Forecasting Stock Market Indices Using Integration of Encoder, Decoder, and Attention Mechanism
Accurate forecasting of stock market indices is crucial for investors, financial analysts, and policymakers. The integration of encoder and decoder architectures, coupled with an attention mechanism, has emerged as a powerful approach to enhance prediction accuracy. This paper presents a novel frame...
Uloženo v:
| Vydáno v: | Entropy (Basel, Switzerland) Ročník 27; číslo 1; s. 82 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
01.01.2025
MDPI |
| Témata: | |
| ISSN: | 1099-4300, 1099-4300 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Accurate forecasting of stock market indices is crucial for investors, financial analysts, and policymakers. The integration of encoder and decoder architectures, coupled with an attention mechanism, has emerged as a powerful approach to enhance prediction accuracy. This paper presents a novel framework that leverages these components to capture complex temporal dependencies and patterns within stock price data. The encoder effectively transforms an input sequence into a dense representation, which the decoder then uses to reconstruct future values. The attention mechanism provides an additional layer of sophistication, allowing the model to selectively focus on relevant parts of the input sequence for making predictions. Furthermore, Bayesian optimization is employed to fine-tune hyperparameters, further improving forecast precision. Our results demonstrate a significant improvement in forecast precision over traditional recurrent neural networks. This indicates the potential of our integrated approach to effectively handle the complex patterns and dependencies in stock price data. |
|---|---|
| AbstractList | Accurate forecasting of stock market indices is crucial for investors, financial analysts, and policymakers. The integration of encoder and decoder architectures, coupled with an attention mechanism, has emerged as a powerful approach to enhance prediction accuracy. This paper presents a novel framework that leverages these components to capture complex temporal dependencies and patterns within stock price data. The encoder effectively transforms an input sequence into a dense representation, which the decoder then uses to reconstruct future values. The attention mechanism provides an additional layer of sophistication, allowing the model to selectively focus on relevant parts of the input sequence for making predictions. Furthermore, Bayesian optimization is employed to fine-tune hyperparameters, further improving forecast precision. Our results demonstrate a significant improvement in forecast precision over traditional recurrent neural networks. This indicates the potential of our integrated approach to effectively handle the complex patterns and dependencies in stock price data. Accurate forecasting of stock market indices is crucial for investors, financial analysts, and policymakers. The integration of encoder and decoder architectures, coupled with an attention mechanism, has emerged as a powerful approach to enhance prediction accuracy. This paper presents a novel framework that leverages these components to capture complex temporal dependencies and patterns within stock price data. The encoder effectively transforms an input sequence into a dense representation, which the decoder then uses to reconstruct future values. The attention mechanism provides an additional layer of sophistication, allowing the model to selectively focus on relevant parts of the input sequence for making predictions. Furthermore, Bayesian optimization is employed to fine-tune hyperparameters, further improving forecast precision. Our results demonstrate a significant improvement in forecast precision over traditional recurrent neural networks. This indicates the potential of our integrated approach to effectively handle the complex patterns and dependencies in stock price data.Accurate forecasting of stock market indices is crucial for investors, financial analysts, and policymakers. The integration of encoder and decoder architectures, coupled with an attention mechanism, has emerged as a powerful approach to enhance prediction accuracy. This paper presents a novel framework that leverages these components to capture complex temporal dependencies and patterns within stock price data. The encoder effectively transforms an input sequence into a dense representation, which the decoder then uses to reconstruct future values. The attention mechanism provides an additional layer of sophistication, allowing the model to selectively focus on relevant parts of the input sequence for making predictions. Furthermore, Bayesian optimization is employed to fine-tune hyperparameters, further improving forecast precision. Our results demonstrate a significant improvement in forecast precision over traditional recurrent neural networks. This indicates the potential of our integrated approach to effectively handle the complex patterns and dependencies in stock price data. |
| Audience | Academic |
| Author | Thach, Tien Thanh |
| AuthorAffiliation | Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; thachthanhtien@tdtu.edu.vn |
| AuthorAffiliation_xml | – name: Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; thachthanhtien@tdtu.edu.vn |
| Author_xml | – sequence: 1 givenname: Tien Thanh orcidid: 0000-0001-7238-8778 surname: Thach fullname: Thach, Tien Thanh |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39851703$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkl1vFCEUhompsR964R8wk3hjE7eFgYHhymz6oZu08UJ7TRg4M2U7AxVYE_-97IebtjFccHLOw8s58B6jAx88IPSe4DNKJT6HWmCCcVu_QkcESzljFOODJ_EhOk5piXFNa8LfoEMq24YITI-Qug4RjE7Z-aH6kYN5qG51fIBcLbx1BlJ1l9alhc8wRJ1d8FXoqytvgoX4ubqEXaC9reY5g98gt2DutXdpeote93pM8G63n6C766ufF99mN9-_Li7mNzPTYJlndS95KxvaMUNsgxnHHWUda4TlVDMCjRZ135YS12AaSntiJS150WpoO2vpCVpsdW3QS_UY3aTjHxW0U5tEiIPSMTszgupkT4yldc0NZ1RCyylnwDnrLO-IEEXry1brcdVNYE2ZKerxmejzinf3agi_FSGCM4FlUfi0U4jh1wpSVpNLBsZRewirpChpyrwCN6ygH1-gy7CKvrzVhmKMMFoX6mxLDbpM4HwfysWmLAuTM8UNvSv5eUvrBnPRrjv48HSGffP_fr4Ap1vAxJBShH6PEKzWrlJ7VxX2_AVrXN54oXThxv-c-AuKR8up |
| CitedBy_id | crossref_primary_10_1016_j_finr_2025_100019 |
| Cites_doi | 10.1007/s11042-016-4159-7 10.1016/j.eswa.2022.117123 10.1016/j.eswa.2022.118128 10.1016/j.compeleceng.2023.108687 10.3390/electronics13214225 10.1007/s00181-024-02644-6 10.1016/j.neucom.2019.12.118 10.3390/en14061596 10.1016/j.procs.2020.03.419 10.1109/TMM.2015.2477044 10.3390/e22101162 10.1038/s41598-024-78984-1 10.1155/2020/6622927 10.1007/s00521-020-05532-z 10.1109/ACCESS.2024.3435683 10.3390/e22111239 10.1016/j.energy.2023.126665 10.3115/v1/W14-4012 10.3390/app132212160 10.20944/preprints202003.0256.v1 10.1007/s00521-022-07366-3 10.1162/neco.1997.9.8.1735 10.1038/s41598-024-69303-9 10.3390/s23063202 10.3115/v1/D14-1179 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the author. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the author. 2025 |
| DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
| DOI | 10.3390/e27010082 |
| DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) Open Access资源_DOAJ |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1099-4300 |
| ExternalDocumentID | oai_doaj_org_article_b9f1cd3226c6439e86364e664bd6b177 PMC11764709 A832506789 39851703 10_3390_e27010082 |
| Genre | Journal Article |
| GeographicLocations | Vietnam |
| GeographicLocations_xml | – name: Vietnam |
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c509t-2f968953b4c1d50460b34b457d63a41e5a72f81d56aec533f1d9341e78ae8bdd3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001405317600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1099-4300 |
| IngestDate | Fri Oct 03 12:39:27 EDT 2025 Tue Nov 04 02:03:50 EST 2025 Thu Oct 02 11:35:23 EDT 2025 Fri Jul 25 12:02:26 EDT 2025 Tue Nov 04 18:17:45 EST 2025 Wed Jan 29 09:33:31 EST 2025 Tue Nov 18 21:29:46 EST 2025 Sat Nov 29 07:18:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | gated recurrent units encoder–decoder architecture recurrent neural networks Bayesian optimization attention mechanism long short-term memory |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-2f968953b4c1d50460b34b457d63a41e5a72f81d56aec533f1d9341e78ae8bdd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7238-8778 |
| OpenAccessLink | https://doaj.org/article/b9f1cd3226c6439e86364e664bd6b177 |
| PMID | 39851703 |
| PQID | 3159441432 |
| PQPubID | 2032401 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b9f1cd3226c6439e86364e664bd6b177 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11764709 proquest_miscellaneous_3159687054 proquest_journals_3159441432 gale_infotracacademiconefile_A832506789 pubmed_primary_39851703 crossref_primary_10_3390_e27010082 crossref_citationtrail_10_3390_e27010082 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Entropy (Basel, Switzerland) |
| PublicationTitleAlternate | Entropy (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Lu (ref_6) 2021; 33 Hochreiter (ref_29) 1997; 9 ref_14 ref_13 ref_12 ref_11 ref_30 Du (ref_24) 2020; 388 Wang (ref_7) 2022; 208 ref_18 ref_17 ref_16 Soydaner (ref_15) 2022; 34 Lu (ref_5) 2020; 2020 Kanwal (ref_8) 2022; 202 ref_25 Zhou (ref_21) 2021; 35 ref_23 ref_20 Singh (ref_1) 2017; 76 Jayanth (ref_28) 2024; 12 Wu (ref_22) 2021; 34 ref_3 ref_2 Cho (ref_19) 2015; 17 Wu (ref_26) 2023; 268 ref_27 ref_9 Saud (ref_31) 2020; 167 ref_4 Wang (ref_10) 2023; 108 |
| References_xml | – volume: 76 start-page: 18569 year: 2017 ident: ref_1 article-title: Stock prediction using deep learning publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-016-4159-7 – volume: 202 start-page: 117123 year: 2022 ident: ref_8 article-title: BiCuDNNLSTM-1dCNN - A hybrid deep learning-based predictive model for stock price prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117123 – volume: 208 start-page: 118128 year: 2022 ident: ref_7 article-title: Stock market index prediction using deep Transformer model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118128 – volume: 108 start-page: 108687 year: 2023 ident: ref_10 article-title: Conducting stock market index prediction via the localized spatial–temporal convolutional network publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2023.108687 – ident: ref_13 doi: 10.3390/electronics13214225 – ident: ref_14 doi: 10.1007/s00181-024-02644-6 – ident: ref_16 – volume: 388 start-page: 269 year: 2020 ident: ref_24 article-title: Multivariate time series forecasting via attention-based encoder–decoder framework publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.12.118 – volume: 34 start-page: 22419 year: 2021 ident: ref_22 article-title: Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting publication-title: Adv. Neural Inf. Process. Syst. – volume: 35 start-page: 11106 year: 2021 ident: ref_21 article-title: Informer: Beyond efficient transformer for long sequence time-series forecasting publication-title: Proc. AAAI Conf. Artif. Intell. – ident: ref_25 doi: 10.3390/en14061596 – volume: 167 start-page: 788 year: 2020 ident: ref_31 article-title: Analysis of look back period for stock price prediction with RNN variants: A case study on banking sector of NEPSE publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.03.419 – ident: ref_18 – volume: 17 start-page: 1875 year: 2015 ident: ref_19 article-title: Describing multimedia content using attention-based encoder-decoder networks publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2015.2477044 – ident: ref_23 – ident: ref_4 doi: 10.3390/e22101162 – ident: ref_12 doi: 10.1038/s41598-024-78984-1 – volume: 2020 start-page: 6622927 year: 2020 ident: ref_5 article-title: A CNN-LSTM-based model to forecast stock prices publication-title: Complexity doi: 10.1155/2020/6622927 – volume: 33 start-page: 4741 year: 2021 ident: ref_6 article-title: A CNN-BiLSTM-AM method for stock price prediction publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05532-z – volume: 12 start-page: 114760 year: 2024 ident: ref_28 article-title: Developing a Novel Hybrid Model Double Exponential Smoothing and Dual Attention Encoder-Decoder Based Bi-Directional Gated Recurrent Unit Enhanced with Bayesian Optimization to Forecast Stock Price publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3435683 – ident: ref_3 doi: 10.3390/e22111239 – volume: 268 start-page: 126665 year: 2023 ident: ref_26 article-title: Attention-based encoder-decoder networks for state of charge estimation of lithium-ion battery publication-title: Energy doi: 10.1016/j.energy.2023.126665 – ident: ref_30 doi: 10.3115/v1/W14-4012 – ident: ref_9 doi: 10.3390/app132212160 – ident: ref_2 doi: 10.20944/preprints202003.0256.v1 – volume: 34 start-page: 13371 year: 2022 ident: ref_15 article-title: Attention mechanism in neural networks: Where it comes and where it goes publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07366-3 – ident: ref_20 – volume: 9 start-page: 1735 year: 1997 ident: ref_29 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: ref_11 doi: 10.1038/s41598-024-69303-9 – ident: ref_27 doi: 10.3390/s23063202 – ident: ref_17 doi: 10.3115/v1/D14-1179 |
| SSID | ssj0023216 |
| Score | 2.3647363 |
| Snippet | Accurate forecasting of stock market indices is crucial for investors, financial analysts, and policymakers. The integration of encoder and decoder... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 82 |
| SubjectTerms | Accuracy attention mechanism Bayesian optimization Coders Comparative analysis Computational linguistics Deep learning encoder–decoder architecture Forecasting gated recurrent units Language processing long short-term memory Machine translation Natural language interfaces Neural networks Recurrent neural networks Securities markets Stock exchanges Stock markets Stock price indexes Stock prices Stocks Time series Voice recognition |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcODCQ7xSCjIICQ5EjeNH7BNaoBU9tEIqSL1Zju3ASpC0m5Tfz0ziDY1AXLhEUWJFjmbmmxl7_A0hL0MhGya1z5XxDhIUVufOwUW7JjZlkJHxqdlEdXKiz87Mp7Tg1qeyyi0mjkAdOo9r5Psc_C64bsHLt-cXOXaNwt3V1ELjOrmBLAnFWLp3OidcvGRqYhPikNrvx7IqkMumXPigkar_T0C-4pGW1ZJX3M_hnf-d-F1yOwWedDVpyj1yLbb3icXOnN71WPtMTwfARno8HoOmR21ACKFjSQE9SqQSIETaNfSgxZPwmzf0Q0w3rg10NQxT7SQ9jnieeN3_eEC-HB58fv8xTy0Xcg-Rw5CXjVHaSF4Lz4LETdOai1rIKijuBIvSVWUDIa5ULnqIFBsWDPjBWGkXdR0Cf0h22q6NjwktqqBNgO8Z6SAHF7iDWwYFKiB0XVV1Rl5vhWB94iPHthjfLeQlKC87yysjL-ah5xMJx98GvUNJzgOQN3t80G2-2mSGtjYN8wFATHkMxaJWXImolKiDQiKujLxCPbBo3TAZ79IhBfgl5MmyKwBAiQ7eZGRvK26bzL63v2WdkefzazBY3IVxbewupzEKUFKKjDyaNGueMzcQAAMGZ0QvdG7xU8s37frbSArOWKVEVZjdf8_rCblVYgfjcRFpj-wMm8v4lNz0P4d1v3k2ms8vq0EkXA priority: 102 providerName: ProQuest |
| Title | Forecasting Stock Market Indices Using Integration of Encoder, Decoder, and Attention Mechanism |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39851703 https://www.proquest.com/docview/3159441432 https://www.proquest.com/docview/3159687054 https://pubmed.ncbi.nlm.nih.gov/PMC11764709 https://doaj.org/article/b9f1cd3226c6439e86364e664bd6b177 |
| Volume | 27 |
| WOSCitedRecordID | wos001405317600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M7S dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: PIMPY dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-6evCyKH51XYcogh4s2zTfx1mdxTnMMLgK46mkSYoD2pGZrkf_dt9rO2WKghcvoTShJC_vs3n5PUJehUxWTBqfKusdBCisTJ2DxrgqVnmQkfGu2IReLs16bVdHpb4wJ6yDB-4Id1HaivkAbKc8Gs9oFFciKiXKoBA6CbVvpu0hmOpDLZ4z1eEIcQjqL2KuM0SxyUfWpwXp_1MVH9micZ7kkeG5uk9Oe4-RTruZPiC3Yv2QFFhS07s9Ji3T6waUGl2095fpvA4o-7TNBaDzHg0CqE-3FZ3VeIV995a-j_2DqwOdNk2X9EgXES8Cb_bfH5HPV7NP7z6kfa2E1IPJb9K8sspYyUvhWZB42llyUQqpg-JOsCidzivwTaVy0YOLV7FgwYBFbVw0ZQj8MTmpt3V8Smimg7EBvmelg-BZ4NFrHhTsnTCl1mVC3hxoWPgeSBzrWXwrIKBAchcDuRPychj6o0PP-NugS9yIYQACXrcvgA2Kng2Kf7FBQl7jNhYoljAZ7_rbBbAkBLgqpqC5JFpmm5Dzw04XvbzuCw5eHTiGgsNsXgzdIGl4fOLquL3pxihQb1Ik5EnHGMOcuQXPFZRnQsyIZUaLGvfUm68tmjdjWgmd2bP_QYZn5F6OBYrbf0Tn5KTZ3cTn5K7_2Wz2uwm5rddmQu5czparj5NWYiaY7HqN7a8Z9Kzmi9WX37QYHC0 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJceIhXoIBBIDg06iZ-JD4gtKVbddXuqoIi9RYc22lXgmzZTUH8KX4jM0k2dAXi1gOXKEqsyE4-fzOOZ74BeOH6sohkakOlrcEFSpSHxuAhNYUvYid9xJtiE8lkkh4f68M1-LnMhaGwyiUn1kTtZpb-kW9xtLtougWP3559DalqFO2uLktoNLDY9z--45Jt8Wa0g9_3ZRzvDo_e7YVtVYHQonGswrjQKtWS58JGTtK-YM5FLmTiFDci8tIkcYFenFTGW3SGishppHqfpManuXMcn3sF1gUXUvRgfXs4OXzfLfF4HKlGv4hz3d_ycdIn9Zx4xerVxQH-NAEXbOBqfOYFg7d78397VbfgRutas0EzF27Dmi_vQEa1R61ZUHQ3-1Ah-7NxnejNRqUjkmR10AQbtbIZCFM2K9iwpFz_-Sbb8e2JKR0bVFUTHcrGnjKmp4svd-HjpYzpHvTKWekfAOsnLtUOn6elEUoL2qOOnUKQizRPkjyA18uPntlWcZ0Kf3zOcOVF-Mg6fATwvGt61siM_K3RNiGna0DK4PWF2fwka4kmy3URWYc0rSw5mz5VXAmvlMidIqmxAF4R7jLiL-yMNW0aBg6JlMCyAVK8JBdGB7CxhFfWEtsi-42tAJ51t5GSaJ_JlH523rRRaAekCOB-g-Suz1yji49WJoB0BeMrg1q9U05Pa9nzKEqUSPr64b_79RSu7R2ND7KD0WT_EVyPqV5z_ctsA3rV_Nw_hqv2WzVdzJ-0k5fBp8ueBL8AEROBxg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGhtBeuIhbYIBBIHggahPf4geEOtqKaqyquEh7M47tjEqQjjYD8df4dZyTpGEViLc98FJVtRXF6efvO46Pv0PIY98XRSIyF0vtLCxQkjy2Fj4yW4Qi9SIkrCk2oabT7OhIz7bIz_VZGEyrXHNiTdR-4fAdeY-B7oJ0c5b2ijYtYjYcvzz5GmMFKdxpXZfTaCByEH58h-Xb6sVkCP_1kzQdj96_eh23FQZiB0JZxWmhZaYFy7lLvMA9wpzxnAvlJbM8CcKqtICITkgbHARGReI10H5QmQ1Z7j2D614gO4rpPsyunf3RdPa2W-6xNJGNlxGD9l5IVR-ddNINBawLBfwpB2f0cDNX84z4ja_8z4_tKrnchtx00MyRa2QrlNeJwZqkzq4w65u-q0AV6GF9AJxOSo_kSetkCjpp7TQAvnRR0FGJHgDL53QY2i-29HRQVU3WKD0MeJJ6vvpyg3w4lzHdJNvlogy3Ce0rn2kP19PCcqk57l2nXgL4eZYrlUfk2RoAxrVO7FgQ5LOBFRlixXRYicijrutJYz_yt077iKKuAzqG1z8slsemJSCT6yJxHuhbOgxCQyaZ5EFKnnuJFmQReYoYNMhrcDPOtsczYEjoEGYGQP0CQxsdkb011ExLeCvzG2cRedg1A1Xh_pMtw-K06SNBHwSPyK0G1d09Mw2hP6hPRLINvG8MarOlnH-q7dCTREmu-vrOv-_rAbkEyDdvJtODu2Q3xTLO9Zu0PbJdLU_DPXLRfavmq-X9dh5T8vG858AvAAyKiQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+Stock+Market+Indices+Using+Integration+of+Encoder%2C+Decoder%2C+and+Attention+Mechanism&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Thach%2C+Tien+Thanh&rft.date=2025-01-01&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=27&rft.issue=1&rft.spage=82&rft_id=info:doi/10.3390%2Fe27010082&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_e27010082 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |