Forecasting Stock Market Indices Using Integration of Encoder, Decoder, and Attention Mechanism

Accurate forecasting of stock market indices is crucial for investors, financial analysts, and policymakers. The integration of encoder and decoder architectures, coupled with an attention mechanism, has emerged as a powerful approach to enhance prediction accuracy. This paper presents a novel frame...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Entropy (Basel, Switzerland) Ročník 27; číslo 1; s. 82
Hlavní autor: Thach, Tien Thanh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 01.01.2025
MDPI
Témata:
ISSN:1099-4300, 1099-4300
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate forecasting of stock market indices is crucial for investors, financial analysts, and policymakers. The integration of encoder and decoder architectures, coupled with an attention mechanism, has emerged as a powerful approach to enhance prediction accuracy. This paper presents a novel framework that leverages these components to capture complex temporal dependencies and patterns within stock price data. The encoder effectively transforms an input sequence into a dense representation, which the decoder then uses to reconstruct future values. The attention mechanism provides an additional layer of sophistication, allowing the model to selectively focus on relevant parts of the input sequence for making predictions. Furthermore, Bayesian optimization is employed to fine-tune hyperparameters, further improving forecast precision. Our results demonstrate a significant improvement in forecast precision over traditional recurrent neural networks. This indicates the potential of our integrated approach to effectively handle the complex patterns and dependencies in stock price data.
AbstractList Accurate forecasting of stock market indices is crucial for investors, financial analysts, and policymakers. The integration of encoder and decoder architectures, coupled with an attention mechanism, has emerged as a powerful approach to enhance prediction accuracy. This paper presents a novel framework that leverages these components to capture complex temporal dependencies and patterns within stock price data. The encoder effectively transforms an input sequence into a dense representation, which the decoder then uses to reconstruct future values. The attention mechanism provides an additional layer of sophistication, allowing the model to selectively focus on relevant parts of the input sequence for making predictions. Furthermore, Bayesian optimization is employed to fine-tune hyperparameters, further improving forecast precision. Our results demonstrate a significant improvement in forecast precision over traditional recurrent neural networks. This indicates the potential of our integrated approach to effectively handle the complex patterns and dependencies in stock price data.
Accurate forecasting of stock market indices is crucial for investors, financial analysts, and policymakers. The integration of encoder and decoder architectures, coupled with an attention mechanism, has emerged as a powerful approach to enhance prediction accuracy. This paper presents a novel framework that leverages these components to capture complex temporal dependencies and patterns within stock price data. The encoder effectively transforms an input sequence into a dense representation, which the decoder then uses to reconstruct future values. The attention mechanism provides an additional layer of sophistication, allowing the model to selectively focus on relevant parts of the input sequence for making predictions. Furthermore, Bayesian optimization is employed to fine-tune hyperparameters, further improving forecast precision. Our results demonstrate a significant improvement in forecast precision over traditional recurrent neural networks. This indicates the potential of our integrated approach to effectively handle the complex patterns and dependencies in stock price data.Accurate forecasting of stock market indices is crucial for investors, financial analysts, and policymakers. The integration of encoder and decoder architectures, coupled with an attention mechanism, has emerged as a powerful approach to enhance prediction accuracy. This paper presents a novel framework that leverages these components to capture complex temporal dependencies and patterns within stock price data. The encoder effectively transforms an input sequence into a dense representation, which the decoder then uses to reconstruct future values. The attention mechanism provides an additional layer of sophistication, allowing the model to selectively focus on relevant parts of the input sequence for making predictions. Furthermore, Bayesian optimization is employed to fine-tune hyperparameters, further improving forecast precision. Our results demonstrate a significant improvement in forecast precision over traditional recurrent neural networks. This indicates the potential of our integrated approach to effectively handle the complex patterns and dependencies in stock price data.
Audience Academic
Author Thach, Tien Thanh
AuthorAffiliation Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; thachthanhtien@tdtu.edu.vn
AuthorAffiliation_xml – name: Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; thachthanhtien@tdtu.edu.vn
Author_xml – sequence: 1
  givenname: Tien Thanh
  orcidid: 0000-0001-7238-8778
  surname: Thach
  fullname: Thach, Tien Thanh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39851703$$D View this record in MEDLINE/PubMed
BookMark eNptkl1vFCEUhompsR964R8wk3hjE7eFgYHhymz6oZu08UJ7TRg4M2U7AxVYE_-97IebtjFccHLOw8s58B6jAx88IPSe4DNKJT6HWmCCcVu_QkcESzljFOODJ_EhOk5piXFNa8LfoEMq24YITI-Qug4RjE7Z-aH6kYN5qG51fIBcLbx1BlJ1l9alhc8wRJ1d8FXoqytvgoX4ubqEXaC9reY5g98gt2DutXdpeote93pM8G63n6C766ufF99mN9-_Li7mNzPTYJlndS95KxvaMUNsgxnHHWUda4TlVDMCjRZ135YS12AaSntiJS150WpoO2vpCVpsdW3QS_UY3aTjHxW0U5tEiIPSMTszgupkT4yldc0NZ1RCyylnwDnrLO-IEEXry1brcdVNYE2ZKerxmejzinf3agi_FSGCM4FlUfi0U4jh1wpSVpNLBsZRewirpChpyrwCN6ygH1-gy7CKvrzVhmKMMFoX6mxLDbpM4HwfysWmLAuTM8UNvSv5eUvrBnPRrjv48HSGffP_fr4Ap1vAxJBShH6PEKzWrlJ7VxX2_AVrXN54oXThxv-c-AuKR8up
CitedBy_id crossref_primary_10_1016_j_finr_2025_100019
Cites_doi 10.1007/s11042-016-4159-7
10.1016/j.eswa.2022.117123
10.1016/j.eswa.2022.118128
10.1016/j.compeleceng.2023.108687
10.3390/electronics13214225
10.1007/s00181-024-02644-6
10.1016/j.neucom.2019.12.118
10.3390/en14061596
10.1016/j.procs.2020.03.419
10.1109/TMM.2015.2477044
10.3390/e22101162
10.1038/s41598-024-78984-1
10.1155/2020/6622927
10.1007/s00521-020-05532-z
10.1109/ACCESS.2024.3435683
10.3390/e22111239
10.1016/j.energy.2023.126665
10.3115/v1/W14-4012
10.3390/app132212160
10.20944/preprints202003.0256.v1
10.1007/s00521-022-07366-3
10.1162/neco.1997.9.8.1735
10.1038/s41598-024-69303-9
10.3390/s23063202
10.3115/v1/D14-1179
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the author. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the author. 2025
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/e27010082
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access资源_DOAJ
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed

Publicly Available Content Database


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_b9f1cd3226c6439e86364e664bd6b177
PMC11764709
A832506789
39851703
10_3390_e27010082
Genre Journal Article
GeographicLocations Vietnam
GeographicLocations_xml – name: Vietnam
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c509t-2f968953b4c1d50460b34b457d63a41e5a72f81d56aec533f1d9341e78ae8bdd3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001405317600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Fri Oct 03 12:39:27 EDT 2025
Tue Nov 04 02:03:50 EST 2025
Thu Oct 02 11:35:23 EDT 2025
Fri Jul 25 12:02:26 EDT 2025
Tue Nov 04 18:17:45 EST 2025
Wed Jan 29 09:33:31 EST 2025
Tue Nov 18 21:29:46 EST 2025
Sat Nov 29 07:18:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords gated recurrent units
encoder–decoder architecture
recurrent neural networks
Bayesian optimization
attention mechanism
long short-term memory
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-2f968953b4c1d50460b34b457d63a41e5a72f81d56aec533f1d9341e78ae8bdd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7238-8778
OpenAccessLink https://doaj.org/article/b9f1cd3226c6439e86364e664bd6b177
PMID 39851703
PQID 3159441432
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_b9f1cd3226c6439e86364e664bd6b177
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11764709
proquest_miscellaneous_3159687054
proquest_journals_3159441432
gale_infotracacademiconefile_A832506789
pubmed_primary_39851703
crossref_primary_10_3390_e27010082
crossref_citationtrail_10_3390_e27010082
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lu (ref_6) 2021; 33
Hochreiter (ref_29) 1997; 9
ref_14
ref_13
ref_12
ref_11
ref_30
Du (ref_24) 2020; 388
Wang (ref_7) 2022; 208
ref_18
ref_17
ref_16
Soydaner (ref_15) 2022; 34
Lu (ref_5) 2020; 2020
Kanwal (ref_8) 2022; 202
ref_25
Zhou (ref_21) 2021; 35
ref_23
ref_20
Singh (ref_1) 2017; 76
Jayanth (ref_28) 2024; 12
Wu (ref_22) 2021; 34
ref_3
ref_2
Cho (ref_19) 2015; 17
Wu (ref_26) 2023; 268
ref_27
ref_9
Saud (ref_31) 2020; 167
ref_4
Wang (ref_10) 2023; 108
References_xml – volume: 76
  start-page: 18569
  year: 2017
  ident: ref_1
  article-title: Stock prediction using deep learning
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-016-4159-7
– volume: 202
  start-page: 117123
  year: 2022
  ident: ref_8
  article-title: BiCuDNNLSTM-1dCNN - A hybrid deep learning-based predictive model for stock price prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117123
– volume: 208
  start-page: 118128
  year: 2022
  ident: ref_7
  article-title: Stock market index prediction using deep Transformer model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118128
– volume: 108
  start-page: 108687
  year: 2023
  ident: ref_10
  article-title: Conducting stock market index prediction via the localized spatial–temporal convolutional network
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2023.108687
– ident: ref_13
  doi: 10.3390/electronics13214225
– ident: ref_14
  doi: 10.1007/s00181-024-02644-6
– ident: ref_16
– volume: 388
  start-page: 269
  year: 2020
  ident: ref_24
  article-title: Multivariate time series forecasting via attention-based encoder–decoder framework
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.118
– volume: 34
  start-page: 22419
  year: 2021
  ident: ref_22
  article-title: Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 35
  start-page: 11106
  year: 2021
  ident: ref_21
  article-title: Informer: Beyond efficient transformer for long sequence time-series forecasting
  publication-title: Proc. AAAI Conf. Artif. Intell.
– ident: ref_25
  doi: 10.3390/en14061596
– volume: 167
  start-page: 788
  year: 2020
  ident: ref_31
  article-title: Analysis of look back period for stock price prediction with RNN variants: A case study on banking sector of NEPSE
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.419
– ident: ref_18
– volume: 17
  start-page: 1875
  year: 2015
  ident: ref_19
  article-title: Describing multimedia content using attention-based encoder-decoder networks
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2015.2477044
– ident: ref_23
– ident: ref_4
  doi: 10.3390/e22101162
– ident: ref_12
  doi: 10.1038/s41598-024-78984-1
– volume: 2020
  start-page: 6622927
  year: 2020
  ident: ref_5
  article-title: A CNN-LSTM-based model to forecast stock prices
  publication-title: Complexity
  doi: 10.1155/2020/6622927
– volume: 33
  start-page: 4741
  year: 2021
  ident: ref_6
  article-title: A CNN-BiLSTM-AM method for stock price prediction
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05532-z
– volume: 12
  start-page: 114760
  year: 2024
  ident: ref_28
  article-title: Developing a Novel Hybrid Model Double Exponential Smoothing and Dual Attention Encoder-Decoder Based Bi-Directional Gated Recurrent Unit Enhanced with Bayesian Optimization to Forecast Stock Price
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3435683
– ident: ref_3
  doi: 10.3390/e22111239
– volume: 268
  start-page: 126665
  year: 2023
  ident: ref_26
  article-title: Attention-based encoder-decoder networks for state of charge estimation of lithium-ion battery
  publication-title: Energy
  doi: 10.1016/j.energy.2023.126665
– ident: ref_30
  doi: 10.3115/v1/W14-4012
– ident: ref_9
  doi: 10.3390/app132212160
– ident: ref_2
  doi: 10.20944/preprints202003.0256.v1
– volume: 34
  start-page: 13371
  year: 2022
  ident: ref_15
  article-title: Attention mechanism in neural networks: Where it comes and where it goes
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07366-3
– ident: ref_20
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_29
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_11
  doi: 10.1038/s41598-024-69303-9
– ident: ref_27
  doi: 10.3390/s23063202
– ident: ref_17
  doi: 10.3115/v1/D14-1179
SSID ssj0023216
Score 2.3647363
Snippet Accurate forecasting of stock market indices is crucial for investors, financial analysts, and policymakers. The integration of encoder and decoder...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 82
SubjectTerms Accuracy
attention mechanism
Bayesian optimization
Coders
Comparative analysis
Computational linguistics
Deep learning
encoder–decoder architecture
Forecasting
gated recurrent units
Language processing
long short-term memory
Machine translation
Natural language interfaces
Neural networks
Recurrent neural networks
Securities markets
Stock exchanges
Stock markets
Stock price indexes
Stock prices
Stocks
Time series
Voice recognition
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcODCQ7xSCjIICQ5EjeNH7BNaoBU9tEIqSL1Zju3ASpC0m5Tfz0ziDY1AXLhEUWJFjmbmmxl7_A0hL0MhGya1z5XxDhIUVufOwUW7JjZlkJHxqdlEdXKiz87Mp7Tg1qeyyi0mjkAdOo9r5Psc_C64bsHLt-cXOXaNwt3V1ELjOrmBLAnFWLp3OidcvGRqYhPikNrvx7IqkMumXPigkar_T0C-4pGW1ZJX3M_hnf-d-F1yOwWedDVpyj1yLbb3icXOnN71WPtMTwfARno8HoOmR21ACKFjSQE9SqQSIETaNfSgxZPwmzf0Q0w3rg10NQxT7SQ9jnieeN3_eEC-HB58fv8xTy0Xcg-Rw5CXjVHaSF4Lz4LETdOai1rIKijuBIvSVWUDIa5ULnqIFBsWDPjBWGkXdR0Cf0h22q6NjwktqqBNgO8Z6SAHF7iDWwYFKiB0XVV1Rl5vhWB94iPHthjfLeQlKC87yysjL-ah5xMJx98GvUNJzgOQN3t80G2-2mSGtjYN8wFATHkMxaJWXImolKiDQiKujLxCPbBo3TAZ79IhBfgl5MmyKwBAiQ7eZGRvK26bzL63v2WdkefzazBY3IVxbewupzEKUFKKjDyaNGueMzcQAAMGZ0QvdG7xU8s37frbSArOWKVEVZjdf8_rCblVYgfjcRFpj-wMm8v4lNz0P4d1v3k2ms8vq0EkXA
  priority: 102
  providerName: ProQuest
Title Forecasting Stock Market Indices Using Integration of Encoder, Decoder, and Attention Mechanism
URI https://www.ncbi.nlm.nih.gov/pubmed/39851703
https://www.proquest.com/docview/3159441432
https://www.proquest.com/docview/3159687054
https://pubmed.ncbi.nlm.nih.gov/PMC11764709
https://doaj.org/article/b9f1cd3226c6439e86364e664bd6b177
Volume 27
WOSCitedRecordID wos001405317600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-6evCyKH51XYcogh4s2zTfx1mdxTnMMLgK46mkSYoD2pGZrkf_dt9rO2WKghcvoTShJC_vs3n5PUJehUxWTBqfKusdBCisTJ2DxrgqVnmQkfGu2IReLs16bVdHpb4wJ6yDB-4Id1HaivkAbKc8Gs9oFFciKiXKoBA6CbVvpu0hmOpDLZ4z1eEIcQjqL2KuM0SxyUfWpwXp_1MVH9micZ7kkeG5uk9Oe4-RTruZPiC3Yv2QFFhS07s9Ji3T6waUGl2095fpvA4o-7TNBaDzHg0CqE-3FZ3VeIV995a-j_2DqwOdNk2X9EgXES8Cb_bfH5HPV7NP7z6kfa2E1IPJb9K8sspYyUvhWZB42llyUQqpg-JOsCidzivwTaVy0YOLV7FgwYBFbVw0ZQj8MTmpt3V8Smimg7EBvmelg-BZ4NFrHhTsnTCl1mVC3hxoWPgeSBzrWXwrIKBAchcDuRPychj6o0PP-NugS9yIYQACXrcvgA2Kng2Kf7FBQl7jNhYoljAZ7_rbBbAkBLgqpqC5JFpmm5Dzw04XvbzuCw5eHTiGgsNsXgzdIGl4fOLquL3pxihQb1Ik5EnHGMOcuQXPFZRnQsyIZUaLGvfUm68tmjdjWgmd2bP_QYZn5F6OBYrbf0Tn5KTZ3cTn5K7_2Wz2uwm5rddmQu5czparj5NWYiaY7HqN7a8Z9Kzmi9WX37QYHC0
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJceIhXoIBBIDg06iZ-JD4gtKVbddXuqoIi9RYc22lXgmzZTUH8KX4jM0k2dAXi1gOXKEqsyE4-fzOOZ74BeOH6sohkakOlrcEFSpSHxuAhNYUvYid9xJtiE8lkkh4f68M1-LnMhaGwyiUn1kTtZpb-kW9xtLtougWP3559DalqFO2uLktoNLDY9z--45Jt8Wa0g9_3ZRzvDo_e7YVtVYHQonGswrjQKtWS58JGTtK-YM5FLmTiFDci8tIkcYFenFTGW3SGishppHqfpManuXMcn3sF1gUXUvRgfXs4OXzfLfF4HKlGv4hz3d_ycdIn9Zx4xerVxQH-NAEXbOBqfOYFg7d78397VbfgRutas0EzF27Dmi_vQEa1R61ZUHQ3-1Ah-7NxnejNRqUjkmR10AQbtbIZCFM2K9iwpFz_-Sbb8e2JKR0bVFUTHcrGnjKmp4svd-HjpYzpHvTKWekfAOsnLtUOn6elEUoL2qOOnUKQizRPkjyA18uPntlWcZ0Kf3zOcOVF-Mg6fATwvGt61siM_K3RNiGna0DK4PWF2fwka4kmy3URWYc0rSw5mz5VXAmvlMidIqmxAF4R7jLiL-yMNW0aBg6JlMCyAVK8JBdGB7CxhFfWEtsi-42tAJ51t5GSaJ_JlH523rRRaAekCOB-g-Suz1yji49WJoB0BeMrg1q9U05Pa9nzKEqUSPr64b_79RSu7R2ND7KD0WT_EVyPqV5z_ctsA3rV_Nw_hqv2WzVdzJ-0k5fBp8ueBL8AEROBxg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGhtBeuIhbYIBBIHggahPf4geEOtqKaqyquEh7M47tjEqQjjYD8df4dZyTpGEViLc98FJVtRXF6efvO46Pv0PIY98XRSIyF0vtLCxQkjy2Fj4yW4Qi9SIkrCk2oabT7OhIz7bIz_VZGEyrXHNiTdR-4fAdeY-B7oJ0c5b2ijYtYjYcvzz5GmMFKdxpXZfTaCByEH58h-Xb6sVkCP_1kzQdj96_eh23FQZiB0JZxWmhZaYFy7lLvMA9wpzxnAvlJbM8CcKqtICITkgbHARGReI10H5QmQ1Z7j2D614gO4rpPsyunf3RdPa2W-6xNJGNlxGD9l5IVR-ddNINBawLBfwpB2f0cDNX84z4ja_8z4_tKrnchtx00MyRa2QrlNeJwZqkzq4w65u-q0AV6GF9AJxOSo_kSetkCjpp7TQAvnRR0FGJHgDL53QY2i-29HRQVU3WKD0MeJJ6vvpyg3w4lzHdJNvlogy3Ce0rn2kP19PCcqk57l2nXgL4eZYrlUfk2RoAxrVO7FgQ5LOBFRlixXRYicijrutJYz_yt077iKKuAzqG1z8slsemJSCT6yJxHuhbOgxCQyaZ5EFKnnuJFmQReYoYNMhrcDPOtsczYEjoEGYGQP0CQxsdkb011ExLeCvzG2cRedg1A1Xh_pMtw-K06SNBHwSPyK0G1d09Mw2hP6hPRLINvG8MarOlnH-q7dCTREmu-vrOv-_rAbkEyDdvJtODu2Q3xTLO9Zu0PbJdLU_DPXLRfavmq-X9dh5T8vG858AvAAyKiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+Stock+Market+Indices+Using+Integration+of+Encoder%2C+Decoder%2C+and+Attention+Mechanism&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Thach%2C+Tien+Thanh&rft.date=2025-01-01&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=27&rft.issue=1&rft.spage=82&rft_id=info:doi/10.3390%2Fe27010082&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_e27010082
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon