature09701
– volume: 9
  year: 2012
  ident: 10.1016/j.jmb.2012.11.024_bb0215
  article-title: Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development
  publication-title: RNA Biol.
  doi: 10.4161/rna.21089
– volume: 47
  start-page: 648
  year: 2012
  ident: 10.1016/j.jmb.2012.11.024_bb0105
  article-title: LincRNA-p21 suppresses target mRNA translation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.06.027
– year: 2012
  ident: 10.1016/j.jmb.2012.11.024_bb0180
  article-title: New long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat
  publication-title: Nature
  doi: 10.1038/nature11508
– year: 2012
  ident: 10.1016/j.jmb.2012.11.024_bb0120
  article-title: Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENβ noncoding RNAs
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1217338109
– volume: 147
  start-page: 358
  year: 2011
  ident: 10.1016/j.jmb.2012.11.024_bb0190
  article-title: A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA
  publication-title: Cell
  doi: 10.1016/j.cell.2011.09.028
– volume: 18
  start-page: 1487
  year: 2012
  ident: 10.1016/j.jmb.2012.11.024_bb0205
  article-title: Malat1 is not an essential component of nuclear speckles in mice
  publication-title: RNA
  doi: 10.1261/rna.033217.112
– volume: 10
  start-page: 28
  year: 1990
  ident: 10.1016/j.jmb.2012.11.024_bb0030
  article-title: The product of the H19 gene may function as an RNA
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.10.1.28
– volume: 43
  start-page: 621
  year: 2011
  ident: 10.1016/j.jmb.2012.11.024_bb0080
  article-title: Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters
  publication-title: Nat. Genet.
  doi: 10.1038/ng.848
– volume: 29
  start-page: 3082
  year: 2010
  ident: 10.1016/j.jmb.2012.11.024_bb0145
  article-title: A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.199
– volume: 48
  start-page: 219
  year: 2012
  ident: 10.1016/j.jmb.2012.11.024_bb0150
  article-title: Long noncoding RNAs with snoRNA ends
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.07.033
– volume: 331
  start-page: 76
  year: 2011
  ident: 10.1016/j.jmb.2012.11.024_bb0060
  article-title: Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA
  publication-title: Science
  doi: 10.1126/science.1197349
– volume: 316
  start-page: 1484
  year: 2007
  ident: 10.1016/j.jmb.2012.11.024_bb0005
  article-title: RNA maps reveal new RNA classes and a possible function for pervasive transcription
  publication-title: Science
  doi: 10.1126/science.1138341
– volume: 39
  start-page: 925
  year: 2010
  ident: 10.1016/j.jmb.2012.11.024_bb0085
  article-title: The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.08.011
– volume: 147
  start-page: 789
  year: 2011
  ident: 10.1016/j.jmb.2012.11.024_bb0045
  article-title: Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes
  publication-title: Cell
  doi: 10.1016/j.cell.2011.10.002
– volume: 12
  start-page: 542
  year: 2011
  ident: 10.1016/j.jmb.2012.11.024_bb0055
  article-title: Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation
  publication-title: Nat. Rev., Genet.
  doi: 10.1038/nrg3035
– volume: 142
  start-page: 409
  year: 2010
  ident: 10.1016/j.jmb.2012.11.024_bb0075
  article-title: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response
  publication-title: Cell
  doi: 10.1016/j.cell.2010.06.040
– volume: 14
  start-page: 659
  year: 2012
  ident: 10.1016/j.jmb.2012.11.024_bb0200
  article-title: The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2521
– volume: 2
  start-page: 26
  year: 2012
  ident: 10.1016/j.jmb.2012.11.024_bb0125
  article-title: Conservation of a triple-helix-forming RNA stability element in noncoding and genomic RNAs of diverse viruses
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2012.05.020
– volume: 146
  start-page: 353
  year: 2011
  ident: 10.1016/j.jmb.2012.11.024_bb0195
  article-title: A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?
  publication-title: Cell
  doi: 10.1016/j.cell.2011.07.014
– volume: 126
  start-page: 37
  year: 2006
  ident: 10.1016/j.jmb.2012.11.024_bb0130
  article-title: Alternative splicing: new insights from global analyses
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.023
SSID ssj0005348
Score 2.607795
SecondaryResourceType review_article
Snippet Eukaryotic cells transcribe a vast number of noncoding RNA species. Among them, long noncoding RNAs (lncRNAs) have been widely implicated in the regulation of...
SourceID proquest
pubmed
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3723
SubjectTerms Cell Line, Tumor
eukaryotic cells
gene expression
genes
genetics
human diseases
Humans
lincRNA
lncRNA
messenger RNA
metabolism
microRNA
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
mRNA turnover
non-coding RNA
RNA precursors
RNA Processing, Post-Transcriptional
RNA Splicing
RNA Stability
RNA, Long Noncoding
RNA, Messenger
RNA, Messenger - genetics
RNA, Messenger - metabolism
RNA-binding protein
RNA-binding proteins
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
transcription (genetics)
translation (genetics)
translational regulation
Title Posttranscriptional Gene Regulation by Long Noncoding RNA
URI https://dx.doi.org/10.1016/j.jmb.2012.11.024
https://www.ncbi.nlm.nih.gov/pubmed/23178169
https://www.proquest.com/docview/1431295314
https://www.proquest.com/docview/1505347958
https://www.proquest.com/docview/1672086075
Volume 425
WOSCitedRecordID wos000325040800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1089-8638
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005348
  issn: 0022-2836
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYBoIXBONj5WMKEuKBKVWTOLH9WE2dxqgKghb1zYpdZ1CtSekHWv977hI7LR-txgMvUeXadXP38_lsn-9HyGuRKsGyUeDrACnMRmbkC66ZH6hUc52GRpSckV-6rNfjw6H4aOmt5iWdAMtzfn0tpv9V1VAGysars_-g7vpHoQA-g9LhCWqH540Uj_S7C5yBnD0AJWByaZDkpeXqQp-ziyRDvSLXRXmt5VOvvcVPnTgC3RObsGltKKoT-wvjn6-WNcjaamSuJsVXu7XzvlioOsinmGFm8nITdgWimGzuOQRV9JrYtKMhXuquUpc4Owqj_2TajFgYgdWyhy2VVcSyjRnWffuH9a42EsbN8URh0F3YxPyq1RXrXzNl9z7Is0G3K_udYf_N9LuPJGJ42G4ZVfbIQchiAUbuoP2uM7xYx_xElLv08fj33TF3GfD3W6_bHJW9LC22L0dKt6T_gNy3evLaFQ4eklsmPyR3KobR1SG5e-oI_R4R8RdkeIgMb40MT608RIZXI8MDZDwmg7NO__Tct8wZvgYHcOHTONYJV1RpyjQXMOQywTPFBFOZihNGY5rFWUtEVBkG74oZgpgSUWSCdNQyQfSE7OdFbo6IFwoDPp-iVHFw9kCqLaHDVCUZDTLoizVIy4lJaptWHtlNrqSLHxxLkKxEycJyU0JvDfK2bjKtcqrsqkyd7KV1CitnTwJqdjU7Aj3J9BKmSjn4HOLGXnlRmosGeeWUJ0EDeECW5qZYzmEZHIH7C7MS3VEnRhQxEfMddRIWtngC3niDPK3QUb8orKcYDxLx7Aatn5N769H3guwvZkvzktzWPxbf5rNjsseG_NhC_CfiJrDF
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Posttranscriptional+Gene+Regulation+by+Long+Noncoding+RNA&rft.jtitle=Journal+of+molecular+biology&rft.au=Yoon%2C+Je-Hyun&rft.au=Abdelmohsen%2C+Kotb&rft.au=Gorospe%2C+Myriam&rft.date=2013-10-09&rft.issn=0022-2836&rft.volume=425+p.3723-3730&rft.spage=3723&rft.epage=3730&rft_id=info:doi/10.1016%2Fj.jmb.2012.11.024&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2836&client=summon