Prioritized Task-Scheduling Algorithm in Cloud Computing Using Cat Swarm Optimization
Effective scheduling algorithms are needed in the cloud paradigm to leverage services to customers seamlessly while minimizing the makespan, energy consumption and SLA violations. The ineffective scheduling of resources while not considering the suitability of tasks will affect the quality of servic...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 23; číslo 13; s. 6155 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
05.07.2023
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Effective scheduling algorithms are needed in the cloud paradigm to leverage services to customers seamlessly while minimizing the makespan, energy consumption and SLA violations. The ineffective scheduling of resources while not considering the suitability of tasks will affect the quality of service of the cloud provider, and much more energy will be consumed in the running of tasks by the inefficient provisioning of resources, thereby taking an enormous amount of time to process tasks, which affects the makespan. Minimizing SLA violations is an important aspect that needs to be addressed as it impacts the makespans, energy consumption, and also the quality of service in a cloud environment. Many existing studies have solved task-scheduling problems, and those algorithms gave near-optimal solutions from their perspective. In this manuscript, we developed a novel task-scheduling algorithm that considers the task priorities coming onto the cloud platform, calculates their task VM priorities, and feeds them to the scheduler. Then, the scheduler will choose appropriate tasks for the VMs based on the calculated priorities. To model this scheduling algorithm, we used the cat swarm optimization algorithm, which was inspired by the behavior of cats. It was implemented on the Cloudsim tool and OpenStack cloud platform. Extensive experimentation was carried out using real-time workloads. When compared to the baseline PSO, ACO and RATS-HM approaches and from the results, it is evident that our proposed approach outperforms all of the baseline algorithms in view of the above-mentioned parameters. |
|---|---|
| AbstractList | Effective scheduling algorithms are needed in the cloud paradigm to leverage services to customers seamlessly while minimizing the makespan, energy consumption and SLA violations. The ineffective scheduling of resources while not considering the suitability of tasks will affect the quality of service of the cloud provider, and much more energy will be consumed in the running of tasks by the inefficient provisioning of resources, thereby taking an enormous amount of time to process tasks, which affects the makespan. Minimizing SLA violations is an important aspect that needs to be addressed as it impacts the makespans, energy consumption, and also the quality of service in a cloud environment. Many existing studies have solved task-scheduling problems, and those algorithms gave near-optimal solutions from their perspective. In this manuscript, we developed a novel task-scheduling algorithm that considers the task priorities coming onto the cloud platform, calculates their task VM priorities, and feeds them to the scheduler. Then, the scheduler will choose appropriate tasks for the VMs based on the calculated priorities. To model this scheduling algorithm, we used the cat swarm optimization algorithm, which was inspired by the behavior of cats. It was implemented on the Cloudsim tool and OpenStack cloud platform. Extensive experimentation was carried out using real-time workloads. When compared to the baseline PSO, ACO and RATS-HM approaches and from the results, it is evident that our proposed approach outperforms all of the baseline algorithms in view of the above-mentioned parameters. Effective scheduling algorithms are needed in the cloud paradigm to leverage services to customers seamlessly while minimizing the makespan, energy consumption and SLA violations. The ineffective scheduling of resources while not considering the suitability of tasks will affect the quality of service of the cloud provider, and much more energy will be consumed in the running of tasks by the inefficient provisioning of resources, thereby taking an enormous amount of time to process tasks, which affects the makespan. Minimizing SLA violations is an important aspect that needs to be addressed as it impacts the makespans, energy consumption, and also the quality of service in a cloud environment. Many existing studies have solved task-scheduling problems, and those algorithms gave near-optimal solutions from their perspective. In this manuscript, we developed a novel task-scheduling algorithm that considers the task priorities coming onto the cloud platform, calculates their task VM priorities, and feeds them to the scheduler. Then, the scheduler will choose appropriate tasks for the VMs based on the calculated priorities. To model this scheduling algorithm, we used the cat swarm optimization algorithm, which was inspired by the behavior of cats. It was implemented on the Cloudsim tool and OpenStack cloud platform. Extensive experimentation was carried out using real-time workloads. When compared to the baseline PSO, ACO and RATS-HM approaches and from the results, it is evident that our proposed approach outperforms all of the baseline algorithms in view of the above-mentioned parameters.Effective scheduling algorithms are needed in the cloud paradigm to leverage services to customers seamlessly while minimizing the makespan, energy consumption and SLA violations. The ineffective scheduling of resources while not considering the suitability of tasks will affect the quality of service of the cloud provider, and much more energy will be consumed in the running of tasks by the inefficient provisioning of resources, thereby taking an enormous amount of time to process tasks, which affects the makespan. Minimizing SLA violations is an important aspect that needs to be addressed as it impacts the makespans, energy consumption, and also the quality of service in a cloud environment. Many existing studies have solved task-scheduling problems, and those algorithms gave near-optimal solutions from their perspective. In this manuscript, we developed a novel task-scheduling algorithm that considers the task priorities coming onto the cloud platform, calculates their task VM priorities, and feeds them to the scheduler. Then, the scheduler will choose appropriate tasks for the VMs based on the calculated priorities. To model this scheduling algorithm, we used the cat swarm optimization algorithm, which was inspired by the behavior of cats. It was implemented on the Cloudsim tool and OpenStack cloud platform. Extensive experimentation was carried out using real-time workloads. When compared to the baseline PSO, ACO and RATS-HM approaches and from the results, it is evident that our proposed approach outperforms all of the baseline algorithms in view of the above-mentioned parameters. |
| Audience | Academic |
| Author | Chakrabarti, Prasun Krishnan, Sivaneasan Bala Karri, Ganesh Reddy Margala, Martin Swain, Sangram Keshari Mangalampalli, Sudheer Unhelkar, Bhuvan Chakrabarti, Tulika |
| AuthorAffiliation | 6 Muma College of Business, University of South Florida Sarasota-Manatee campus, Sarasota, FL 33620, USA; bunhelkar@usf.edu 3 Department of Basic Sciences, Sir Padampat Singhania University, Udaipur 313601, Rajasthan, India; tulika.chakrabarti@spsu.ac.in 5 School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; martin.margala@louisiana.edu 1 School of Computer Science and Engineering, VIT-AP University, Amarvati 522237, Andhra Pradesh, India; ganesh.reddy@vitap.ac.in 2 School of Engineering and Technology, Centurion University of Technology and Management, Bhubaneswar 752050, Odisha, India 4 Department of Computer Science and Engineering, ITM SLS Baroda University, Vadodara 391510, Gujarat, India; drprasun.cse@gmail.com 7 Singapore Institute of Technology, Singapore 139660, Singapore; sivaneasan@singaporetech.edu.sg |
| AuthorAffiliation_xml | – name: 1 School of Computer Science and Engineering, VIT-AP University, Amarvati 522237, Andhra Pradesh, India; ganesh.reddy@vitap.ac.in – name: 3 Department of Basic Sciences, Sir Padampat Singhania University, Udaipur 313601, Rajasthan, India; tulika.chakrabarti@spsu.ac.in – name: 5 School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; martin.margala@louisiana.edu – name: 7 Singapore Institute of Technology, Singapore 139660, Singapore; sivaneasan@singaporetech.edu.sg – name: 4 Department of Computer Science and Engineering, ITM SLS Baroda University, Vadodara 391510, Gujarat, India; drprasun.cse@gmail.com – name: 2 School of Engineering and Technology, Centurion University of Technology and Management, Bhubaneswar 752050, Odisha, India – name: 6 Muma College of Business, University of South Florida Sarasota-Manatee campus, Sarasota, FL 33620, USA; bunhelkar@usf.edu |
| Author_xml | – sequence: 1 givenname: Sudheer orcidid: 0000-0002-1485-8783 surname: Mangalampalli fullname: Mangalampalli, Sudheer – sequence: 2 givenname: Sangram Keshari surname: Swain fullname: Swain, Sangram Keshari – sequence: 3 givenname: Tulika surname: Chakrabarti fullname: Chakrabarti, Tulika – sequence: 4 givenname: Prasun surname: Chakrabarti fullname: Chakrabarti, Prasun – sequence: 5 givenname: Ganesh Reddy orcidid: 0000-0002-5177-8125 surname: Karri fullname: Karri, Ganesh Reddy – sequence: 6 givenname: Martin surname: Margala fullname: Margala, Martin – sequence: 7 givenname: Bhuvan surname: Unhelkar fullname: Unhelkar, Bhuvan – sequence: 8 givenname: Sivaneasan Bala orcidid: 0000-0002-4271-2677 surname: Krishnan fullname: Krishnan, Sivaneasan Bala |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37448004$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkktP3DAQx62KqsC2h36BKlIv7WHBj3Eep2q1Ki0SEpVgz5ZjT3a9TeKtnVCVT4_DAgIqyw_N_OfnGXuOyUHveyTkI6MnQlT0NHLBRM6kfEOOGHCYl5zTg2fnQ3Ic45ZSLoQo35FDUQCUlMIRWf0Kzgc3uFu02bWOv-dXZoN2bF2_zhbtevJtusz12bL1o82WvtuNw-RcxWld6iG7-qtDl13uBte5Wz04378nbxvdRvzwsM_I6uz79fLn_OLyx_lycTE3klbDPCXPLJPQYIVgLbMyNw0g5iKnBgFFXfMkgYZXVkqWF3XVsEJqZNw0FJiYkfM913q9VbvgOh3-Ka-dujf4sFY6DM60qCqQhgKg5YigmanAFrWWUBcFamhsYn3bs3Zj3aE12A9Bty-gLz2926i1v1GMCsiF4Inw5YEQ_J8R46A6Fw22re7Rj1HxUpQcWF7RJP38Srr1Y-jTW02qHAoBac7IyV611qkC1zc-XWzSsNg5k3qgccm-KGQJpZD5FPDpeQ1PyT_-dxKc7gUm-BgDNsq44f7LEtm1qRY1dZR66qgU8fVVxCP0f-0d-l3KCg |
| CitedBy_id | crossref_primary_10_1016_j_jestch_2023_101611 crossref_primary_10_1109_ACCESS_2024_3466529 crossref_primary_10_1371_journal_pone_0311814 crossref_primary_10_1186_s44147_024_00512_9 crossref_primary_10_1007_s12008_024_02078_5 crossref_primary_10_1016_j_suscom_2025_101201 crossref_primary_10_3390_computers14030081 crossref_primary_10_1016_j_procs_2024_03_250 crossref_primary_10_1177_13272314251339725 crossref_primary_10_1016_j_suscom_2025_101209 crossref_primary_10_1007_s10922_024_09887_9 crossref_primary_10_1177_18724981251319611 crossref_primary_10_1007_s10586_024_04833_5 crossref_primary_10_1016_j_eswa_2025_128594 |
| Cites_doi | 10.1007/s11227-021-03915-0 10.1007/s11277-019-06360-8 10.1016/j.fcij.2018.03.004 10.1002/spe.995 10.3390/s22031242 10.1007/s10586-018-1823-x 10.1109/TNET.2022.3193381 10.1007/s00521-019-04119-7 10.1007/s10462-020-09933-3 10.1155/2022/4525220 10.1016/j.matpr.2020.09.064 10.1145/3447993.3483274 10.3390/pr9091514 10.1016/j.ipm.2021.102676 10.1109/ICDCS.2019.00021 10.1109/MCC.2018.032591611 10.1016/j.future.2021.05.012 10.1007/s10586-019-02983-5 10.1049/iet-com.2019.1149 10.2298/CSIS220322038L 10.1080/17517575.2019.1605001 10.1007/s00521-019-04067-2 10.1002/dac.4379 10.1016/j.knosys.2019.01.023 10.1155/2020/4854895 10.1155/2019/6543957 10.1108/IJWIS-11-2020-0071 10.1109/ACCESS.2019.2946216 10.32604/cmc.2022.017504 10.1016/j.asej.2020.07.003 10.1016/j.eswa.2020.114230 10.1016/j.jnca.2017.11.016 10.7717/peerj-cs.539 10.1109/ACCESS.2021.3105727 10.1007/s00521-021-06002-w |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s23136155 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_945c044ed2ee4a1c94d7ba54b77ea4fd PMC10346332 A758483567 37448004 10_3390_s23136155 |
| Genre | Journal Article |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c509t-3391d154fe9e4dd1d56cf4ee6360ce4e3bb23914f29d55167b9f175ae12cf0413 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001028541300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:26:32 EST 2025 Tue Nov 04 02:06:35 EST 2025 Fri Sep 05 10:57:28 EDT 2025 Tue Oct 07 07:46:01 EDT 2025 Tue Nov 04 18:43:09 EST 2025 Wed Feb 19 02:22:51 EST 2025 Tue Nov 18 21:19:39 EST 2025 Sat Nov 29 07:11:57 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | makespan OpenStack task scheduling cloud computing energy consumption SLA violation |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-3391d154fe9e4dd1d56cf4ee6360ce4e3bb23914f29d55167b9f175ae12cf0413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4271-2677 0000-0002-1485-8783 0000-0002-5177-8125 |
| OpenAccessLink | https://doaj.org/article/945c044ed2ee4a1c94d7ba54b77ea4fd |
| PMID | 37448004 |
| PQID | 2836473447 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_945c044ed2ee4a1c94d7ba54b77ea4fd pubmedcentral_primary_oai_pubmedcentral_nih_gov_10346332 proquest_miscellaneous_2838241690 proquest_journals_2836473447 gale_infotracacademiconefile_A758483567 pubmed_primary_37448004 crossref_citationtrail_10_3390_s23136155 crossref_primary_10_3390_s23136155 |
| PublicationCentury | 2000 |
| PublicationDate | 20230705 |
| PublicationDateYYYYMMDD | 2023-07-05 |
| PublicationDate_xml | – month: 7 year: 2023 text: 20230705 day: 5 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Kumar (ref_39) 2019; 107 Masadeh (ref_26) 2021; 17 Xavier (ref_16) 2019; 22 Senthilkumar (ref_45) 2020; 16 Xiong (ref_18) 2019; 169 Elsedimy (ref_25) 2021; 2021 Pang (ref_34) 2019; 7 Shu (ref_44) 2021; 124 Calheiros (ref_7) 2011; 41 Hussain (ref_42) 2021; 30 Kumar (ref_8) 2020; 32 Alsaidy (ref_2) 2020; 34 Abualigah (ref_3) 2022; 78 Midya (ref_9) 2018; 103 Zhang (ref_29) 2022; 31 Sharma (ref_11) 2020; 23 Reihaneh (ref_12) 2020; 33 Sobhanayak (ref_13) 2018; 3 ref_24 ref_23 ref_22 ref_21 Huang (ref_50) 2020; 23 Arash (ref_14) 2021; 7 Mishra (ref_20) 2021; 15 Masadeh (ref_27) 2019; 13 Kanwal (ref_47) 2021; 58 Ahmed (ref_5) 2020; 2020 Natesan (ref_17) 2020; 17 ref_33 ref_32 ref_31 ref_30 Ahmed (ref_43) 2021; 69 Mohamed (ref_49) 2021; 54 Christine (ref_1) 2018; 5 ref_38 Laghari (ref_28) 2022; 19 Walia (ref_35) 2021; 9 Shukri (ref_15) 2021; 168 Pirozmand (ref_46) 2021; 33 Balaji (ref_48) 2020; 14 Rani (ref_19) 2021; 13 Sanaj (ref_6) 2020; 23 ref_40 Pradhan (ref_10) 2022; 34 Subramanian (ref_4) 2022; 2022 Velliangiri (ref_36) 2021; 12 Zhou (ref_41) 2020; 32 Sanaj (ref_37) 2021; 37 |
| References_xml | – volume: 13 start-page: 121 year: 2019 ident: ref_27 article-title: Humpback whale optimization algorithm based on vocal behavior for task scheduling in cloud computing publication-title: Int. J. Adv. Sci. Technol. – volume: 30 start-page: 100517 year: 2021 ident: ref_42 article-title: Energy and performance-efficient task scheduling in heterogeneous virtualized cloud computing publication-title: Sustain. Comput. Inform. Syst. – volume: 78 start-page: 740 year: 2022 ident: ref_3 article-title: Amended hybrid multi-verse optimizer with genetic algorithm for solving task scheduling problem in cloud computing publication-title: J. Supercomput. doi: 10.1007/s11227-021-03915-0 – volume: 107 start-page: 1835 year: 2019 ident: ref_39 article-title: Multi-objective task scheduling using hybrid genetic-ant colony optimization algorithm in cloud environment publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-019-06360-8 – volume: 3 start-page: 210 year: 2018 ident: ref_13 article-title: Task scheduling for cloud computing using multi-objective hybrid bacteria foraging algorithm publication-title: Future Comput. Inform. J. doi: 10.1016/j.fcij.2018.03.004 – volume: 41 start-page: 23 year: 2011 ident: ref_7 article-title: CloudSim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms publication-title: Softw. Pract. Exp. doi: 10.1002/spe.995 – ident: ref_32 doi: 10.3390/s22031242 – volume: 22 start-page: 287 year: 2019 ident: ref_16 article-title: Chaotic social spider algorithm for load balance aware task scheduling in cloud computing publication-title: Clust. Comput. doi: 10.1007/s10586-018-1823-x – volume: 34 start-page: 4888 year: 2022 ident: ref_10 article-title: A survey on PSO based meta-heuristic scheduling mechanism in cloud computing environment publication-title: J. King Saud Univ.-Comput. Inf. Sci. – volume: 31 start-page: 352 year: 2022 ident: ref_29 article-title: Online Approximation Scheme for Scheduling Heterogeneous Utility Jobs in Edge Computing publication-title: IEEE/ACM Trans. Netw. doi: 10.1109/TNET.2022.3193381 – volume: 32 start-page: 1531 year: 2020 ident: ref_41 article-title: An improved genetic algorithm using greedy strategy toward task scheduling optimization in cloud environments publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04119-7 – volume: 54 start-page: 3599 year: 2021 ident: ref_49 article-title: An improved Henry gas solubility optimization algorithm for task scheduling in cloud computing publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09933-3 – volume: 2022 start-page: 4525220 year: 2022 ident: ref_4 article-title: Hybrid Electro Search with Ant Colony Optimization Algorithm for Task Scheduling in a Sensor Cloud Environment for Agriculture Irrigation Control System publication-title: Complexity doi: 10.1155/2022/4525220 – ident: ref_23 – volume: 37 start-page: 3199 year: 2021 ident: ref_37 article-title: An efficient approach to the map-reduce framework and genetic algorithm based whale optimization algorithm for task scheduling in cloud computing environment publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.09.064 – volume: 23 start-page: 891 year: 2020 ident: ref_6 article-title: Nature inspired chaotic squirrel search algorithm (CSSA) for multi objective task scheduling in an IAAS cloud computing atmosphere publication-title: Eng. Sci. Technol. Int. J. – ident: ref_31 doi: 10.1145/3447993.3483274 – ident: ref_40 doi: 10.3390/pr9091514 – volume: 58 start-page: 102676 year: 2021 ident: ref_47 article-title: Multiphase fault tolerance genetic algorithm for vm and task scheduling in datacenter publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2021.102676 – ident: ref_30 doi: 10.1109/ICDCS.2019.00021 – volume: 23 start-page: 211 year: 2020 ident: ref_11 article-title: HIGA: Harmony-inspired genetic algorithm for rack-aware energy-efficient task scheduling in cloud data centers publication-title: Eng. Sci. Technol. Int. J. – volume: 5 start-page: 6 year: 2018 ident: ref_1 article-title: What is “Cloud”? It is time to update the NIST definition? publication-title: IEEE Cloud Comput. doi: 10.1109/MCC.2018.032591611 – volume: 69 start-page: 3289 year: 2021 ident: ref_43 article-title: Task scheduling optimization in cloud computing based on genetic algorithms publication-title: Comput. Mater. Contin – volume: 124 start-page: 12 year: 2021 ident: ref_44 article-title: Research on strong agile response task scheduling optimization enhancement with optimal resource usage in green cloud computing publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2021.05.012 – volume: 23 start-page: 1137 year: 2020 ident: ref_50 article-title: Task scheduling in cloud computing using particle swarm optimization with time varying inertia weight strategies publication-title: Clust. Comput. doi: 10.1007/s10586-019-02983-5 – volume: 14 start-page: 1942 year: 2020 ident: ref_48 article-title: FHCS: Hybridised optimisation for virtual machine migration and task scheduling in cloud data center publication-title: IET Commun. doi: 10.1049/iet-com.2019.1149 – volume: 19 start-page: 1305 year: 2022 ident: ref_28 article-title: Crowdsourcing platform for QoE evaluation for cloud multimedia services publication-title: Comput. Sci. Inf. Syst. doi: 10.2298/CSIS220322038L – volume: 15 start-page: 174 year: 2021 ident: ref_20 article-title: Nature-inspired cost optimisation for enterprise cloud systems using joint allocation of resources publication-title: Enterp. Inf. Syst. doi: 10.1080/17517575.2019.1605001 – volume: 16 start-page: 99 year: 2020 ident: ref_45 article-title: Energy aware task scheduling using hybrid firefly-GA in big data publication-title: Int. J. Adv. Intell. Paradig. – volume: 32 start-page: 5901 year: 2020 ident: ref_8 article-title: Amelioration of task scheduling in cloud computing using crow search algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04067-2 – volume: 33 start-page: e4379 year: 2020 ident: ref_12 article-title: An energy-efficient task-scheduling algorithm based on a multi-criteria decision-making method in cloud computing publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.4379 – volume: 169 start-page: 39 year: 2019 ident: ref_18 article-title: Task scheduling in cloud computing based on hybrid moth search algorithm and differential evolution publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.01.023 – ident: ref_21 – volume: 2020 start-page: 4854895 year: 2020 ident: ref_5 article-title: Cat swarm optimization algorithm: A survey and performance evaluation publication-title: Comput. Intell. Neurosci. doi: 10.1155/2020/4854895 – ident: ref_24 doi: 10.1155/2019/6543957 – volume: 17 start-page: 99 year: 2021 ident: ref_26 article-title: Task scheduling on cloud computing based on sea lion optimization algorithm publication-title: Int. J. Web Inf. Syst. doi: 10.1108/IJWIS-11-2020-0071 – volume: 7 start-page: 146379 year: 2019 ident: ref_34 article-title: An EDA-GA hybrid algorithm for multi-objective task scheduling in cloud computing publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2946216 – ident: ref_38 doi: 10.32604/cmc.2022.017504 – volume: 13 start-page: 50 year: 2021 ident: ref_19 article-title: Energy efficient task scheduling using adaptive PSO for cloud computing publication-title: Int. J. Reason.-Based Intell. Syst. – volume: 2021 start-page: 8892734 year: 2021 ident: ref_25 article-title: Toward enhancing the energy efficiency and minimizing the SLA violations in cloud data centers publication-title: Appl. Comput. Intell. Soft Comput. – ident: ref_33 – volume: 17 start-page: 73 year: 2020 ident: ref_17 article-title: An improved grey wolf optimization algorithm based task scheduling in cloud computing environment publication-title: Int. Arab J. Inf. Technol. – volume: 12 start-page: 631 year: 2021 ident: ref_36 article-title: Hybrid electro search with genetic algorithm for task scheduling in cloud computing publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2020.07.003 – volume: 168 start-page: 114230 year: 2021 ident: ref_15 article-title: Enhanced multi-verse optimizer for task scheduling in cloud computing environments publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114230 – volume: 103 start-page: 58 year: 2018 ident: ref_9 article-title: Multi-objective optimization technique for resource allocation and task scheduling in vehicular cloud architecture: A hybrid adaptive nature inspired approach publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2017.11.016 – volume: 34 start-page: 2370 year: 2020 ident: ref_2 article-title: Heuristic initialization of PSO task scheduling algorithm in cloud computing publication-title: J. King Saud Univ.-Comput. Inf. Sci. – volume: 7 start-page: e539 year: 2021 ident: ref_14 article-title: A new SLA-aware method for discovering the cloud services using an improved nature-inspired optimization algorithm publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.539 – ident: ref_22 – volume: 9 start-page: 117325 year: 2021 ident: ref_35 article-title: An energy-efficient hybrid scheduling algorithm for task scheduling in the cloud computing environments publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3105727 – volume: 33 start-page: 13075 year: 2021 ident: ref_46 article-title: Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06002-w |
| SSID | ssj0023338 |
| Score | 2.4984083 |
| Snippet | Effective scheduling algorithms are needed in the cloud paradigm to leverage services to customers seamlessly while minimizing the makespan, energy consumption... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 6155 |
| SubjectTerms | Algorithms Analysis Cloud Computing Customer services Energy consumption Literature reviews makespan Mathematical optimization OpenStack Optimization Quality of service Scheduling Simulation SLA violation task scheduling Workload Workloads |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BygEO5VkwFLQgJLhY8WP9OqEQUYEEJVJbVE7WvpxGJHZrJyDx65mxNyYWiBPX7Bx2Pa9vsrPfALyM0jgRmMpchNbG5ZGMXMkj5UayCDiiOSnabvcvH5Pj4_T8PJvZ59GNbavcxsQ2UHdsz9S3jUF4rCtF_5iPMSnGPCG2ujeXVy7NkKK7VjtQ4zrsEfGWN4K92YdPs699ARZiPdaxC4VY6o8bxDYh3csNclJL3f9ngN7JUMPuyZ10dHT7_x7kDuxbWMomnR3dhWumvAe3dsgK78PZrF5URIH002h2Kppv7gkqXFMn-5xNlnNau1ixRcmmy2qjWTcvghbbtgQ2FWt28kPUK_YZw9TKvv98AGdH706n7107lMFViC3WLn45XyPuKkxmuNa-jmJVcGOId0wZbkIpAxThRZBpuoRLZFYgRBHGD1ThYco8gFFZleYRsDT2uPZNlHF6Gu1hCtASIQVxmhVYJnoOvN6qJVeWsZwGZyxzrFxIg3mvQQde9KKXHU3H34Tekm57AWLWbn-o6nluHTXP0FI9zo0OjOHCVxnXiRQRl0liBC-0A6_IMnLyf9yMEvYZAx6JmLTyCRZgHGFtnDhwuDWA3AaGJv-tbwee98vo0nRPI0pTbVqZFIFVnOEXeNjZWr_nMMF6GgObA-nACgeHGq6Ui4uWNtz3Qh6HYfD43_t6AjcDdJW2JTk6hNG63pincEN9Xy-a-pl1qV_xuDK6 priority: 102 providerName: ProQuest |
| Title | Prioritized Task-Scheduling Algorithm in Cloud Computing Using Cat Swarm Optimization |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37448004 https://www.proquest.com/docview/2836473447 https://www.proquest.com/docview/2838241690 https://pubmed.ncbi.nlm.nih.gov/PMC10346332 https://doaj.org/article/945c044ed2ee4a1c94d7ba54b77ea4fd |
| Volume | 23 |
| WOSCitedRecordID | wos001028541300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiOcSWCqDkOASbR5OHB-7VVcgsSVid1E5RXbs7Fa0KeoDJA78dmacNGoEEhcuOdgTyZ73yOPPAK-TLBUKQ5mPqbX1eaITX_Ok9BNdRRyzOa1ct_vnD2IyyaZTme899UU9YQ08cMO4Y4l_BpxbE1nLVVhKboRWCddCWMUrQ943EHJXTLWlVoyVV4MjFGNRf7zGLCamE7he9HEg_X-64r1Y1O-T3As8p_fhXpsxsmGz0gdww9YP4e4ejuAjuMxXsyWhE_20hl2o9Vf_HGVhqMn8ig3nVzR3vWCzmo3my61hzVMONOk6BthIbdj5D7VasI_oQRbt1czHcHk6vhi989v3EvwSw_7Gx62GBlOiykrLjQlNkpYVt5YgwUrLbax1hCS8iqSh8zGhZYXZg7JhVFYBRrMncFAva_sUWJYG3IQ2kZxuLQfonY3GaE9wYxVWcIEHb3d8LMoWTJzetJgXWFQQy4uO5R686ki_NQgafyM6IWF0BAR67QZQFYpWFYp_qYIHb0iUBZkmLqZU7Q0D3BKBXBVDrI04Zpyp8OBoJ-2itdl1gYlWygUhIHrwsptGa6MjFFXb5dbRZJjzpBI5cNgoR7fmWGCpiz7Hg6ynNr1N9Wfq2bVD9A6DmKdxHD37H2x4DncitADXU5wcwcFmtbUv4Hb5fTNbrwZwU0yF-2YDuHUynuSfBs528Hv2a4xj-fuz_MtvpCcfMg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48C4YCiwIBBerfozt-IBQCFSNmoZITatyctfedRqR2CUPKvhR_EZmbMckAnHrgat3ZO_a37y8s98AvPSafiDJlZkUWmsTvdgzY_QS04tTBymai2VR7X7cDXq95slJ2N-An8uzMFxWubSJhaFWecL_yHfIDfoYMD_du_OvJneN4t3VZQuNEhb7-vsFpWyzt50P9H1fOc7ux0F7z6y6CpgJOce56bqhrShwSHWoUSlbeX6SotZMnJVo1G4cOySCqRMq3kUK4jAlHyu17SSpRTaf7nsFNpHAbjVgs9856H-uUzyXMr6Sv4geY-3MKHpyeedvzesVzQH-dAErPnC9PnPF4e3e-t9e1W24WYXWolXqwh3Y0NlduLFCuHgPjvrTUc40Tj-0EgM5-2IeEmgVV-MPRWs85LGziRhloj3OF0qUPS94sCitEG05F4cXcjoRn8jUTqozrPfh6FLWtQWNLM_0QxBN30Jlay9EPt5tkRtTMYVFzMuWUqprGfBm-eGjpGJd5-Yf44iyL8ZIVGPEgBe16HlJNfI3ofeMnlqA2cGLC_l0GFXGJgpJ2yxErRytUdpJiCqIpYdxEGiJqTLgNWMvYhtGk0lkdRSDlsRsYFGLkkik0NwPDNheQiyqjNss-o0vA57Xw2SWeK9JZjpfFDJNCg79kN7AgxLN9ZzdAJHyFDSguYbztUWtj2Sjs4L63LZc9F3XefTveT2Da3uDg27U7fT2H8N1hxSzKLH2tqExny70E7iafJuPZtOnlQILOL1sRfgFy_GD7g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAceD8MBRYEgosVP8Z2fEAopERUrUKktig3s_au04jELnFCBT-NX8eMX00E4tYDV-_I3rW_eXlnvwF46XX9QJIrMym01iZ6sWfG6CWmF6cOUjQXy7La_fNBMBx2x-NwtAW_mrMwXFbZ2MTSUKs84X_kHXKDPgbMT9dJ67KI0e7g3ek3kztI8U5r006jgsi-_nFG6Vvxdm-XvvUrxxl8OOp_NOsOA2ZCjnJpum5oKwoiUh1qVMpWnp-kqDWTaCUatRvHDolg6oSKd5SCOEzJ30ptO0lqkf2n-16Cy0wpyEYhGJ8ney7lfhWTET3E6hQUR7m8B7jh_8o2AX86gzVvuFmpueb6Bjf_55d2C27UAbfoVRpyG7Z0dgeur9Ew3oXj0WKaM7nTT63EkSy-mocEZcU1-hPRm0147GQuppnoz_KVElUnDB4sCy5EXy7F4ZlczMUnMsDz-mTrPTi-kHXdh-0sz_RDEF3fQmVrL0Q-9G2Rc1MxBUvM1pZSAmwZ8KYBQZTUXOzcEmQWUU7GeIlavBjwohU9rQhI_ib0npHUCjBneHkhX0yi2gRFIemghaiVozVKOwlRBbH0MA4CLTFVBrxmHEZs2WgyiawPaNCSmCMs6lFqiRSw-4EBOw3cotrkFdE51gx43g6TseIdKJnpfFXKdClk9EN6Aw8qZLdzdgNEyl7QgO4G5jcWtTmSTU9KQnTbctF3XefRv-f1DK4S-qODveH-Y7jmkI6WddfeDmwvFyv9BK4k35fTYvG01GQBXy5aC34Ds9-LGw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prioritized+Task-Scheduling+Algorithm+in+Cloud+Computing+Using+Cat+Swarm+Optimization&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mangalampalli%2C+Sudheer&rft.au=Swain%2C+Sangram+Keshari&rft.au=Chakraba&rft.au=Chakraba&rft.date=2023-07-05&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=13&rft_id=info:doi/10.3390%2Fs23136155&rft.externalDocID=A758483567 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |