Posttranscriptional Gene Regulation by Long Noncoding RNA
Eukaryotic cells transcribe a vast number of noncoding RNA species. Among them, long noncoding RNAs (lncRNAs) have been widely implicated in the regulation of gene transcription. However, examples of posttranscriptional gene regulation by lncRNAs are emerging. Through extended base-pairing, lncRNAs...
Gespeichert in:
| Veröffentlicht in: | Journal of molecular biology Jg. 425; H. 19; S. 3723 - 3730 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Netherlands
Elsevier Ltd
09.10.2013
|
| Schlagworte: | |
| ISSN: | 0022-2836, 1089-8638, 1089-8638 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Eukaryotic cells transcribe a vast number of noncoding RNA species. Among them, long noncoding RNAs (lncRNAs) have been widely implicated in the regulation of gene transcription. However, examples of posttranscriptional gene regulation by lncRNAs are emerging. Through extended base-pairing, lncRNAs can stabilize or promote the translation of target mRNAs, while partial base-pairing facilitates mRNA decay or inhibits target mRNA translation. In the absence of complementarity, lncRNAs can suppress precursor mRNA splicing and translation by acting as decoys of RNA-binding proteins or microRNAs and can compete for microRNA-mediated inhibition leading to increased expression of the mRNA. Through these regulatory mechanisms, lncRNAs can elicit differentiation, proliferation, and cytoprotective programs, underscoring the rising recognition of lncRNA roles in human disease. In this review, we summarize the mechanisms of posttranscriptional gene regulation by lncRNAs identified until now.
[Display omitted]
► LncRNAs are emerging as key posttranscriptional gene regulatory factors. ► LncRNAs can control splicing by sequestering splicing regulatory proteins. ► LncRNAs can modulate target mRNA turnover via partial or extended complementarity. ► LncRNAs can affect translation by interacting with target mRNAs, recruiting proteins. ► LncRNAs can function by competing or cooperating with microRNAs. |
|---|---|
| AbstractList | Eukaryotic cells transcribe a vast number of noncoding RNA species. Among them, long noncoding RNAs (lncRNAs) have been widely implicated in the regulation of gene transcription. However, examples of posttranscriptional gene regulation by lncRNAs are emerging. Through extended base-pairing, lncRNAs can stabilize or promote the translation of target mRNAs, while partial base-pairing facilitates mRNA decay or inhibits target mRNA translation. In the absence of complementarity, lncRNAs can suppress precursor mRNA splicing and translation by acting as decoys of RNA-binding proteins or microRNAs and can compete for microRNA-mediated inhibition leading to increased expression of the mRNA. Through these regulatory mechanisms, lncRNAs can elicit differentiation, proliferation, and cytoprotective programs, underscoring the rising recognition of lncRNA roles in human disease. In this review, we summarize the mechanisms of posttranscriptional gene regulation by lncRNAs identified until now.Eukaryotic cells transcribe a vast number of noncoding RNA species. Among them, long noncoding RNAs (lncRNAs) have been widely implicated in the regulation of gene transcription. However, examples of posttranscriptional gene regulation by lncRNAs are emerging. Through extended base-pairing, lncRNAs can stabilize or promote the translation of target mRNAs, while partial base-pairing facilitates mRNA decay or inhibits target mRNA translation. In the absence of complementarity, lncRNAs can suppress precursor mRNA splicing and translation by acting as decoys of RNA-binding proteins or microRNAs and can compete for microRNA-mediated inhibition leading to increased expression of the mRNA. Through these regulatory mechanisms, lncRNAs can elicit differentiation, proliferation, and cytoprotective programs, underscoring the rising recognition of lncRNA roles in human disease. In this review, we summarize the mechanisms of posttranscriptional gene regulation by lncRNAs identified until now. Eukaryotic cells transcribe a vast number of noncoding RNA species. Among them, long noncoding RNAs (lncRNAs) have been widely implicated in the regulation of gene transcription. However, examples of posttranscriptional gene regulation by lncRNAs are emerging. Through extended base-pairing, lncRNAs can stabilize or promote the translation of target mRNAs, while partial base-pairing facilitates mRNA decay or inhibits target mRNA translation. In the absence of complementarity, lncRNAs can suppress precursor mRNA splicing and translation by acting as decoys of RNA-binding proteins or microRNAs and can compete for microRNA-mediated inhibition leading to increased expression of the mRNA. Through these regulatory mechanisms, lncRNAs can elicit differentiation, proliferation, and cytoprotective programs, underscoring the rising recognition of lncRNA roles in human disease. In this review, we summarize the mechanisms of posttranscriptional gene regulation by lncRNAs identified until now. Eukaryotic cells transcribe a vast number of noncoding RNA species. Among them, long noncoding RNAs (lncRNAs) have been widely implicated in the regulation of gene transcription. However, examples of posttranscriptional gene regulation by lncRNAs are emerging. Through extended base-pairing, lncRNAs can stabilize or promote the translation of target mRNAs, while partial base-pairing facilitates mRNA decay or inhibits target mRNA translation. In the absence of complementarity, lncRNAs can suppress precursor mRNA splicing and translation by acting as decoys of RNA-binding proteins or microRNAs and can compete for microRNA-mediated inhibition leading to increased expression of the mRNA. Through these regulatory mechanisms, lncRNAs can elicit differentiation, proliferation, and cytoprotective programs, underscoring the rising recognition of lncRNA roles in human disease. In this review, we summarize the mechanisms of posttranscriptional gene regulation by lncRNAs identified until now. [Display omitted] ► LncRNAs are emerging as key posttranscriptional gene regulatory factors. ► LncRNAs can control splicing by sequestering splicing regulatory proteins. ► LncRNAs can modulate target mRNA turnover via partial or extended complementarity. ► LncRNAs can affect translation by interacting with target mRNAs, recruiting proteins. ► LncRNAs can function by competing or cooperating with microRNAs. |
| Author | Gorospe, Myriam Abdelmohsen, Kotb Yoon, Je-Hyun |
| Author_xml | – sequence: 1 givenname: Je-Hyun surname: Yoon fullname: Yoon, Je-Hyun – sequence: 2 givenname: Kotb surname: Abdelmohsen fullname: Abdelmohsen, Kotb – sequence: 3 givenname: Myriam surname: Gorospe fullname: Gorospe, Myriam email: myriam-gorospe@nih.gov |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23178169$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1uEzEUhS1U1KahD8AGZtnNDP7_EauqgoIUFVTo2rI9dyJHk3GwJ0h9-zqksGDRrq5lfedK93zn6GRKEyD0luCOYCI_bLrN1ncUE9oR0mHKX6EFwdq0WjJ9ghYYU9pSzeQZOi9lgzEWjOtTdEYZUZpIs0DmeyrznN1UQo67OabJjc0NTNDcwXo_usNP4x-aVZrWzW2aQupjfd3dXr1Brwc3Frh4mkt0__nTz-sv7erbzdfrq1UbBDZzy4UIUnvuA1dBG0dhMHrwyig_eCEVF3wQAzaMe1D1BK6FUN4wBsT1GAhbosvj3l1Ov_ZQZruNJcA4ugnSvlgiFcVaYiVeRsWhAGWEfhnljFAjWJ1L9O4J3fst9HaX49blB_u3xAqQIxByKiXD8A8h2B5E2Y2touxBlCXE1itrRv2XCXH-03aVEcdnk--PycEl69Y5Fnv_owKi6uWy2q_ExyMBVcvvCNmWEGEK0McMYbZ9is_sfwS7z7Lr |
| CitedBy_id | crossref_primary_10_1074_jbc_M115_661785 crossref_primary_10_1038_srep25723 crossref_primary_10_1016_j_omtn_2018_08_015 crossref_primary_10_1111_exd_12341 crossref_primary_10_1186_s13578_015_0050_x crossref_primary_10_1016_j_toxlet_2017_12_009 crossref_primary_10_3390_ijms242115870 crossref_primary_10_4239_wjd_v14_i7_958 crossref_primary_10_1038_s41598_018_35231_8 crossref_primary_10_1080_10715762_2023_2299333 crossref_primary_10_1080_13813455_2018_1499119 crossref_primary_10_3390_ijms20112628 crossref_primary_10_1038_ncomms6248 crossref_primary_10_1007_s12035_022_02899_z crossref_primary_10_1007_s11033_022_07947_4 crossref_primary_10_1016_j_coviro_2015_02_006 crossref_primary_10_1080_1354750X_2024_2341411 crossref_primary_10_1038_ncb3464 crossref_primary_10_3389_fimmu_2017_01663 crossref_primary_10_3390_biology14040442 crossref_primary_10_1007_s13277_015_4457_0 crossref_primary_10_1089_ars_2017_7126 crossref_primary_10_1016_j_jpsychires_2022_02_007 crossref_primary_10_1038_s41598_023_37236_4 crossref_primary_10_1128_msphere_00062_25 crossref_primary_10_1007_s10142_020_00735_y crossref_primary_10_3892_mmr_2015_4711 crossref_primary_10_3892_ijo_2016_3716 crossref_primary_10_3390_jcdd6020015 crossref_primary_10_3390_life14111462 crossref_primary_10_1080_10920277_2016_1178588 crossref_primary_10_2217_fon_2017_0149 crossref_primary_10_1016_j_biopha_2018_03_041 crossref_primary_10_1016_j_omtn_2019_11_003 crossref_primary_10_1186_s12986_021_00552_5 crossref_primary_10_1016_j_tig_2014_08_004 crossref_primary_10_1007_s00018_024_05385_y crossref_primary_10_1080_15592294_2023_2231707 crossref_primary_10_1016_j_jia_2022_11_005 crossref_primary_10_3390_cancers13051045 crossref_primary_10_3390_agronomy12081976 crossref_primary_10_3390_cells11213466 crossref_primary_10_1111_cpr_12461 crossref_primary_10_1016_j_cellsig_2024_111412 crossref_primary_10_1016_j_biocel_2015_03_011 crossref_primary_10_1186_s12979_021_00258_5 crossref_primary_10_3390_biom12101339 crossref_primary_10_1111_jcmm_14988 crossref_primary_10_1016_j_biomaterials_2014_12_023 crossref_primary_10_1139_gen_2020_0062 crossref_primary_10_1186_s13059_017_1348_2 crossref_primary_10_1155_2020_8822859 crossref_primary_10_1186_s12935_021_01808_z crossref_primary_10_7717_peerj_6091 crossref_primary_10_1155_2015_146250 crossref_primary_10_3389_fmolb_2024_1327459 crossref_primary_10_1186_s12935_022_02490_5 crossref_primary_10_1016_j_semcdb_2016_06_013 crossref_primary_10_1002_cbf_3079 crossref_primary_10_1155_2014_978984 crossref_primary_10_3390_ijms25020842 crossref_primary_10_3892_ol_2016_4580 crossref_primary_10_1016_j_diff_2020_10_002 crossref_primary_10_1002_jcp_27186 crossref_primary_10_1016_j_egg_2025_100360 crossref_primary_10_1111_aji_12275 crossref_primary_10_3390_biomedicines11092411 crossref_primary_10_2196_33186 crossref_primary_10_1093_bib_bbaa354 crossref_primary_10_3390_ijms20051226 crossref_primary_10_1002_jcb_29920 crossref_primary_10_1016_j_pbiomolbio_2019_08_006 crossref_primary_10_3389_fgene_2023_1242129 crossref_primary_10_1261_rna_044040_113 crossref_primary_10_1371_journal_pone_0224358 crossref_primary_10_1186_s12935_021_02253_8 crossref_primary_10_2147_OTT_S251625 crossref_primary_10_1161_ATVBAHA_118_310848 crossref_primary_10_1002_jcp_28485 crossref_primary_10_1016_j_aichem_2025_100094 crossref_primary_10_3724_abbs_2024236 crossref_primary_10_1007_s11010_024_05083_0 crossref_primary_10_3389_fonc_2020_598817 crossref_primary_10_1016_j_canlet_2015_02_035 crossref_primary_10_1038_s41419_018_0793_5 crossref_primary_10_3389_fonc_2021_738477 crossref_primary_10_1089_omi_2024_0047 crossref_primary_10_1038_s41598_020_66881_2 crossref_primary_10_1242_jcs_259306 crossref_primary_10_1074_jbc_M114_597401 crossref_primary_10_1186_s12864_017_3748_9 crossref_primary_10_1016_j_arr_2023_101913 crossref_primary_10_1002_cbf_3181 crossref_primary_10_1038_s41419_022_04723_x crossref_primary_10_3390_ijms19113615 crossref_primary_10_1016_j_canlet_2016_03_022 crossref_primary_10_3390_ijms18010021 crossref_primary_10_3389_fonc_2021_754834 crossref_primary_10_1016_j_bbrc_2015_12_082 crossref_primary_10_3390_ijms18061236 crossref_primary_10_1038_nrm_2017_103 crossref_primary_10_3389_fimmu_2014_00573 crossref_primary_10_3892_ol_2020_11639 crossref_primary_10_3892_mmr_2019_10203 crossref_primary_10_1016_j_bbagrm_2015_07_007 crossref_primary_10_1155_2019_8690592 crossref_primary_10_1007_s12079_020_00589_w crossref_primary_10_1111_jcmm_14422 crossref_primary_10_1111_cas_14516 crossref_primary_10_3389_fendo_2022_851967 crossref_primary_10_1111_jipb_12163 crossref_primary_10_3390_ncrna4020011 crossref_primary_10_1093_nar_gky087 crossref_primary_10_3390_cancers16091639 crossref_primary_10_1002_iub_2344 crossref_primary_10_3892_ol_2019_10782 crossref_primary_10_1038_s41598_017_02561_y crossref_primary_10_3389_fonc_2022_896840 crossref_primary_10_1016_j_bbagrm_2015_07_011 crossref_primary_10_1016_j_jmb_2013_07_032 crossref_primary_10_1038_ncomms7967 crossref_primary_10_1038_s41419_019_1925_2 crossref_primary_10_1016_j_toxlet_2017_03_026 crossref_primary_10_1016_j_ygeno_2018_01_012 crossref_primary_10_1134_S0026893324700183 crossref_primary_10_1186_s13046_021_02145_9 crossref_primary_10_1186_s12864_019_6049_7 crossref_primary_10_3390_genes13091598 crossref_primary_10_1093_bib_bby039 crossref_primary_10_1016_j_molcel_2014_01_009 crossref_primary_10_1111_jcmm_14524 crossref_primary_10_1016_j_ymthe_2017_06_027 crossref_primary_10_1128_mcb_00036_22 crossref_primary_10_1111_imcb_1028 crossref_primary_10_1016_j_addr_2015_05_012 crossref_primary_10_1007_s12263_015_0496_9 crossref_primary_10_1016_j_bbagrm_2018_02_001 crossref_primary_10_1038_srep14642 crossref_primary_10_3892_mco_2014_429 crossref_primary_10_3389_fonc_2021_690213 crossref_primary_10_1016_j_bbrc_2020_05_047 crossref_primary_10_1016_j_gene_2020_144796 crossref_primary_10_1038_s41598_025_94661_3 crossref_primary_10_1007_s00018_020_03751_0 crossref_primary_10_18632_oncotarget_16355 crossref_primary_10_1186_s40591_015_0042_6 crossref_primary_10_1134_S1022795422060114 crossref_primary_10_3390_cancers11020184 crossref_primary_10_1016_j_molcel_2014_04_033 crossref_primary_10_3390_ijms251910316 crossref_primary_10_1098_rsob_180110 crossref_primary_10_1111_1744_7917_12867 crossref_primary_10_1002_bies_201300068 crossref_primary_10_3390_ijms232213869 crossref_primary_10_1016_j_compbiomed_2023_106943 crossref_primary_10_1007_s00425_014_2168_1 crossref_primary_10_3389_fgene_2020_00233 crossref_primary_10_1007_s13353_024_00908_6 crossref_primary_10_3390_ncrna6030033 crossref_primary_10_2217_epi_14_29 crossref_primary_10_3389_fonc_2025_1549477 crossref_primary_10_1002_cam4_2108 crossref_primary_10_1016_j_ijbiomac_2020_02_026 crossref_primary_10_1007_s12041_015_0561_6 crossref_primary_10_3892_mmr_2019_10128 crossref_primary_10_1016_j_ymthe_2018_08_018 crossref_primary_10_3389_fneur_2022_929290 crossref_primary_10_1002_cbin_11021 crossref_primary_10_1002_pld3_455 crossref_primary_10_3389_fimmu_2018_02512 crossref_primary_10_1038_s41467_019_13168_4 crossref_primary_10_1016_j_mce_2016_02_020 crossref_primary_10_1093_bib_bbx042 crossref_primary_10_1186_s12929_023_00954_y crossref_primary_10_1186_s12885_020_07302_5 crossref_primary_10_1093_bib_bby008 crossref_primary_10_1016_j_ygeno_2020_04_021 crossref_primary_10_1155_2014_970607 crossref_primary_10_1242_dev_152413 crossref_primary_10_1186_s12864_018_4603_3 crossref_primary_10_1016_j_bbalip_2018_01_005 crossref_primary_10_1038_nri3682 crossref_primary_10_1016_j_virusres_2015_08_008 crossref_primary_10_1016_j_biopha_2019_108719 crossref_primary_10_1002_2211_5463_12602 crossref_primary_10_1128_MCB_00423_14 crossref_primary_10_1093_neuonc_nox017 crossref_primary_10_1002_jcp_30061 crossref_primary_10_1016_j_bbagrm_2015_06_013 crossref_primary_10_3390_ncrna10010013 crossref_primary_10_1111_jcmm_13238 crossref_primary_10_1016_j_scitotenv_2019_136045 crossref_primary_10_1186_s12974_024_03083_x crossref_primary_10_1002_humu_23859 crossref_primary_10_1101_gr_266528_120 crossref_primary_10_3389_fcell_2021_629895 crossref_primary_10_1002_ctm2_706 crossref_primary_10_3389_fphys_2021_659638 crossref_primary_10_3390_ncrna9060072 crossref_primary_10_1016_j_jsps_2021_10_008 crossref_primary_10_3390_cells12111498 crossref_primary_10_1038_s41389_019_0182_7 crossref_primary_10_3389_fonc_2021_745166 crossref_primary_10_1111_jcmm_70344 crossref_primary_10_1038_srep33210 crossref_primary_10_1007_s00114_018_1552_2 crossref_primary_10_1186_s12943_018_0820_2 crossref_primary_10_1097_MD_0000000000004608 crossref_primary_10_1016_j_bbadis_2024_167454 crossref_primary_10_1111_raq_12709 crossref_primary_10_3389_fgene_2021_813873 crossref_primary_10_3892_mmr_2019_9856 crossref_primary_10_1016_j_micpath_2021_105367 crossref_primary_10_3892_ijo_2016_3385 crossref_primary_10_1186_s12935_020_01258_z crossref_primary_10_1038_s41419_018_0884_3 crossref_primary_10_3892_mmr_2015_3290 crossref_primary_10_1093_nar_gku686 crossref_primary_10_1093_nar_gkad1095 crossref_primary_10_1016_j_bbadis_2018_09_021 crossref_primary_10_1016_j_jbiotec_2021_08_005 crossref_primary_10_3389_fnins_2018_00694 crossref_primary_10_1186_s12575_018_0071_z crossref_primary_10_3390_ijms140919202 crossref_primary_10_1093_nar_gkaa097 crossref_primary_10_1016_j_mad_2018_11_002 crossref_primary_10_3389_fnins_2024_1392688 crossref_primary_10_1002_jbt_23389 crossref_primary_10_1096_fj_202400236RR crossref_primary_10_1007_s43393_024_00320_5 crossref_primary_10_1016_j_bbrc_2019_06_113 crossref_primary_10_3390_cells14151193 crossref_primary_10_1016_j_gene_2016_08_027 crossref_primary_10_3390_cells9030527 crossref_primary_10_1016_j_micinf_2015_03_003 crossref_primary_10_1097_MIB_0000000000000691 crossref_primary_10_3389_fimmu_2018_00761 crossref_primary_10_1007_s00018_021_04063_7 crossref_primary_10_1002_jcla_24389 crossref_primary_10_1016_j_gene_2024_148165 crossref_primary_10_1007_s11033_022_07427_9 crossref_primary_10_7717_peerj_9957 crossref_primary_10_1111_acel_12753 crossref_primary_10_1161_CIRCRESAHA_115_306464 crossref_primary_10_3389_fonc_2022_927706 crossref_primary_10_1080_15592294_2023_2293409 crossref_primary_10_1016_j_bbrc_2015_07_120 crossref_primary_10_1007_s11427_014_4706_2 crossref_primary_10_1016_j_gene_2023_147907 crossref_primary_10_1016_j_jsbmb_2021_105875 crossref_primary_10_3892_mmr_2021_12350 crossref_primary_10_1080_01635581_2020_1823006 crossref_primary_10_1007_s00441_014_1885_x crossref_primary_10_1002_wrna_1864 crossref_primary_10_1016_j_jbiotec_2023_12_003 crossref_primary_10_1186_s13075_019_1853_7 crossref_primary_10_1016_j_gene_2018_05_014 crossref_primary_10_1016_j_mimet_2015_12_013 crossref_primary_10_1038_onc_2014_200 crossref_primary_10_1038_s41388_021_02033_8 crossref_primary_10_1038_nrrheum_2017_162 crossref_primary_10_1007_s10142_024_01494_w crossref_primary_10_1186_s12864_016_2776_1 crossref_primary_10_1007_s12022_018_9564_1 crossref_primary_10_1111_1440_1681_12795 crossref_primary_10_1155_2014_780521 crossref_primary_10_1016_j_bioorg_2019_103214 crossref_primary_10_1002_jcb_29669 crossref_primary_10_1002_mc_22314 crossref_primary_10_1007_s11010_023_04828_7 crossref_primary_10_1002_jcp_26424 crossref_primary_10_1002_cbf_70119 crossref_primary_10_1016_j_pt_2020_07_006 crossref_primary_10_1038_s41419_020_2557_2 crossref_primary_10_1128_JVI_00927_18 crossref_primary_10_1016_j_canlet_2018_01_008 crossref_primary_10_1016_j_pbiomolbio_2022_09_007 crossref_primary_10_1002_jgm_3065 crossref_primary_10_1096_fj_201900643RRR crossref_primary_10_3892_etm_2020_8471 crossref_primary_10_1111_jop_13232 crossref_primary_10_1186_s12881_020_01064_4 crossref_primary_10_1186_s13287_021_02654_6 crossref_primary_10_3390_ncrna7010003 crossref_primary_10_4103_1673_5374_247467 crossref_primary_10_1016_j_leukres_2019_106261 crossref_primary_10_3390_ijms140714744 crossref_primary_10_1016_j_plaphy_2024_108797 crossref_primary_10_1002_pmic_201200576 crossref_primary_10_1534_genetics_119_302661 crossref_primary_10_3390_ijms25073894 crossref_primary_10_1186_s12859_023_05279_z crossref_primary_10_1016_j_genrep_2021_101116 crossref_primary_10_1007_s10238_024_01491_0 crossref_primary_10_1111_cas_13740 crossref_primary_10_1155_2018_1823726 crossref_primary_10_1007_s13562_021_00674_0 crossref_primary_10_1186_s12920_023_01553_4 crossref_primary_10_3389_fmars_2022_1014810 crossref_primary_10_3389_fgene_2021_626234 crossref_primary_10_1093_nargab_lqae045 crossref_primary_10_1038_s41419_021_03966_4 crossref_primary_10_1016_j_biopha_2024_116868 crossref_primary_10_1111_nyas_14781 crossref_primary_10_3390_ncrna7020024 crossref_primary_10_1016_j_urolonc_2021_11_012 crossref_primary_10_1016_j_gene_2023_148074 crossref_primary_10_32604_oncologie_2021_017786 crossref_primary_10_1186_s12964_023_01212_2 crossref_primary_10_3390_ijms17050702 crossref_primary_10_1016_j_bbalip_2021_158987 crossref_primary_10_1038_cr_2016_84 crossref_primary_10_1007_s00424_016_1792_y crossref_primary_10_1080_14737159_2021_1979960 crossref_primary_10_3390_ijms19010123 crossref_primary_10_3390_genes7120107 crossref_primary_10_1016_j_taap_2022_116097 crossref_primary_10_1111_jcmm_15262 crossref_primary_10_1096_fj_201800098RR crossref_primary_10_1016_j_bcp_2023_115643 crossref_primary_10_1155_2017_2767484 crossref_primary_10_3389_fvets_2021_693416 crossref_primary_10_1155_2017_3859582 crossref_primary_10_3390_ijms23095199 crossref_primary_10_1007_s00438_021_01786_x crossref_primary_10_1007_s44211_023_00382_w crossref_primary_10_1016_j_yjmcc_2015_01_011 crossref_primary_10_1159_000515422 crossref_primary_10_1002_mrd_23065 crossref_primary_10_1002_wrna_1209 crossref_primary_10_1016_j_artmed_2017_02_001 crossref_primary_10_1016_j_jconrel_2023_04_026 crossref_primary_10_1038_ncb3295 crossref_primary_10_1016_j_phrs_2021_105507 crossref_primary_10_1016_j_biomaterials_2017_03_027 crossref_primary_10_3390_ijms22020782 crossref_primary_10_1016_j_fsi_2018_07_032 crossref_primary_10_3390_biomedicines10102515 crossref_primary_10_1007_s11033_025_10906_4 crossref_primary_10_3892_or_2015_4364 crossref_primary_10_1161_ATVBAHA_114_304296 crossref_primary_10_2478_s11658_014_0212_6 crossref_primary_10_3390_ijerph14030270 crossref_primary_10_3389_fchem_2014_00022 crossref_primary_10_1007_s11816_018_00514_z crossref_primary_10_1186_s13046_018_0991_0 crossref_primary_10_1155_2021_9921466 crossref_primary_10_1016_j_virol_2015_02_008 crossref_primary_10_1038_srep21620 crossref_primary_10_3390_ijms26104821 crossref_primary_10_3390_ncrna9020025 crossref_primary_10_3390_ijms17010132 crossref_primary_10_3390_cells8111399 crossref_primary_10_1093_biolre_ioac216 crossref_primary_10_3390_ijms22031332 crossref_primary_10_7124_bc_0008EB crossref_primary_10_1002_wrna_1463 crossref_primary_10_1371_journal_pone_0145112 crossref_primary_10_3390_ijms23020764 crossref_primary_10_1042_BCJ20180440 crossref_primary_10_1111_cbdd_13849 crossref_primary_10_1155_2020_8884450 crossref_primary_10_3389_fnmol_2018_00096 crossref_primary_10_1007_s10495_022_01786_1 crossref_primary_10_1002_cam4_2618 crossref_primary_10_1016_j_yexcr_2018_05_029 crossref_primary_10_3390_cells12182272 crossref_primary_10_1038_cddis_2017_464 crossref_primary_10_1038_s41420_021_00500_5 crossref_primary_10_1016_j_biopha_2020_110201 crossref_primary_10_1111_iep_70003 crossref_primary_10_1073_pnas_1415098111 crossref_primary_10_1007_s10535_014_0404_y crossref_primary_10_1089_hum_2017_064 crossref_primary_10_7124_bc_000A59 crossref_primary_10_1002_wrna_1471 crossref_primary_10_1007_s12094_023_03193_7 crossref_primary_10_1007_s10238_025_01660_9 crossref_primary_10_3389_fpls_2023_1090711 crossref_primary_10_1111_cpr_12698 crossref_primary_10_1161_CIRCRESAHA_118_312966 crossref_primary_10_1016_j_biopha_2020_110655 crossref_primary_10_1080_17474124_2020_1780915 crossref_primary_10_1016_j_canlet_2017_03_018 crossref_primary_10_3390_ijms21031027 crossref_primary_10_1186_s13045_018_0692_3 crossref_primary_10_3389_fcell_2022_779269 crossref_primary_10_1002_qub2_100 crossref_primary_10_1016_j_omto_2021_05_012 crossref_primary_10_1016_j_jbc_2021_100997 crossref_primary_10_1016_j_tibs_2017_02_004 crossref_primary_10_1016_j_ncrna_2025_09_006 crossref_primary_10_1016_j_ymeth_2023_02_009 crossref_primary_10_1007_s00438_025_02244_8 crossref_primary_10_1007_s11738_018_2627_6 crossref_primary_10_1042_BSR20180516 crossref_primary_10_1016_j_mrrev_2015_08_002 crossref_primary_10_3389_fbioe_2020_00027 crossref_primary_10_3389_fninf_2022_794342 crossref_primary_10_3390_ijms25147893 crossref_primary_10_3727_096504018X15152037713570 crossref_primary_10_1016_j_ejphar_2019_172407 crossref_primary_10_1016_j_pbiomolbio_2021_04_001 crossref_primary_10_3390_jcm8071033 crossref_primary_10_1007_s12035_015_9634_z crossref_primary_10_1038_mtna_2014_54 crossref_primary_10_3390_insects14040308 crossref_primary_10_1016_j_bbrc_2019_09_058 crossref_primary_10_1016_j_gene_2021_146133 crossref_primary_10_3390_cancers5020462 crossref_primary_10_1007_s11010_020_03709_7 crossref_primary_10_1038_srep21819 crossref_primary_10_1038_s41598_022_06154_2 crossref_primary_10_1371_journal_pone_0148940 crossref_primary_10_1038_s41419_018_0582_1 crossref_primary_10_1155_2014_591703 crossref_primary_10_1371_journal_pone_0170860 crossref_primary_10_1155_2019_6078251 crossref_primary_10_3390_cells10061407 crossref_primary_10_3892_mmr_2017_6161 crossref_primary_10_1016_j_semcdb_2014_05_015 crossref_primary_10_1109_TCBB_2018_2861009 crossref_primary_10_3389_frnar_2024_1334464 crossref_primary_10_1093_nar_gkw017 crossref_primary_10_1016_j_gene_2014_11_060 crossref_primary_10_1016_j_isci_2023_107838 crossref_primary_10_1016_j_marpolbul_2024_117011 crossref_primary_10_1186_s13287_017_0485_6 crossref_primary_10_3390_ijms25158554 crossref_primary_10_1002_jcp_27435 crossref_primary_10_1089_jir_2018_0086 crossref_primary_10_3389_fneur_2015_00050 |
| Cites_doi | 10.1007/BF01731728 10.1146/annurev.cellbio.21.122303.120653 10.1016/j.tcb.2011.04.001 10.1038/sj.emboj.7601712 10.1038/nature10887 10.1038/nm1784 10.1186/gb-2010-11-5-r56 10.1016/j.cell.2007.05.022 10.1038/emboj.2012.292 10.1016/j.cell.2004.11.050 10.1126/science.1192002 10.1261/rna.034330.112 10.1016/j.cell.2007.05.009 10.1016/j.cell.2011.11.055 10.1101/gad.204438.112 10.1016/0092-8674(92)90519-I 10.1146/annurev-biochem-051410-092902 10.1038/nrg2673 10.1083/jcb.200506006 10.1111/j.1742-4658.2009.07521.x 10.1038/nature06008 10.1101/gr.131037.111 10.1016/j.celrep.2012.06.003 10.1038/nature09701 10.4161/rna.21089 10.1016/j.molcel.2012.06.027 10.1038/nature11508 10.1073/pnas.1217338109 10.1016/j.cell.2011.09.028 10.1261/rna.033217.112 10.1128/MCB.10.1.28 10.1038/ng.848 10.1038/emboj.2010.199 10.1016/j.molcel.2012.07.033 10.1126/science.1197349 10.1126/science.1138341 10.1016/j.molcel.2010.08.011 10.1016/j.cell.2011.10.002 10.1038/nrg3035 10.1016/j.cell.2010.06.040 10.1038/ncb2521 10.1016/j.celrep.2012.05.020 10.1016/j.cell.2011.07.014 10.1016/j.cell.2006.06.023 |
| ContentType | Journal Article |
| Copyright | 2013 Published by Elsevier Ltd. |
| Copyright_xml | – notice: 2013 – notice: Published by Elsevier Ltd. |
| DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 7S9 L.6 |
| DOI | 10.1016/j.jmb.2012.11.024 |
| DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA Genetics Abstracts MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Biology |
| EISSN | 1089-8638 |
| EndPage | 3730 |
| ExternalDocumentID | 23178169 10_1016_j_jmb_2012_11_024 US201500046089 S0022283612008960 |
| Genre | Journal Article Research Support, N.I.H., Intramural Review |
| GrantInformation_xml | – fundername: Intramural NIH HHS grantid: ZIA AG000511 |
| GroupedDBID | --- --K --M -DZ -ET -~X .~1 0R~ 186 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 85S 8P~ 9JM AAAJQ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AAXUO ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABOCM ABPPZ ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGEKW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CJTIS CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GX1 HLW HMG IH2 IHE J1W K-O KOM LG5 LUGTX LX2 LZ5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPCBC SSI SSU SSZ T5K TWZ VQA WH7 XPP YQT ZMT ZU3 ~G- .55 .GJ 29L 3O- AAQXK ABEFU ABPIF ABPTK ACKIV ADFGL ADIYS ADMUD AEQTP AFMIJ AGHFR AGRDE AI. ASPBG AVWKF AZFZN CAG COF FBQ FEDTE FGOYB G-2 G8K HVGLF HX~ HZ~ H~9 MVM NEJ R2- SBG SEW SIN UQL VH1 WUQ X7M XJT XOL Y6R YYP ZGI ZKB ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS CGR CUY CVF ECM EIF NPM SSH 7X8 7TM 8FD FR3 P64 RC3 7S9 L.6 |
| ID | FETCH-LOGICAL-c509t-455c68b4bc47c89a2ef98fb797bfb567454f5f0934be702448557b933e1ad0e13 |
| ISICitedReferencesCount | 517 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000325040800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-2836 1089-8638 |
| IngestDate | Thu Oct 02 14:13:58 EDT 2025 Mon Sep 29 05:44:19 EDT 2025 Sun Sep 28 05:15:12 EDT 2025 Mon Jul 21 05:29:22 EDT 2025 Tue Nov 18 21:55:58 EST 2025 Sat Nov 29 05:57:40 EST 2025 Wed Dec 27 19:00:14 EST 2023 Fri Feb 23 02:26:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Keywords | BACE1 pre-mRNA RNA-binding protein lncRNA sno-lncRNA mRNA turnover lincRNA PABP translational regulation poly(A)-binding protein β amyloid-cleaving enzyme 1 precursor mRNA small nucleolar lncRNA long noncoding RNA |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 Published by Elsevier Ltd. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c509t-455c68b4bc47c89a2ef98fb797bfb567454f5f0934be702448557b933e1ad0e13 |
| Notes | http://dx.doi.org/10.1016/j.jmb.2012.11.024 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 23178169 |
| PQID | 1431295314 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1672086075 proquest_miscellaneous_1505347958 proquest_miscellaneous_1431295314 pubmed_primary_23178169 crossref_primary_10_1016_j_jmb_2012_11_024 crossref_citationtrail_10_1016_j_jmb_2012_11_024 fao_agris_US201500046089 elsevier_sciencedirect_doi_10_1016_j_jmb_2012_11_024 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-10-09 |
| PublicationDateYYYYMMDD | 2013-10-09 |
| PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-09 day: 09 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Journal of molecular biology |
| PublicationTitleAlternate | J Mol Biol |
| PublicationYear | 2013 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Rinn, Kertesz, Wang, Squazzo, Xu, Brugmann (bb0065) 2007; 129 Faghihi, Zhang, Huang, Modarresi, Van der Brug, Nalls (bb0170) 2010; 11 Liu, Li, Zhang, Guo, Zhan (bb0175) 2012 Wang, Iacoangeli, Lin, Williams, Denman, Hellen (bb0100) 2005; 171 Licatalosi, Darnell (bb0140) 2010; 11 Paul, Duerksen (bb0050) 1975; 9 Eißmann, Gutschner, Hämmerle, Günther, Caudron-Herger, Groß (bb0215) 2012; 9 Nakagawa, Ip, Shioi, Tripathi, Zong, Hirose (bb0205) 2012; 18 Clark, Johnston, Inostroza-Ponta, Fox, Fortini, Moscato (bb0110) 2012; 22 Yin, Yang, Zhang, Xiang, Wu, Carmichael (bb0150) 2012; 48 Kim, Furic, Parisien, Major, DesGroseillers, Maquat (bb0165) 2007; 26 Keniry, Oxley, Monnier, Kyba, Dandolo, Smits (bb0200) 2012; 14 Kim, Furic, Desgroseillers, Maquat (bb0160) 2005; 120 Rinn, Chang (bb0015) 2012; 81 Heo, Sung (bb0060) 2011; 331 Tripathi, Ellis, Shen, Song, Pan, Watt (bb0085) 2010; 39 Brannan, Dees, Ingram, Tilghman (bb0030) 1990; 10 Carrieri, Cimatti, Biagioli, Beugnet, Zucchelli, Fedele (bb0180) 2012 Wapinski, Chang (bb0220) 2011; 21 Wilusz, Jnbaptiste, Lu, Kuhn, Joshua-Tor, Sharp (bb0115) 2012; 26 Moon, Anderson, Kumagai, Wilusz, Akira, Khromykh, Wilusz (bb0155) 2012; 18 Zhang, Arun, Mao, Lazar, Hung, Bhattacharjee (bb0210) 2012; 2 Blencowe (bb0130) 2006; 126 Kindler, Wang, Richter, Tiedge (bb0185) 2005; 21 Hallegger, Llorian, Smith (bb0135) 2010; 277 Cesana, Cacchiarelli, Legnini, Santini, Sthandier, Chinappi (bb0190) 2011; 147 Kapranov, Cheng, Dike, Nix, Duttagupta, Willingham (bb0005) 2007; 316 Faghihi, Modarresi, Khalil, Wood, Sahagan, Morgan (bb0095) 2008; 14 Salmena, Poliseno, Tay, Kats, Pandolfi (bb0195) 2011; 146 Guttman, Rinn (bb0010) 2012; 482 Ingolia, Lareau, Weissman (bb0045) 2011; 147 Wutz (bb0055) 2011; 12 Tsai, Manor, Wan, Mosammaparast, Wang, Lan (bb0070) 2010; 329 Brockdorff, Ashworth, Kay, McCabe, Norris, Cooper (bb0035) 1992; 71 Ulitsky, Shkumatava, Jan, Sive, Bartel (bb0040) 2011; 147 Hung, Wang, Lin, Koegel, Kotake, Grant (bb0080) 2011; 43 Barski, Cuddapah, Cui, Roh, Schones, Wang (bb0020) 2007; 129 Mikkelsen, Ku, Jaffe, Issac, Lieberman, Giannoukos (bb0025) 2007; 448 Tycowski, Shu, Borah, Shi, Steitz (bb0125) 2012; 2 Gong, Maquat (bb0090) 2011; 470 Brown, Valenstein, Yario, Tycowski, Steitz (bb0120) 2012 Huarte, Guttman, Feldser, Garber, Koziol, Kenzelmann-Broz (bb0075) 2010; 142 Yoon, Abdelmohsen, Srikantan, Yang, Martindale, De (bb0105) 2012; 47 Bernard, Prasanth, Tripathi, Colasse, Nakamura, Xuan (bb0145) 2010; 29 Wilusz (10.1016/j.jmb.2012.11.024_bb0115) 2012; 26 Wutz (10.1016/j.jmb.2012.11.024_bb0055) 2011; 12 Tycowski (10.1016/j.jmb.2012.11.024_bb0125) 2012; 2 Faghihi (10.1016/j.jmb.2012.11.024_bb0095) 2008; 14 Hallegger (10.1016/j.jmb.2012.11.024_bb0135) 2010; 277 Brown (10.1016/j.jmb.2012.11.024_bb0120) 2012 Brockdorff (10.1016/j.jmb.2012.11.024_bb0035) 1992; 71 Blencowe (10.1016/j.jmb.2012.11.024_bb0130) 2006; 126 Huarte (10.1016/j.jmb.2012.11.024_bb0075) 2010; 142 Carrieri (10.1016/j.jmb.2012.11.024_bb0180) 2012 Ulitsky (10.1016/j.jmb.2012.11.024_bb0040) 2011; 147 Rinn (10.1016/j.jmb.2012.11.024_bb0065) 2007; 129 Moon (10.1016/j.jmb.2012.11.024_bb0155) 2012; 18 Liu (10.1016/j.jmb.2012.11.024_bb0175) 2012 Brannan (10.1016/j.jmb.2012.11.024_bb0030) 1990; 10 Kindler (10.1016/j.jmb.2012.11.024_bb0185) 2005; 21 Kapranov (10.1016/j.jmb.2012.11.024_bb0005) 2007; 316 Paul (10.1016/j.jmb.2012.11.024_bb0050) 1975; 9 Keniry (10.1016/j.jmb.2012.11.024_bb0200) 2012; 14 Zhang (10.1016/j.jmb.2012.11.024_bb0210) 2012; 2 Nakagawa (10.1016/j.jmb.2012.11.024_bb0205) 2012; 18 Wapinski (10.1016/j.jmb.2012.11.024_bb0220) 2011; 21 Heo (10.1016/j.jmb.2012.11.024_bb0060) 2011; 331 Hung (10.1016/j.jmb.2012.11.024_bb0080) 2011; 43 Gong (10.1016/j.jmb.2012.11.024_bb0090) 2011; 470 Clark (10.1016/j.jmb.2012.11.024_bb0110) 2012; 22 Tripathi (10.1016/j.jmb.2012.11.024_bb0085) 2010; 39 Cesana (10.1016/j.jmb.2012.11.024_bb0190) 2011; 147 Bernard (10.1016/j.jmb.2012.11.024_bb0145) 2010; 29 Kim (10.1016/j.jmb.2012.11.024_bb0160) 2005; 120 Faghihi (10.1016/j.jmb.2012.11.024_bb0170) 2010; 11 Yin (10.1016/j.jmb.2012.11.024_bb0150) 2012; 48 Guttman (10.1016/j.jmb.2012.11.024_bb0010) 2012; 482 Mikkelsen (10.1016/j.jmb.2012.11.024_bb0025) 2007; 448 Eißmann (10.1016/j.jmb.2012.11.024_bb0215) 2012; 9 Yoon (10.1016/j.jmb.2012.11.024_bb0105) 2012; 47 Rinn (10.1016/j.jmb.2012.11.024_bb0015) 2012; 81 Wang (10.1016/j.jmb.2012.11.024_bb0100) 2005; 171 Barski (10.1016/j.jmb.2012.11.024_bb0020) 2007; 129 Kim (10.1016/j.jmb.2012.11.024_bb0165) 2007; 26 Licatalosi (10.1016/j.jmb.2012.11.024_bb0140) 2010; 11 Ingolia (10.1016/j.jmb.2012.11.024_bb0045) 2011; 147 Tsai (10.1016/j.jmb.2012.11.024_bb0070) 2010; 329 Salmena (10.1016/j.jmb.2012.11.024_bb0195) 2011; 146 |
| References_xml | – volume: 39 start-page: 925 year: 2010 end-page: 938 ident: bb0085 article-title: The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation publication-title: Mol. Cell – volume: 12 start-page: 542 year: 2011 end-page: 553 ident: bb0055 article-title: Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation publication-title: Nat. Rev., Genet. – volume: 129 start-page: 823 year: 2007 end-page: 837 ident: bb0020 article-title: High-resolution profiling of histone methylations in the human genome publication-title: Cell – volume: 21 start-page: 354 year: 2011 end-page: 361 ident: bb0220 article-title: Long noncoding RNAs and human disease publication-title: Trends Cell Biol. – volume: 22 start-page: 885 year: 2012 end-page: 898 ident: bb0110 article-title: Genome-wide analysis of long noncoding RNA stability publication-title: Genome Res. – volume: 9 year: 2012 ident: bb0215 article-title: Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development publication-title: RNA Biol. – volume: 329 start-page: 689 year: 2010 end-page: 693 ident: bb0070 article-title: Long noncoding RNA as modular scaffold of histone modification complexes publication-title: Science – volume: 171 start-page: 811 year: 2005 end-page: 821 ident: bb0100 article-title: Dendritic BC1 RNA in translational control mechanisms publication-title: J. Cell Biol. – volume: 331 start-page: 76 year: 2011 end-page: 79 ident: bb0060 article-title: Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA publication-title: Science – volume: 11 start-page: 75 year: 2010 end-page: 87 ident: bb0140 article-title: RNA processing and its regulation: global insights into biological networks publication-title: Nat. Rev., Genet. – volume: 29 start-page: 3082 year: 2010 end-page: 3093 ident: bb0145 article-title: A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression publication-title: EMBO J. – volume: 21 start-page: 223 year: 2005 end-page: 245 ident: bb0185 article-title: RNA transport and local control of translation publication-title: Annu. Rev. Cell Dev. Biol. – volume: 147 start-page: 789 year: 2011 end-page: 802 ident: bb0045 article-title: Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes publication-title: Cell – volume: 14 start-page: 659 year: 2012 end-page: 665 ident: bb0200 article-title: The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r publication-title: Nat. Cell Biol. – volume: 2 start-page: 26 year: 2012 end-page: 32 ident: bb0125 article-title: Conservation of a triple-helix-forming RNA stability element in noncoding and genomic RNAs of diverse viruses publication-title: Cell Rep. – volume: 71 start-page: 515 year: 1992 end-page: 526 ident: bb0035 article-title: The product of the mouse Xist gene is a 15 publication-title: Cell – volume: 147 start-page: 1537 year: 2011 end-page: 1550 ident: bb0040 article-title: Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution publication-title: Cell – volume: 146 start-page: 353 year: 2011 end-page: 358 ident: bb0195 article-title: A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? publication-title: Cell – year: 2012 ident: bb0180 article-title: New long non-coding antisense RNA controls publication-title: Nature – volume: 482 start-page: 339 year: 2012 end-page: 346 ident: bb0010 article-title: Modular regulatory principles of large non-coding RNAs publication-title: Nature – volume: 129 start-page: 1311 year: 2007 end-page: 1323 ident: bb0065 article-title: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs publication-title: Cell – volume: 18 start-page: 1487 year: 2012 end-page: 1499 ident: bb0205 article-title: Malat1 is not an essential component of nuclear speckles in mice publication-title: RNA – volume: 126 start-page: 37 year: 2006 end-page: 47 ident: bb0130 article-title: Alternative splicing: new insights from global analyses publication-title: Cell – volume: 47 start-page: 648 year: 2012 end-page: 655 ident: bb0105 article-title: LincRNA-p21 suppresses target mRNA translation publication-title: Mol. Cell – volume: 43 start-page: 621 year: 2011 end-page: 629 ident: bb0080 article-title: Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters publication-title: Nat. Genet. – volume: 14 start-page: 723 year: 2008 end-page: 730 ident: bb0095 article-title: Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase publication-title: Nat. Med. – volume: 26 start-page: 2392 year: 2012 end-page: 2407 ident: bb0115 article-title: A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails publication-title: Genes Dev. – volume: 277 start-page: 856 year: 2010 end-page: 866 ident: bb0135 article-title: Alternative splicing: global insights publication-title: FEBS J. – volume: 10 start-page: 28 year: 1990 end-page: 36 ident: bb0030 article-title: The product of the H19 gene may function as an RNA publication-title: Mol. Cell. Biol. – volume: 81 start-page: 145 year: 2012 end-page: 166 ident: bb0015 article-title: Genome regulation by long noncoding RNAs publication-title: Annu. Rev. Biochem. – volume: 11 start-page: R56 year: 2010 ident: bb0170 article-title: Evidence for natural antisense transcript-mediated inhibition of microRNA function publication-title: Genome Biol. – volume: 26 start-page: 2670 year: 2007 end-page: 2681 ident: bb0165 article-title: Staufen1 regulates diverse classes of mammalian transcripts publication-title: EMBO J. – volume: 470 start-page: 284 year: 2011 end-page: 288 ident: bb0090 article-title: lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements publication-title: Nature – year: 2012 ident: bb0120 article-title: Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENβ noncoding RNAs publication-title: Proc. Natl Acad. Sci. USA – volume: 120 start-page: 195 year: 2005 end-page: 208 ident: bb0160 article-title: Mammalian Staufen1 recruits Upf1 to specific mRNA 3′UTRs so as to elicit mRNA decay publication-title: Cell – volume: 18 start-page: 2029 year: 2012 end-page: 2040 ident: bb0155 article-title: A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability publication-title: RNA – volume: 48 start-page: 219 year: 2012 end-page: 230 ident: bb0150 article-title: Long noncoding RNAs with snoRNA ends publication-title: Mol. Cell – volume: 147 start-page: 358 year: 2011 end-page: 369 ident: bb0190 article-title: A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA publication-title: Cell – volume: 142 start-page: 409 year: 2010 end-page: 419 ident: bb0075 article-title: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response publication-title: Cell – volume: 316 start-page: 1484 year: 2007 end-page: 1488 ident: bb0005 article-title: RNA maps reveal new RNA classes and a possible function for pervasive transcription publication-title: Science – year: 2012 ident: bb0175 article-title: Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay publication-title: EMBO J. – volume: 2 start-page: 111 year: 2012 end-page: 123 ident: bb0210 article-title: The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult publication-title: Cell Rep. – volume: 448 start-page: 553 year: 2007 end-page: 560 ident: bb0025 article-title: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells publication-title: Nature – volume: 9 start-page: 9 year: 1975 end-page: 16 ident: bb0050 article-title: Chromatin-associated RNA content of heterochromatin and euchromatin publication-title: Mol. Cell. Biochem. – volume: 9 start-page: 9 year: 1975 ident: 10.1016/j.jmb.2012.11.024_bb0050 article-title: Chromatin-associated RNA content of heterochromatin and euchromatin publication-title: Mol. Cell. Biochem. doi: 10.1007/BF01731728 – volume: 21 start-page: 223 year: 2005 ident: 10.1016/j.jmb.2012.11.024_bb0185 article-title: RNA transport and local control of translation publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.21.122303.120653 – volume: 21 start-page: 354 year: 2011 ident: 10.1016/j.jmb.2012.11.024_bb0220 article-title: Long noncoding RNAs and human disease publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2011.04.001 – volume: 26 start-page: 2670 year: 2007 ident: 10.1016/j.jmb.2012.11.024_bb0165 article-title: Staufen1 regulates diverse classes of mammalian transcripts publication-title: EMBO J. doi: 10.1038/sj.emboj.7601712 – volume: 482 start-page: 339 year: 2012 ident: 10.1016/j.jmb.2012.11.024_bb0010 article-title: Modular regulatory principles of large non-coding RNAs publication-title: Nature doi: 10.1038/nature10887 – volume: 14 start-page: 723 year: 2008 ident: 10.1016/j.jmb.2012.11.024_bb0095 article-title: Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase publication-title: Nat. Med. doi: 10.1038/nm1784 – volume: 11 start-page: R56 year: 2010 ident: 10.1016/j.jmb.2012.11.024_bb0170 article-title: Evidence for natural antisense transcript-mediated inhibition of microRNA function publication-title: Genome Biol. doi: 10.1186/gb-2010-11-5-r56 – volume: 129 start-page: 1311 year: 2007 ident: 10.1016/j.jmb.2012.11.024_bb0065 article-title: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs publication-title: Cell doi: 10.1016/j.cell.2007.05.022 – year: 2012 ident: 10.1016/j.jmb.2012.11.024_bb0175 article-title: Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay publication-title: EMBO J. doi: 10.1038/emboj.2012.292 – volume: 120 start-page: 195 year: 2005 ident: 10.1016/j.jmb.2012.11.024_bb0160 article-title: Mammalian Staufen1 recruits Upf1 to specific mRNA 3′UTRs so as to elicit mRNA decay publication-title: Cell doi: 10.1016/j.cell.2004.11.050 – volume: 329 start-page: 689 year: 2010 ident: 10.1016/j.jmb.2012.11.024_bb0070 article-title: Long noncoding RNA as modular scaffold of histone modification complexes publication-title: Science doi: 10.1126/science.1192002 – volume: 18 start-page: 2029 year: 2012 ident: 10.1016/j.jmb.2012.11.024_bb0155 article-title: A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability publication-title: RNA doi: 10.1261/rna.034330.112 – volume: 129 start-page: 823 year: 2007 ident: 10.1016/j.jmb.2012.11.024_bb0020 article-title: High-resolution profiling of histone methylations in the human genome publication-title: Cell doi: 10.1016/j.cell.2007.05.009 – volume: 147 start-page: 1537 year: 2011 ident: 10.1016/j.jmb.2012.11.024_bb0040 article-title: Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution publication-title: Cell doi: 10.1016/j.cell.2011.11.055 – volume: 26 start-page: 2392 year: 2012 ident: 10.1016/j.jmb.2012.11.024_bb0115 article-title: A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails publication-title: Genes Dev. doi: 10.1101/gad.204438.112 – volume: 71 start-page: 515 year: 1992 ident: 10.1016/j.jmb.2012.11.024_bb0035 article-title: The product of the mouse Xist gene is a 15kb inactive X-specific transcript containing no conserved ORF and located in the nucleus publication-title: Cell doi: 10.1016/0092-8674(92)90519-I – volume: 81 start-page: 145 year: 2012 ident: 10.1016/j.jmb.2012.11.024_bb0015 article-title: Genome regulation by long noncoding RNAs publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-051410-092902 – volume: 11 start-page: 75 year: 2010 ident: 10.1016/j.jmb.2012.11.024_bb0140 article-title: RNA processing and its regulation: global insights into biological networks publication-title: Nat. Rev., Genet. doi: 10.1038/nrg2673 – volume: 171 start-page: 811 year: 2005 ident: 10.1016/j.jmb.2012.11.024_bb0100 article-title: Dendritic BC1 RNA in translational control mechanisms publication-title: J. Cell Biol. doi: 10.1083/jcb.200506006 – volume: 277 start-page: 856 year: 2010 ident: 10.1016/j.jmb.2012.11.024_bb0135 article-title: Alternative splicing: global insights publication-title: FEBS J. doi: 10.1111/j.1742-4658.2009.07521.x – volume: 448 start-page: 553 year: 2007 ident: 10.1016/j.jmb.2012.11.024_bb0025 article-title: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells publication-title: Nature doi: 10.1038/nature06008 – volume: 22 start-page: 885 year: 2012 ident: 10.1016/j.jmb.2012.11.024_bb0110 article-title: Genome-wide analysis of long noncoding RNA stability publication-title: Genome Res. doi: 10.1101/gr.131037.111 – volume: 2 start-page: 111 year: 2012 ident: 10.1016/j.jmb.2012.11.024_bb0210 article-title: The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult publication-title: Cell Rep. doi: 10.1016/j.celrep.2012.06.003 – volume: 470 start-page: 284 year: 2011 ident: 10.1016/j.jmb.2012.11.024_bb0090 article-title: lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements publication-title: Nature doi: 10.1038/nature09701 – volume: 9 year: 2012 ident: 10.1016/j.jmb.2012.11.024_bb0215 article-title: Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development publication-title: RNA Biol. doi: 10.4161/rna.21089 – volume: 47 start-page: 648 year: 2012 ident: 10.1016/j.jmb.2012.11.024_bb0105 article-title: LincRNA-p21 suppresses target mRNA translation publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.06.027 – year: 2012 ident: 10.1016/j.jmb.2012.11.024_bb0180 article-title: New long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat publication-title: Nature doi: 10.1038/nature11508 – year: 2012 ident: 10.1016/j.jmb.2012.11.024_bb0120 article-title: Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENβ noncoding RNAs publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1217338109 – volume: 147 start-page: 358 year: 2011 ident: 10.1016/j.jmb.2012.11.024_bb0190 article-title: A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA publication-title: Cell doi: 10.1016/j.cell.2011.09.028 – volume: 18 start-page: 1487 year: 2012 ident: 10.1016/j.jmb.2012.11.024_bb0205 article-title: Malat1 is not an essential component of nuclear speckles in mice publication-title: RNA doi: 10.1261/rna.033217.112 – volume: 10 start-page: 28 year: 1990 ident: 10.1016/j.jmb.2012.11.024_bb0030 article-title: The product of the H19 gene may function as an RNA publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.10.1.28 – volume: 43 start-page: 621 year: 2011 ident: 10.1016/j.jmb.2012.11.024_bb0080 article-title: Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters publication-title: Nat. Genet. doi: 10.1038/ng.848 – volume: 29 start-page: 3082 year: 2010 ident: 10.1016/j.jmb.2012.11.024_bb0145 article-title: A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression publication-title: EMBO J. doi: 10.1038/emboj.2010.199 – volume: 48 start-page: 219 year: 2012 ident: 10.1016/j.jmb.2012.11.024_bb0150 article-title: Long noncoding RNAs with snoRNA ends publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.07.033 – volume: 331 start-page: 76 year: 2011 ident: 10.1016/j.jmb.2012.11.024_bb0060 article-title: Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA publication-title: Science doi: 10.1126/science.1197349 – volume: 316 start-page: 1484 year: 2007 ident: 10.1016/j.jmb.2012.11.024_bb0005 article-title: RNA maps reveal new RNA classes and a possible function for pervasive transcription publication-title: Science doi: 10.1126/science.1138341 – volume: 39 start-page: 925 year: 2010 ident: 10.1016/j.jmb.2012.11.024_bb0085 article-title: The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.08.011 – volume: 147 start-page: 789 year: 2011 ident: 10.1016/j.jmb.2012.11.024_bb0045 article-title: Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes publication-title: Cell doi: 10.1016/j.cell.2011.10.002 – volume: 12 start-page: 542 year: 2011 ident: 10.1016/j.jmb.2012.11.024_bb0055 article-title: Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation publication-title: Nat. Rev., Genet. doi: 10.1038/nrg3035 – volume: 142 start-page: 409 year: 2010 ident: 10.1016/j.jmb.2012.11.024_bb0075 article-title: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response publication-title: Cell doi: 10.1016/j.cell.2010.06.040 – volume: 14 start-page: 659 year: 2012 ident: 10.1016/j.jmb.2012.11.024_bb0200 article-title: The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r publication-title: Nat. Cell Biol. doi: 10.1038/ncb2521 – volume: 2 start-page: 26 year: 2012 ident: 10.1016/j.jmb.2012.11.024_bb0125 article-title: Conservation of a triple-helix-forming RNA stability element in noncoding and genomic RNAs of diverse viruses publication-title: Cell Rep. doi: 10.1016/j.celrep.2012.05.020 – volume: 146 start-page: 353 year: 2011 ident: 10.1016/j.jmb.2012.11.024_bb0195 article-title: A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? publication-title: Cell doi: 10.1016/j.cell.2011.07.014 – volume: 126 start-page: 37 year: 2006 ident: 10.1016/j.jmb.2012.11.024_bb0130 article-title: Alternative splicing: new insights from global analyses publication-title: Cell doi: 10.1016/j.cell.2006.06.023 |
| SSID | ssj0005348 |
| Score | 2.607795 |
| SecondaryResourceType | review_article |
| Snippet | Eukaryotic cells transcribe a vast number of noncoding RNA species. Among them, long noncoding RNAs (lncRNAs) have been widely implicated in the regulation of... |
| SourceID | proquest pubmed crossref fao elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3723 |
| SubjectTerms | Cell Line, Tumor eukaryotic cells gene expression genes genetics human diseases Humans lincRNA lncRNA messenger RNA metabolism microRNA MicroRNAs MicroRNAs - genetics MicroRNAs - metabolism mRNA turnover non-coding RNA RNA precursors RNA Processing, Post-Transcriptional RNA Splicing RNA Stability RNA, Long Noncoding RNA, Messenger RNA, Messenger - genetics RNA, Messenger - metabolism RNA-binding protein RNA-binding proteins RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism transcription (genetics) translation (genetics) translational regulation |
| Title | Posttranscriptional Gene Regulation by Long Noncoding RNA |
| URI | https://dx.doi.org/10.1016/j.jmb.2012.11.024 https://www.ncbi.nlm.nih.gov/pubmed/23178169 https://www.proquest.com/docview/1431295314 https://www.proquest.com/docview/1505347958 https://www.proquest.com/docview/1672086075 |
| Volume | 425 |
| WOSCitedRecordID | wos000325040800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1089-8638 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005348 issn: 0022-2836 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYBoIXBONj5WMKEuKBKVWTOLH9WE2dxqgKghb1zYpdZ1CtSekHWv977hI7LR-txgMvUeXadXP38_lsn-9HyGuRKsGyUeDrACnMRmbkC66ZH6hUc52GRpSckV-6rNfjw6H4aOmt5iWdAMtzfn0tpv9V1VAGysars_-g7vpHoQA-g9LhCWqH540Uj_S7C5yBnD0AJWByaZDkpeXqQp-ziyRDvSLXRXmt5VOvvcVPnTgC3RObsGltKKoT-wvjn6-WNcjaamSuJsVXu7XzvlioOsinmGFm8nITdgWimGzuOQRV9JrYtKMhXuquUpc4Owqj_2TajFgYgdWyhy2VVcSyjRnWffuH9a42EsbN8URh0F3YxPyq1RXrXzNl9z7Is0G3K_udYf_N9LuPJGJ42G4ZVfbIQchiAUbuoP2uM7xYx_xElLv08fj33TF3GfD3W6_bHJW9LC22L0dKt6T_gNy3evLaFQ4eklsmPyR3KobR1SG5e-oI_R4R8RdkeIgMb40MT608RIZXI8MDZDwmg7NO__Tct8wZvgYHcOHTONYJV1RpyjQXMOQywTPFBFOZihNGY5rFWUtEVBkG74oZgpgSUWSCdNQyQfSE7OdFbo6IFwoDPp-iVHFw9kCqLaHDVCUZDTLoizVIy4lJaptWHtlNrqSLHxxLkKxEycJyU0JvDfK2bjKtcqrsqkyd7KV1CitnTwJqdjU7Aj3J9BKmSjn4HOLGXnlRmosGeeWUJ0EDeECW5qZYzmEZHIH7C7MS3VEnRhQxEfMddRIWtngC3niDPK3QUb8orKcYDxLx7Aatn5N769H3guwvZkvzktzWPxbf5rNjsseG_NhC_CfiJrDF |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Posttranscriptional+Gene+Regulation+by+Long+Noncoding+RNA&rft.jtitle=Journal+of+molecular+biology&rft.au=Yoon%2C+Je-Hyun&rft.au=Abdelmohsen%2C+Kotb&rft.au=Gorospe%2C+Myriam&rft.date=2013-10-09&rft.issn=0022-2836&rft.volume=425+p.3723-3730&rft.spage=3723&rft.epage=3730&rft_id=info:doi/10.1016%2Fj.jmb.2012.11.024&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2836&client=summon |